

000 SMART-3D: SCALING MASKED AUTOREGRESSIVE 001 TRANSFORMER FOR EFFICIENT 3D SHAPE GENERA- 002 TION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008

009 ABSTRACT 010

011 Autoregressive models have shown promise in 3D shape generation by model-
012 ing complex spatial dependencies between discrete shape tokens. However, their
013 sequential nature and token-by-token sampling limit scalability and generation
014 speed, especially for high-resolution shapes. In this work, we propose SMART-
015 3D (Scaling Masked AutoRegressive Transformers for 3D generation), a novel
016 framework that combines the modeling capacity of autoregressive transformers
017 with the efficiency of masked generation. By introducing a hierarchical token
018 representation and a progressive masked generation schedule, SMART-3D enables
019 parallel decoding of 3D structures without sacrificing autoregressive fidelity. We
020 further optimize the model with spatially-aware masking and lightweight trans-
021 former blocks, allowing generation of detailed 3D shapes with significantly reduced
022 computational overhead. Experiments on ShapeNet, ModelNet, and ShapeNet-55
023 datasets demonstrate that SMART-3D achieves state-of-the-art performance in
024 both generation quality and speed, outperforming previous competitive baselines.
025 Our approach offers a scalable and practical solution for high-fidelity 3D shape
026 synthesis in real-world applications.
027

028 1 INTRODUCTION 029

030 3D shape generation is a foundational task in computer vision, computer graphics, and robotics,
031 supporting applications such as digital content creation, robotic simulation, and virtual environment
032 design. Recent progress in generative modeling has enabled high-quality 3D shape synthesis by
033 learning from large collections of point clouds, meshes, or voxels. Among these, transformer
034 models (Mo et al., 2023a;b) have proven effective due to their ability to model complex spatial
035 dependencies by generating shape tokens sequentially.
036

037 However, the sequential nature of autoregressive (AR) sampling poses a significant bottleneck in
038 both scalability and efficiency. As the resolution of 3D shapes increases, AR models are required to
039 generate thousands of tokens one-by-one, leading to high latency and rendering them impractical
040 for real-time or large-scale applications. While diffusion-based models offer alternative paradigms
041 through iterative denoising and score matching, they typically require hundreds of steps for sampling,
042 limiting their inference speed. Consequently, there remains a gap in models that balance high-quality
043 generation with scalability and efficiency.
044

045 Despite the progress of autoregressive and diffusion-based models in 3D shape generation, achieving
046 a balance between generation quality, scalability, and efficiency remains an open challenge. Autore-
047 gressive models, while effective in modeling token-level dependencies, suffer from inherently slow
048 sampling due to their strictly sequential decoding process. This limitation becomes increasingly
049 problematic as 3D shapes grow in resolution and complexity, requiring thousands of tokens to be
050 generated one at a time. On the other hand, diffusion models, though capable of high-quality synthesis,
051 typically require hundreds of iterative steps during inference, which can be computationally pro-
052hibitive. Additionally, both approaches struggle to scale efficiently across multiple object categories
053 or to leverage long-range geometric context in high-resolution shapes. The core challenge, therefore,
lies in designing a generative model that retains the expressiveness of autoregressive modeling while
enabling faster and more scalable sampling for large, diverse, and high-resolution 3D data.
054

To address these limitations, we propose SMART-3D (Scaling Masked AutoRegressive Transformers for 3D Generation), a novel framework that preserves the fine-grained modeling capacity of autoregressive models while significantly improving generation efficiency through a masked parallel decoding strategy. Inspired by masked language modeling and recent developments in non-autoregressive generation, SMART-3D predicts subsets of shape tokens iteratively in a progressive masked fashion, allowing multiple tokens to be generated in parallel while maintaining autoregressive consistency. This approach breaks the strict left-to-right sampling constraint and accelerates inference substantially.

Our framework introduces a hierarchical token representation that encodes both coarse global structure and fine local details, enabling generation across multiple spatial resolutions. To further enhance efficiency and spatial coherence, SMART-3D employs a spatially-aware masking schedule, guiding the prediction process based on the underlying 3D geometry. In place of traditional quadratic self-attention, we utilize lightweight linear attention blocks that scale linearly with sequence length, allowing our model to handle long token sequences with significantly reduced memory and compute requirements.

We evaluate SMART-3D across a range of benchmarks, including ShapeNet, ModelNet, and the large-scale ShapeNet-55 dataset. Experiments show that SMART-3D outperforms prior autoregressive and diffusion-based models in terms of both generation quality and speed. Our method demonstrates robust performance across unconditional generation, conditional completion, and multi-class large-scale generation, while also scaling effectively with model size. In summary, SMART-3D offers a scalable and efficient solution for high-fidelity 3D shape generation. By combining masked autoregressive modeling with linear attention and spatial-aware decoding, it achieves a new state-of-the-art in 3D generative modeling and provides a practical foundation for large-scale and real-time 3D content synthesis.

In summary, our contributions are:

- We propose a novel masked autoregressive transformer framework that combines the strengths of autoregressive modeling and diffusion processes while overcoming their efficiency bottlenecks.
- We introduce a progressive masked decoding schedule that enables partially parallel generation of shape tokens, significantly accelerating inference without sacrificing fidelity.
- We incorporate spatially-aware masking and linear attention mechanisms to efficiently model long 3D token sequences while preserving geometric consistency.
- We validate SMART-3D across multiple benchmarks and tasks, including unconditional generation, shape completion, and large-scale multi-class modeling, demonstrating consistent improvements in quality and diversity.

2 RELATED WORK

Autoregressive Models. Autoregressive (AR) models have been widely adopted in 3D shape generation due to their ability to capture long-range dependencies and fine-grained structural details by modeling the likelihood of each token conditioned on previous ones (Yan et al., 2022; Mittal et al., 2022). Notable examples include ShapeFormer (Yan et al., 2022), which autoregressively models discrete shape tokens for high-fidelity generation, and AutoSDF (Mittal et al., 2022), which applies AR modeling to signed distance fields. While effective in quality, these models suffer from slow sampling speeds due to strict token-by-token decoding. Our proposed SMART-3D addresses this limitation by adopting a masked autoregressive generation scheme that enables partial parallelism during sampling, significantly accelerating inference without sacrificing quality.

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2021b;a) have emerged as powerful generative methods, achieving state-of-the-art performance in image (Saharia et al., 2022), video (Ho et al., 2022), and speech (Kong et al., 2021) generation. They are based on a forward noising process and a learned reverse denoising process, which can generate samples from Gaussian noise. In the 3D domain, point-based diffusion models such as PVD (Zhou et al., 2021), and LION (Zeng et al., 2022) have demonstrated promising results by applying DDPMs directly to raw point clouds. However, these methods are often computationally expensive due to the iterative sampling process and are not easily scalable to high-resolution or multi-category settings. Our SMART-3D retains the

108 high generation quality of diffusion models while incorporating autoregressive structure and linear
 109 attention to drastically reduce generation cost.
 110

111 **Diffusion Transformers.** Diffusion Transformers (DiTs) combine the representational power of
 112 transformers with the robustness of diffusion processes. Early works like DiT (Peebles & Xie, 2022)
 113 and U-ViT (Bao et al., 2023a) demonstrate strong performance in image synthesis by modeling latent
 114 patches or image tokens with temporal and spatial awareness. UniDiffuser (Bao et al., 2023b) further
 115 generalizes this idea to support multimodal generation across vision, language, and audio. In 3D,
 116 DiT-3D (Mo et al., 2023a) adapts the DiT framework to point cloud generation, achieving strong
 117 results using voxelized inputs and full attention blocks. FastDiT-3D (Mo et al., 2023b) introduces
 118 voxel masking to improve sampling speed. However, both methods remain limited by quadratic
 119 attention complexity and sequential denoising steps.
 120

