
Under review as a conference paper at ICLR 2024

ON THE ROLE OF MOMENTUM IN THE IMPLICIT BIAS
OF GRADIENT DESCENT FOR DIAGONAL LINEAR NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Momentum is a widely adopted and crucial modification to gradient descent when
training modern deep neural networks. In this paper, we target on the regularization
effect of momentum-based methods in regression settings and analyze the popular
diagonal linear networks to precisely characterize the implicit bias of continuous
version of heavy-ball (HB) and Nesterov’s method of accelerated gradients (NAG).
We show that, HB and NAG exhibit different implicit bias compared to GD for
diagonal linear networks, which is different from the one for classic linear regres-
sion problem where momentum-based methods share the same implicit bias with
GD. Specifically, the role of momentum in the implicit bias of GD is twofold.
On one hand, HB and NAG induce extra initialization mitigation effects similar
to SGD that are beneficial for generalization of sparse regression. On the other
hand, besides the initialization of parameters, the implicit regularization effects of
HB and NAG also depend on the initialization of gradients explicitly, which may
not be benign for generalization. As a consequence, whether HB and NAG have
better generalization properties than GD jointly depends on the aforementioned
twofold effects determined by various parameters such as learning rate, momentum
factor, data matrix, and integral of gradients. Particularly, the difference between
the implicit bias of GD and that of HB and NAG disappears for small learning
rate. Our findings highlight the potential beneficial role of momentum and can help
understand its advantages in practice from the perspective of generalization.

1 INTRODUCTION

Extensive deep learning tasks aim to solve the optimization problem
argmin

β
L(β) (1)

where L is the loss function. Gradient descent (GD) and its variants underpin such optimization
of parameters for deep learning, thus understanding these simple yet highly effective algorithms is
crucial to unveil the thrilling generalization performance of deep neural networks. Recently, Azulay
et al. (2021); Ji & Telgarsky (2019); Lyu & Li (2020); Soudry et al. (2018); Pesme et al. (2021)
have made significant efforts in this direction to understand GD-based methods through the lens of
implicit bias, which states that GD and its variants are implicitly biased towards selecting particular
solutions among all global minimum.

In particular, Soudry et al. (2018) pioneered the study of implicit bias of GD and showed that GD
selects the max-margin solution for logistic regression on separable dataset. For regression problems,
the simplest setting is the linear regression problem, where GD and its stochastic variant, SGD, are
biased towards the interpolation solution that is closest to the initialization measured by the Euclidean
distance (Ali et al., 2020). In order to investigate the implicit bias for deep neural networks, diagonal
linear network, a simplified version of deep learning models, has been proposed. For this model,
Azulay et al. (2021); Woodworth et al. (2020); Yun et al. (2021) showed that the solution selected by
GD is equivalent to that of a constrained norm minimization problem interpolating between ℓ1 and ℓ2
norms up to the magnitude of the initialization scale. Pesme et al. (2021) further characterized that
adding stochastic noise to GD additionally induces a regularization effect equivalent to reducing the
initialization magnitude.
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Besides these fruitful progresses, Gunasekar et al. (2018); Wang et al. (2022) studied the implicit
bias of the widely adopted modification to GD, the momentum-based methods for one-layer linear
models and showed that they have the same implicit bias as GD. Jelassi & Li (2022), on the other
hand, revealed that momentum-based methods have better generalization performance than GD for
a linear CNN in classification problems. Ghosh et al. (2023) conducted a model-agnostic analysis
of O(η2) approximate continuous version of HB and revealed its generalization advantages over
GF from the perspective of IGR (Barrett & Dherin, 2022). Momentum induces different dynamics
compared to vanilla GD: from the perspective of their continuous time approximation modelling,
the approximation for GD is a first-order ODE (gradient flow): dβ/dt = −∇L(β), while, as a
comparison, the approximation for momentum-based methods can be seen as a damped second-order
Hamiltonian dynamic with potential L(β):

m
d2β

dt2
+ λ

dβ

dt
+∇L(β) = 0,

which was first inspired in Polyak (1964). Due to the clear discrepancy of their dynamics, it is natural
and intriguing to ask from the theoretical point of view:

(Q): Will adding GD with momentum change its implicit bias for deep neural networks?

For the least squares problem (single layer linear network), Gunasekar et al. (2018) argued that
momentum does not change the implicit bias of GD, while it is unclear if this is the case for
deep learning models. However, from empirical point of view, momentum is a crucial and even
inevitable component in the training of modern deep neural networks practically. Thus its theoretical
characterization is significant and necessary, especially considering that momentum-based methods
typically lead to a better generalization performance which suggests that they might enjoy a different
implicit bias compared to GD.

Hence, our goal in this work is to precisely characterize the implicit bias of momentum-based methods
to take the first step towards answering the above fundamental question. To explore the case for deep
neural works, we consider the popular deep linear models: diagonal linear networks. Although the
structures of diagonal linear networks are simple, they already capture many insightful properties of
deep neural networks, including the dependence on the initialization, the over-parameterization of the
parameters and the transition from lazy regime to rich regime (Woodworth et al., 2020; Pesme et al.,
2021), an intriguing phenomenon observed in many complex neural networks.

Our contribution. Heavy-Ball algorithms (Polyak, 1964) (HB) and Nesterov’s method of accel-
erated gradients (Nesterov, 1983) (NAG) are the most widely adopted momentum-based methods.
These algorithms are generally implemented with a fixed momentum factor in deep learning libraries
such as PyTorch (Paszke et al., 2017). To be consistent with such practice, we focus on HB and NAG
with a fixed momentum factor that is independent of learning rate or iteration count. For the purpose
of conducting a tractable theoretical analysis, we rely on the tools of continuous time approximations
of momentum-based methods (with fixed momentum factor), HB and NAG flow, which were recently
interpreted by Kovachki & Stuart (2021) as modified equations in the numerical analysis literature
and by Shi et al. (2018) as high resolution ODE approximation. Our findings are summarized below.

We show that, unlike the case for single layer linear networks where momentum-based methods HB
and NAG share similar implicit bias with GD, they exhibit different implicit bias for diagonal linear
networks compared to GD in two main aspects:

• Compared to GF, HB and NAG flow also converge to solutions that minimize a norm
interpolating between ℓ2-norm and ℓ1-norm up to initialization scales of parameters, more
importantly, HB and NAG flow induce an extra effect that is equivalent to mitigating the
influence of initialization of the model parameters, which is beneficial for generalization
properties of sparse regression (Theorem 1). It is worth to mention that SGD could also
yield an initialization mitigation effects (Pesme et al., 2021), although momentum-based
methods and SGD modify GD differently. In addition, such benefit of HB and NAG flow
depends on hyper-parameters such as initialization and learning rate.

• The solutions of HB and NAG flow also depend on the initialization of parameters and
gradients explicitly and simultaneously, which may not be benign for the generalization
performances for sparse regression, while, in contrast, the solutions of GF only depend on
the initialization of parameters.
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Therefore, HB and NAG are not always better than GD from the perspective of generalization for
sparse regression. Whether HB and NAG have the advantages of generalization over GD is up
to the overall effects of the above two distinct effects determined by various hyper-parameters. In
particular, when mitigation effects of initialization of parameters brought by HB and NAG outperforms
their dependence on the initialization of gradients, HB and NAG will have better generalization
performances than GD, e.g., when the initialization is highly biased (Fig. 2(a)), otherwise, they will
not show such advantages over GD (Fig. 1(a)). And the difference between GD and HB and NAG
highly depends on learning rate and momentum factor, albeit the latter is rather obvious, e.g., the
difference disappears for small learning rate.

Organization. This paper is organized as follows. In Section 2, we summarize notations, setup,
and continuous time approximation modelling details of HB and NAG. Section 3 concentrates on
our main results of the implicit bias of momentum-based methods for diagonal linear networks with
corresponding numerical experiments to support our theoretical findings. We conclude this work in
Section 4. All the proof details and additional experiments are deferred to Appendix.

RELATED WORKS

The study of implicit bias started from Soudry et al. (2018) where GD has been shown to return the
max-margin classifier for the logistic-regression problem. The analysis for classification problems was
then generalized to linear networks (Ji & Telgarsky, 2019), more general homogeneous networks (Lyu
& Li, 2020; Chizat & Bach, 2020), and other training strategies (Lyu & Zhu, 2022) for homogeneous
networks. For regression problems, Li et al. (2021) showed that gradient flow for matrix factorization
implicitly prefers the low-rank solution. Azulay et al. (2021); Yun et al. (2021) studied the implicit
bias of GD for standard linear networks. For the diagonal linear networks, Azulay et al. (2021);
Yun et al. (2021); Woodworth et al. (2020) further revealed the transition from kernel regime (or
lazy regime) (Chizat et al., 2019) to rich regime by decreasing the initialization scales from ∞ to 0.
Besides the full-batch version of gradient descent, Pesme et al. (2021) studied the stochastic gradient
flow and showed that the stochastic sampling noise implicitly induces an effect equivalent to reducing
the initialization scale, which leads its solution to be closer to the sparse solution compared to gradient
flow. Pillaud-Vivien et al. (2020) then analyzed gradient flow with label noise and Even et al. (2023),
removing the infinitesimal learning rate approximation, studied the implicit bias of discrete GD
and SGD with moderate learning rate for diagonal linear networks. Wang et al. (2022); Gunasekar
et al. (2018) showed that momentum-based methods converge to the same max-margin solution as
GD for single layer model and linear classification problem. Jelassi & Li (2022) further revealed
that momentum-based methods have better generalization performance than GD for classification
problem. Ghosh et al. (2023) conducted a model-agnostic analysis of O(η2) continuous approximate
version of HB and also showed the generalization advantages of HB.

