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Fig. 1: To efficiently collect demonstrations so as to maximize policy performance under a fixed data budget, we propose factored scaling
curves: a principled tool to quantify how policy performance changes with the quantity of factor data. Based on factored scaling curves, we
can allocate the data budget to collecting demonstrations that vary different factors based on their importance.

Abstract—Generalist imitation learning policies trained on
large datasets show great promise for solving diverse manipula-
tion tasks. However, to ensure generalization to different condi-
tions, policies need to be trained with data collected across a large
set of environmental factor variations (e.g., camera pose, table
height, distractors) — a prohibitively expensive undertaking, if
done exhaustively. We introduce a principled method for deciding
what data to collect and how much to collect for each factor
by constructing factored scaling curves (FSC), which quantify
how policy performance varies as data scales along individual or
paired factors. These curves enable targeted data acquisition for
the most influential factor combinations within a given budget.
We evaluate the proposed method through extensive simulated
and real-world experiments, across both training-from-scratch
and fine-tuning settings, and show that it boosts success rates in
real-world tasks in new environments by up to 26% over existing
data-collection strategies. We further demonstrate how factored
scaling curves can effectively guide data collection using an offline
metric, without requiring real-world evaluation at scale.

I. INTRODUCTION

High-quality teleoperated data has been indispensable for
learning many of today’s state-of-the-art robot manipulation
policies [4, 3, 29, 46, 51]. However, robot data collection
is prohibitive in time and effort, often requiring more than
thousands of hours of human demonstrations [46, 3]. Even
with large-scale pre-training on existing datasets [28, 47, 11,
9], achieving strong performance in downstream tasks still
requires additional in-domain data collection, ranging from
a couple of hours to hundreds of hours of effort [3, 30].
For a learned policy to generalize effectively, data collection
must also span various environment factor variations, such as

differences in table height, object initial state, and camera pose
— this exacerbates the overall effort as collecting data across
diverse environment variations requires repeatedly setting up
distinct scenarios. Given the substantial data requirements
and the high expense of data acquisition, practitioners need
an efficient strategy that optimizes policy performance while
minimizing human effort and cost.

To this end, we aim to address the question: given a
constrained data budget, which data should be collected to
achieve the best policy generalization across varying environ-
mental factor variations (e.g., lighting, backgrounds, camera
pose, table height)? A naı̈ve approach might evenly distribute
the data budget across all factors, but this is rarely efficient.
Not only are there significant hidden costs associated with
setting up diverse scenes, but more crucially, the policy’s sen-
sitivity to each factor often varies considerably. For instance, if
the policy is already robust to camera-pose variations, collect-
ing additional camera-pose demonstrations may provide little
incremental benefit, whereas varying table height instead could
significantly boost performance. An effective data collection
strategy should prioritize the most impactful factors, and also
quantitatively determine the appropriate amount of data to
collect for each.

In light of this, we propose a novel framework to sys-
tematically prioritize data collection for improving policy
generalization across environmental factors. At the core of
our approach is the concept of factored scaling curves, which
model how a policy’s performance improves as additional data
is collected involving different factor variations, as shown



in Fig. 1. By estimating and extrapolating these curves, we
can strategically allocate a constrained data budget to the most
impactful factors, rather than relying on uniform or heuristic-
driven collection.

Statement of Contributions. We propose a principled
robot data collection framework informed by factored scaling
curves. Our contributions are as follows: (1) We introduce
factored scaling curves (FSC) to quantify how policy per-
formance scales with data for different environmental factors,
and show that these curves reliably predict expected policy
performance. (2) Building on these curves, we propose a suite
of data collection strategies, including top-1 and weighted
top-k selection methods that prioritize factors expected to
yield the greatest policy performance gains. (3) We validate
our framework through extensive experiments in both simu-
lation and real-world robotic manipulation tasks, where we
train policies from scratch and fine-tune pre-trained Vision-
Language-Action (VLA) models, achieving up to 26% higher
success rate than state-of-the-art baselines. (4) We further
demonstrate that constructing FSC solely from policy em-
bedding similarity — an offline metric that does not require
hardware evaluation — retains almost the same effectiveness
in guiding data collection, yielding an extremely lightweight
variant of our method. Importantly, each contribution of our
framework is general: it applies to any task and any policy
backbone, and can be seamlessly and effectively integrated
with existing data collection techniques such as compositional
data generation [16].

