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Abstract—Data scarcity hinders deep learning for medical
imaging. We propose a framework for breast cancer classification
in thermograms that addresses this using a Diffusion Probabilistic
Model (DPM) for data augmentation. Our DPM-based augmen-
tation is shown to be superior to both traditional methods and
a ProGAN baseline. The framework fuses deep features from a
pre-trained ResNet-50 with handcrafted nonlinear features (e.g.,
Fractal Dimension) derived from U-Net segmented tumors. An
XGBoost classifier trained on these fused features achieves 98.0%
accuracy and 98.1% sensitivity. Ablation studies and statistical
tests confirm that both the DPM augmentation and the nonlinear
feature fusion are critical, statistically significant components of
this success. This work validates the synergy between advanced
generative models and interpretable features for creating highly
accurate medical diagnostic tools.

Index Terms—breast cancer, thermography, diffusion prob-
abilistic model, deep learning, data augmentation, nonlinear
dynamics, medical image synthesis

I. INTRODUCTION

Breast thermography is becoming more popular again as a
safe, non-invasive method for early breast cancer detection,
especially in patients with dense breast tissue or sensitivity
to radiation [1]. With recent progress in deep learning, it
is now possible to automatically analyze thermographic im-
ages using Computer-Aided Diagnosis (CAD) systems. For
example, some studies combine U-Net segmentation with
Convolutional Neural Network (CNN) classification to detect
lesions accurately on datasets like DMR-IR [2], while others
enhance model robustness by incorporating thermograms with
clinical data [3]. However, these models still face a major
limitation: a shortage of labeled data, which reduces their
generalization and effectiveness.

To address this, researchers are exploring synthetic data aug-
mentation. While Generative Adversarial Networks (GANs)
have been used, they are often difficult to train and can
suffer from mode collapse. In contrast, Diffusion Probabilistic
Models (DPMs) have emerged as a powerful alternative,
demonstrating superior training stability and generating more
diverse, high-fidelity medical images [4], [5]. Recent studies
have shown that DPMs can outperform advanced GANs like
StyleGAN and ProGAN in domains such as radiology and

histopathology [6], [7], making them a compelling choice for
our task. While one GAN-based approach was explored for
thermogram synthesis [8], DPMs remain largely unexplored
for this specific application, highlighting a key opportunity
this work addresses. In other medical areas, DPM-generated
samples have already demonstrated superior quality compared
to ProGAN using standard image evaluation metrics [9]–[11],
highlighting their strong potential in thermal imaging.

At the same time, features based on chaos theory—such
as Lyapunov Exponents (LE), Fractal Dimension (FD), and
Approximate Entropy (ApEn)—have shown promise in iden-
tifying malignancies. Cancerous growth often follows chaotic
patterns, leading to irregular temperature distributions and
tumor boundaries. These nonlinear features can capture such
complexity [12][13], and studies show that combining them
with texture descriptors improves classification, as malignant
tumors tend to be more structurally complex than benign
ones [14][15]. Chaos theory supports this, describing tumor
evolution as highly sensitive and unpredictable. Malignant
tissues often show irregular, fragmented contours—well char-
acterized by LE, ApEn, and FD [16][17][18]. While deep
learning models like ResNet-50 excel at learning hierarchical
visual patterns, they may not explicitly capture the subtle,
mathematically-defined irregularities of tumor boundaries that
chaos theory describes. By fusing these handcrafted nonlinear
descriptors with deep features, we aim to create a hybrid
representation that is both data-driven and grounded in es-
tablished biophysical principles of malignancy. This fusion
not only enhances predictive accuracy but also improves
model interpretability by linking decisions to well-understood
concepts of structural complexity [19].

In this work, we bring these ideas together. We use a
DPM to generate realistic, label-conditioned ROI patches from
breast thermograms to augment the training data. From both
real and synthetic images, we extract deep features using a pre-
trained ResNet-50 model and calculate nonlinear descriptors
from the segmented tumor contours. These fused features are
then used to train an XGBoost classifier for breast cancer
detection.