As stated early, the most famous momentum-based methods perhaps are HB (Polyak, 1964) and
NAG (Nesterov, 1983). Besides the early applications of momentum-based methods in the convex
optimization literature, Rumelhart et al. (1986) firstly applied HB to the training of deep learning
models. The recent work (Sutskever et al., 2013) then summarized these momentum-based methods
and illustrated their importance in the area of deep learning. Wibisono et al. (2017) demonstrated that
SGD, HB and NAG generalize better than adaptive methods such as Adam (Kingma & Ba, 2017) and
AdaGrad (Duchi et al., 2011) for deep networks by conducting experiments on classification problems.
To characterize the properties of momentum-based methods, continuous time approximations of them
are introduced in several recent works. Su et al. (2014) provided a second-order ODE to precisely
describe the NAG with momentum factor depending on the iteration count. Wilson et al. (2016)
derived a limiting equation for both HB and NAG when the momentum factor depends on learning
rate or iteration count. Shi et al. (2018) further developed high-resolution limiting equations for HB
and NAG, and Wibisono et al. (2016) designed a general framework from the perspective of Bregman
Lagrangian. When the momentum is fixed and does not depend on learning rate or iteration count,
Kovachki & Stuart (2021) developed the continuous time approximation, the modified equation in
the numerical analysis literature, for HB and NAG.

Compared to previous works, we develop the continuous time approximations of HB and NAG
for deep learning models and regression problems, and we focus on the implicit bias of HB and
NAG rather than GD (Woodworth et al., 2020). Therefore, we emphasize that our results are novel
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and require new techniques due to the second-order ODE nature of dynamics of momentum-based
methods, which is different from the first-order ODE of gradient flow.

2 PRELIMINARIES

Notations. We let {1, . . . , L} be all integers between 1 and L. The dataset with n samples is denoted
by {(xi, yi)}ni=1, where xi ∈ Rd is the d-dimensional input and yi ∈ R is the scalar output. The data
matrix is represented by X ∈ Rn×d where each row is a feature xi and y = (y1, . . . , yn)

T ∈ Rn

is the collection of yi. For a vector a ∈ Rd, aj denotes its j-th component and its ℓp-norm is ∥a∥p.
For a vector a(t) depending on time, we use ȧ(t) = da/dt to denote the first time derivative and
ä(t) = d2a/dt2 for the second time derivative. The element-wise product is denoted by ⊙ such that
(a⊙ b)j = ajbj . We let ed = (1, . . . , 1)T ∈ Rd. For a square matrix W ∈ Rd×d, we use diag(W )
to denote the corresponding vector (W11, . . . ,Wdd)

T ∈ Rd.

Heavy-Ball and Nesterov’s method of accelerated gradients. Heavy-Ball (HB) and Nesterov’s
method of accelerated gradients (NAG) are perhaps the most widely adopted momentum-based
methods. Different from GD, HB and NAG apply a two-step scheme (Sutskever et al., 2013). In
particular, for Eq. (1) let k be the iteration number, µ be the momentum factor, η be the learning rate,
and p ∈ Rd be the momentum of parameter β, then HB updates β as follows:

pk+1 = µpk − η∇L(βk), βk+1 = βk + pk+1 (2)

where p0 = 0. Similarly, NAG can also be written as a two-step manner

pk+1 = µpk − η∇L(βk + µpk), βk+1 = βk + pk+1 (3)

with p0 = 0. Note that although previous works (Wilson et al., 2016; Su et al., 2014; Nesterov, 2014;
Shi et al., 2018) considered HB and NAG with momentum factor depending on the learning rate η or
iteration count k, HB and NAG are generally implemented with constant momentum factor such as
in PyTorch (Paszke et al., 2017). Therefore a constant momentum factor µ is assumed in this work as
in Kovachki & Stuart (2021) to be consistent with such practice. We emphasize that this choice, the
fixed momentum factor independent of iteration count or learning rate, is not at odds with previous
works. Instead, we are considering a setting aligning with the widely adopted convention of deep
learning tools.

HB and NAG flow: continuous time approximations of HB and NAG. In this work, we analyze
the implicit bias of HB and NAG through their continuous time approximations summarized as
follows, which provide insights to the corresponding discrete algorithms and enable us to take the
great advantages of the convenience of theoretical analysis at the same time.
Proposition 1 (HB and NAG flow: O(η) approximate continuous time approximations of HB and
NAG). For the model f(x;β) with empirical loss function L(β), let µ ∈ (0, 1) be the fixed momentum
factor, the O(η) approximate continuous time limiting equations for the discrete HB (Eq. (2)) and
NAG (Eq. (3)) are of the form

αβ̈ + β̇ +
∇L(β)

1− µ
= 0, (4)

where η is the learning rate and α = η(1+µ)
2(1−µ) for HB, and α = η(1−µ+2µ2)

2(1−µ) for NAG.

Eq. (4) follows from Theorem 4 of Kovachki & Stuart (2021) and we present the proof in Appendix
B for completeness, where we also discuss the order of approximation. Note that since the learning
rate η is small, Proposition 1 indicates that, for the model parameter β, modifying GD with fixed
momentum is equivalent to perturb the re-scaled gradient flow equation dβ/dt = ∇L(β)/(1− µ) by
a small term proportional to η. More importantly, this modification term offers us considerably more
qualitative understanding regarding the dynamics of momentum-based methods, which will become
more significant for large learning rate—a preferable choice in practice.

Over-parameterized regression. We consider the regression problem for the n-sample dataset
{(xi, yi)}ni=1 where n < d and assume the existence of the perfect solution, i.e., there exist in-
terpolation solutions β∗ such that xT

i β
∗ = yi for any i ∈ {1, . . . , n}. For the parametric model
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f(x;β) = βTx, we use the quadratic loss ℓi = (f(xi;β)− yi)
2 and the empirical loss L(β) is

L(β) =
1

2n

n∑
i=1

ℓi(β) =
1

2n

n∑
i=1

(f(xi;β)− yi)
2. (5)

Diagonal linear networks. The diagonal linear network (Woodworth et al., 2020) is a popular proxy
model for deep neural networks. It corresponds to an equivalent linear predictor f(x;β) = θTx,
where θ = θ(β) is parameterized by the model parameters β. For the diagonal linear networks
considered in this paper, we study the 2-layer diagonal linear network, which corresponds to the
parameterization1 of θ = u⊙ u− v ⊙ v in the sense that

f(x;β) := f(x;u, v) = (u⊙ u− v ⊙ v)Tx, (6)
and the model parameters are β = (u, v), where u, v ∈ Rd. We slightly abuse the notation of
L(θ) = L(β). Our goal in this paper is to characterize the implicit bias of HB and NAG by precisely
capturing the property of the limit point of θ and its dependence on various parameters such as the
learning rate and the initialization of parameters for diagonal linear networks f(x;β) trained with
HB and NAG.

3 IMPLICIT BIAS OF HB AND NAG FLOW FOR DIAGONAL LINEAR NETS

To clearly reveal the difference between the implicit bias of (S)GD and momentum-based methods,
we start with existing results under the unbiased initialization assumption, and our main result is
summarized in Theorem 1 in Section 3.1. We then discuss the dynamics of θ for diagonal linear
networks trained with HB and NAG flow in Section 3.2, which is necessary for the proof of Theorem
1 and may be of independent interest.

For convenience, given a diagonal linear network Eq. (6), let ξ = (ξ1, . . . , ξ
d) ∈ Rd where ∀i ∈

{1, . . . , d} : ξj = |uj(0)||vj(0)| measures the scale of the initialization, we first present the definition
of the unbiased initialization assumed frequently in previous works (Azulay et al., 2021; Woodworth
et al., 2020; Pesme et al., 2021).
Definition 1 (Unbiased initialization for diagonal linear networks). The initialization for the diagonal
linear network Eq. (6) is unbiased if u(0) = v(0), which implies that θ(0) = 0 and ξ = u(0)⊙ v(0).

Implicit bias of GF. Recently, Azulay et al. (2021); Woodworth et al. (2020) showed that,
for diagonal linear network with parameterization Eq. (6), if the initialization is unbiased (Def-
inition 1) and θ(t) = u(t) ⊙ u(t) − v(t) ⊙ v(t) converges to the interpolation solution, i.e.,
∀i ∈ {1, . . . , n} : θT (∞)xi = yi, then under gradient flow (GF) θGF(∞) implicitly solves
the constrained optimization problem: θGF(∞) = argminθ QGF

ξ (θ), s.t. Xθ = y, where

QGF
ξ (θ) =

∑d
j=1

[
θj arcsinh (θj/(2ξj))−

√
4ξ2j + θ2j + 2ξj

]
/4. The form of QGF

ξ (θ) highlights
the transition from kernel regimes to rich regimes of diagonal linear networks under gradient flow up
to different scales of the initialization: the initialization ξ → ∞ corresponds to the kernel regime or
lazy regime where QGF

ξ (θ) ∝ ∥θ∥22 and the parameters only move slowly during training, and ξ → 0

corresponds to the rich regime where QGF
ξ (θ) → ∥θ∥1 and the corresponding solutions enjoy better

generalization properties for sparse regression. For completeness, we characterize the implicit bias of
GF without requiring the unbiased initialization (Definition 1) in the following proposition.
Proposition 2 (Implicit bias of GF for diagonal linear net with biased initialization). For diagonal
linear network Eq. (6) with biased initialization (u(0) ̸= v(0)), if u(t) and v(t) follow the gradient
flow dynamics for t > 0, i.e., u̇ = −∇uL and v̇ = −∇vL, and if the solution converges to the
interpolation solution, then

θ(∞) = argmin
θ

QGF
ξ (θ) + θTRGF, s.t. Xθ = y (7)

where RGF = (RGF
1 , . . . ,RGF

d )T ∈ Rd, ∀j ∈ {1, . . . , d} : RGF
j = arcsinh (θj(0)/2ξj) /4.