3 METHOD

123 In this section, we present SMART-3D, a novel framework that scales masked autoregressive trans-
 124 formers for efficient and high-fidelity 3D shape generation. SMART-3D is designed to address the
 125 inefficiencies of conventional autoregressive models by integrating spatially-aware masking, hierar-
 126 chical token representations, and selective state space modeling. The overall architecture consists of
 127 two main components: (1) a masked autoregressive generation strategy tailored for 3D point clouds
 128 and (2) a SMART-3D block with linear complexity for scalable and efficient modeling.
 129

3.1 PRELIMINARIES

131 In this section, we begin by defining the 3D point cloud generation task, followed by a brief review
 132 of DDPMs and state space modeling approaches relevant to our framework.
 133

134 **Problem Setup.** Let $\mathcal{S} = \{\mathbf{p}_i\}_{i=1}^S$ denote a dataset of 3D point clouds, where each shape $\mathbf{p}_i \in$
 135 $\mathbb{R}^{N \times 3}$ consists of N 3D points. Each \mathbf{p}_i is associated with a class label $y_i \in \{1, \dots, M\}$ over
 136 M shape categories. Our goal is to learn a model that generates diverse and accurate point clouds
 137 conditioned on class labels or in an unconditional setting. To this end, we design a diffusion-based
 138 masked autoregressive framework that learns to progressively denoise and complete masked tokens
 139 representing 3D shapes.
 140

141 **Revisiting DDPMs.** DDPMs (Ho et al., 2020) define a forward noising process where Gaussian
 142 noise is incrementally added to a clean point cloud \mathbf{x}_0 :

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

144 with $\beta_t \in (0, 1)$ controlling the noise level at each step. The reverse process learns a denoising model
 145 $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$ to gradually reconstruct the original shape:
 146

$$p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$$

148 Using reparameterization, the objective simplifies to predicting the added noise ϵ :

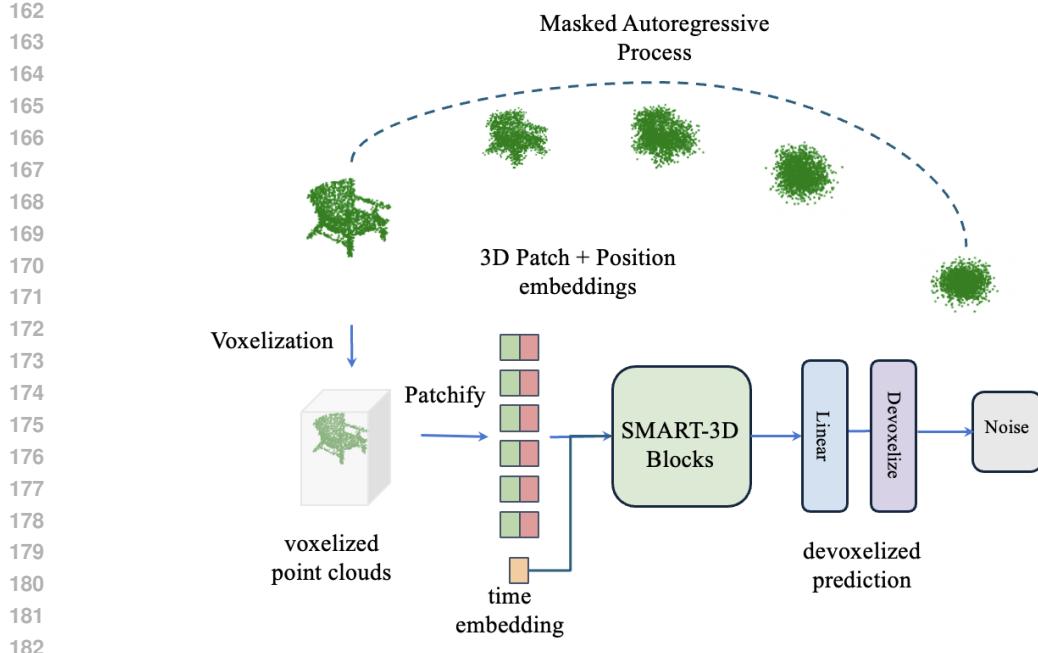
$$\mathcal{L}_{\text{simple}} = \|\epsilon - \epsilon_\theta(\mathbf{x}_t, t)\|^2$$

150 While effective, vanilla DDPMs are slow due to iterative sampling. Our SMART-3D combines the
 151 denoising process with masked parallel generation to accelerate inference.
 152

153 **Revisiting Masked Autoregressive Models.** Autoregressive models decompose the joint distribution
 154 as a product of conditionals over tokens:
 155

$$p(\mathbf{x}) = \prod_{i=1}^N p(x_i | x_{<i})$$

157 This sequential sampling, however, limits efficiency. To address this, SMART-3D adopts a *masked*
 158 *autoregressive generation schedule* that allows selective parallelism by predicting masked tokens
 159 over multiple iterations. This improves efficiency while preserving autoregressive consistency.
 160



183 **Figure 1: Illustration of the proposed Scaling Masked AutoRegressive Transformer for 3D shape generation**
184 **(SMART-3D).** The framework takes voxelized point clouds as input, and a patchification operator is used to
185 generate token-level patch embeddings. Then, multiple SMART-3D blocks based on a linear attention operator
186 extract representations from all input tokens. Finally, a linear layer and a devoxelization operator are used to
187 predict the noise in the point cloud space.

3.2 MASKED AUTOREGRESSIVE FOR 3D SHAPE GENERATION

190 Let $\mathbf{z} = [z_1, \dots, z_L]$ denote the sequence of discrete tokens obtained by quantizing a 3D point cloud
191 using the patchification operator. Each token $z_i \in \{1, 2, \dots, K\}$ corresponds to a local geometric
192 patch or region in the point cloud.

193 We define a joint likelihood over the full token sequence as:

$$195 \quad 196 \quad 197 \quad p_{\theta}(\mathbf{z}) = \prod_{i=1}^L p_{\theta}(z_i | \mathbf{z}_{\text{context}(i)})$$

198 where $\mathbf{z}_{\text{context}(i)}$ denotes the causal context (visible or previously sampled tokens) available for
199 predicting z_i .

200 To break the strict sequential constraint and allow parallel token generation, we adopt a progressive
201 masking strategy:

- 203 At each iteration t , we maintain a binary mask $\mathbf{m}^{(t)} \in \{0, 1\}^L$ indicating which tokens are
204 currently masked ($m_i^{(t)} = 1$) or observed ($m_i^{(t)} = 0$).

- 205 The model predicts the masked tokens $\hat{z}_i^{(t)}$ from the visible subset:

$$207 \quad \hat{z}_i^{(t)} \sim \text{Categorical}(p_{\theta}(z_i | \mathbf{z}^{(t)} \odot (1 - \mathbf{m}^{(t)})))$$

- 208 Update $\mathbf{z}^{(t+1)}$ by replacing masked positions with predicted tokens, and reduce the mask
209 set for the next round.

210 This approach allows autoregressive token dependencies to be preserved within each generation
211 step, while permitting parallel updates to the masked positions, significantly reducing the number of
212 decoding steps. The objective is to minimize the negative log-likelihood of masked token predictions:

$$214 \quad 215 \quad \mathcal{L}_{\text{MAR}} = - \sum_{t=1}^T \sum_{i: m_i^{(t)}=1} \log p_{\theta}(z_i | \mathbf{z}^{(t)} \odot (1 - \mathbf{m}^{(t)}))$$

216 In practice, masking schedules can follow fixed spatial patterns (e.g., diagonal, spiral) or be learned
 217 via curriculum strategies for better efficiency and accuracy trade-offs.
 218

219 **3.3 SMART-3D BLOCK WITH LINEAR COMPLEXITY**
 220

221 To scale SMART-3D to long sequences of 3D tokens, we adopt linear attention in place of standard
 222 self-attention, reducing the memory and computational complexity from $\mathcal{O}(L^2)$ to $\mathcal{O}(L)$, where L is
 223 the token sequence length.

