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Abstract

In classic auction theory, reserve prices are known to be effective for improving
revenue for the auctioneer against quasi-linear utility maximizing bidders. The
introduction of reserve prices, however, usually do not help improve total welfare
of the auctioneer and the bidders. In this paper, we focus on value maximizing
bidders with return on spend constraints—a paradigm that has drawn considerable
attention recently as more advertisers adopt auto-bidding algorithms in advertising
platforms—and show that the introduction of reserve prices has a novel impact
on the market. Namely, by choosing reserve prices appropriately the auctioneer
can improve not only the total revenue but also the total welfare. Our results also
demonstrate that reserve prices are robust to bidder types, i.e., reserve prices work
well for different bidder types, such as value maximizers and utility maximizers,
without using bidder type information. We generalize these results for a variety of
auction mechanisms such as VCG, GSP, and first-price auctions. Moreover, we
show how to combine these results with additive boosts to improve the welfare
of the outcomes of the auction further. Finally, we complement our theoretical
observations with an empirical study confirming the effectiveness of these ideas
using data from online advertising auctions.

1 Introduction

As auto-bidding—the practice of using optimization algorithms to procure advertising slots—is
becoming the prevalent option in online advertising, a growing body of work is revisiting auction
theory from the lens of the auto-bidding world [Aggarwal et al., 2019, Babaioff et al., 2021, Balseiro
et al., 2021a, Deng et al., 2021b, Golrezaei et al., 2021c]. A benefit of auto-bidding is that it simplifies
advertisers’ bidding process by asking advertisers for their high-level goals and then bidding on behalf
of the advertisers.1 The main difference with classic auction theory stems from the model adopted for
agent behavior. Unlike the classic utility maximization model, where each agent aims to maximize
its own quasi-linear utility given by the difference between value and payment, the behavior of an
auto-bidding agent is determined by its underlying optimization algorithm. In particular, the prevalent
adopted model for the behavior of auto-bidding agents is that of value maximization, where each
agent aims to maximize total values subject to an ROS (return on spend) constraint on the average
spend per opportunity. For example, two common auto-bidding strategies are target CPA (cost per
acquisition) and target ROAS (return on ad spend) auto-bidding, in which an algorithm optimizes the

1See https://support.google.com/google-ads/answer/6268637 and https://www.facebook.com/business/m/one-
sheeters/value-optimization-with-roas-bidding; and Aggarwal et al. [2019], Balseiro et al. [2021a], Deng et al.
[2021b] for more background introductions.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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total value (e.g., the number of conversions) subject to an ROS constraint specified by the advertiser
(e.g., the average spend for each conversion should not exceed a pre-specified target).

One surprising observation when agents are value maximizers is that the Vickrey-Clarke-Groves
(VCG) auction, which is truthful and efficient for utility maximizers, is no longer truthful nor efficient.
Value maximizers have incentives to strategize their bids and, moreover, there exist auction instances
where the social welfare at equilibria under the VCG auction is only 1/2 of the optimal social
welfare [Aggarwal et al., 2019, Deng et al., 2021b]. This is because the ratio between bids and values
can be very different for each value-maximizing agent, and an agent with a low value may end up
outbidding other bidders with high values in some auctions, creating allocation inefficiency. While
there have been recent work addressing this problem, most previous studies have several shortcomings,
e.g., they reduce such efficiency loss by introducing boosts that explicitly or implicitly rely on the
accurate knowledge of the advertiser values [Deng et al., 2021b], or they aim to optimize for either
value-maximizing buyers or utility maximizing buyers (and not a mixture of auto-bidders) [Balseiro
et al., 2021a], or they aim to optimize only welfare and not revenue [Deng et al., 2021b].

In this paper, we aim to address the above shortcomings and propose simple auctions taking inaccurate
value signals as additional inputs and we prove that the auctions have robust approximation guarantees
in terms of both social welfare and revenue. Such inaccurate value signals could be the outcomes
of some machine learning models that have bounded multiplicative errors on advertiser values.2
Our key theoretical result is a generic lemma that transfers the accuracy of the value signals into
approximation guarantees on both welfare and revenue for various auctions. Moreover, our main
theorems not only work in the pure auto-bidding world, but also in mixed environments in which
both value maximizers and utility maximizers coexist. Furthermore, the approximation guarantees
apply to a very general set of market outcomes, i.e., they hold as long as no bidder is using a bidding
profile that is always dominated under any competing bids. Such a broad solution concept includes
classical notions such as complete-information Nash equilibrium as refinements and, as we discuss in
our empirical results, additionally provides guarantees that hold along the convergence path when
agents individually optimize their strategies using simple update rules.