Our main contributions are:



• A DPM-based augmentation pipeline tailored for breast
thermography, producing realistic, class-conditioned ROI
patches.

• A hybrid feature representation combining ResNet-50
deep features with nonlinear chaos-based features (LE,
ApEn, FD).

II. METHODOLOGY

This section presents our proposed framework for breast
cancer classification using full-field infrared thermographic
images. First, we apply a U-Net model to segment each
thermogram and extract the tumor ROI. These ROIs are used
in two branches of the pipeline. In the first branch, a DPM
is trained to generate realistic, label-conditioned grayscale
ROI patches, which are added to the dataset to mitigate data
scarcity and class imbalance. In the second branch, deep
features are extracted from both real and synthetic ROIs
using a ResNet-50 model pretrained on ImageNet. We also
compute handcrafted nonlinear features—BCD, LLE, LE, and
ApEn—from the segmented contours. The extracted features
are concatenated and passed to an XGBoost classifier for
binary prediction. Figure 1 illustrates the complete workflow,
from segmentation to classification.

A. Preprocessing and ROI Extraction

Each raw thermographic image is a single-channel grayscale
matrix representing surface temperature values. Prior to train-
ing the DPM or any downstream task, we apply standardized
preprocessing to ensure consistency and stability. First, all
images are resized to a fixed resolution of 256 × 256 pixels
using bilinear interpolation. Next, pixel values are linearly
scaled to the range [0, 1] using the normalization formula:

Xnorm =
X −min(X)

max(X)−min(X)
, (1)

where X is the raw thermogram, and min(X), max(X) are
its minimum and maximum pixel values, respectively.

After normalization, we apply a U-Net model to segment
the tumor region and extract the ROI from each thermogram.
The U-Net model was trained for 50 epochs using the Adam
optimizer with a learning rate of 1 × 10−4 and a batch size
of 8. We used a combination of Dice loss and binary cross-
entropy to handle segmentation of varying tumor sizes. Early
stopping was employed with a patience of 10 epochs to prevent
overfitting. These ROIs are subsequently used for DPM-based
image synthesis, ResNet-50-based deep feature extraction, and
computation of handcrafted nonlinear descriptors.

B. Diffusion Probabilistic Model

DPMs are a category of generative models that produce
high-fidelity data by learning to reverse a controlled diffusion
process. The methodology involves two key stages. First, a
forward process systematically introduces Gaussian noise to
a training sample across a sequence of discrete time steps.
Following this, a neural network is trained to execute a
reverse process, where it learns to incrementally remove the

noise at each step. This training effectively teaches the model
to reconstruct the initial, uncorrupted data. For generation,
the trained model begins with a random noise tensor and
iteratively applies this learned denoising function to synthesize
a novel sample.

In our framework, we use DPMs to augment the training
data by generating synthetic ROI patches. These grayscale
ROI crops, denoted as x0, are extracted from the original
thermograms using a trained U-Net segmentation model. Each
crop is paired with a diagnostic label c ∈ Healthy,Malignant
to enable class-conditional synthesis. The segmented ROIs
serve as focused inputs to the DPM, allowing it to learn
tumor-relevant thermal patterns and generate realistic synthetic
samples for each class. The forward diffusion process is
defined as a Markov chain:

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βtI), (2)

where βt ∈ (0, 1) controls the noise variance. Using reparame-
terization, the noisy image xt at step t can be directly sampled
from x0:

xt =
√
ᾱt x0 +

√
1− ᾱt ε, ε ∼ N (0, I), (3)

ᾱt =

t∏
s=1

(1− βs). (4)

In the reverse diffusion process, a neural network parame-
terized by θ is trained to model the transition from a state xt to
the previous state xt−1. This network learns an approximation,
denoted as pθ(xt−1 | xt), of the true but intractable posterior
distribution q(xt−1 | xt):

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
, (5)

where εθ predicts the noise added during the forward step.
The reverse process uses U-Net architecture within the DPM
consists of 23 convolutional layers and two residual blocks per
resolution level. Training was conducted for 200,000 iterations
with a batch size of 32. We used the AdamW optimizer with a
learning rate of 1×10−4 over 1000 diffusion steps, employing
a linear noise schedule for βt.