Compared to the unbiased initialization case, besides QGF
ξ , an additional term RGF that depends on

θ(0) is required to capture the implicit bias when the initialization is biased.
1A standard diagonal linear network is θ = u⊙v, which is shown in Woodworth et al. (2020) to be equivalent

to our parameterization here. We further discuss this in Appendix C.
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3.1 IMPLICIT BIAS OF HB AND NAG

Gunasekar et al. (2018); Wang et al. (2022) argued that momentum does not change the implicit bias
of GF for linear regression and classification. For deep neural networks, will modifying GF with
the widely adopted momentum change the implicit bias? If it does, will momentum-based methods
lead to solutions that have better generalization properties? In the following, we characterize the
implicit bias of HB and NAG flow (Proposition 1) for diagonal linear networks to compare with that
of GF and answer these questions. For completeness, we do not require the unbiased initialization
u(0) = v(0) condition and let exp(a) ∈ Rd denote the vector (ea1 , . . . , ead)T for a vector a ∈ Rd.
Recall that ξ = (ξ1, . . . , ξd)

T ∈ Rd where ξj = |uj(0)||vj(0)| measures the scale of the initialization
of parameters, we now present our main theorem.
Theorem 1 (Implicit bias of HB and NAG flow for diagonal linear networks). For diagonal linear
network Eq. (6), let R = (R1, . . . ,Rd)

T ∈ Rd, then if u(t) and v(t) follow the O(η) approximate
continuous version of HB and NAG Eq. (4) for t ≥ 0 and if the solution θ(∞) = u(∞)⊙ u(∞)−
v(∞)⊙ v(∞) converges to the interpolation solution, then, neglecting all terms of the order O(η2),

θ(∞) = argmin
θ

Qξ̄(∞)(θ) + θTR, s.t. Xθ = y (8)

where

Qξ̄(∞)(θ) =
1

4

d∑
j=1

[
θj arcsinh

(
θj

2ξ̄j(∞)

)
−
√
4ξ̄2j (∞) + θ2j + 2ξ̄j(∞)

]
,

∀j ∈ {1, . . . , d} : Rj =
1

4
arcsinh

(
θj(0)

2ξj
+

4α∂θjL(θ(0))

1− µ

√
1 +

θ2j (0)

4ξ2j

)
,

ξ̄(∞) = ξ ⊙ exp (−αϕ(∞)) , ϕ(∞) = 8(1− µ)−2

∫ ∞

0

∇θL (θ(s))⊙∇θL (θ(s)) ds. (9)

Specifically, α is chosen as η(1+µ)
2(1−µ) if we run HB and α = η(1−µ+2µ2)

2(1−µ) for NAG.

Remark. Theorem 1 is for the HB and NAG flow, which is the order O(η) approximate continuous
version of discrete HB and NAG. The Qξ̄(∞) part for HB and NAG flow has a similar formulation
to QGF

ξ of GF: both of them are the hyperbolic entropy (Ghai et al., 2020). In this sense, the
transition from kernel regime to rich regime by decreasing ξ from ∞ to 0 also exists for HB and
NAG (Appendix C.5). The difference between Qξ̄(∞) and QGF

ξ lies in that HB and NAG flow induce
an extra initialization mitigation effect: given ξ, Qξ̄(∞) for HB and NAG flow is equivalent to the
hyperbolic entropy of GF with a smaller initialization scale since ξ̄(∞) is strictly smaller than ξ due
to the fact that ϕ(∞) is a positive integral and finite (Proposition 4). As a result, Qξ̄(∞) is closer to an
ℓ1-norm of θ than QGF

ξ . Furthermore, compared to the implicit bias of GF when the initialization is
biased (Proposition 2), an additional term in R that depends on the initialization of gradient explicitly
is required to capture the implicit bias of HB and NAG flow. The dependence on the initialization of
gradient is expected since the first step update of momentum methods simply assigns the initialization
of gradient to the momentum, which is crucial for the following updates. Therefore, Theorem 1 takes
the first step towards positively answering our fundamental question (Q) in the sense that momentum
changes the implicit bias of GD for diagonal linear networks.

A natural question following the fact that HB and NAG flow induce different implicit bias compared to
GF is: will this difference lead to better generalization properties for HB and NAG? The implicit bias
of HB and NAG flow is captured by two distinct parts, the hyperbolic entropy Qξ̄(∞) and R, where
the effects of momentum on Qξ̄(∞) is beneficial for generalization while the effects on R may hinder
the generalization performance and is affected by the biased initialization. Thus the answer highly
depends on various conditions. In the following, we present a detailed analysis with corresponding
numerical experimental results to answer this question for the case of unbiased initialization and
biased initialization, respectively.

3.1.1 COMPARISON OF HB/NAG FLOW AND (S)GF FOR UNBIASED INITIALIZATION

When the initialization is unbiased (Definition 1), it is worth to mention that the recent work Pesme
et al. (2021) studied the stochastic version of gradient flow, the stochastic gradient flow (SGF), and
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revealed that the existence of sampling noise changes the implicit bias of gradient flow in the sense
that θSGF(∞) = argminθ Q

SGF
ξ̃∞

(θ) under the constraint Xθ = y, where

QSGF
ξ̃(∞)

(θ) =

d∑
j=1

1

4

[
θj arcsinh

(
θj

2ξ̃j(∞)

)
−
√
4ξ̃2j (∞) + θ2j + 2ξ̃j(∞)

]
(10)

with ξ̃(∞) being strictly smaller than ξ. The remarkable point appears when we compare Qξ̄∞

with QSGF
ξ̃(∞)

: although SGF and momentum-based methods modify GF differently, i.e., SGF adds
stochastic sampling noise while momentum-based methods add momentum to GF, both of them
induce an effect equivalent to reducing the initialization scale! The difference between them lies
in the way how they control such initialization mitigation effect. For SGF this is controlled by the
integral of loss function (Pesme et al., 2021), while the effect depends on the integral of gradients for
HB and NAG flow since they “accumulate” gradients during training.

To show the difference between (S)GF and momentum-based methods HB and NAG flow, we note
that Rj in Theorem 1 becomes

Rj = arcsinh

(
4α(XT y)j
n(1− µ)

)
,

which is also determined by the dataset, and RGF in Proposition 2 is simply zero. Therefore, as
long as the initialization of gradients XT y = o(α−1n(1− µ)), i.e., R is small compared to Qξ̄(∞)

thus only Qξ̄(∞) matters for characterizing the implicit bias, HB and NAG flow will exhibit better
generalization properties for sparse regression due to the initialization mitigation effects of HB and
NAG flow that lead Qξ̄(∞) to be closer to the ℓ1-norm of θ than QGF

ξ . On the other hand, when Rj

is not small compared to Qξ̄(∞) , the initialization mitigation effects of HB and NAG flow may not
be significant, thus there may not be generalization benefit for HB and NAG flow.

Numerical Experiments. To verify these claims, we consider the over-parameterized sparse re-
gression. For the dataset {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ R, we set n = 40, d = 100 and
xi ∼ N (0, I). For i ∈ {1, . . . , n}, yi is generated by yi = xT

i θ
∗ where θ∗ ∈ Rd is the ground truth

solution. We let 5 components of θ∗ be non-zero. Our models are 2-layer diagonal linear networks
f(x;β) = u⊙ u− v ⊙ v. We use ∥ξ∥1 to measure the scale of initialization. The initialization of pa-
rameters is unbiased by letting u(0) = v(0) = ced where c is a constant and ∥ξ∥1 = c2d. We consider
training algorithms GD, SGD, HB, and NAG. And the generalization performance of the solution for
each training algorithm is measured by the distance D(θ(∞), θ∗) = ∥θ(∞)− θ∗∥22. Since R is de-
termined by the dataset, to control its magnitude, we build three new datasets Dε = {(xi;ε, yi;ε)}di=1
where ∀i ∈ {1. . . . , d} : xi;ε = εxi, yi;ε = εyi. We then train diagonal linear networks using
GD and momentum-based methods HB and NAG on each dataset, respectively, and learning rate
η = 3 × 10−2 and momentum factor µ = 0.9. As shown in Fig. 1, as we decrease the value of
ε which decreases the magnitude of R, the generalization benefit of HB and NAG becomes more
significant since their initialization mitigation effects are getting more important. Note that Fig. 1
also reveals the transition to rich regime by decreasing the initialization scales for different training
algorithms.
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Figure 1: D(θ(∞), θ∗) for diagonal linear networks with unbiased initialization trained with different
algorithms and ε (smaller ε for smaller ∇L(θ(0))). (a). ε = 0.6. (b). ε = 0.4. (c). ε = 0.2.

3.1.2 COMPARISON OF HB/NAG FLOW AND GF FOR BIASED INITIALIZATION

If the initialization is biased, i.e., u(0) ̸= v(0), both the implicit bias of GF and that of HB and
NAG flow additionally depends on θ(0) (RGF for GF in Proposition 2 and R in Theorem 1 for HB
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and NAG flow) besides the hyperbolic entropy. Compared to RGF, R also includes the explicit
dependence on the initialization of gradient that is proportional to α∇L(θ(0)). Therefore, recall that
α is the order of η, if ∇L(θ(0)) = o(α−1n(1− µ)) and α∇L(θ(0)) is small compared to θ(0), then
RGF is close to R, leading to the fact that the difference between the implicit bias of GF and that of
HB and NAG flow are mainly due to the initialization mitigation effects of HB and NAG. As a result,
we can observe the generalization advantages of HB and NAG over GF (Fig. 2(a)). However, when
the initialization is only slightly biased, i.e., u(0) ̸= v(0) and u(0) is close to v(0), the dependence
on ∇L(θ(0)) of the solutions of HB and NAG is important and the generalization benefit of HB and
NAG for sparse regression may disappear.