Our auctions are based on VCG or generalized second-price auctions (GSP) and use the inaccurate
signals as reserve prices and/or as (additive) boosts. Reserve prices are minimum prices the agents
should clear to win the auction. Boosts are additive transformations on top of bids, i.e., agents are
ranked based on the sum of their bids and boosts. Moreover, boosts are subtracted from standard
payments to maintain incentive compatibility for utility maximizers. Intuitively, adding properly
chosen boosts can push the auction to a more efficient outcome [Deng et al., 2021b]. On the other
hand, in contrast to the classic utility maximization setup in which reserve prices usually do not help
improve social welfare, modest reserve prices in fact may improve social welfare when there are
value-maximizing agents in the market. The key difference is that in truthful auctions like the VCG
auction, utility-maximizers never react to reserve prices, but value-maximizers do react to reserve
prices to satisfy their ROS constraints. It turns out that, with properly chosen reserve prices, one can
eliminate bad bidding strategies by reducing the set of bidding strategies that could be best responses
to other bidders’ strategies. As a result, the remaining good bidding strategies lead to an outcome
with better social welfare guarantees.

1.1 Our results

We propose a set of simple auctions and prove approximation guarantees both in terms of social
welfare and revenue. In particular, these approximation guarantees for the proposed auctions are all
tight except for the social welfare approximation for GSP with reserve (Appendix E). The conclusions
are robust against: i) signal inaccuracy, ii) agent behavior models (value/utility maximization or
intermediate), iii) system status beyond equilibrium. The following Table 1 summarizes most of
our approximation results, where � 2 [0, 1] describes the approximation accuracy of the signals
and � 2 [0, 1] indicates a hybrid behavior model between pure value maximization and pure utility
maximization (e.g., � = 0 for pure value maximization and � = 1 for pure utility maximization). All
formal definitions will be given later in Section 2.

2The learning task of the signals can be a complex problem given the potential interaction with advertiser
incentives. In this paper, we are agnostic about how the signals are learned and hence the learning problem is out
of the scope. Nevertheless, the line of work on incentive-aware learning [Epasto et al., 2018, Golrezaei et al.,
2021a] could be relevant to avoid or mitigate inappropriate incentives.
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Table 1: Social welfare and revenue approximation guarantees for different auctions with �-
approximate value signals (� 2 [0, 1]). For boosts we need: signal 2 [� · ⌫ · value, ⌫ · value) with
⌫ � 1; for reserves we need: signal 2 [� · value, value).

Auction Behavior model1 Social welfare2 Revenue Theorem

VCG with reserve � 2 [0, 1] 1/(2� �) � Corollary 4.2
VCG with boost � 2 [0, 1] 1/(2� �) - Corollary 4.3

VCG with reserve and boost � 2 [0, 1] (1 + �)/2 � Corollary 4.4
GSP with reserve � 2 [0, 1] � � Corollary 4.8

GSP with reserve and boost � = 0 (1 + �)/2 � Corollary 4.6
1 � = 0: value maximization; � = 1: utility maximization; � 2 (0, 1): intermediate models (see Program (1)).
2 For 0 < � < 1, (1 + �)/2 > 1/(2� �) > �.

Observe that in a world with value maximizers only (i.e., � = 0), if all the value maximizers can hit
their targets (see Program (1)), the revenue equals to the social welfare. In such an environment, our
social welfare guarantees can directly imply the same revenue guarantees under the condition that
value maximizers all hit their targets.

We provide a general framework for proving approximation results in the presence of value maxi-
mizers through a novel technical lemma (Lemma 3.1). In fact, our approximation results are mostly
derived from this lemma. Finally, we conduct empirical analyses with semi-synthetic data and
validate our theoretical findings for the performance of our mechanisms in VCG auctions.

1.2 Related Work

As a central topic in economic study, since the seminal work of Vickrey–Clarke–Groves (VCG)
auctions [Clarke, 1971, Groves, 1973, Vickrey, 1961] and Myerson’s auction [Myerson, 1981], auction
design has been successfully deployed in many different fields. Examples includes combinatorial
auctions for reallocating radio frequencies [Cramton et al., 2006] and generalized second-price
auctions as well as dynamic auctions for online advertising [Aggarwal et al., 2006, Edelman et al.,
2007, Mirrokni et al., 2020, Varian, 2007].