The model is trained by minimizing a loss that combines
the noise prediction error and variational lower bound[20]:

L = Lsimple + Lvlb, (6)

where Lsimple is a mean squared error between true and
predicted noise, and Lvlb helps estimate variance terms across
timesteps.

At inference, a synthetic image x0 is generated via:

x0 =
1√

1− βt

(
xt − βt

√
1− ᾱt · εθ(xt, t)

)
+ σtz, (7)

where σtz adds noise sampled from N (0, I) at each denoising
step t.

The final output is a high-fidelity grayscale thermogram
conditioned on the desired class label. These synthetic samples
are later used for training the classification pipeline.



Fig. 1: Overview of the proposed hybrid framework for breast cancer classification. First, a U-Net model segments the tumor
region from an input thermogram. The resulting segmentation mask is then used to derive two distinct components for feature
extraction: (1) the ROI patch (a bounding box around the tumor), which is used for DPM-based data augmentation and for
deep feature extraction with a ResNet-50; and (2) the lesion contour, which is used to compute a set of handcrafted nonlinear
features (FD, LE, ApEn). Finally, these complementary deep and nonlinear feature sets are fused and fed into an XGBoost
classifier for the final benign versus malignant prediction.

C. Deep Feature Extraction Using ResNet-50

Following data augmentation with the DPM, we construct
an enriched dataset composed of both original and syn-
thetic grayscale thermograms. Let x̃

(c)
0 represent a DPM-

generated thermogram conditioned on class label c ∈
{Healthy (Normal),Malignant}. The complete training set is
defined as:

Xaug = {x(c)
0 } ∪ {x̃(c)

0 }. (8)

To extract discriminative visual features, we employ
ResNet-50, a 50-layer convolutional neural network with
residual connections pretrained on ImageNet. Each image
x ∈ Xaug is resized to 256 × 256 and converted to 3-channel
format by replicating the grayscale channel to satisfy ResNet’s
input requirements. To leverage the powerful, general-purpose
representations learned from natural images without risking
overfitting on our smaller medical dataset, we used the ResNet-
50 model as a frozen feature extractor. This means the model’s
weights were not updated during training. The image is passed
through the network, and we extract a 2048-dimensional
feature vector from the global average pooling layer:

f = ϕResNet(x), f ∈ R2048, (9)

where ϕResNet(·) denotes the ResNet-50 feature extraction
function.

These deep features encode abstract semantic representa-
tions related to texture, symmetry, and thermal irregularities.
They are subsequently used as inputs for the classification
stage.

D. Nonlinear Feature Extraction

For both original and DPM-generated images, ROI patches
are used as input for feature extraction. The DPM-generated
ROIs are synthesized from tumor region crops obtained
through U-Net-based segmentation. To extract interpretable
dynamic features from tumor regions, we first localize the
lesion area using a trained U-Net segmentation model. This
model, previously trained on real thermograms with annotated
tumor masks, is applied to each DPM-generated and original
image to predict binary tumor masks. These masks define the
region of interest for feature computation.

Next, we extract four nonlinear features from the segmented
tumor region of each grayscale thermogram: LLE, LE, ApEn,
and BCD. These features capture underlying dynamic and
fractal patterns in thermal distribution.

• LE: Measures sensitivity to initial conditions, estimated
using time-delay embedding of the radial distance signal.

λ = lim
t→∞

1

t
ln

d(t)

d(0)
, (10)



where d(t) is the separation between neighboring trajec-
tories in reconstructed phase space. The phase space was
reconstructed using an embedding dimension of 3 and a
time delay of 1, which are standard values for analyzing
such contour signals.