Numerical Experiments. We use the same dataset {(xi, yi)}di=1 as in Section 3.1.1. For the hyper-
parameters, we set η = 10−1 and the momentum factor µ = 0.9. To characterize the influence of
the extent of the biased part of the initialization, we let u(0) = φced and v(0) = φ−1ced where
φ ∈ (0, 1] is a constant measuring the extent of the unbiased part of the initialization. In this way,
for any φ, we have ξj = |uj(0)||vj(0)| = c2, i.e., the same initialization scale. In order to verify the
above theoretical claims, we conduct two sets of experiments: (i). We fix the value of φ and train our
diagonal linear network with different training algorithms for different scales of initialization ∥ξ∥1.
As shown in Fig. 2(a), as a result of the initialization mitigation effects, HB, NAG, and SGD exhibit
better generalization performance than GD for sparse regression. (ii). We fix ∥ξ∥1 and train diagonal
linear networks with different biased initialization (different values of φ). As shown in Fig. 2(b), as
we increasing φ, the initialization becomes less biased and the extra dependence on the initialization
of gradient of HB and NAG outperforms their initialization mitigation effects, and, as a result, the
generalization benefits of momentum-based methods disappear.
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Figure 2: D(θ(∞), θ∗) for diagonal linear networks with biased initialization trained with different
algorithms and (a). different initialization scales with φ = 0.03; (b). different extents of the biased
part of the initialization (smaller φ implies that the initialization is more biased) and ∥ξ∥1 = 0.0046.

3.2 DYNAMICS FOR θ OF DIAGONAL LINEAR NETWORKS UNDER HB AND NAG FLOW

For diagonal linear networks Eq. (6), dynamics for θ under HB and NAG flow is crucial to the proof
of Theorem 1, and may be of independent interest. Interestingly, different from diagonal linear
networks under gradient flow where θ follows a mirror flow or stochastic gradient flow where θ
follows a stochastic mirror flow with time-varying potential, due to the second-order ODE nature of
HB and NAG flow as formulated in Eq. (4), θ does not directly follow a mirror flow. Instead, HB and
NAG flow are special—it is θ + αθ̇ that follows a mirror flow form with time-varying potential, as
shown below.
Proposition 3 (Dynamics of θ for diagonal nets trained with HB and NAG flow). For diagonal
linear networks Eq. (6) trained with HB and NAG flow (Eq. (4)) and initialized as u(0) = v(0) and
u(0) ⊙ u(0) = ξ ∈ Rd, let θ̄α := θ + αθ̇ ∈ Rd and its j-th component be θ̄α;j , then θ̄α follows a
mirror flow form with time-varying potential (R is defined in Theorem 1):

∀j ∈ {1, . . . , d} :
d

dt
∇
[
Qξ,j(θ̄α, t) + θ̄α;jRj

]
= −

∂θjL(θ)

1− µ
, (11)

where

Qξ,j(θ̄α, t) =
1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√
4ξ̄2j (t) + θ̄α;j + 2ξ̄j(t)

]
,

ξ̄j(t) = ξje
−αϕj(t), ϕj(t) =

8

(1− µ)2

∫ t

0

∂θjL (θ(s)) ∂θjL (θ(s)) ds, (12)

8
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and α is chosen as in Proposition 1.

Remark. Compared to the mirror flow form of diagonal linear networks under gradient flow
d∇QGF

ξ (θ)/dt = −∇L(θ), there are three main differences in Eq. (11): (i). It is a second-order
ODE since Eq. (11), by noting that dθ̄α/dt = θ̇ + αθ̈, can be written as

α∇2Qξ,j(θ̄α, t)θ̈j +∇2Qξ,j(θ̄α, t)θ̇j +
∂∇Qξ,j(θ̄α, t)

∂t
+

∂θjL(θ)

1− µ
= 0,

while the dynamics of GF is a first-order ODE; (ii). It is θ̄α, not θ, appears in the mirror flow
potential for diagonal linear networks under HB and NAG flow, and an extra term depending on the
initialization of gradients is included; (iii). The hyperbolic entropy part of the mirror flow potential
Qξ,j(θ̄α, t) under HB and NAG flow is a time-varying one, and the time-varying part mainly mitigates
the influence of the initialization ξ (ξ̄j(t) ≤ ξ for any t ≥ 0).

3.3 EFFECTS OF HYPER-PARAMETERS FOR IMPLICIT BIAS OF HB AND NAG

As a result of the fact that momentum-based methods (HB and NAG) add a perturbation proportional
to the learning rate to time re-scaled gradient flow (as stated in Proposition 1), the difference between
their implicit bias depends on learning rate: the limit η → 0 leads to ξ̄(∞) → ξ and, as a consequence,
Qξ̄(∞) → QGF

ξ . Therefore, for small learning rate, the implicit bias of momentum-based methods
and that of GD are almost the same. This observation coincides with the experience of Rumelhart
et al. (1986); Kovachki & Stuart (2021); Ghosh et al. (2023) that setting momentum factor as 0 returns
the same solution as reducing the learning rate when momentum factor is non-zero. The discrepancy
between the implicit bias of momentum-based methods and that of GD becomes significant for
moderate learning rate and momentum factor.

To verify this, we make the initialization biased and ∥ξ∥1 = 0.1240, and run: (i). GD with η = 10−2;
(ii). HB and NAG with µ = 0.9 and different η; (iii). HB and NAG with η = 10−2 and different
µ. We present the generalization performance D(θ(t), θ∗) during training for each algorithm with
its corresponding training parameters in Fig. 3(a) and Fig. 3(b). Furthermore, we also report the
dependence of D(θ(∞), θ∗) on η in Fig. 3(c) and the effects of µ in Fig. 3(d). These results clearly
reveal that both decreasing the learning rate and the momentum factor make the difference between
the implicit bias of momentum-based methods and that of GD not significant. Experimental details
can be found in Appendix A.
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Figure 3: Diagonal nets trained with different algorithms and hyper-parameters: (a). D(θ(t), θ∗)
for different η (numbers in the brackets) and µ = 0.9. (b). D(θ(t), θ∗) for different µ (numbers in
the brackets) and η = 0.01. (c). D(θ(∞), θ∗) for different η and µ = 0.9. (d). D(θ(∞), θ∗) for
different µ and η = 0.01.

4 CONCLUSION

In this paper, we have targeted on the unexplored regularization effect of momentum-based methods
and we have shown that, unlike the single layer linear network, momentum-based methods HB and
NAG flow exhibit different implicit bias compared to GD for diagonal linear networks. In particular,
we reveal that HB and NAG flow induce an extra initialization mitigation effect similar to SGD that
is beneficial for generalization of sparse regression and controlled by the integral of the gradients,
learning rate, data matrix, and the momentum factor. In addition, the implicit bias of HB and NAG
flow also depends on the initialization of both parameters and gradients explicitly, which may also
hinder the generalization, while GD and SGD only depend on the initialization of parameters. It is
interesting for future works to explore whether these effects brought by momentum are general across
different architectures to further reveal the mysterious properties of momentum-based methods.
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APPENDIX

In Appendix A, we provide additional numerical experiments to support our theoretical results. In
Appendix B, we present the detailed modelling techniques of momentum-based methods HB and
NAG. Appendix C presents the proofs for Section 3.

DETAILED COMPARISON TO RELATED WORKS

Comparison to Gunasekar et al. (2018); Wang et al. (2022). Gunasekar et al. (2018) revealed
that there is no difference between the implicit bias of momentum-based methods and that of GD for
linear regression problem. In addition, Wang et al. (2022) studied the linear classification problem
and showed that momentum-based methods converge to the same max-margin solution as GD for
single-layer linear networks, i.e., they share the same implicit bias. These works confirmed that
momentum-based methods does not enjoy possible better generalization performance than GD for
single-layer models. Compared to these works, our results reveal that momentum-based methods
will have different implicit bias when compared to GD for diagonal linear networks, a deep learning
models, indicating the importance of the over-parameterization on the implicit bias of momentum-
based methods.

Comparison to Jelassi & Li (2022). Jelassi & Li (2022) studied classification problem and also
showed that momentum-based methods improve generalization of a linear CNN model partly due
to the historical gradients. The setting of our work is different from that of Jelassi & Li (2022):
our work focuses on regression problems and diagonal linear networks. In addition, there are also
differences between the conclusion of our work and that of Jelassi & Li (2022), in the sense that we
conclude that momentum-based methods does not always lead to solutions with better generalization
performance than GD, which depends on whether the initialization mitigation effect of momentum-
based methods (interestingly this effect can also be regarded as coming from the historical gradients
as Jelassi & Li (2022)) outperforms their extra dependence on initialization of gradients. Therefore,
the momentum-based method is not always a better choice than GD.

Comparison to Ghosh et al. (2023). The analysis in Ghosh et al. (2023) is general and model-
agnostic, in the sense that it did not consider other sources that affect the implicit bias such as model
architectures (at least incompletely by only utilizing the calculation of gradients) and initialization,
while our work focuses on precisely characterizing the implicit bias of momentum-based methods
and its explicit dependence on the architecture and the initialization of both parameters and gradients,
which can not be captured solely by the analysis in Ghosh et al. (2023).

A ADDITIONAL EXPERIMENTS AND MISSING EXPERIMENTAL DETAILS

A.1 ADDITIONAL NUMERICAL EXPERIMENTS FOR BIASED INITIALIZATION.