II. RELATED WORK

Theoretical Frameworks for Data Collection. Several ex-
isting works study dataset construction for improved learning
dynamics. For static datasets, coreset selection, optimization,
and heuristic tuning [38, 18, 20, 21, 48, 11, 34] find opti-
mal data subsets from larger training sets. However, these
approaches assume a fixed, static dataset. By contrast, our
objective is to actively decide what additional data to gather,
akin to active data allocation and learning methods including
Bayesian experimental design [32, 7], information gain max-
imization [35, 24], and active learning [43]. In general, the
first two methods require explicit parametric representations of
the estimation problem, while the third only chooses the best
single arm (i.e., factor). By contrast, our setting seeks to find
the best data mixture without overly strong assumptions about
the influence mechanism. Additionally, the latter methods
often give guarantees via reductions to estimation problems
(e.g., [1]) which do not account for the full endogeneity of
policy performance with respect to new data generation.

Scaling Laws. Scaling laws quantify model performance
improvements with increasing data and compute. Scaling laws
have been heavily studied in natural language processing
(NLP) [27, 39, 5, 23, 17] and computer vision [41, 50, 40, 22],
and have seen preliminary investigations in robotics [44, 25, 6,
47, 51, 11, 31]. These scaling analyses typically characterize
the large-data regime and treat all data as a single category.

Our approach instead targets the small-data regime and ex-
trapolates scaling curves that quantify the marginal value of
adding data for different factor variations. This allows for fine-
grained analysis to predict which factors will most improve
performance.

Data Collection Strategies in Robotics. Prior methods
offer broad recommendations for collecting higher-quality
real-world data [16, 2], but these guidelines remain agnostic to
the specific task and policy at hand. A complementary line of
research targets efficiency by probing a policy’s failure modes
— through shared-autonomy corrections or compatibility-
based selection to gather more informative demonstrations [33,
12, 15]. Yet, these approaches operate at the trajectory level
and do not address performance drops stemming from changes
in the surrounding environment. Red-teaming techniques have
recently been proposed to estimate a policy’s sensitivity to
individual environmental factors and steer data collection
accordingly [36]. However, this method does not model how
performance will evolve as new data are added. We close these
gaps with factored scaling curves: a task- and policy-aware
framework that predicts performance gains as a function of
additional data for each environmental factor. By quantifying
the marginal return of collecting more demonstrations along
each axis, our method provides principled, budget-aware guid-
ance for prioritizing the most impactful factor variations and
thus accelerates real-world policy improvement.

III. FACTORED SCALING CURVES FOR GUIDING
IMITATION DATA COLLECTION

Consider the scenario where we have a pre-trained robot
policy and observe insufficient performance in a target domain.
Gathering additional demonstrations for imitation learning can
help bridge the gap. We present a data collection strategy that
can: (a) determine and prioritize factors for greatest potential
improvement, and (b) predict the effect of adding data for a
specific factor — or combination of factors — on the policy’s
performance in the target domain.

A. Problem Formulation

We consider imitation learning policies, either pre-trained
(e.g., on [28, 47, 11]) or trained from scratch. We assume
access to a new set of training demonstrations D comprising of
variations across N environment factors F = {f1, f2, ..., fN},
denoted as

D = Dnom ∪ D1 ∪ D2 ∪ · · · ∪ DN , (1)

where Dnom is the set of demonstrations with all environmental
factors in a nominal setting (e.g., no distractors, nominal
lighting and table texture), and Di contains all demonstrations
with variations of factor fi with respect to its nominal value.
We denote |Di| as the number of demonstrations available for
factor fi. A policy trained on dataset D is denoted as π(D),
and is evaluated on a target distribution E of environments
with factor variations unseen in D. The policy’s overall
performance, denoted S(π(D)), is defined as the expected
value of a success metric (e.g., partial credit, binary success)
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Fig. 2: Illustration of factored scaling curves used to inform data
allocation. For the distractor factor, points are used to construct
the scaling curve, and is the predicted policy success rate at K
additional demos of the factor over the initial dataset.