In contrast to works assuming utility-maximizing agents, a growing body of work has recently
focused on auto-bidders such as target CPA bidders and target ROAS bidders. Aggarwal et al.
[2019] find the optimal bidding strategies for a general class of auto-bidding objectives and prove
the existence of pure-strategy equilibrium. Deng et al. [2021b] show how boosts can be used to
improve the efficiency guarantees when target CPA and target ROAS auto-bidders coexist. Balseiro
et al. [2021a] characterize the revenue-optimal single-stage auctions with either value-maximizers
or utility-maximizers with ROS constraints under various information structure. Golrezaei et al.
[2021c] study the auction design for utility-maximizers with ROI constraints, where the behavior
model is equivalent to the special case of ours with � = 1/(1 +minimal ROI). Besides the model of
constrained optimization, there is another generalization of the utility models with ROI constraints
adopted by Babaioff et al. [2021], Goel et al. [2014, 2019]. In particular, the negative payment term
in the utility function is replaced by a general cost, which is often a convex function of the payment.

Independent of the above, the term of value-maximizer has been used in some other works but with
quite different mathematical models Fadaei and Bichler [2016], Wilkens et al. [2016, 2017]. The
main distinction is that in these models, the target ROS constraints are imposed on a single auction
rather than across a set of auctions, hence the bidders become insensitive to the marginal tradeoff
between values and payments, leading to different behavior patterns.

Prior to these works, the simplest auto-bidding model is budget optimization with utility-
maximizers [Borgs et al., 2007]. Pai and Vohra [2014] characterize the revenue-optimal auction of
utility-maximizing bidders with budget constraints. For applications in online advertising, Balseiro
and Gur [2019] develop budget management strategies that are no-regret in a long run, which is
extended in more complex settings [Avadhanula et al., 2021, Balseiro et al., 2020b, 2021b, Celli et al.,
2021]. Balseiro et al. [2017, 2020a] provide a thorough study to compare different commonly used
budget management strategies in practice. Conitzer et al. [2017, 2018] study pacing algorithms for
budget constraints in both first price auctions and second price auctions.
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The techniques of reserve prices and additive boosts have been widely studied in the literature [Amin
et al., 2013, Deng et al., 2021a, Golrezaei et al., 2021b, Lavi et al., 2003, Paes Leme et al., 2016,
Sandholm and Likhodedov, 2015]. Among these works, Deng et al. [2021b] improve the welfare
approximation ratio to (c+ 1)/(c+ 2) using boosted auctions with accurate signals about bidders’
values in the environment with value maximizers only. Our results are more robust and more general
from several aspects: We allow inaccurate signals that approximate bidders’ values; Our results hold
for a mixture of behavior models in auctions with reserves and/or boosts; We provide guarantees on
revenue performance in addition to welfare performance.

Some of our results rely on the assumption that the auto-bidders adopt uniform bidding strategies
when the underlying auction is not incentive-compatible for utility-maximizing bidders. In practice,
it is usually hard for bidders to adopt and optimize non-uniform bidding strategies, and moreover,
uniform bidding has been shown to perform well against optimal non-uniform bidding strategies in ad
auctions [Balseiro and Gur, 2019, Bateni et al., 2014, Deng et al., 2020, Feldman and Muthukrishnan,
2008, Feldman et al., 2007].

2 Preliminaries

Position Auctions. We consider a setting with n bidders bidding simultaneously in m position
auctions [Lahaie et al., 2007, Varian, 2007]. In each position auction j, we have sj slots which can
be allocated to sj different bidders. For each bidder i 2 [n], we use vi,j to denote the base value of
auction j for bidder i, and the value of the k-th slot in auction j is vi,j · posj,k. Here posj,k 2 R+

is the position normalizer of the k-th slot in auction j which does not depend on i. Without loss of
generality, we assume posj,k is decreasing in k. For notation convenience, we set posj,sj+1 = 0 for
the non-existing slot. We use I = (n,m, {s}j , {v}i,j , {pos}j,k) to denote a problem instance and �i

to denote the bidders other than bidder i. The optimal welfare of the problem instance is defined as

Wel(OPT) =
mX

j=1

sjX

k=1

posj,k · k-th highest value of (v1,j , ..., vn,j).

We use b, p, x to denote bidders’ bids, payments and allocations. More particularly, bi,j is bidder i’s
bid in auction j. xi,j,k is 1 if bidder i gets the k-th slot of auction j and 0 otherwise. pi,j is the price
paid by the bidder i in auction j. The welfare and revenue of an allocation x and payments p are
defined as

Wel(x, p) =
nX

i=1

mX

j=1

sjX

k=1

xi,j,k · vi,j · posj,k, and Rev(x, p) =
nX

i=1

mX

j=1

pi,j .

For notation convenience, we will use Weli(x, p) =
Pm

j=1

Psj
k=1 xi,j,k ·vi,j ·posj,k and Revi(x, p) =Pm

j=1 pi,j to represent each bidder’s contribution to welfare and revenue.