To further characterize the influence of the extent of the biased part of the initialization, we run similar
experiments with same hyper-parameters as in Fig. 2(b) except for the scale of the initialization ∥ξ∥1.
The results are presented in Fig. 4. It can be seen that, for different ∥ξ∥1, the generalization benefits
of HB and NAG are significant when φ is small, i.e., the initialization is highly biased.

For other biased initialization, we consider u(0) = ced for some constant c ∈ R and v(0) = ced + ρ
for a random gaussian vector ρ ∈ Rd. We use the same dataset as in Fig. 2(a). As shown in Fig. 5, the
generalization performance of HB and NAG solutions become better as we decrease the scale of the
initialization, indicating the transition from kernel regime to rich regime. Furthermore, as a result of
the initialization mitigation effects, Fig. 5 shows that HB, NAG, and SGD exhibit better generalization
performance than GD, which further verifies the benefit of momentum on the generalization when
the initialization is biased.
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Figure 4: D(θ(∞), θ∗) for diagonal linear networks trained with different algorithms and different
values of φ. (a). ∥ξ∥1 = 0.0022. (b). ∥ξ∥1 = 0.01.

A.2 NON-LINEAR NETWORKS

To explore whether the generalization benefit of momentum-based methods exists for non-linear
networks, we conduct experiments for non-linear networks in this section to compare GD with HB
and NAG.

Experiment details for non-linear networks. We train a four-layer non-linear network f(x;W )
with the architecture of 100 × 100 Linear-ReLU-100 × 100 Linear-ReLU-100 × 100
Linear-ReLU-100 × 1 Linear. The learning rate is fixed as η = 10−2 and the momentum
factor is fixed as µ = 0.9 for HB and NAG. To measure the initialization scales, we vectorize all
layer matrices and calculate the sum of ℓ2-norm, i.e., we calculate

∑4
k=1 ∥Wk∥2F where Wk is the

weight matrix of the k-th layer. Since non-linear networks are not equivalent to a linear predictor θTx
as diagonal linear networks, we sample a newly test data with {(xi;test, yi;test)}40i=1 using the ground
truth solution θ∗ and the training data distribution and let the test error

D =
1

2n

40∑
i=1

(f(xi;test;W )− yi;test)
2

measure the generalization performance.
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Figure 5: D(θ(∞), θ∗) for diagonal linear networks with biased initialization trained with different
algorithms and different values of ∥ξ∥1.

We show the benefits of momentum for non-linear networks in the same data of Section 3.1.1 in
Fig. 6, which reveals that the benefit of momentum also exists in the non-linear networks, and the test
errors are getting lower for smaller initialization scales similar to the diagonal linear networks.

100 101 102 103 104

iterations

4 × 100

5 × 100
Test error, non-linear networks

GD (0.0203)
HB (0.0203)
NAG (0.0203)
GD (0.1027)
HB (0.1027)
NAG (0.1027)
GD (0.3247)
HB (0.3247)
NAG (0.3247)

Figure 6: D(θ(∞), θ∗) for non-linear networks trained with different algorithms and different
initialization scales (numbers in the bracket)

A.3 EXPERIMENTAL DETAILS FOR FIG. 3

The dataset is the same as that in Section 3.1.1. To make the initialization biased, we consider
u(0) = ced for some constant c ∈ R and v(0) = ced + ρ for a random gaussian vector ρ ∈ Rd,
where we fix ρ for the training of different algorithms with different hyper-parameters.

B DETAILS OF THE CONTINUOUS MODELLING

In Section B.1 we study HB and present the results for NAG in Section B.2.

Order of convergence of HB and NAG flow. According to Kovachki & Stuart (2021), Eq. (4)
is order O(η) continuous approximate version of the discrete HB and NAG in the sense that, for
k = 0, 1, 2, . . . let β̄k be the sequence given by Eq. (2) or Eq. (3) and let βk = β(kη) in Proposition 1,
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then for any T ≥ 0, there exists a constant C = C(T ) > 0 such that

sup
0≤kη≤T

|βk − β̄k| ≤ Cη.

B.1 CONTINUOUS TIME APPROXIMATION OF HB

Recall that the discrete update rule for β is

pk+1 = µpk −∇L(βk),

βk+1 = βk + ηpk+1,

which, noting that ηpk = βk − βk−1, can be further written as a single-step update

βk+1 = βk + µ(βk − βk−1)− η∇L(β). (13)

We let time t = kη and the continuous version of βk be β(t). Note that β(t+ η) ≈ βk+1 and that

β(t+ η) = β(t) + ηβ̇(t) +
η2

2
β̈(t) +O(η3),

by replacing all βk and βk+1 with β(t) and β(t+ η), respectively, Eq. (13) becomes

β(t+ η)− β(t) = µ(β(t)− β(t− η))− η∇L(β)

=⇒ ηβ̇(t) +
η2

2
β̈(t) = µ

(
ηβ̇(t)− η2

2
β̈(t)

)
− η∇L(β), (14)

which gives us the continuous time approximation of HB:

αβ̈(t) + β̇(t) +
∇L(β)

1− µ
= 0.

with α = η(1+µ)
2(1−µ) .

B.2 CONTINUOUS TIME APPROXIMATIONS OF NAG

The discrete update rule for β trained with NAG is

pk+1 = µpk − η∇L(βk + µpk),

βk+1 = βk + pk+1,

which can also be written as a single-step update

βk+1 = βk + µ(βk − βk−1)− η∇L(β)|β=ρk
,

where we let
ρk = βk + µpk.

Following similar approach as in the case for HB, this discrete update rule implies that

ηβ̇(t) +
η2

2
β̈(t) = µ

(
ηβ̇(t)− η2

2
β̈(t)

)
− η∇L(β)|β=ρ(t) (15)

=⇒ η(1 + µ)

2
β̈(t) + (1− µ)β̇(t) = −∇L(β)|β=ρ(t). (16)

Since the gradient is evaluated at β = ρ(t) rather than β(t), to further simplify this equation, we note
that

ρ(t) = β(t) + µ(β(t)− β(t− η))

= β(t) + ηµβ̇(t) +O(η3),

therefore η∇L(β)|β=ρ(t) can be expanded around β(t):

η∇L(β)|β=ρ(t) = η∇L(β)|β=β(t) + η2µ∇2L(β)|β=β(t) +O(η2).
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Meanwhile, by differentiating both sides of Eq. (16) w.r.t t, we have

η(1 + µ)

2

...
β (t) + (1− µ)β̈(t) = −∇2L(β)|β=ρ(t)

=⇒ η2µ∇2L(β)|β=β(t) = −η2(1− µ)β̈(t)

where we multiply η2 to both sides of the last equality and omit the terms of the order O(η3). In this
way, Eq. (16) becomes

η(1 + µ)

2
β̈(t) + (1− µ)β̇(t) = −∇L(β) + ηµ(1− µ)β̈(t)

=⇒ αβ̈ + β̇ +
∇L(β)

1− µ
= 0

with

α =
2µ2 − µ+ 1

2(1− µ)
.

B.3 GENERALIZATION TO O(η2) APPROXIMATE CONTINUOUS VERSION OF HB

Based on the results of Ghosh et al. (2023), our results presented in this paper could be generalized to
the O(η2) case following exactly the same approach as in the current work, by replacing the current
O(η) approximate second-order ODE (Proposition 1) with the O(η2) approximate version of HB in
Ghosh et al. (2023).

C PROOFS FOR SECTION 3

In the following, we first discuss the proof sketch for Theorem 1. Then we prove Proposition 3 in
Appendix C.1 to show the θ dynamics and its relation to mirror flow and present the convergence
result of the corresponding time-varying potential in Appendix C.2. Finally, we prove Theorem 1 in
Appendix C.3. The analysis of the effects of the initialization scale on the implicit bias is presented
in Appendix C.5. The proof of Proposition 2 is deferred to Appendix C.6.

Proof sketch for Theorem 1. Since our main result is Theorem 1, we first present the proof sketch.
The proof mainly consists of three steps. The first step is to derive the dynamics for θ = u⊙u−v⊙v
of diagonal linear networks for HB and NAG. The second step is to construct the connection of
the θ dynamics with “accelerated” mirror flow (Wilson et al., 2016) with time-varying potential
(Proposition 3). Since this time-varying potential converges along training, the third step is simply to
apply the optimality condition and derive the implicit bias result.

For diagonal linear networks, the parameterization of θ is u⊙ u− v ⊙ v and the model parameters
are β = (u, v). According to Proposition 1, the continuous dynamics of u and v are thus

αü+ u̇+
∇uL(u, v)

1− µ
= 0, αv̈ + v̇ +

∇vL(u, v)

1− µ
= 0, (17)

where

α =

{
η(1+µ)
2(1−µ) for HB
η(1−µ+2µ2)

2(1−µ) for NAG

and η is the learning rate. Note that since α is the order of η, we will omit all terms of the order
O(η2). For convenience, we first present several useful properties for the dynamics of HB and NAG
for diagonal linear networks Eq. (6) for ∀j ∈ {1, . . . , d}:

1. Property 1: vj∂ujL+ uj∂vjL = 0.

Proof. This is because

∂uj
L =

2

n
uj

n∑
i=1

rixi;j , ∂vjL = − 2

n
vj

n∑
i=1

rixi;j =⇒ vj∂uj
L+ uj∂vjL = 0 (18)
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where
1

n

n∑
i=1

rixi;j = ∂θjL(θ) (19)

and ri = θTxi − yi is the residual.