• LLE: Extracted as the maximum value of the LE spec-
trum, indicating dominant chaotic behavior.

• ApEn: Quantifies the regularity of thermal patterns.
Lower values indicate more predictable temperature pro-
files:

ApEn(m, r) = Φm(r)− Φm+1(r), (11)

where Φm(r) measures the logarithmic frequency of
template vector matches. For our computation, we set the
embedding dimension m = 2 and the tolerance radius r
to 0.2 times the standard deviation of the signal, which are
common and well-established parameters for biomedical
signal analysis.

• BCD: Estimates the fractal complexity of the thermal
boundary by counting covering boxes of size ϵ:

D = lim
ϵ→0

logN(ϵ)

log(1/ϵ)
, (12)

where N(ϵ) is the number of boxes containing part of
the structure.

Each image yields a 4-dimensional handcrafted feature vector,
computed from the segmented tumor area. These features
are later fused with deep features to enhance classification
robustness.

E. Feature Fusion and Classification

To leverage both abstract visual patterns and interpretable
complexity descriptors, we fuse the deep features and hand-
crafted features into a unified representation. For each ther-
mogram, the 2048-dimensional deep feature vector f deep ∈
R2048 extracted from ResNet-50 is concatenated with the 4-
dimensional handcrafted vector f hand ∈ R4:

f fusion = [f deep ∥ f hand] ∈ R2052, (13)

where ∥ denotes vector concatenation.
These fused features are used to train an XGBoost classifier

for binary classification. Each sample is assigned a label
y ∈ {0, 1}, corresponding to benign or malignant classes,
respectively. The classifier is optimized using logistic loss and
evaluated using cross-validation on the augmented dataset.

III. EXPERIMENT

In this study, we employed a Diffusion DPM to augment
the thermogram dataset for breast cancer classification. We
generated 1000 synthetic grayscale tumor region-of-interest
ROI patches, evenly split between benign and malignant
labels. These label-conditioned samples were produced using
DPM and required no manual annotation, helping to address
the challenge of limited labeled data.

The synthetic ROIs were combined with real images to
expand the training dataset. We evaluated the impact of DPM-
based augmentation along two dimensions: (i) image quality
assessment using standard generative metrics such as Inception
Score (IS), Fréchet Inception Distance (FID), and sliced FID
(sFID),(ii) qualitative assessment of tumor boundary complex-
ity using contour-derived radial signals and (iii) classification
performance comparison between models trained on real-only
data and those trained on real + DPM-augmented data.

A. Dataset

We used the publicly available DMR-IR dataset, which
contains full-field infrared breast thermograms of women[20].
From this dataset, we selected a balanced subset of benign and
malignant cases. All images were converted to grayscale and
resized to 256×256 pixels for deep learning input.

B. Generative Evaluation Metrics

To measure the quality of our generated thermograms, we
used three standard metrics: Inception Score (IS), Fréchet
Inception Distance (FID), and sliced FID (sFID).

• Inception Score (IS): evaluates how clear and varied the
generated images are [21]. A higher IS means the images
are both realistic and diverse. It’s computed as:

IS = exp
(
Ex∼pg

[DKL(p(y|x) ∥ p(y))]
)
, (14)

where p(y|x) is the predicted label distribution for image
x, and p(y) is the marginal distribution over all predic-
tions.

• Fréchet Inception Distance (FID): provides a measure
of realism for generated images. It operates by embedding
both a collection of real images and a collection of
synthetic images into a deep feature space using the
InceptionV3 model. The distance between the probability
distributions of these two sets of features is then calcu-
lated to determine how perceptually similar the generated
content is to the authentic data. A lower FID indicates
better similarity [22]. It is defined as:

FID(µr,Σr, µg,Σg) = ∥µr − µg∥2

+ Tr(Σr +Σg − 2(ΣrΣg)
1/2),

(15)
where (µr,Σr) and (µg,Σg) are the means and covari-
ances of the real and generated image features.