In this paper, we mainly focus on three auction formats used in position auctions: the Vick-
rey–Clarke–Groves auction (VCG), the generalized second-price auction (GSP), and the first-price
auction (FPA). Their allocation rules are the same: rank bidders by their bids (tie-breaking by bidder
indices) and allocate the k-th slot to the bidder with the k-th highest bid. In the VCG auction each
agent pays the externality it imposes on the other the agents, in the GSP auction each agent who is
allocated pays the bid of the next highest bidder, and in the FPA each agent who is allocated pays
their bid. For notation convenience, we denote by b̂k,j the k-th highest bid for k 2 [sj ] in auction
j. Assuming bidder i wins slot k in auction j, its payment pi,j in the three auction formats are:
(1) VCG: pi,j =

Psj
=k+1 b̂,j · (posj,�1 � posj,), (2) GSP: pi,j = b̂k+1,j · posj,k, and (3) FPA:

pi,j = bi,j · posj,k. It is not hard to see that, with the same bids, the payments from these three
auctions is ranked in an increasing order as VCG, GSP, FPA.

Reserve Prices and Boosts. We further consider three auction formats with reserve prices and boosts.
We denote by ri,j the reserve price and by zi,j the boost for bidder i in auction j. When we have
boosts, bidders are ranked by their score bi,j + zi,j and we use b̂k,j to denote the k-th highest score
for k 2 [sj ] in auction j. For ease of presentation, we consider lazy reserves such that the slot is not
allocated to a bidder if her bid without boosts does not clear her reserve, i.e., bi,j < ri,j ; our results
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continue to hold for eager reserves [Paes Leme et al., 2016]. With reserve prices and boosts, the
prices of VCG, GSP and FPA when bidder i gets slot k in auction j become:

• VCG: pi,j =
Psj

=k+1 max(b̂,j � zi,j , ri,j) · (posj,�1 � posj,);

• GSP: pi,j = max(b̂k+1,j � zi,j , ri,j) · posj,k;

• FPA: pi,j = (b̂i,j � zi,j) · posj,k.

It is worth highlighting that boosts and reserves are fairly different components in auctions. Reserves
filter out the candidates whose bids are lower than their reserves and then the remaining candidates
are ranked according to their original bids. In contrast, boosts are added to the candidates’ ranking
scores, and therefore, the candidates are ranked according to their original bids plus their boosts.

Inaccurate signals. Our auctions take inaccurate value signals as input and use them as reserve
prices and/or boosts. In particular, for � 2 [0, 1]:

• When the signals are used as boosts, we allow multiplicative errors in both directions and we
say boosts are �-approx, if for any i 2 [n], j 2 [m], zi,j 2 [µ · vi,j , ⌫ · vi,j), and µ = � · ⌫;

• When the signals are used as reserve prices, we allow multiplicative underestimation errors
and say reserve prices are �-approx, if for any i 2 [n], j 2 [m], ri,j 2 [� · vi,j , vi,j).

Note that we require a one-direction error for reserve signals. One can always convert signals with
bounded errors in both directions into signals with only underestimation errors by scaling them down
once multiplicative overestimation errors have a finite upper bound.

Bidders. We focus on two types of bidders: utility maximizers and value maximizers. A utility
maximizer bidder i maximizes Weli(x, p)� Revi(x, p). In contrast, a value maximizer maximizes
Weli(x, p) subject to a return on spend constraint Weli(x, p) � Revi(x, p). Here, it is without loss of
generality to assume the target ratio between return Weli(x, p) and spend Revi(x, p) is 1.

These two types of bidders can be summarized by bidders optimizing the following program

max Weli(x, p)� �i · Revi(x, p) (1)
s.t. Weli(x, p) � Revi(x, p).

Here �i = 0 corresponds to a value maximizer and �i = 1 corresponds to a utility maximizer. Our
results apply for bidders with �i 2 [0, 1]. We allow �i to be different for each bidder and they are
unknown to the auctioneer. Here, utility maximizers can be modeled with � = 1 because all the
auctions we consider are individual rational. As a result, the optimal solution of the objective in (1) is
always non-negative, and therefore, the constraint would be irrelevant for utility maximizers.