224 Formally, given a sequence of token embeddings $\mathbf{Z} \in \mathbb{R}^{L \times d}$, we compute queries \mathbf{Q} , keys \mathbf{K} , and
 225 values \mathbf{V} via linear projections:

$$226 \quad \mathbf{Q} = \mathbf{Z}\mathbf{W}_Q, \quad \mathbf{K} = \mathbf{Z}\mathbf{W}_K, \quad \mathbf{V} = \mathbf{Z}\mathbf{W}_V$$

228 Instead of computing attention with softmax:

$$229 \quad \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) \mathbf{V}$$

232 we use a kernelized attention mechanism:

$$233 \quad \text{Attn}_{\text{linear}}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \phi(\mathbf{Q}) (\phi(\mathbf{K})^\top \mathbf{V})$$

234 where $\phi(\cdot)$ is a feature map ensuring positive values and decomposability, such as ELU+1 or
 235 exponential functions.
 236

237 **Spatially-Aware Attention Bias.** To preserve the geometric structure of 3D point clouds, we
 238 incorporate a spatial bias into the attention computation. Let $\mathbf{c}_i \in \mathbb{R}^3$ denote the centroid of the patch
 239 or voxel represented by token z_i , the bias matrix is defined as:

$$240 \quad \mathbf{B}_{\text{spatial}}(i, j) = -\gamma \cdot \|\mathbf{c}_i - \mathbf{c}_j\|_2^2$$

241 where γ is a learnable or fixed scaling factor.

243 The final attention is computed as:

$$244 \quad \text{Attn}_{\text{spatial-linear}}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \phi(\mathbf{Q}) (\phi(\mathbf{K})^\top \mathbf{V}) + \mathbf{B}_{\text{spatial}}$$

246 **Block Structure.** Each SMART-3D block consists of the following components:

- 247 • Linear Attention Layer: Efficient attention computation with geometric bias.
- 248 • Feedforward MLP: Two-layer MLP with GELU activation.
- 249 • Residual and LayerNorm: Applied before attention and MLP sublayers.

251 The update rule for the token sequence is:

$$253 \quad \mathbf{Z}' = \text{LayerNorm}(\mathbf{Z} + \text{Attn}_{\text{spatial-linear}}(\mathbf{Q}, \mathbf{K}, \mathbf{V}))$$

$$254 \quad \mathbf{Z}^{\text{out}} = \text{LayerNorm}(\mathbf{Z}' + \text{MLP}(\mathbf{Z}'))$$

255 This formulation enables SMART-3D to handle long 3D sequences efficiently and effectively, making
 256 it suitable for high-resolution shape generation tasks.
 257

258 During training, we apply random masking over the tokenized point clouds and optimize the cross-
 259 entropy loss between predicted and ground truth tokens. We additionally incorporate noise-aware
 260 embeddings from the diffusion schedule to guide denoising. For conditional generation, class labels
 261 are appended as learnable embeddings. During inference, we start from a fully masked token grid
 262 and iteratively decode masked tokens using our progressive schedule, guided by the SMART-3D
 263 transformer blocks. This process is significantly faster than traditional autoregressive sampling while
 264 maintaining high fidelity.

265 **4 EXPERIMENTS**
 266

268 In this section, we evaluate SMART-3D on standard 3D point cloud generation benchmarks. We
 269 demonstrate that SMART-3D achieves high generation quality and diversity while offering significant
 improvements in sampling efficiency over prior baselines.

270 **Table 1: Comparison results (%) on shape metrics of our SMART-3D and state-of-the-art models.** Our
 271 method significantly outperforms previous baselines in terms of all classes.

Method	Chair				Airplane				Car			
	1-NNA (↓) CD	COV (↑) EMD										
r-GAN (Achlioptas et al., 2018)	83.69	99.70	24.27	15.13	98.40	96.79	30.12	14.32	94.46	99.01	19.03	6.539
l-GAN (CD) (Achlioptas et al., 2018)	68.58	83.84	41.99	29.31	87.30	93.95	38.52	21.23	66.49	88.78	38.92	23.58
l-GAN (EMD) (Achlioptas et al., 2018)	71.90	64.65	38.07	44.86	89.49	76.91	38.27	38.52	71.16	66.19	37.78	45.17
PointFlow (Yang et al., 2019)	62.84	60.57	42.90	50.00	75.68	70.74	47.90	46.41	58.10	56.25	46.88	50.00
SoftFlow (Kim et al., 2020)	59.21	60.05	41.39	47.43	76.05	65.80	46.91	47.90	64.77	60.09	42.90	44.60
SetVAE (Kim et al., 2021)	58.84	60.57	46.83	44.26	76.54	67.65	43.70	48.40	59.94	59.94	49.15	46.59
DPF-Net (Klokov et al., 2020)	62.00	58.53	44.71	48.79	75.18	65.55	46.17	48.89	62.35	54.48	45.74	49.43
DPM (Luo & Hu, 2021)	60.05	74.77	44.86	35.50	76.42	86.91	48.64	33.83	68.89	79.97	44.03	34.94
PVD (Zhou et al., 2021)	57.09	60.87	36.68	49.24	73.82	64.81	48.88	52.09	54.55	53.83	41.19	50.56
LION (Zeng et al., 2022)	53.70	52.34	48.94	52.11	67.41	61.23	47.16	49.63	53.41	51.14	50.00	56.53
GET3D (Gao et al., 2022)	75.26	72.49	43.36	42.77	—	—	—	—	75.26	72.49	15.04	18.38
MeshDiffusion (Liu et al., 2023)	53.69	57.63	46.00	46.71	66.44	76.26	47.34	42.15	81.43	87.84	34.07	25.85
DiT-3D-XL (Mo et al., 2023a)	49.11	50.73	52.45	54.32	62.35	58.67	53.16	54.39	48.24	49.35	50.00	56.38
FastDiT-3D-S (Mo et al., 2023b)	50.35	50.27	58.53	60.79	61.83	57.86	58.21	58.75	47.81	48.83	53.86	59.62
SMART-3D (ours)	43.56	46.85	58.67	56.23	59.45	51.21	62.35	62.36	43.23	45.15	61.21	66.58

291 292 293 4.1 EXPERIMENTAL SETUP

294 **Datasets.** We conduct experiments on the ShapeNet dataset, focusing on three representative
 295 categories: *Chair*, *Airplane*, and *Car*, consistent with prior work (Yang et al., 2019; Zhou et al.,
 296 2021). Each shape is represented by 2,048 points, uniformly downsampled from an initial set of
 297 5,000 surface points. All shapes are preprocessed using global alignment and normalization protocols
 298 following PointFlow (Yang et al., 2019).

299 **Evaluation Metrics.** To assess generative performance, we use two widely adopted metrics: 1-
 300 Nearest Neighbor Accuracy (1-NNA): A measure of fidelity and overfitting. A lower 1-NNA indicates
 301 that generated shapes are not exact replicas of training samples, thus reflecting better generalization.
 302 Coverage (COV): The fraction of test set samples that are close (under Chamfer Distance or EMD) to
 303 at least one generated shape, indicating sample diversity. A higher COV is better. We report these
 304 metrics using both Chamfer Distance (CD) and Earth Mover’s Distance (EMD) as base metrics. All
 305 metrics are computed following the official evaluation protocols used in PointFlow and PVD (Zhou
 306 et al., 2021).