• sFID (sliced Fréchet Inception Distance:) is a variant
of FID that uses intermediate layers of Inception-V3 to
better capture spatial detail and local structure. While FID
emphasizes global similarity, sFID is more sensitive to
subtle differences in texture and shape [23].

C. Shape Complexity Analysis via Contour Signals

To show how nonlinear features can tell the difference
between tumor types, we turn each tumor’s boundary into a
one-dimensional signal. We do this by measuring the distance
from each point on the boundary to the center of the tumor,
following the contour in order. This creates a waveform that
represents the shape complexity.



Figure 2 shows two examples of these signals. In (a),
the curve is smooth and regular, which usually means the
tumor has a rounded shape—often seen in benign cases. In
(b), the curve is uneven and varies a lot, which points to a
more irregular and sharp-edged boundary, typical of malignant
tumors.

These visual patterns match what nonlinear features like
fractal dimension, Lyapunov exponent, and approximate en-
tropy are designed to capture. Even without showing exact
values, the difference in waveform shape already shows their
usefulness for diagnosis.

D. Classification Performance and Ablation Analysis

To rigorously evaluate our framework, we conducted a
comprehensive analysis comparing different feature sets and
data augmentation techniques. The results, detailed in Table I,
are based on 5-fold cross-validation and demonstrate the step-
by-step improvements of our proposed method.

Our analysis begins with a baseline model using only
ResNet-50 deep features on the original, non-augmented
dataset, which achieved 90.1% accuracy. We then evaluated the
impact of various augmentation techniques on this baseline.
Standard affine transformations improved accuracy to 92.5%,
while the more advanced ProGAN model reached 93.4%. No-
tably, our DPM-based augmentation delivered a significantly
superior performance, boosting the accuracy to 95.5%. This
provides clear quantitative evidence that DPMs generate more
effective and realistic training data for this task compared to
both traditional methods and GANs.

The final and most critical step was to evaluate the contribu-
tion of our proposed nonlinear feature fusion. By combining
the handcrafted chaos-based features with the deep features
from the best-performing DPM-augmented dataset, our full
model achieved a state-of-the-art performance of 98.0% accu-
racy, 98.1% sensitivity, and 97.9% specificity. This final leap
in performance confirms that the nonlinear features capture
complementary diagnostic information not fully encapsulated
by the deep features, and that the synergy between advanced
DPM augmentation and hybrid feature fusion is key to the
success of our framework.

E. Comparison of Synthetic Image Quality

To rigorously evaluate the effectiveness of our DPM for data
augmentation, we compared its performance against ProGAN,
a strong and representative GAN-based model. Both models
were trained on the same dataset of real ROI patches. The
comparison was conducted both quantitatively, using standard
generative metrics, and qualitatively, through visual inspection.

1) Quantitative Evaluation: The quality of the generated
images was measured using IS, FID, and sFID. As shown in
Table II, our DPM significantly outperforms ProGAN across
all metrics. The DPM achieves a higher IS, indicating that
its generated samples are both clearer and more diverse.
More importantly, the DPM yields substantially lower FID
and sFID scores. A lower FID score demonstrates that the
distribution of DPM-generated images is perceptually much

closer to the distribution of real thermograms. The lower sFID
further confirms that the DPM better captures fine-grained
local structures and textures, which are critical for representing
complex thermal patterns.

2) Qualitative Evaluation: To complement the quantitative
metrics, we conducted a qualitative comparison between our
DPM and ProGAN, a representative high-performance GAN
architecture. Both models were trained to generate class-
conditioned ROI patches. As illustrated in Figure 3, our DPM-
generated samples exhibit superior visual fidelity and diver-
sity. The ”Malignant Samples” from the DPM, in particular,
display more complex and heterogeneous thermal patterns,
with clearer vascular structures that are characteristic of real
malignant thermograms. In contrast, the ProGAN samples
appear smoother and less detailed, suggesting the DPM is
more effective at capturing the subtle, diagnostically relevant
features required for this task. This visual evidence strongly
supports our choice of DPM over GAN-based approaches for
data augmentation.