Solution Concept. We consider a solution concept called undominated bids which includes the sup-
port of Nash equilibrium bids as a subset. Because our results apply to the larger set of undominated
bids, they readily hold for refinements such as Nash equilibria, in which our results give price of
anarchy bounds [Papadimitriou, 2001]. Following the standard definition of (weak) dominance, for
a problem instance I and an auction format, we say a bid vector bi = (bi,1, ..., bi,m) is (weakly)
dominated by another bid vector b0i = (b0i,1, ..., b

0
i,m), if the following two requirements are satisfied:

Let x, p be the allocation and prices induced by bi, b0�i, and x0, p0 be the allocation and prices induced
by b0i, b

0
�i. Then for any other bidders’ bids b0�i, b0i is at least as good as bi, i.e.,

• both violate constraints: Weli(x, p) < Revi(x, p) and Weli(x0, p0) < Revi(x0, p0)

• bi violates constraints while b0i does not: Weli(x, p) < Revi(x, p) and Weli(x0, p0) �
Revi(x0, p0)

• or neither violates constraints, and b0i yields no worse objective: Weli(x, p) � Revi(x, p) and
Weli(x0, p0) � Revi(x0, p0) and Weli(x0, p0)��i ·Revi(x0, p0) � Weli(x, p)��i ·Revi(x, p)

There exits b0�i such that b0i is strictly better than bi, i.e.,

• bi violates constraints while b0i does not: Weli(x, p) < Revi(x, p) and Weli(x0, p0) �
Revi(x0, p0)
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• or neither violates constraints, and b0i yields strictly better objective: Weli(x, p) � Revi(x, p)
and Weli(x0, p0) � Revi(x0, p0) and Weli(x0, p0) � �i · Revi(x0, p0) > Weli(x, p) � �i ·
Revi(x, p)

We omit the word “weak” for convenience for the rest of the paper. We say bi is undominated if there
is no b0i dominates bi. Denote the set of all bidders’ bids b = (b1, ..., bn) by ⇥ in which each bi is
undominated for i 2 [n] and each bidder is paying at most its welfare.

As uniform bidding is widely adopted in automated bidding strategies, we also consider a solution
concept related to it. We say bi is a uniform bidding for bidder i, if bi,j = vi,j · �i for all j 2 [m]. We
use ⇥u to denote the set of all bidders’ bids b = (b1, ..., bn) such that each bi is a uniform bidding
and is not dominated by any other uniform bidding and each bidder is paying at most its welfare.

3 Main Technical Lemma

We first show a lemma which will be used as the major technical building block for our results. This
lemma provides a general framework for proving approximation results on revenue and welfare.
Informally, this lemma says that once we can guarantee lower bounds on bidders’ bids and apply
reserve prices and/or boosts, these immediately lead to lower bound guarantees on revenue and
welfare in terms of the optimal welfare. Notice that this lemma continues to hold when we apply
reserve prices only (i.e., µ = ⌫ = 0) or boosts only (i.e., � = 0). For a better understanding of the
lemma statement, conditions number 1, 2 and 5 hold by the definition of the model and conditions
number 3 and 4 will be proved hold when using this lemma.
Lemma 3.1. Consider running m position auctions with allocation and pricing rule A. Assuming A
together with bidders’ bids b satisfy the following conditions for parameters ↵,�, µ, ⌫ � 0:

• For each bidder i and each auction j, the reserve satisfies ri,j � � · vi,j and the boost

satisfies µ · vi,j  zi,j < ⌫ · vi,j .

• In each position auction, bidders are ranked by their scores bi,j + zi,j and the k-th highest

score wins the k-th slot if bi,j � ri,j .

• If bidder i’s value vi,j ranks in top-sj in auction j, bidder i bids at least ↵ times its base

value, i.e. bi,j � ↵ · vi,j .

• If bidder i wins slot k in auction j, bidder i pays at least the VCG price, i.e. pi,j �Psj
=k+1(posj,�1 � posj,) ·max(b̂,j � zi,j , ri,j).

• For each bidder, her total payment is at most her total value.

We have Rev(A(b)) � min
⇣

(↵+µ)�
�+⌫ ,�

⌘
·Wel(OPT) and Wel(A(b)) � ↵+µ

1+max(⌫,↵+µ��) ·Wel(OPT).

We give a high-level proof sketch of this lemma. The detailed proof can be found in Appendix A.

Proof Sketch. Informally, the first step of the proof is to fractionally partition the auction slots
into two parts so that (1) In part A, A(b) and OPT agree in allocation; (2) In part B, A(b) and OPT
disagree in allocation. We then lower bound the welfare and the revenue of A(b) in these two parts
separately with different arguments.

In part A, A(b) and OPT have the same allocation. The welfare of A(b) is by definition the same as
the welfare of OPT. Moreover, the revenue of A(b) can be lower bounded by � times the welfare of
OPT, via conditions on reserve prices (the first bullet point of the lemma statement).