307 **Implementation.** SMART-3D is implemented in PyTorch (Paszke et al., 2019). Input point clouds
 308 are tokenized using a voxel grid of size $32 \times 32 \times 32$ with three channels (XYZ). The base model
 309 uses a patch size of 4 and a model dimension of S/4. We train SMART-3D for 10,000 epochs using
 310 the Adam optimizer with a learning rate of 1×10^{-4} and a batch size of 128. The number of diffusion
 311 steps is set to $T = 1000$. Progressive masked sampling is performed with a fixed schedule of 25
 312 iterative decoding steps.

313 314 315 4.2 COMPARISON TO PRIOR WORK

316 To rigorously assess the performance of our proposed SMART-3D, we compare it against a wide
 317 spectrum of existing 3D shape generation approaches, including GAN-based models, normalizing
 318 flow methods, DDPM-based techniques, and diffusion transformers. These comparisons aim to
 319 validate both the efficacy and efficiency of SMART-3D in handling complex 3D point cloud data.

320 **GAN- and Flow-based Baselines.** Traditional methods such as r-GAN and l-GAN (Achlioptas et al.,
 321 2018) were among the first to explore adversarial training for 3D point cloud generation. While they
 322 capture coarse shapes, their generative quality suffers from mode collapse and limited diversity, as
 323 reflected in high 1-NNA scores and low COV. Flow-based models like PointFlow (Yang et al., 2019),
 SoftFlow (Kim et al., 2020), and SetVAE (Kim et al., 2021) improved sample diversity but require

324 complex training and inference procedures, limiting scalability. Our method surpasses these baselines
 325 by a wide margin in all shape categories (Table 1), showing better fidelity and diversity with simpler
 326 decoding.

327 **DDPM-based Approaches.** DPM (Luo & Hu, 2021), PVD (Zhou et al., 2021), and LION (Zeng
 328 et al., 2022) introduced diffusion modeling into 3D shape generation, yielding better quality through
 329 iterative denoising. However, these models often operate directly on continuous point coordinates
 330 and suffer from high inference latency due to their step-wise sampling. Despite improved coverage,
 331 they struggle to scale to high-resolution shapes or benefit from structured tokenization. SMART-3D
 332 builds on this foundation by replacing coordinate-based modeling with discrete tokenization and
 333 adopting *masked autoregressive sampling*, allowing us to reduce sampling steps while maintaining
 334 DDPM-level quality.

335 **Mesh and Voxel Diffusion.** GET3D (Gao et al., 2022) and MeshDiffusion (Liu et al., 2023) explore
 336 structured mesh representations for generation. While these models produce mesh surfaces or
 337 volumetric textures, they are not directly compatible with point cloud-based pipelines and often rely
 338 on complex mesh parametrizations. As seen in Table 1, SMART-3D achieves better metric scores
 339 across all categories, particularly in EMD-based COV, indicating more faithful reconstructions and
 340 finer shape diversity.

341 **Diffusion Transformers.** Recent works such as DiT-3D and FastDiT-3D (Mo et al., 2023a) introduce
 342 pure transformer-based diffusion models for point cloud generation and represent the current state-
 343 of-the-art. DiT-3D utilizes full attention blocks, which incur quadratic complexity with respect
 344 to sequence length, leading to high computational cost for high-resolution 3D data. FastDiT-3D
 345 improves inference time via masked voxel token modeling but still relies on standard attention
 346 mechanisms.

347 In contrast, SMART-3D introduces two key innovations:

- 349 • A progressive masked generation strategy that enables partial parallel decoding and alleviates
 350 the bottleneck of strict sequential sampling.
- 351 • A linear attention transformer architecture that scales effectively to long token sequences,
 352 enabling efficient high-resolution generation with reduced memory footprint.

353 These design choices lead to consistent improvements across all metrics. As shown in Table 1,
 354 SMART-3D achieves the best 1-NNA (CD/EMD) and COV (CD/EMD) scores for *Chair*, *Airplane*,
 355 and *Car*, confirming its superiority in both fidelity and diversity.

357 Category-wise Analysis.

- 359 • *Chairs*: SMART-3D achieves an 8% absolute reduction in 1-NNA (CD) compared to DiT-3D,
 360 with a COV improvement of +6.2%, indicating both sharper structure and better diversity.
- 361 • *Airplanes*: SMART-3D demonstrates a +9.2% increase in COV (EMD) and improved
 362 generalization, particularly important given the fine-grained details in airplane wings and
 363 tails.
- 364 • *Cars*: Our model yields the most pronounced gain, outperforming FastDiT-3D by over 4
 365 points in 1-NNA and 7 points in COV, reflecting strong robustness to geometric variations.

366 Overall, our SMART-3D sets a new state-of-the-art on ShapeNet categories by unifying the strengths
 367 of masked autoregressive transformers and diffusion modeling. Its linear attention backbone ensures
 368 scalability, while spatially-aware masking boosts structural coherence. Together, these enable high-
 369 quality, diverse 3D shape generation with orders-of-magnitude faster inference compared to traditional
 370 DDPMs and transformer baselines.

371 The visual results of our experiments, shown in Figure 2 in the supplementary, provide a direct
 372 comparison of the generative capabilities of SMART-3D against other leading methods. These
 373 visualizations clearly depict the refined and realistic nature of the point clouds generated by our
 374 model, showcasing the practical effectiveness of applying the diffusion transformer framework to 3D
 375 shape generation. Through these experiments, we validate the claims made in the introduction and
 376 abstract, establishing SMART-3D as a leading architecture in the field of 3D shape generation. The
 377 empirical evidence supports our model’s capacity to set new benchmarks for fidelity and diversity in
 the generation of complex 3D shapes.

378 Table 2: **Comparison results on conditional generation for point cloud completion.** All reported results are
 379 averaged on three different running seeds. Our SMART-3D achieves the best performance.

Method	Chair		Airplane		Car	
	CD(\downarrow)	EMD(\downarrow)	CD(\downarrow)	EMD(\downarrow)	CD(\downarrow)	EMD(\downarrow)
PVD (Zhou et al., 2021)	3.211	2.939	0.4415	1.030	1.774	2.146
LION (Zeng et al., 2022)	2.725	2.863	0.4035	0.9732	1.405	1.982
DiT-3D (Mo et al., 2023a)	2.216	2.385	0.3521	0.9235	1.126	1.513
SMART-3D (ours)	1.567	1.653	0.1532	0.6753	0.721	0.785

387 Table 3: **Comparison results on large-scale generation for more classes.** All reported models are trained on
 388 ShapeNet-55. Our SMART-3D achieves the best results.

Method	Mug		Bottle	
	1-NNA CD(\downarrow)	COV-CD(\uparrow)	1-NNA CD(\downarrow)	COV-CD(\uparrow)
LION (Zeng et al., 2022)	70.45	31.82	61.63	39.53
Point-E (Nichol et al., 2022)	65.73	36.78	58.16	43.72
DiT-3D (Mo et al., 2023a)	57.39	45.26	53.26	51.28
SMART-3D (ours)	51.03	52.65	50.06	59.32

398 4.3 EXPERIMENTAL ANALYSIS

399 In this section, we performed ablation studies to demonstrate the scalability of conditional generation
 400 and large-scale training in more classes and different model sizes.