IV. CONCLUSION

This study introduced a robust, hybrid framework for
breast cancer classification in thermographic images that suc-
cessfully addresses the critical challenge of data scarcity.
We demonstrated that a DPM is a superior tool for data
augmentation in this domain, quantitatively and qualitatively
outperforming both traditional affine transformations and a
competitive ProGAN baseline. Our DPM generated high-
fidelity, class-conditioned tumor patches (FID = 14.3) that,
when used for training, significantly improved model gener-
alization. Our second key contribution was a hybrid feature
fusion strategy. Through comprehensive ablation studies, we
proved that fusing data-driven deep features from a ResNet-
50 with interpretable, chaos-based nonlinear descriptors (LE,
ApEn, FD) provides a statistically significant performance
boost. This confirms that these handcrafted features capture
complementary diagnostic information related to tumor bound-
ary complexity that is not fully encapsulated by deep repre-
sentations alone. The synergistic combination of DPM-based
augmentation and hybrid feature fusion, classified by a vali-
dated XGBoost model, led to a state-of-the-art performance of
98.0% accuracy, 98.1% sensitivity, and 97.9% specificity. This
overall improvement was shown to be statistically significant
(p <0 .01) compared to baseline models. These findings vali-
date DPMs as a premier method for medical image synthesis
in thermography and underscore the power of combining
deep learning with domain-specific, interpretable features to
build more accurate and trustworthy diagnostic systems. While
our framework demonstrates strong performance, future work
should focus on validating its generalization on larger, multi-
center external datasets. Further research could also explore
end-to-end paradigms like contrastive learning and apply
DPMs to the segmentation task itself to further refine lesion
boundary detection and overall pipeline performance.



(a) Benign case: smooth boundary signal (b) Malignant case: irregular boundary signal

Fig. 2: Tumor boundary converted to radial distance time series. Regular contours (a) produce smooth signals; irregular contours
(b) exhibit high-frequency variations indicative of malignancy.

TABLE I: Comprehensive Performance Evaluation and Ablation Study. Results show the mean ± standard deviation from
5-fold cross-validation. All models use ResNet-50 for deep feature extraction. The final proposed model is highlighted in bold.

Feature Set Augmentation Method Accuracy (%) Sensitivity (%) Specificity (%)
Baseline Configuration
ResNet-50 Only None (Real Data Only) 90.1± 0.6 90.5± 0.8 89.7± 1.1
Comparing Augmentation Methods (on Deep Features)
ResNet-50 Only Affine Transformations 92.5± 0.7 93.0± 0.9 92.0± 1.3
ResNet-50 Only ProGAN 93.4± 0.8 94.1± 0.7 92.7± 1.5
ResNet-50 Only DPM (Ours) 95.5± 1.2 96.0± 1.4 95.0± 1.9
Contribution of Nonlinear Features (with Best Augmentation)
Fused (Deep + Nonlinear) DPM (Ours) 98.0± 1.1 98.1± 1.1 97.9± 1.3

TABLE II: Quantitative Comparison of Generative Models.
Lower is better for FID/sFID; higher is better for IS. Best
results are in bold.

Metric ProGAN DPM (Ours)
Inception Score (IS) ↑ 3.15 3.91
Fréchet Inception Distance (FID) ↓ 25.8 14.3
Sliced FID (sFID) ↓ 15.2 7.8

Fig. 3: Qualitative comparison of synthetic thermogram ROI
patches generated by ProGAN and our proposed DPM. Both
models produced class-conditioned samples for ”Normal” and
”Malignant” classes. The DPM samples demonstrate higher
visual realism and more intricate thermal patterns, especially
for the malignant cases.
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