In part B, A(b) and OPT have different allocations as allocated bidders of OPT are not allocated in
A(b). Since we have lower bounds on bids (the third bullet point of the lemma statement), these
bidders’ bids would give a lower bound on the revenue of A(b) via VCG pricing. The additional
boost z (in the first bullet point of the lemma statement) would escalate this effect and give a lower
bound on a linear combination of the welfare and the revenue of A(b).

By putting these lower bounds together with the condition that Wel(A(b)) � Rev(A(b)) (in the fifth
bullet point of the lemma statement), we can obtain lower bounds on Wel(A(b)) and Rev(A(b)).
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4 Applications in Auctions

4.1 VCG Auctions

In this section, we consider VCG with reserves and boosts. We first show the following lemma about
the set of undominated bids ⇥. Its proof can be found in Appendix B.
Lemma 4.1. For any problem instance I , let ⇥ be the set of undominated bids for VCG with reserve

r and boost z. Assume reserve r satisfies that ri,j < vi,j 8i 2 [n], j 2 [m], and boost z satisfies

that zi,j 2 [µ · vi,j , ⌫ · vi,j) for some ⌫ � µ  1 for all i 2 [n], j 2 [m]. For any b 2 ⇥, we have

bi,j � vi,j , if bidder i’s value vi,j ranks in top-sj in auction j.

With Lemma 4.1, we are ready to state our results on VCG with reserves and boosts. The following
three corollaries are the results we get when we apply (1) only reserve prices (2) only boosts (3)
reserve prices and boosts together.

Combining Lemma 4.1 with Lemma 3.1 using ↵ = 1, � = �, and µ = ⌫ = 0:
Corollary 4.2. On any problem instance I , VCG with �-approx reserve, denoted by VCG

�
r , satisfies

Wel(VCG
�
r (b)) �

1

2� �
· Wel(OPT) and Rev(VCG

�
r (b)) � � · Wel(OPT),

for bids b from the undominated bids set ⇥.

Combining Lemma 4.1 with Lemma 3.1 using ↵ = 1, � = 0, µ = �/(1� �), and ⌫ = 1/(1� �):
Corollary 4.3. On any problem instance I , VCG with �-approx boosts, denoted by VCG

�
b , satisfies

Wel(VCG
�
b (b)) �

1

2� �
· Wel(OPT)

for bids b from the undominated bids set ⇥.

Combining Lemma 4.1 with Lemma 3.1 using ↵ = 1, � = �, µ = �, and ⌫ = 1:
Corollary 4.4. On any problem instance I , VCG with �-approx reserve and �-approx boost, denoted

by VCG
�
r,b, satisfies

Wel(VCG
�
r,b(b)) �

� + 1

2
· Wel(OPT) and Rev(VCG

�
r,b(b)) � � · Wel(OPT),

for bids b from the undominated bids set ⇥.

4.2 Generalized Second-Price Auctions

For GSP, we are able to show a lemma similar to Lemma 4.1 assuming bidders are all value
maximizing (�i = 0 8i 2 [n]) and they are uniform bidding. Its proof can be found in Appendix C.
Lemma 4.5. For any problem instance I with �i = 0 8i 2 [n], let ⇥u be the set of undominated

uniform bids for GSP with with reserve r and boost z. Assume reserve r satisfies that ri,j < vi,j 8i 2
[n], j 2 [m], and boost z satisfies that for some ⌫ � µ  1, zi,j 2 [µ · vi,j , ⌫ · vi,j) 8i 2 [n], j 2 [m].
For any b 2 ⇥u, we have bi,j � vi,j , if bidder i’s value vi,j ranks in top-sj in auction j.

Combining Lemma 4.5 with Lemma 3.1, we can obtain results similar to Corollary 4.2,4.3, 4.4. We
only state the strongest one with both boosts and reserve prices:
Corollary 4.6. On any problem instance I with �i = 0 8i 2 [n], GSP with �-approx reserve and

�-approx boost, denoted by GSP
�
r,b, satisfies

Wel(GSP
�
r,b) �

� + 1

2
· Wel(OPT) and Rev(GSP

�
r,b(b)) � � · Wel(OPT),

for uniform bids b from the undominated uniform set ⇥u.

When there are no restrictions on bidders’ bidding behavior, we can obtain the following weaker
lemma for GSP with reserves. Its proof can be found in Appendix C.
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Lemma 4.7. For any problem instance I , let ⇥ be the set of undominated bids for GSP with �-approx

reserve r and no boosts. For any b 2 ⇥, we have bi,j � ri,j � � · vi,j , 8i 2 [n], j 2 [m].