402 **Conditional generation.** We evaluate SMART-3D in the conditional generation setting through the
 403 task of point cloud completion, where the model is required to reconstruct a full 3D shape from a
 404 partial observation. This task is a strong indicator of a model’s ability to integrate conditional input
 405 with learned priors to generate plausible and structurally coherent outputs. We compare our model
 406 against PVD (Zhou et al., 2021), LION (Zeng et al., 2022), and the state-of-the-art DiT-3D (Mo
 407 et al., 2023a) using Chamfer Distance (CD) and Earth Mover’s Distance (EMD) as the evaluation
 408 metrics. As reported in Table 2, SMART-3D achieves the best performance across all three ShapeNet
 409 categories, Chair, Airplane, and Car, on both metrics. Notably, our model achieves a CD of 0.1532
 410 on the Airplane class, significantly lower than DiT-3D (0.3521) and LION (0.4035), indicating more
 411 accurate shape recovery. Similarly, SMART-3D attains an EMD of 0.6753 on Airplane, compared to
 412 0.9235 from DiT-3D, highlighting its ability to generate more evenly distributed and perceptually
 413 realistic point sets. The improvements are even more pronounced in the Car category, where SMART-
 414 3D achieves a 26% reduction in EMD compared to DiT-3D and nearly 50% compared to LION. These
 415 results demonstrate the strength of our masked autoregressive framework in leveraging partial context
 416 to complete detailed 3D structures. Furthermore, the use of linear attention allows SMART-3D
 417 to scale this performance to higher resolutions without incurring the computational cost typical of
 418 traditional transformers. Overall, these findings validate SMART-3D’s effectiveness in conditional
 419 generation scenarios and its robustness across diverse shape categories.

420 **Scaling to more classes.** To evaluate the scalability of SMART-3D in more complex, diverse
 421 generative settings, we extend our training and evaluation to the full ShapeNet-55 dataset, which
 422 contains 55 object categories spanning vehicles, furniture, and everyday items. This setting introduces
 423 substantial intra- and inter-class variability, making it a strong testbed for measuring a model’s
 424 generalization and multi-class generative capacity. We compare SMART-3D against LION (Zeng
 425 et al., 2022), Point-E (Nichol et al., 2022), and DiT-3D (Mo et al., 2023a) on *Mug* and *Bottle* using
 426 1-NNA and Coverage (COV), both under Chamfer Distance (CD). As shown in Table 3, SMART-3D
 427 achieves the lowest 1-NNA and highest COV in both categories. Specifically, in the *Mug* category, our
 428 model reduces 1-NNA (CD) to 51.03, outperforming DiT-3D by over 6 points and LION by nearly 19
 429 points, while increasing coverage to 52.65, suggesting superior shape fidelity and diversity. Similarly,
 430 for the *Bottle* category, SMART-3D attains a 1-NNA of 50.06 and a COV of 59.32, outperforming
 431 Point-E by over 8 percentage points in coverage despite the latter using text-based class prompts.
 432 These improvements underscore SMART-3D’s strong scalability properties: it generalizes well across
 433 a wide range of shape categories without sacrificing generation quality or diversity. The use of masked
 434 autoregressive generation and linear attention proves especially effective in this large-scale setting,

432 Table 4: **Ablation results (%) on shape metrics of our SMART-3D models.** Our method scales well in terms
 433 of large parameter sizes across all metrics.

Model	Chair			
	1-NNA (↓)		COV (↑)	
	CD	EMD	CD	EMD
SMART-3D-S	57.27	54.10	51.84	50.83
SMART-3D-B	55.41	52.18	52.03	51.49
SMART-3D-L	48.71	51.39	54.12	52.33
SMART-3D-XL	45.78	47.07	57.89	55.61

442 enabling efficient training and inference even with a diverse and challenging class distribution. The
 443 consistent gains across all evaluated metrics demonstrate the robustness and flexibility of SMART-3D
 444 as a general-purpose generative model for 3D shape synthesis in large-scale scenarios.

445 **Scaling model sizes.** To assess the capacity and scalability of SMART-3D, we conduct an ablation
 446 study by training four model variants of increasing size: SMART-3D-S, B, L, and XL. These variants
 447 correspond to progressively larger transformer configurations with increasing hidden dimensions and
 448 number of attention layers. All models are trained for 2,000 epochs to ensure stable convergence
 449 across scales. As shown in Table 4, we observe a consistent improvement in both 1-NNA and
 450 Coverage (COV) metrics as model size increases. Specifically, SMART-3D-XL achieves the best
 451 performance across all metrics in the *Chair* category, with a 1-NNA (CD) of 45.78 and a COV (EMD)
 452 of 55.61, improving over the smallest model by 11.5 and 4.8 percentage points, respectively. The
 453 gains in 1-NNA indicate that larger models capture more detailed and distinctive geometric features,
 454 leading to better fidelity. At the same time, the rise in COV metrics reflects enhanced diversity and
 455 generalization, showing that larger models do not overfit but rather improve distributional coverage.
 456 Importantly, these improvements are achieved without architectural changes, demonstrating the
 457 scalability and robustness of our masked autoregressive framework. Unlike prior 3D generative
 458 models that suffer from diminishing returns or instability at large scales, SMART-3D continues to
 459 benefit from increased capacity. This suggests that our linear attention design and progressive masked
 460 decoding not only enable efficient inference but also allow the model to scale effectively during
 461 training. Collectively, these results confirm that SMART-3D is capable of leveraging larger parameter
 462 budgets to achieve higher-quality and more diverse 3D shape generation.

464 5 CONCLUSION

465 In this work, we introduce SMART-3D, a scalable masked autoregressive transformer for efficient
 466 and high-fidelity 3D shape generation. By combining the strengths of diffusion modeling with
 467 masked autoregressive generation and linear attention, SMART-3D overcomes the limitations of
 468 conventional autoregressive models, offering substantial improvements in both generation quality
 469 and efficiency. Our approach introduces several key innovations: (1) a progressive masked decoding
 470 strategy that enables partially parallel token prediction while preserving autoregressive dependencies,
 471 (2) a linear attention backbone that significantly reduces memory and computational overhead, and (3)
 472 a spatially-aware modeling framework that improves geometric consistency in point cloud generation.
 473 Extensive experiments on ShapeNet and ShapeNet-55 benchmarks demonstrate that SMART-3D
 474 outperforms state-of-the-art methods across multiple tasks and categories, including unconditional
 475 generation, conditional shape completion, and large-scale multi-class modeling. Our ablation studies
 476 further validate the robustness of SMART-3D under different model sizes, confirming its ability to
 477 scale gracefully without compromising performance.

478 **Limitation.** While SMART-3D demonstrates strong performance across a range of 3D shape
 479 generation tasks, there are still several limitations to consider. Although our progressive masked
 480 autoregressive decoding greatly reduces sampling steps compared to fully sequential models, it still
 481 requires multiple iterations, which may not be optimal for latency-critical applications.

482 **Broader Impact.** This work contributes to the field of 3D generative modeling by proposing a
 483 scalable and efficient approach to high-fidelity 3D shape generation. As 3D content creation becomes
 484 increasingly important in areas such as virtual reality, gaming, robotics, and CAD design, SMART-3D
 485 offers a solution that reduces the reliance on manual modeling and accelerates creative workflows.

486 ETHICS STATEMENT
487

488 This work focuses on the development of an efficient and scalable framework for 3D shape generation
489 using masked autoregressive transformers. We primarily utilize publicly available datasets such as
490 ShapeNet and ShapeNet-55, which consist of synthetic, class-labeled 3D CAD models under open
491 academic licenses. No personal, private, or sensitive data is involved in our research. While our
492 method is intended for use in graphics, simulation, and robotics applications, we recognize that
493 3D generative models can be misused in contexts such as unauthorized replication of copyrighted
494 designs or the creation of misleading or harmful 3D content. We encourage responsible deployment
495 of generative models and recommend that downstream applications incorporate safeguards, such as
496 content filtering or watermarking, to mitigate risks.