2. Property 2: α(vj u̇j + v̇juj) = O(η2).

Proof. This can be obtained from

αu̇j = −α
∂uj

L

1− µ
+O(η2), αv̇j = −α

∂vjL

1− µ
+O(η2) (20)

since α is the order of η, thus, according to Property 1,

α(vj u̇j + v̇juj) = −α(vj∂uj
L+ uj∂vjL) +O(η2) = O(η2). (21)

3. Property 3: (uj + αu̇j)(vj + αv̇j) = ujvj +O(η2).

Proof. This can be obtained from

(uj + αu̇j)(vj + αv̇j) = ujvj + αu̇jvj + αv̇juj + α2u̇j v̇j = ujvj +O(η2),

where we use Property 2 in the last equality.

4. Property 4: dujvj/dt = 2αu̇j v̇j +O(η2).

Proof. To show this, we directly calculate

d

dt
ujvj = u̇jvj + v̇juj

=

[
−αüi −

∂uj
L

1− µ

]
vj +

[
−αv̈i −

∂vjL

1− µ

]
uj

= −α(üivj + u̇j v̇j + v̈iuj + u̇j v̇j) + 2αu̇j v̇j

= − d

dt
[αu̇jvj + αv̇juj ] + 2αu̇j v̇j

= 2αu̇j v̇j +O(η2), (22)

where the second line is due to the dynamics of u and v in Eq. (17), and the last equaility is
due to Property 2.

C.1 PROOF OF PROPOSITION 3

For convenience, we first recall that, under the conditions of Proposition 3, θ̄α;j follows a mirror flow
form

∀j ∈ {1, . . . , d} :
d

dt

[
∇Qξ,j(θ̄α, t) + θjRj

]
= −

∂θjL(θ)

1− µ
,

where

Qξ,j(θ̄α, t) =
1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√
4ξ̄2j (t) + θ̄α;j + 2ξ̄j(t)

]
,

ξ̄j(t) = ξje
−αϕj(t), ϕj(t) =

8

(1− µ)2

∫ t

0

∂θjL (θ(s)) ∂θjL (θ(s)) ds.

Below we prove this result.

Proof. The proof consists of two steps: the first step is to derive the dynamics of θ and the second
step is to derive the mirror flow form of the dynamics.

17
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The dynamics of θ. We start with the first step. Recall that the parameterization of θj = u2
j−v2j , we

conclude that θj follows a second-order ODE different from that of u and v (Eq. (17)) by inspecting
the exact expression of θ̇j

θ̇j = 2uj u̇j − 2vj v̇j

= 2uj

(
−αüj −

∂uj
L

1− µ

)
− 2vj

(
−αv̈j −

∂vjL

1− µ

)
= −2α [uj üj + u̇j u̇j − vj v̈j − v̇j v̇j ] + 2αu̇j u̇j − 2αv̇j v̇j −

2
(
uj∂ujL− vj∂vjL

)
1− µ

= −αθ̈j −
2
[
(uj + αu̇j)∂ujL− (vj + αv̇j)∂vjL

]
1− µ

where the second equality is because Eq. (17) and we use Eq. (20) in the last line. Note that if we let
Gj = 2

[
(uj + αu̇j)∂uj

L− (vj + αv̇j)∂vjL
]
,

then the dynamics of θj follows a second-order ODE

αθ̈j + θ̇j +
Gj

1− µ
= 0, (23)

note that although this is similar to the dynamics of u and v, they are not the same. To proceed, we
need to express Gj with θj , which can be done by observing that

Gj = 4 [uj(uj + αu̇j) + vj(vj + αv̇j)] ∂θjL = 4Hj∂θjL

where use Eq. (19) in the first equality. Expressing Hj with θj will give us the desired results, which
can be done as follows.

H2
j = [uj(uj + αu̇j) + vj(vj + αv̇j)]

2

= u2
j (uj + αu̇j)

2 + v2j (vj + αv̇j)
2 + 2vjuj(uj + αu̇j)(vj + αv̇j)

= u4
j + v4j + 2αu3

j u̇j + 2αv3j v̇j + 2u2
jv

2
j + 2αujvj(uj v̇j + vj u̇j) + α2u2

j u̇
2
j

+ α2v2j v̇
2
j + 2α2ujvj u̇j v̇j

= u4
j + v4j + 2u2

jv
2
j + 2αu3

j u̇j + 2αv3j v̇j +O(η2) (24)
where we use Eq. (21) and α is the order of η in the last equality. On the other hand, we observe that
the quantity (θj + αθ̇j)

2 is

(θj + αθ̇j)
2 =

[
u2
j − v2j + α(2uj u̇j − 2vj v̇j)

]2
= u2

j (uj + 2αu̇j)
2 + v2j (vj + 2αv̇j)

2 − 2ujvj(uj + 2αu̇j)(vj + 2αv̇j)

= u4
j + v4j + 4αu3

j u̇j + 4αv3j v̇j − 2u2
jv

2
j +O(η2) (25)

where we use Eq. (21) in the last equality. Combining Eq. (24) and Eq. (25), we have

H2
j − (θj + αθ̇j)

2 = 4u2
jv

2
j︸ ︷︷ ︸

♣

− (2αu3
j u̇j + 2αv3j v̇j)︸ ︷︷ ︸

♢

, (26)

which establishes the relation between Gj and θ. In the following, our goal is to find the relation
between ♣ and ♢ and θ to complete the dynamics of θ. Now let ξ ∈ Rd and ξj = |uj(0)||vj(0)| at
the initialization2, then for the term ♣, according to Property 4 (Eq. (22)),

dujvj
dt

= 2αu̇j v̇j (27)

=
2α

(1− µ)2
∂ujL∂vjL+O(η2)

= − 8α

(1− µ)2n2
ujvj

(
n∑

i=1

rixi;j

)2

+O(η2)

= − 8α

(1− µ)2
ujvj∂θjL(θ)∂θjL(θ) +O(η2) (28)

2Note that ξ measures the scale of the initialization and ξ becomes u(0)⊙ v(0) for unbiased initialization
u(0) = v(0). Here we consider the more general biased initialization case.
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where we use Eq. (21) in the second equality and Eq. (19) in the third equality. Dividing ujvj on
both sides and integrating the above equation give us that

ln(ujvj) = ln(uj(0)vj(0))−
8α

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds (29)

=⇒ uj(t)vj(t) = uj(0)vj(0)e
− 8α

(1−µ)2

∫ t
0
∂θj

L(θ(s))∂θj
L(θ(s))ds

. (30)

For ease of notation, we denote

ϕj(t) =
8

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds ≥ 0, (31)

then ♣ becomes
♣ = 4u2

j (t)v
2
j (t) = 4ξ2j e

−2αϕj(t) ≤ 4ξ2j . (32)

For the ♢ term, we note that

θj θ̇j = 2(u2
j − v2j )(uj u̇j − vj v̇j)

= 2
[
u3
j u̇j − u2

jvj v̇j − v2juj u̇j + v3j v̇j
]

= 2
[
u3
j u̇j + v3j v̇j

]
− 2ujvj(uj v̇j + vj u̇j),

which, considering Property 2, further gives us

αθj θ̇j = 2α
[
u3
j u̇j + v3j v̇j

]
+O(η2).

Comparing with the form of ♢, we have

♢ = αθj θ̇j +O(η2). (33)

Combined with the expressions of ♣, Hj can be completely expressed by θ since Eq. (26) now
becomes

H2
j = (θj + αθ̇j)

2 + 4ξ2j e
−2αϕj(t) − αθj θ̇j

=⇒ Hj =
√
(θj + αθ̇j)2 + 4ξ2j e

−2αϕj(t) − αθj θ̇j . (34)

Thus the form of θ dynamics Eq. (23) is now

1

4Hj
(αθ̈j + θ̇j) = −

∂θjL

1− µ
, (35)

where 1/Hj can be expanded to the order of η:

1

Hj
=

1√
(θj + αθ̇j)2 + 4ξ2j e

−2αϕj(t)

√
1− αθθ̇j

(θj+αθ̇j)2+4ξ2j e
−2αϕj(t)

=
1√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

(
1 +

1

2

αθj θ̇j
θ2j + 4ξ2j

+O(η2)

)

=
1√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

+
α

2

θj θ̇j

(θ2j + 4ξ2j )
3
2

+O(η2).

Deriving the mirror flow form. Now we present the second part of the proof. Given 1/Hj and its
relation with θ, in the following, we are now ready to derive the mirror flow form of θj . Note that the
L.H.S of Eq. (35) includes a time derivative of θ+ αθ̇, thus we need to find a mirror flow potential as
a function of θ + αθ̇, rather than θ. For this purpose, if we define

Qξ,j(θ + αθ̇, t) = qξ,j(θ + αθ̇, t) + hj(t)(θj + αθ̇j) (36)
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such that qξ,j and hj(t) satisfy that

∇2qξ,j(θ + αθ̇, t) =
1

4
√
(θj + αθ̇j)2 + 4ξ2j e

−2αϕj(t)
, (37)

∂∇qξ,j(θ + αθ̇, t)

∂t
+

dhj(t)

dt
=

α

8

θj θ̇j θ̇j

(θ2j + 4ξ2j )
3
2

, (38)

then we will have

d

dt
∇Qξ,j(θ + αθ̇, t) =

d

dt
∇qξ,j(θ + αθ̇, t) +

d

dt
hj(t)

= ∇2qξ,j(θ + αθ̇, t)(αθ̈ + θ̇) +
∂∇qξ,j(θ + αθ̇, t)

∂t
+

dhj(t)

dt
,

which is exactly the L.H.S of Eq. (35). And we will have the desired mirror flow form of Proposition
3

d

dt
∇Qξ,j(θ + αθ̇, t) = −

∂θjL

1− µ
.

Therefore, it is now left for us to find qξ,j and hj(t) that satisfy Eq. (37) and Eq. (38).