Combining Lemma 4.7 with Lemma 3.1 using ↵ = �, � = �, and µ = ⌫ = 0:
Corollary 4.8. On any problem instance I , GSP with �-approx reserve, denoted by GSP

�
r , satisfies

Wel(GSP
�
r (b)) � � · Wel(OPT) and Rev(GSP

�
r (b)) � � · Wel(OPT),

for bids b from the undominated bids set ⇥.

4.3 First-Price Auctions

For FPA, if we restrict that bidders are only value maximizers and they are uniform bidding, we know
from prior work that optimal welfare and revenue can be achieved without reserves and boosts. Its
proof can be found in Appendix D.
Theorem (Deng et al. [2021b]). On any problem instance I with �i = 0 8i 2 [n], FPA has

Wel(FPA(b)) = Rev(FPA(b)) = Wel(OPT),

for uniform bids b from the undominated uniform set ⇥u.

When there are no restrictions on bidders, we get similar results as GSP with the following lemma.
Lemma 4.9. For any problem instance I , let ⇥ be the set of undominated bids for FPA with �-approx

reserve r and no boosts. For any b 2 ⇥, we have bi,j � ri,j � � · vi,j , 8i 2 [n], j 2 [m].

Combining Lemma 4.9 with Lemma 3.1 using ↵ = �, � = �, and µ = ⌫ = 0:
Corollary 4.10. On any problem instance I , FPA with �-approx reserve (FPA

�
r ) has

Wel(FPA
�
r (b)) � � · Wel(OPT) and Rev(FPA

�
r (b)) � � · Wel(OPT),

for bids b from the undominated bids set ⇥.

5 Experiments

In this section, we derive semi-synthetic data from real auction data of a major search engine to vali-
date our theoretical findings concerning VCG auctions. VCG auctions provide a clean environment for
us to validate our findings as uniform bidding is a best response for each value maximizer [Aggarwal
et al., 2019] while computing best response in GSP auctions is a highly non-trivial task.

Observe that when the bidders are symmetric such that their valuation distributions are identically
and independently distributed, both optimal efficiency and optimal revenue are achieved in any
symmetric equilibrium, and thus, no efficiency or revenue improvement can be observed by applying
our mechanisms. Therefore, we use real ad auction data for capturing variation across bidders. For
the experimental purpose, we simulate VCG auctions with bids from value maximizers only, as utility
maximizers do not respond to either boosts or reserve prices in VCG mechanisms. Instead of using
real return on ad spend targets for value maximizers, we generate artificial targets to exclude any
practical noises from the real system. We emphasize that the main objective for our empirical study
is to validate our theoretical findings rather than investigating the efficiency and/or revenue potentials
on real systems actually implemented in practice. Many practical aspects often need to be taken care
of in the design of real systems, which would never be considered in theory.

Simulation Procedures. To properly evaluate the efficiency and revenue of a new mechanism, after
the generation of the dataset, we first pre-train the (uniform) bid multipliers � for value maximizers in
25 iterations without reserve prices and boosts to obtain an equilibrium as a starting point. We then
simulate the response of value maximizers by gradient descent on their bid multipliers in log space
until convergence [Aggarwal et al., 2019, Nesterov, 2013]. Formally, let �i,t be the bid multiplier for
value maximizer i in iteration t. In addition, let Weli,t be value maximizer i’s total received value
in iteration t, and let Revi,t be her total payment in iteration t. Then, in iteration t + 1, the value
maximizer i’s bid multiplier is updated by log �i,t+1 = (1 � ⌘t) · log �i,t + ⌘t · log Weli,t

Revi,t
, where

⌘t 2 (0, 1) is a properly chosen learning rate for t-th iteration. Intuitively, when Revi,t < Weli,t,
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value maximizer i’s bid multiplier increases for the next iteration; otherwise, her bid multiplier
decreases for the next iteration. After obtaining a starting point, we simulate another 25 iterations
for auctions with reserve prices and/or boosts. In this way, we can observe both the initial impact of
adding reserve prices and/or boosts and how the impact changes over time during value maximizers’
response until convergence.

Reserve Prices and Boosts. In addition to the baseline in which we continue to use auctions
without reserve prices, we experiment with boosts and reserve prices using signals with different
approximation factors �. For each bidder i in each auction j, we will set reserve prices or give boosts
based on � in different treatments. Here, let s�i,j be a random variable independently sampled from
a Gaussian distribution with mean (1 + �)/2 and standard error 0.01, truncated within [�, 1]. In
treatment reserve-�, we set the reserve price as s�i,j · vi,j . In treatment boost-�, we add an additive
boost 1

1�� · s�i,j · vi,j as suggested. Finally, in treatment boost-reserve-�, we set the reserve price as
s�i,j · vi,j and additionally give an additive boost 1

1�� · s�i,j · vi,j . All metrics we report are relative
to the gap between the baseline (i.e., without treatment) and the optimal solution. More precisely,
let init be the initial welfare (revenue) without reserve prices or boosts, e be the welfare (revenue)
under treatment e, and (OPT) be the optimal welfare (revenue). Then the reported percentage is
computed by (e � init)/((OPT)� init).