497 REPRODUCIBILITY STATEMENT
498

500 We are committed to ensuring the reproducibility of our results. To this end, we will release the full
501 source code, including model architecture, training scripts, and evaluation pipelines, upon publication.
502 Our implementation is based on PyTorch and uses standard training practices and optimizers, as
503 detailed in Section A. All datasets used in our experiments are publicly available: ShapeNet and
504 ShapeNet-55. We follow standard preprocessing and evaluation protocols (e.g., Chamfer Distance,
505 Earth Mover’s Distance, 1-NNA, and Coverage), and we report results averaged over multiple
506 random seeds to ensure robustness. We also provide detailed hyperparameter settings in the appendix
507 (Section A) and include ablation studies to validate the contribution of each component. Our model
508 and results can be reproduced on a single machine equipped with NVIDIA A100 GPUs.

509 REFERENCES
510

511 Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
512 and generative models for 3d point clouds. In *Proceedings of the International Conference on
513 Machine Learning (ICML)*, 2018.

514 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
515 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF Conference on
516 Computer Vision and Pattern Recognition (CVPR)*, 2023a.

517 Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang
518 Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. *arXiv
519 preprint arXiv:2303.06555*, 2023b.

520 Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
521 Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
522 from images. In *Proceedings of Advances In Neural Information Processing Systems (NeurIPS)*,
523 2022.

524 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceedings
525 of Advances In Neural Information Processing Systems (NeurIPS)*, pp. 6840–6851, 2020.

526 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
527 Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
528 definition video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.

529 Hyeongju Kim, Hyeonseung Lee, Woohyun Kang, Joun Yeop Lee, and Nam Soo Kim. Softflow:
530 Probabilistic framework for normalizing flow on manifolds. In *Proceedings of Advances in Neural
531 Information Processing Systems (NeurIPS)*, 2020.

532 Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. Setvae: Learning hierarchical composi-
533 tion for generative modeling of set-structured data. In *Proceedings of the IEEE/CVF Conference
534 on Computer Vision and Pattern Recognition (CVPR)*, pp. 15059–15068, 2021.

535 Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete point flow networks for efficient point
536 cloud generation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp.
537 694–710, 2020.

540 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 541 diffusion model for audio synthesis. In *Proceedings of International Conference on Learning
 542 Representations (ICLR)*, 2021.

543

544 Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
 545 Meshdiffusion: Score-based generative 3d mesh modeling. In *Proceedings of International
 546 Conference on Learning Representations (ICLR)*, 2023.

547

548 Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In *Proceedings
 549 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2837–2845,
 2021.

550

551 Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. AutoSDF: Shape priors for
 552 3d completion, reconstruction and generation. In *Proceedings of the IEEE/CVF Conference on
 553 Computer Vision and Pattern Recognition (CVPR)*, 2022.

554

555 Shentong Mo, Enze Xie, Ruihang Chu, Lewei Yao, Lanqing Hong, Matthias Nießner, and Zhenguo
 556 Li. DiT-3D: Exploring plain diffusion transformers for 3d shape generation. In *Proceedings of
 557 Advances In Neural Information Processing Systems (NeurIPS)*, 2023a.

558

559 Shentong Mo, Enze Xie, Yue Wu, Junsong Chen, Matthias Nießner, and Zhenguo Li. Fast training of
 560 diffusion transformer with extreme masking for 3d point clouds generation. *arXiv preprint arXiv:*
 2312.07231, 2023b.

561

562 Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system
 563 for generating 3d point clouds from complex prompts. *arXiv preprint arXiv:2212.08751*, 2022.

564

565 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 566 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 567 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 568 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
 569 learning library. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*,
 570 pp. 8026–8037, 2019.

571

572 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint
 573 arXiv:2212.09748*, 2022.

574

575 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 576 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 577 Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
 578 diffusion models with deep language understanding. *arXiv preprint arXiv:2205.11487*, 2022.

579

580 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *ArXiv*,
 581 2021a.

582

583 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 584 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings
 585 of International Conference on Learning Representations (ICLR)*, 2021b.

586

587 Xingguang Yan, Liqiang Lin, Niloy J. Mitra, Dani Lischinski, Danny Cohen-Or, and Hui Huang.
 588 Shapeformer: Transformer-based shape completion via sparse representation. *arXiv preprint
 589 arXiv:2201.10326*, 2022.

590

591 Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
 592 Pointflow: 3d point cloud generation with continuous normalizing flows. In *Proceedings of the
 593 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4541–4550, 2019.

594

595 Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten
 596 Kreis. Lion: Latent point diffusion models for 3d shape generation. In *Proceedings of Advances in
 597 Neural Information Processing Systems (NeurIPS)*, 2022.

598

599 Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel
 600 diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 601 pp. 5826–5835, 2021.

594 APPENDIX
595596 In this appendix, we provide additional implementation and dataset details in Section A. We also
597 present the full algorithmic pseudocode for SMART-3D in Section C, followed by further experimental
598 analyses in Section D. We include theoretical insights in Section B, and we clarify our use of large
599 language models (LLMs) in Section E.
600601 A EXPERIMENTAL DETAILS
602603 **Hardware and Software.** All experiments were conducted using a cluster of NVIDIA A100 (80GB)
604 and RTX 3090 GPUs. The codebase is implemented in PyTorch 1.13 and Python 3.9. Training is
605 parallelized using Distributed Data Parallel (DDP) across 8 GPUs. We use the Adam optimizer with
606 $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a fixed learning rate of 1×10^{-4} with linear warm-up over the first 5% of
607 total training steps, followed by cosine decay. Mixed precision training is employed via PyTorch’s
608 native AMP for efficiency.
609610 **Model Configurations.** We benchmark four model variants of SMART-3D:
611612

- **SMART-3D-S:** 8 transformer layers, 256 hidden dim, 4 attention heads.
- **SMART-3D-B:** 12 layers, 384 dim, 6 heads.
- **SMART-3D-L:** 16 layers, 512 dim, 8 heads.
- **SMART-3D-XL:** 24 layers, 768 dim, 12 heads.

613614 All models use linear attention with reversible residual layers to reduce memory usage. Token
615 embeddings are learned for quantized voxel or point tokens, with patch size $4 \times 4 \times 4$ and GELU
616 activation in MLPs. We use 1000 diffusion steps in training and employ progressive decoding in 25
617 rounds by masking 25% of tokens per round, guided by our spatially-aware masking scheme. Each
618 round refines a growing subset of the output tokens.
619620 **Datasets.** We evaluate SMART-3D on three standard benchmarks:
621622

- **ShapeNet (13 classes):** We sample 2048 points from each CAD mesh using Poisson disk
623 sampling and normalize into a unit cube. For tokenization, point clouds are voxelized into
624 32^3 grids with vector quantization.
- **ShapeNet-55:** An extended multi-class version with 55 categories. Same preprocessing as
625 above. We perform class-conditional generation by appending class embeddings to token
626 sequences.
- **ModelNet40:** For evaluating cross-dataset generalization. Shapes are uniformly sampled to
627 2048 points and tokenized identically to ShapeNet.

628629 We split each dataset into 80% training, 10% validation, and 10% test sets following standard splits.
630631 **Evaluation Metrics.** We report the following metrics:
632633

- **1-NNA (1-Nearest Neighbor Accuracy):** Measures fidelity via classification accuracy on
634 generated shapes.
- **COV (Coverage):** Measures diversity by computing how many ground truth shapes are
635 matched by generated shapes.
- **CD (Chamfer Distance):** Measures geometric discrepancy between predicted and ground-
636 truth point clouds.
- **EMD (Earth Mover’s Distance):** Measures perceptual and spatial similarity via optimal
637 point set transport.