• Find qξ,j(θ + αθ̇, t). Since qξ,j(θ + αθ̇, t) satisfies Eq. (37), let ξ̄j(t) = ξje
−αϕj(t), we

integrate both sides of Eq. (37) to obtain that

∇qξ,j(θ + αθ̇, t) =

∫
d(θj + αθ̇j)

4
√

(θj + αθ̇j)2 + 4ξ̄2j (t)

=
ln
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)

4
+ C. (39)

To determine the constant C, we require that

∇Qξ,j(θ(0) + αθ̇(0), 0) = 0, (40)

which gives us ∇qξ,j(θ(0) + αθ̇(0), 0) + hj(0) = 0. Let ∆j = θj(0) + αθ̇j(0) and note
that ξ̄j(0) = ξj , we can determine the constant C as

C = −
ln
(√

(θj(0) + αθ̇j(0))2 + 4ξ̄2j (0) + (θj(0) + αθ̇j(0))
)

4
− hj(0)

= −
ln

[
2ξj

(√
1 +

∆2
j

4ξ2j
+

∆j

2ξj

)]
4

− hj(0)

= − ln(2ξj)

4
−Dξj ,∆j

− hj(0) (41)

where

Dξj ,∆j
=

ln

(√
1 +

∆2
j

4ξ2j
+

∆j

2ξj

)
4

=
1

4
arcsinh

(
∆j

2ξj

)
.

Therefore, ∇qξ,j(θ + αθ̇, t) should satisfy that

∇qξ,j(θ + αθ̇, t)

=
ln
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)
− ln (2ξj)

4
−Dξj ,∆j

− hj(0). (42)
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The form of qξ,j can be obtained by solving the above equation. For convenience, we replace
all θj + αθ̇j with a variable x in the above equation and solve

∇qξ,j(x, t) =
1

4
ln


√
x2 + 4ξ̄2j (t) + x

2ξj

−Dξj ,∆j
− hj(0)

=
1

4
ln


√
x2 + 4ξ̄2j (t) + x

2ξje−αϕj(t)

+
ln(e−αϕj(t))

4
−Dξj ,∆j

− hj(0)

=
1

4
ln

(√
x2

4ξ̄2j (t)
+ 1 +

x

2ξ̄j(t)

)
− αϕj(t)

4
−Dξj ,∆j

− hj(0)

=
1

4
arcsinh

(
x

2ξ̄j(t)

)
− αϕj(t)

4
−Dξj ,∆j

− hj(0). (43)

Integrating both sides of the above equation directly gives us that qξ,j(x, t) has the form of
qξ,j(x, t)

=
1

4

∫
arcsinh

(
x

2ξ̄j(t)

)
dx− αϕj(t)x

4
−Dξj ,∆jx− hj(0)x

=
2ξ̄j(t)

4

 x

2ξ̄j(t)
arcsinh

(
x

2ξ̄j(t)

)
−
√

1 +
x

4ξ̄2j (t)
+ C1

− αϕj(t)x

4
−Dξj ,∆j

x− hj(0)x

=
2ξ̄j(t)

4

[
x

2ξ̄j(t)
arcsinh

(
x

2ξ̄j(t)

)
−

√
1 +

x2

4ξ̄j(t)2
+ 1

]

− αxϕj(t)

4
−Dξj ,∆j

x− hj(0)x, (44)

where we set C1 = 1.

• Find hj(t). The form of hj(t) can be obtained by solving Eq. (38). According to the form
of ∇qj in Eq. (42) and the definition of ϕj(t) in Eq. (31), we need to first calculate ∂t∇qξ,j :

∂t∇qξ,j(θ + αθ̇, t)

=
1

4

4ξ̄j(t)√
(θj + αθ̇j)2 + 4ξ̄2j (t)

(√
(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)

) dξ̄i
dt

= − αξj ξ̄j√
(θj + αθ̇j)2 + 4ξ̄2j (t)

(√
(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)

) dϕj(t)

dt

= − α
ξ2j√

θ2j + 4ξ2j

(√
θ2j + 4ξ2j + θj

) 8
(
∂θjL

)2
(1− µ)2

+O(η2). (45)

Putting the above equation back to Eq. (38) immediately gives us that

hj(t) = α

∫ t

0

θj θ̇j θ̇j

8(θ2j + 4ξ2j )
3
2

+
ξ2j√

θ2j + 4ξ2j

(√
θ2j + 4ξ2j + θj

) 8
(
∂θjL

)2
(1− µ)2

ds+ C2

=
2α

(1− µ)2

∫ t

0

(
∂θjL(s)

)2√
θ2j (s) + 4ξ2j

 4ξ2j√
θ2j (s) + 4ξ2j + θj(s)

+ θj(s)

 ds+ C2 +O(η2)

(46)
where we use

αθ̇j = −4αHj

∂θjL

1− µ
+O(η2) = −4α

√
θ2j + 4ξ2j

∂θjL

1− µ
+O(η2) (47)

21



Under review as a conference paper at ICLR 2024

according to Eq. (35) in the second equality and C2 = hj(0) is a constant.

We are now ready to find Qξ,j by combining the form of qξ,j(θ + αθ̇, t) in Eq. (44) and the form of
hj(t) in Eq. (46), which gives us

Qξ,j(θ + αθ̇, t) =
2ξ̄j(t)

4

θj + αθ̇j
2ξ̄j(t)

arcsinh

(
θj + αθ̇j
2ξ̄j(t)

)
−

√
1 +

(θj + αθ̇j)2

4ξ̄j(t)2
+ 1


− αθjϕj(t)

4
+ (θj + αθ̇j)hj(t)− (θj + αθ̇j)Dξj ,∆j

− (θj + αθ̇j)hj(0),

where, interestingly,

− αθjϕj(t)

4
+ (θj + αθ̇j)hj(t)− (θj + αθ̇j)hj(0)

= − 2αθj
(1− µ)2

∫ t

0

(∂θjL)
2ds+

2αθj
(1− µ)2

∫ t

0

(∂θjL(s))
2√

θ2j (s) + 4ξ2j

 4ξ2j√
θ2j (s) + 4ξ2j + θj(s)

+ θj(s)

 ds

=
2αθj

(1− µ)2

∫ t

0

(∂θjL(s))
2√

θ2j (s) + 4ξ2j

 4ξ2j√
θ2j (s) + 4ξ2j + θj(s)

+ θj(s)−
√
θ2j (s) + 4ξ2j

 ds

= 0. (48)

As a result, let θ̄α = θ + αθ̇ and recall that

Dξj ,∆j
=

1

4
arcsinh

(
θj(0) + αθ̇j(0)

2ξj

)
(49)

where, let δj = u2
j (0)− v2j (0),

θj(0) + αθ̇j(0) = u2
j (0)− v2j (0) + 2α(uj(0)u̇j(0)− vj(0)v̇j(0))

= u2
j (0)− v2j (0) +

4α

1− µ

[
u2
j (0) + v2j (0)

]
∂θjL(θ(0))

= δj +
4α∂θjL(θ(0))

1− µ

√
δ2j + 4ξ2j (50)

we have the final form of Qξ,j :

Qξ,j(θ̄α, t) =
1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]

− 1

4
θ̄α;j arcsinh

δj +
4α∂θj

L(θ(0))

1−µ

√
δ2j + 4ξ2j

2ξj

 . (51)

The simplest case is when δj = 0, i.e., the unbiased initialization with u(0) = v(0) such that θ(0) = 0

and ∇θL(θ(0)) =
1
nX

T (Xθ(0)− y) = −XT y
n , then Qξ,j(θ̄α, t) has the form of

1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√
4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) + θ̄α;j arcsinh

(
4α(XT y)j
n(1− µ)

)]
. (52)

Simply redefining

Qξ,j(θ̄α, t) =
1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]
,

Rj = arcsinh

(
4α(XT y)j
n(1− µ)

)
,

we finish the proof of Proposition 3:

∀j ∈ {1, . . . , d} :
d

dt
∇
[
Qξ,j(θ̄α, t) + θ̄α;jRj

]
= −

∂θjL(θ)

1− µ
.
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C.2 CONVERGENCE RESULTS FOR θ DYNAMICS OF HB AND NAG

Since Qξ̄∞(θ) in Theorem 1 involves an integral from t = 0 to ∞, it is necessary to show the
convergence of this integral to guarantee the implicit bias result. For this purpose, we establish the
convergence result of ϕ(∞) in Theorem 1, whose j-th component for t < ∞ is ϕj(t) in Proposition
3. Recall that Qξ,j is defined in Eq. (12), we have the following proposition.
Proposition 4 (Convergence of ϕ(∞)). Under the same setting of Theorem 1 and assuming that
θ(∞) is an interpolation solution, i.e., Xθ(∞) = y, then the integral ϕ(∞) converges and its j-th
component ϕj(∞) satisfies that

ϕj(∞) =
16
[
diag

(
XTX

)]
j

n(1− µ)
Qξ,j (θj(∞), 0) + C,

where C = 4α
n(1−µ)

[
(
∑n

i=1 x
2
i;j)
(√

θ2j (0) + 4ξ2j − 2ξj

)
+
∑n

i=1 ϵi;j arcsinh
(

θj(0)
2ξj

)]
is a con-

stant, ϵi;j =
(∑d

k=1,k ̸=j θk(0)xi;k − yi

)
xi;j , and C = 0 for unbiased initialization θ(0) = 0.

Typically, solving the integral needs the entire training trajectory of θ, which is hard and equivalent
to being aware of the limiting point of θ. From this aspect, Proposition 4 is interesting due to the fact
that ϕ(∞) has a rather simple explicit form depending on the data matrix XTX and Q(θ(∞), 0).
Furthermore, since the value of ϕj(∞) controls the initialization mitigation effects of HB and NAG
according to Theorem 1, as an immediate consequence of Proposition 4, such effects depend on
learning rate η (through the dependence on α), the data matrix XTX , initialization ξ (through the
dependence on Qξ,j), and the momentum factor µ.