5.1 Experimental Results

Figure 1a reports the trend of welfare performance in VCG auctions under different treatments with
one run of the experiment. Observe that both variants of reserve prices have neutral initial impact on
welfare before value maximizers start to respond. After the value maximizers start to respond, they
adjust their bid multipliers towards a better allocation, resulting in a positive impact on welfare. As
the reserve prices become more precise (i.e., when � is closer to 1), the welfare impact is larger, which
confirms our theoretical results of Corollary 4.2. In contrast, both variants of boosts have positive
initial impact on welfare. However, as the value maximizers start to respond, the welfare impact
starts to decrease but the final impact after convergence is still positive, confirming our theoretical
results of Corollary 4.3. Interestingly, when treatment reserve-� and treatment boost-� share the
same �, their final impact on revenue after response are close to each other, as predicted by the
same welfare bounds from Corollary 4.2 and 4.3. Moreover, a combination of boosts and reserve
prices outperforms the treatments with either reserve prices only or boosts only, which validates
Corollary 4.4 that enjoys a better bound than Corollary 4.2 and 4.3.

(a) Trend of Welfare (b) Trend of Average Bid Multiplier

Figure 1: Convergence during response per iteration.

Figure 1b demonstrates the trend of average (uniform) bid multipliers for value maximizers under
different treatments in VCG auctions with one run of the experiment. We observe that the average
multiplier decreases during response for both treatments with reserve prices only, leading to a better
welfare performance post response as shown in Figure 1a. Moreover, as the reserve prices become
more precise, the average multiplier is lower after convergence. Intuitively, the welfare is maximized
when all the value maximizers adopt a bid multiplier 1 so that the auction results in a ranking
according to their values. Therefore, the bid multipliers getting close to 1 after response is the main
driving factor behind the increase of welfare for treatments with reserve prices only. On the other

9



hand, the average multiplier increases during response for both treatments with boosts only, leading
to a worse welfare performance post response as shown in Figure 1a. A combination of reserve prices
and boosts induces a mild decrease of the average multiplier, resulting in a rather stable welfare
performance during value maximizers’ response.

Signal Reserve Only Boost Only Boost + Reserve

Welfare Lift
� = 0.3 37.4%± 3.2% 23.0%± 3.4% 55.4%± 3.3%
� = 0.5 47.9%± 2.9% 33.6%± 3.2% 63.2%± 3.1%
� = 0.7 58.6%± 3.3% 47.7%± 3.2% 67.6%± 3.2%

Revenue Lift
� = 0.3 28.2%± 1.7% 23.7%± 2.2% 44.9%± 1.9%
� = 0.5 39.4%± 1.9% 35.3%± 2.5% 52.9%± 1.8%
� = 0.7 54.1%± 1.8% 51.2%± 3.0% 59.9%± 2.2%

Table 2: Welfare and revenue lifts for different treatments after convergence.

We conduct 10 runs of repeated experiments and Table 2 shows the welfare and revenue impact after
convergence with 95% confidence intervals. First, notice that treatments with reserve prices only have
better welfare and revenue lifts than treatments with boosts when they share the same �. Moreover, a
combination of boosts and reserve prices leads to further improvements in both revenue and welfare.
For all variants, as the signals becomes more precise (i.e., � is closer to 1), the impacts are larger.
Note that in an environment with value maximizers only, if all value maximizers could always hit
their target spends after convergence, the improved ratios for welfare and revenue should be the same.
However, due to the discontinuity of the bidding landscape, there are value maximizers who cannot
hit their targets in practice. As a result, we witness difference between welfare improvement and
revenue improvement even after convergence.

6 Conclusion

In this paper, we provide both theoretical and empirical evidence to demonstrate that introducing
properly chosen reserve prices and/or boosts can improve both revenue and welfare in the auto-
bidding world. Our results are robust to bidders’ behavior models as well as inaccurate signals that
approximate bidders’ values. One limitation of our results is regarding the requirement of reserve
prices not exceeding bidder values. Although one can avoid this by scaling down the reserve prices,
it does require additional knowledge from the auction designer on an upper limit of the inaccurate
signals. It is an intriguing question to address such an issue in a more robust way.
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