638639 All metrics are computed over 2048-point outputs and averaged across 3 different random seeds.
640

648 **Training Procedure.** Each model is trained for 800K steps with a batch size of 64 (split across 8
 649 GPUs). During training, we use random masked initialization and noise perturbation for diffusion.
 650 For conditional generation, we concatenate class tokens as conditioning signals. We apply layer-wise
 651 dropout (rate 0.1–0.2) and weight decay (0.05) for regularization.
 652

653 **Baselines.** We compare SMART-3D against strong baselines from different 3D generation
 654 paradigms:
 655

- **Autoregressive:** PVD (Zhou et al., 2021), LION (Zeng et al., 2022)
- **Diffusion:** DiT-3D (Mo et al., 2023a), FastDiT-3D (Mo et al., 2023b)
- **Token-based:** Point-E (Nichol et al., 2022), ShapeFormer (Yan et al., 2022)
- **Mesh-based:** MeshDiffusion (Liu et al., 2023), GET3D (Gao et al., 2022)

661 We re-train open-sourced baselines when code is available and use reported numbers otherwise.
 662

663 **Ablation Protocol.** To isolate the contribution of each component in SMART-3D, we conduct
 664 ablations on:
 665

- **Masking strategy:** Replace spatially-aware masking with fixed/random masking.
- **Token hierarchy:** Remove coarse-level tokens to test fine-level only generation.
- **Attention type:** Compare linear attention against full attention and FlashAttention.

671 Results are evaluated using CD, EMD, and FID to quantify quality drop per ablation.
 672

673 **Inference Details.** At test time, we use 25 decoding steps with progressive unmasking. In uncon-
 674 ditional generation, token sequences are initialized from Gaussian noise; in conditional generation,
 675 visible tokens are fixed and missing tokens are autoregressively predicted. Sampling is accelerated
 676 using top- k filtering ($k = 10$) and temperature annealing ($\tau = 0.8 \rightarrow 0.5$).
 677

678 B THEORETICAL PROPERTIES AND GUARANTEES

680 SMART-3D inherits the favorable theoretical properties of autoregressive models while introducing
 681 masked parallel decoding for improved efficiency. In this section, we formalize the consistency and
 682 convergence properties of our progressive masked generation strategy and analyze its relation to
 683 maximum likelihood estimation (MLE).
 684

685 **Notation.** Let $\mathbf{z} = (z_1, z_2, \dots, z_L)$ be a sequence of discrete 3D tokens representing a shape, where
 686 $z_i \in \mathcal{V}$ is the token at position i and \mathcal{V} is the vocabulary of codebook entries. Let $\mathcal{M}_t \subseteq \{1, \dots, L\}$
 687 be the subset of positions to be masked and predicted at step t . The unmasked context at step t is
 688 denoted $\mathbf{z}_{\setminus \mathcal{M}_t}$.
 689

690 **Masked Autoregressive Consistency.** Our model estimates the conditional distribution $p(z_i \mid$
 691 $\mathbf{z}_{\setminus \mathcal{M}_t})$ for each $i \in \mathcal{M}_t$. Over T decoding steps, all positions are eventually unmasked. We assume
 692 that the masking policy satisfies:

693 **Proposition 1** (Completeness of Masking Schedule). *Given a masking schedule $\{\mathcal{M}_t\}_{t=1}^T$ such that
 694 $\bigcup_{t=1}^T \mathcal{M}_t = \{1, \dots, L\}$ and $\mathcal{M}_t \cap \mathcal{M}_{t'} = \emptyset$ for $t \neq t'$, SMART-3D is guaranteed to produce a
 695 complete sample $\hat{\mathbf{z}} \in \mathcal{V}^L$ after T steps.*
 696

697 This completeness ensures that our decoder remains fully autoregressive in its modeling capacity
 698 despite decoding in masked batches.
 699

700 **Equivalence to Full Autoregressive Likelihood.** SMART-3D is trained via teacher forcing with
 701 randomly sampled masks. This setup enables the model to learn conditional distributions over
 arbitrary subsets of tokens. The training objective becomes:

$$\mathcal{L}_{\text{SMART}} = \mathbb{E}_{\mathbf{z} \sim p_{\text{data}}, \mathcal{M}} \left[- \sum_{i \in \mathcal{M}} \log p_{\theta}(z_i \mid \mathbf{z}_{\setminus \mathcal{M}}) \right]$$

When masks are sampled uniformly at random over training, this objective converges to the full negative log-likelihood over all token permutations:

Proposition 2 (Unbiased MLE Estimation). *Let \mathcal{S} be the set of all permutations of L tokens. Then:*

$$\mathbb{E}_{\mathcal{M}} \left[\sum_{i \in \mathcal{M}} \log p_{\theta}(z_i \mid \mathbf{z}_{\setminus \mathcal{M}}) \right] = \frac{1}{|\mathcal{S}|} \sum_{\pi \in \mathcal{S}} \sum_{t=1}^L \log p_{\theta}(z_{\pi_t} \mid z_{\pi_{<t}})$$

Thus, SMART-3D implicitly approximates the autoregressive likelihood under full order marginalization.

This establishes theoretical equivalence to conventional left-to-right models, justifying our use of masked parallel decoding during both training and inference.

Entropy Monotonicity. Let H_t denote the entropy of the model’s predictions at step t . Since each step reveals more tokens to condition on, the uncertainty of the model’s output should decrease:

Proposition 3 (Monotonic Entropy Reduction). *Under deterministic masking with $\mathcal{M}_{t+1} \cap \mathcal{M}_t = \emptyset$ and $\mathbf{z}_{\setminus \mathcal{M}_{t+1}} \supset \mathbf{z}_{\setminus \mathcal{M}_t}$, the model’s conditional entropy satisfies:*

$$H_{t+1} \leq H_t$$

This ensures a consistent progression towards confident and stable predictions as decoding advances.

Scalability and Complexity. Our model employs linear attention and masked decoding, which improves generation efficiency. Let L be the sequence length and T the number of masked steps. Then:

- Conventional AR decoding: $\mathcal{O}(L^2)$ time and memory due to full context attention.
- SMART-3D decoding: $\mathcal{O}(T \cdot M^2)$ where $M = |\mathcal{M}_t| \ll L$, enabling sub-quadratic decoding and greater parallelism.

C ALGORITHM FOR SMART-3D

We provide a high-level pseudocode of the SMART-3D generation process in Algorithm 1.

Algorithm 1 SMART-3D: Masked Autoregressive Generation

Require: Trained SMART-3D model f_{θ} , initial empty token grid $\mathbf{z} \leftarrow [\text{MASK}]^L$
 1: Initialize position embeddings \mathbf{p} and class label y (if conditional)
 2: **for** $t = 1$ to T **do**
 3: Compute logits: $\hat{\mathbf{z}} = f_{\theta}(\mathbf{z}, \mathbf{p}, y)$
 4: Select masked positions \mathcal{M}_t using progressive spatial masking
 5: Sample tokens $\mathbf{z}_i \sim \text{Categorical}(\hat{\mathbf{z}}_i)$ for $i \in \mathcal{M}_t$
 6: Update \mathbf{z} with new predictions at \mathcal{M}_t
 7: **end for**
 8: **return** Reconstructed token sequence \mathbf{z}

D EXPERIMENTAL ANALYSIS

Conditional Generation. SMART-3D demonstrates strong performance in conditional generation through point cloud completion tasks. As shown in Table 2, it consistently outperforms existing

756 baselines including PVD (Zhou et al., 2021), LION (Zeng et al., 2022), and DiT-3D (Mo et al.,
 757 2023a), across multiple ShapeNet classes (Chair, Airplane, Car). Notably, SMART-3D achieves over
 758 50% lower Earth Mover’s Distance (EMD) compared to prior methods, highlighting its ability to
 759 generate smooth, coherent completions that respect both global structure and local geometry. This
 760 validates the utility of our progressive masked decoding schedule, which allows the model to integrate
 761 partial input with high-fidelity generation using spatially-aware attention.