on the target distribution E . Our goal is to determine how to
collect an additional dataset ∆D, subject to a constraint on the
number of additional demonstrations, i.e., |∆D| ≤ K, where
K represents a budget determined by time or data collection
cost. The objective is to maximize the performance of the new
policy π(D ∪∆D), trained on the updated dataset:

∆D = argmax
∆D

S(π(D ∪∆D)) s.t. |∆D| ≤ K. (2)

The additional dataset can be partitioned into subsets cor-
responding to different factor variations:

∆D = ∆D1 ∪∆D2 ∪ · · · ∪∆DN . (3)

Our focus in solving (2) is to identify which factors to priori-
tize for data collection and how much additional data to collect
for them, i.e., determining |∆Di|. While this formulation
allows for any demonstration collection rule, in this work all
demonstrations will vary only one factor at a time.

B. Factored Scaling Curves

We propose factored scaling curves (FSC) to achieve the
aforementioned desiderata. For exposition, we define each
curve for an individual factor, and provide extensions to
multi-factor settings later in the section. For each factor fi,
starting with no corresponding demonstrations, i.e., D \ Di,
we incrementally add back n demonstrations δDn

i ⊆ Di, and
train a policy. Henceforth, denote Dn

i := (D\Di)∪ δDn
i . The

factored scaling curve Φi : N → [0, 1] maps the number of
demonstrations of factor fi to the policy’s overall performance
on E :

Φi(n) := EDn
i ∼Di

[
S
(
π(Dn

i )
)]
. (4)

At n = |Di|, the scaling curve represents policy perfor-
mance when using the full available dataset D — comprising
of demonstrations from all factors. Note that constructing the
curve does not require gathering additional training demon-
strations beyond the dataset D. Below we summarize some

properties of factored scaling curves. First, the discrete deriva-
tive quantifies the expected performance gain per additional
demonstration, enabling principled ranking of factors. Second,
since scaling curves measure a policy’s performance in the
target domain, they capture how data from one factor affects
the policy’s overall performance including in other factors.
Finally, with suitable parametrizations (e.g., fitting a power
law), we ensure that the scaling curve captures the saturation
effect of adding more data.

a) Curve Fitting.: We approximate the factored scaling
curve by training policies π(Dk

i ) at few equally spaced values
of k, and evaluating their performance. This yields points(
k, S

(
π(Dk

i )
))

, which are used to fit a power-law model of
the factored scaling curve:

Φ̂i(n) := 1−a(n+ |D \Di|)b, a > 0, b < 0, and n ∈ N.
(5)

Power laws can effectively model how performance scales
with training dataset size in domains such as language model-
ing [26] and imitation learning [31]. We fit power-law curves
in log–log space for numerical stability, following standard
practice [10], and find that as few as four values of n are often
sufficient to obtain a reliable fit empirically. Fig. 2 illustrates
the curve construction and its use in predicting the policy’s
performance if K additional demonstrations of the factor are
gathered.

b) Proxy Metrics.: Constructing scaling curves using
real-world success rates S can be expensive in terms of evalua-
tion cost. To address this challenge, we consider other offline
metrics M (e.g., embedding similarity [42, 37, 36]), which
do not require evaluating the policies π(Dk

i ) on hardware.
Generally, we define factored scaling curves as:

Φi(n) := EDn
i ∼Di

[
M

(
π(Dn

i )
)]
. (6)

The resulting performance of the policy trained with addi-
tional data is still evaluated according to the gold-standard
performance S in the real-world. We show experimental
results using embedding-space similarity, denoted FSC-Proxy,
in Section IV-C.

c) Factor Combinations.: Constructing factored scaling
curves for each individual factor can be expensive in terms of
computation and hardware evaluations. Below we discuss how
factored scaling curves can be adapted to combine multiple
factors into a single scaling curve. We define Group-t to be
a disjoint partition of N factors into groups of size t; for
example, Group-2 results in ⌈N/2⌉ paired combinations. In
contrast, t-wise refers to all

(
N
t

)
combinations. To balance

the expressivity from t-wise and efficiency from Group-t, we
consider the following options: i) varying individual factors
(“One Factor”), ii) 2-wise (“Pairwise”): all pairwise factor
combinations which results in

(
N
2

)
= N(N−1)

2 curves, and iii)
Group-2 (“Group”): a set of ⌈N/2⌉ pairwise combinations.
The Pairwise setting requires more curves than One Factor
but has greater expressive power, while Group requires fewer
curves with less expressive power.