Proof. Recall that ϕj(t) is defined as

ϕj(t) =
8

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds

and, according to the dynamics of θ Eq. (35),

αθ̇j = −4α
√
θ2j + 4ξ2j

∂θjL

1− µ
+O(η2),

then we get that ϕj(t) satisfies

αϕj(t) = − 4α

1− µ

∫ t

0

∂θjL(θ(s))√
θ2j (s) + 4ξ2j

dθj(s)

ds
ds

= − 4α

n(1− µ)

∫ t

0

∑n
i=1(

∑d
k=1 θk(s)xi;k − yi)xi;j√
θ2j (s) + 4ξ2i

dθj(s)

= −
4α(
∑n

i=1 x
2
i;j)

n(1− µ)

∫ t

0

θj(s)√
θ2j (s) + 4ξ2j

dθj(s)

︸ ︷︷ ︸
♡

− 4α

n(1− µ)

n∑
i=1

∫ t

0

(∑d
k=1,k ̸=j θk(s)xi;k − yi

)
xi;j√

θ2j (s) + 4ξ2j

dθj(s)

︸ ︷︷ ︸
♣

, (53)

where we replace α∂θjL with αθ̇j in the first equality. For the two integral terms, we note that

♡ =
1

2

∫ t

0

1√
θ2j (s) + 4ξ2j

d(θ2j (s) + 4ξ2j )

=
√

θ2j (t) + 4ξ2j + C1 (54)

23



Under review as a conference paper at ICLR 2024

and, let ϵi;j(t) =
(∑d

k=1,k ̸=j θk(t)xi;k − yi

)
xi;j ,

♣ = ϵi;j(t) arcsinh

(
θj(t)

2ξj

)
+ C2. (55)

As a result, we obtain the form of ϕj(t):

ϕj(t) = − 4α

n(1− µ)

[
(

n∑
i=1

x2
i;j)
(√

θ2j (t) + 4ξ2j − 2ξj

)
+

n∑
i=1

ϵi;j(t) arcsinh

(
θj(t)

2ξj

)]
+ C ′,

where C ′ is a constant to make ϕj(0) = 0:

C ′ =
4α

n(1− µ)

[
(

n∑
i=1

x2
i;j)
(√

θ2j (0) + 4ξ2j − 2ξj

)
+

n∑
i=1

ϵi;j(0) arcsinh

(
θj(0)

2ξj

)]
. (56)

Note that when the initialization is unbiased, then we simply have C ′ = 0. Since we assume θ
converges to the interpolation solution, i.e.,

θT (∞)xi = yi, ∀i ∈ {1, . . . n},
which implies that

d∑
k=1

θk(∞)xi;k − yi = 0, ∀i ∈ {1, . . . n} =⇒ −θj(∞)xi;j =

d∑
k=1,k ̸=j

θk(t)xi;k − yi

=⇒ ϵi;j(∞) = −θj(∞)x2
i;j , (57)

we obtain the form of ϕj(∞):

αϕj(∞) =
4α(
∑n

i=1 xi;j)
2

n(1− µ)

[
θj(∞) arcsinh

(
θj(∞)

2ξj

)
−
√
θ2j (∞) + 4ξ2j + 2ξj

]
+ C ′

=
16α(

∑n
i=1 xi;j)

2

n(1− µ)
Qξ,j(θ(∞), 0) + C ′. (58)

C.3 PROOF OF THEOREM 1

In this section, we prove Theorem 1.

Proof. If we define

Qξ̄(t)(θ̄α, t) =

d∑
j=1

Qξ,j(θ̄α, t), (59)

then its gradient w.r.t θ̄α is

∇Qξ̄(t)(θ̄α, t) =
(
∇Qξ,1(θ̄α, t), . . . ,∇Qξ,d(θ̄α, t)

)T
,

which implies that

d

dt
∇Qξ̄(t)(θ̄α, t) =


d
dt∇Qξ,1(θ̄α, t)

...
d
dt∇Qξ,d(θ̄α, t)


= −∇L(θ)

1− µ
(60)

where we apply Proposition 3 in the second equality. Integrating both sides of the above equation
from 0 to ∞ gives us

∇Qξ̄(∞)(θ̄α(∞),∞)−∇Qξ̄(0)(θ̄α(0), 0) = −
n∑

i=1

xi

n(1− µ)

∫ ∞

0

ri(s)ds =
∑
i=1

xiλi. (61)
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On the other hand, as t → ∞, since we assume θ(∞) converges to the interpolation solution, we
have, according to Eq. (35),

αθ̇(∞) ∝ α∇L(θ(∞)) = 0 =⇒ θ̄α(∞) = θ(∞).

Considering that ∇Qξ̄(0)(θ̄α(0), 0) = 0 when we derive the form of Qξ,j (Eq. (40)), Eq. (61) implies
that

∇Qξ̄(∞)(θ(∞),∞) =

n∑
i=1

xiϵi. (62)

Note that the KKT condition for the optimization problem in Theorem 1 is

∇Qξ̄(∞)(θ(∞),∞)−
n∑

i=1

xiλi = 0, (63)

which is exactly Eq. (62). Thus we finish the proof.

C.4 EQUIVALENCE BETWEEN EQ. (6) AND STANDARD DIAGONAL LINEAR NETWORKS

A standard diagonal linear network is

f(x;u, v) = (u⊙ v)Tx.

If u and v of this model follows the HB and NAG flow (Proposition 1) under the square loss, we
note that there is no difference between the forms of their dynamics, since the model f(x;u, v) is
completely symmetrical regarding u and v, i.e., changing the places of u and v would induce exactly
the same model and make no difference. More specifically, the dynamics of u⊙ u is

1

2

d

dt
u⊙ u = u⊙ u̇ = −u⊙

(
∇uL

1− µ
+ αü

)
= − 2

1− µ
u⊙ (XT r)⊙ v −

[
α
d

dt
u⊙ u̇− αu̇⊙ u̇

]
= − 2

1− µ
u⊙ (XT r)⊙ v + α

[
2

1− µ

d

dt
u⊙ (XT r)⊙ v +

4(XT r)⊙ v ⊙ (XT r)⊙ v

(1− µ)2

]
(64)

and the dynamics of v ⊙ v can be obtained by simply replacing all u with v in Eq. (64). Thus if
u(0)⊙ u(0) = v(0)⊙ v(0), i.e., |u(0)| = |v(0)|, then we can immediately conclude that |u(t)| =
|v(t)| for any t ≥ 0. Thus we can equivalently parameterize this model with f(x;u) = (u⊙ u)Tx
further add the weight v such that f(x;u, v) = (u⊙ u− v ⊙ v)Tx can output negative values.

C.5 ANALYSIS ON THE EFFECTS OF THE INITIALIZATION

For simplicity, we consider the unbiased initialization, and the case for biased initialization is similar.
Since the solutions of HB and NAG are composed of two parts, Qξ̄(∞) =

∑d
j=1 Qξ,j(θ̄α,∞) where

(note that θ̄α(∞) = θ(∞) according to the proof of Theorem 1)

Qξ,j(θ̄α, t) =
1

4

[
θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]
and R = (Rj , . . . ,Rd)

T ∈ Rd where

∀j ∈ {1, . . . , d} : Rj =
1

4
arcsinh

(
4α(XT y)j
n(1− µ)

)
,

we need to analyze both parts to show the transition from the rich regime to kernel regime, which is
different from the case for GD where one only needs to consider the hyperbolic entropy part.
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Small initialization ξ → 0. We first discuss Qξ,j . When ξ → 0, we have that

−
√
4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) → −|θ̄α;j |

and

θ̄α;j
2ξ̄j(t)

→ sign(θ̄α;j)∞ =⇒ θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
→ sign(θ̄α;j)θ̄α;j∞ = |θ̄α;j |∞,

thus Qξ̄(∞) →
∑d

j=1 |θj(∞)|∞ = ∥θ(∞)∥1∞. On the other hand, the θTR part is finite thus
negligible compared to Qξ̄(∞). As a result, we conclude that ξ → 0 corresponds to the rich regime.

Large initialization ξ → ∞. For Qξ,j , we note that as ξ → ∞, similar to the case for GD,

−
√
4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) → 0

and

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)
→

θ̄2α;j
2ξj

,

thus we obtain that, as ξ → ∞

Qξ,j(θ̄α, t) ∝ θ̄2α;j =⇒ Qξ̄(∞) ∝ ∥θ(∞)∥22. (65)

On the other hand, θTR is simply a inner produce between θ and R. Thus Q+ θTR is captured by a
kernel and ξ → ∞ corresponds to the kernel regime.

C.6 PROOF OF PROPOSITION 2

Proof. Since momentum-based methods is a second-order ODE by adding a perturbation proportional
to η to the re-scaled GF ODE

u̇ = − ∇uL

1− µ
, v̇ = − ∇vL

1− µ
,

Proposition 2 can be proved by following similar steps as the proof of Theorem 1 in Appendix C.3.
In particular, let all terms of the order of η be zero (thus we ignore the perturbation brought by
momentum) and let µ = 0 (thus we make the re-scaled GF a standard GF) in the proof of Theorem 1,
we can directly conclude that

θ(∞) = argmin
θ

Q(θ), s.t. Xθ = y (66)

where

Q(θ) = QGF
ξ (θ) + θTRGF,

RGF = (RGF
1 , . . . ,RGF

d )T ∈ Rd, ∀j ∈ {1, . . . , d} : RGF
j =

1

4
arcsinh

(
θj(0)

2ξj

)
. (67)
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