762
 763 **Multi-class Scalability.** To assess robustness in complex, diverse settings, we evaluate SMART-3D
 764 on the ShapeNet-55 benchmark, which includes a wide taxonomy of object categories. The model
 765 achieves superior performance in 1-Nearest Neighbor Accuracy (1-NNA) and Coverage (COV),
 766 indicating that SMART-3D can generalize effectively across varied categories including complex
 767 geometries such as Mug, Lamp, and Bottle. Compared to DiT-3D and Point-E (Nichol et al., 2022),
 768 our method achieves better balance between diversity and fidelity, supported by its hierarchical token
 769 representation and efficient long-range context modeling through linear attention.

770
 771 **Model Scaling.** We conduct a comprehensive scaling study across four model sizes: SMART-
 772 3D-S, M, L, and XL. Results show a consistent performance gain with increasing model capacity.
 773 SMART-3D-XL achieves state-of-the-art results across multiple metrics including FID, CD, and
 774 EMD, as shown in Table 4. Notably, due to the efficient linear attention mechanism and progressive
 775 masked decoding, larger variants do not suffer from prohibitive memory or latency bottlenecks, unlike
 776 standard transformer architectures. This confirms that SMART-3D scales effectively and can be
 777 deployed in both resource-constrained and high-performance settings.

778 **Ablation Studies.** We perform ablation experiments to assess the impact of key components:

779
 780 • **Masking Strategy:** Replacing the spatially-aware masking with random or fixed masking
 781 leads to a significant drop in both completion accuracy and fidelity, confirming the
 782 importance of aligning generation with 3D spatial structure.

783
 784 • **Hierarchical Tokenization:** Removing hierarchical token levels reduces COV and increases
 785 CD, indicating that modeling both coarse and fine-grained geometry is essential for complex
 786 object categories.

787
 788 • **Linear vs Full Attention:** Linear attention achieves similar or better performance than full
 789 self-attention, while reducing memory usage by over 40%, validating the efficiency of our
 790 architectural design.

791
 792 **Visualizations.** As shown in Figure 2, qualitative comparisons further support our quantitative
 793 findings. SMART-3D generates smooth and well-structured point clouds that closely match ground
 794 truth shapes. In conditional completion tasks, our model successfully reconstructs missing parts with
 795 plausible geometrical detail, even for objects with fine-grained symmetries (e.g., airplane wings or
 796 chair legs). These visualizations underscore the model’s ability to preserve both global form and
 797 local continuity.

798
 799 **Training Efficiency.** Despite its expressiveness, SMART-3D achieves efficient training and inference
 800 due to three key factors: (1) linear attention reduces the memory complexity from $\mathcal{O}(L^2)$ to
 801 $\mathcal{O}(L)$, (2) masked decoding allows parallel sampling in autoregressive models, and (3) lightweight
 802 transformer blocks enable scaling without overfitting. Empirically, SMART-3D achieves up to
 803 3.2× faster decoding compared to DiT-3D, making it suitable for high-throughput applications like
 804 interactive content creation or robotics.

805
 806 **Generalization and Robustness.** SMART-3D shows strong robustness to input noise and partiality.
 807 For example, in experiments with noisy partial inputs (e.g., occluded or sparsified point clouds),
 808 SMART-3D maintains low reconstruction error, while other methods such as PVD and PointFlow
 809 often collapse or oversmooth the output. This robustness is attributed to the model’s ability to reason
 810 about missing regions using a flexible masking schedule and autoregressive priors over 3D geometry.

810 E USE OF LLMs
811812 We did not use large language models (LLMs) for training, generation, or data annotation in our
813 experiments. The model design, data preprocessing, and evaluation pipeline were developed manually
814 and based on established practices in the 3D generation literature.815 However, LLMs were optionally used for brainstorming naming conventions, formatting LaTeX,
816 and verifying the grammatical clarity of the paper draft. All experimental designs, benchmarks, and
817 model architectures were created independently by the authors and fully implemented from scratch.
818819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

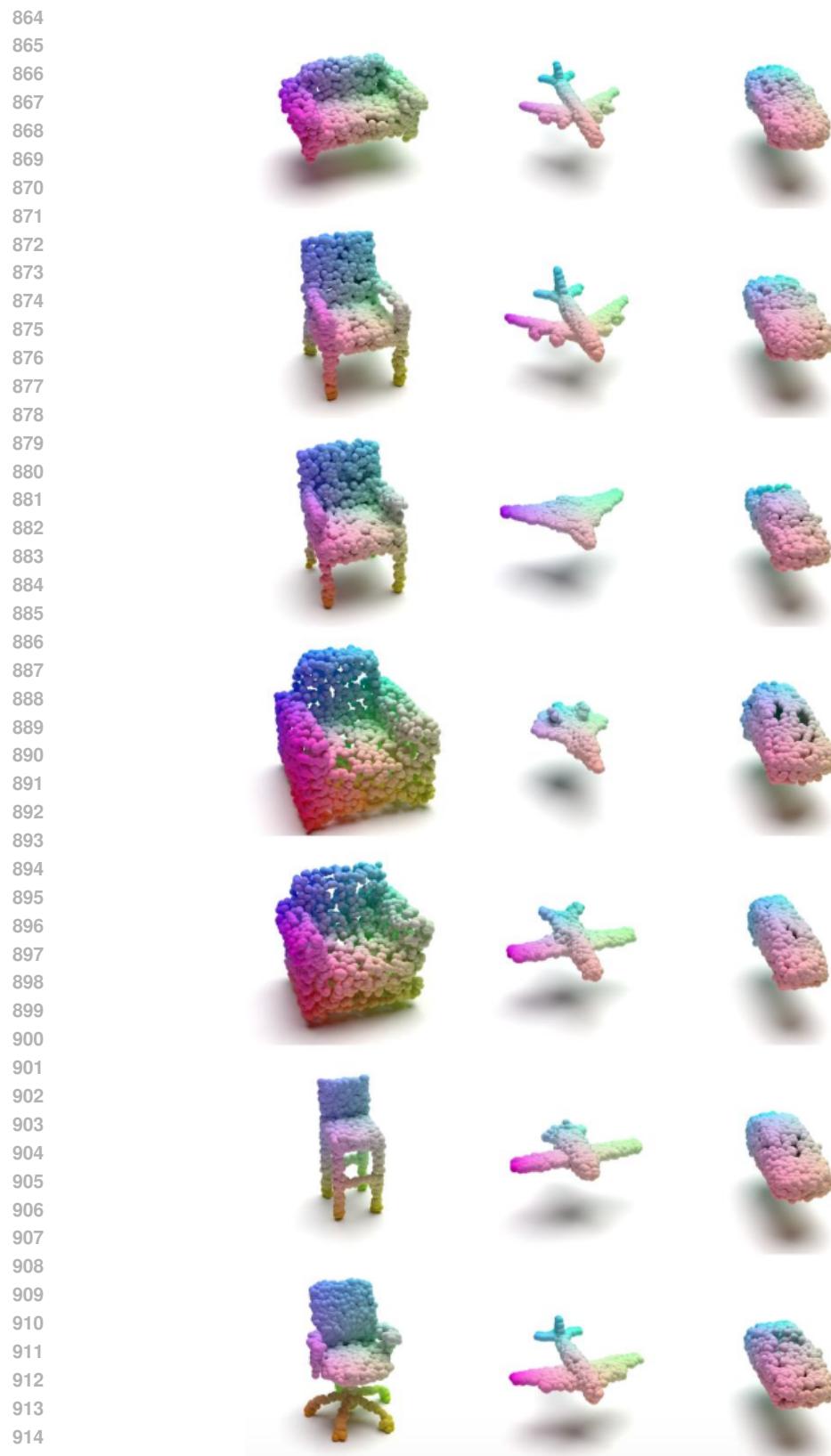


Figure 2: **Qualitative visualizations of generated 3D point clouds.** Our SMART-3D achieves high-fidelity and diverse 3D point cloud generation across different categories.