TABLE I: Evaluating FSC in simulation. We report the average policy success rate trained with additional collected data. FSC consistently
improves upon the baselines, delivering around 10% improvement on average.

K = 20 K = 100

Task FSC Equal Greedy Re-Mix FSC Equal Greedy Re-Mix

Pick Place 62.0 56.1 58.7 61.6 64.4 64.3 65.9 64.7
Peg Insertion - Visual 22.2 20.2 15.5 19.2 45.3 28.1 28.1 34.0
Peg Insertion - Spatial 45.5 43.8 42.0 31.7 57.9 49.5 52.7 44.1
Pull Cube Tool - Visual 68.4 62.7 64.3 61.9 83.5 56.6 83.1 28.7
Pull Cube Tool - Spatial 76.3 57.7 73.3 50.5 83.4 78.5 62.5 64.5
Average 54.9 48.1 50.8 45.0 66.9 55.4 58.5 47.2

C. Data-collection strategy

With the constructed curves, we now decide which factor(s)
to prioritize and how many demos to collect for each factor.
For simplicity, we present the case of One Factor first. The
predicted policy performance after adding K demonstrations
of factor fi is Φ̂i

(
|Di| + K

)
. We coarsely approximate the

slope of the scaling curve as

PK
i :=

Φ̂i

(
|Di|+K

)
− Φ̂i

(
|Di|

)
K

. (7)

Based on Eq. (7), we consider three data collection strategies:
(1) Top: Identify the top factor with highest PK

i and allocate
the entire budget to it, (2) Top-Half: Identify the top half
of the factors and allocate budget proportionally, and (3) All:
Spread the budget over all factor combinations in proportion to
the respective PK

i . The proportional budget allocation follows:
|∆Di| =

PK
i∑

i′ P
K
i′

K. Next for Pairwise and Group, similar
to the single factor case, we denote the two-factor dataset
Dij = Di ∪ Dj for factors fi and fj , and define the terms
Φ̂ij and PK

ij analogously. The three data collection strategies
are defined similarly as with single factor. In the Group
setting, the proportional budget allocation strategy for factor
combinations is:

|∆Dij | =
PK
ij∑

i′,j′ P
K
i′j′

K, (8)

with the budget allocated to the individual factors being half
of the budget allocated to corresponding factor combination
according to Eq. (8). See Appendix B for details on the
Pairwise setting.

IV. EXPERIMENTS

We evaluate our proposed method, FSC (Factored Scaling
Curves), alongside FSC-Proxy, which builds FSCs using pol-
icy embedding similarity as an offline proxy metric, to address
the following questions: (1) Can our method successfully
guide data collection under a fixed data budget to maximize
the policy performance? (2) How well do factored scaling
curve extrapolations predict performance with additional data?
(3) Can we construct scaling curves using proxy metrics that
do not require hardware evaluations while still effectively
guiding data collection? We also ablate different choices of
the prediction strategy and curve construction in Appendix A.

a) Environment Factors.: We investigate eight factors
— five visual (table texture, lighting, camera pose, distractor
objects, background) and three spatial (table height, object
pose, robot initial pose). Discrete factors (table texture, distrac-
tors, background) are drawn from four preset values, whereas
continuous factors are sampled uniformly. See Appendix B
and Appendix C for full distributions and visualizations.

b) Simulation setup.: We study five simulation tasks in
ManiSkill3 [45] on a Franka Panda robot: Pick Place, Peg
Insertion – Visual, Peg Insertion – Spatial, Pull Cube Tool
– Visual, and Pull Cube Tool – Spatial. Visual tasks vary the
five visual factors, and spatial tasks additionally vary the three
spatial factors. All policies are trained with diffusion policy
[8]. To obtain the factored scaling curve and evaluation results,
we evaluate each policy for roughly 4000 trials on different
factor values. More details can be found in Appendix B.

c) Real-world setup.: We consider two task settings on
a Franka Panda robot: (i) fine-tuning VLA, where we use
π0 as the base model [3] and study three tasks Fold Towel –
Visual, Fold Towel – Spatial, and Mouse in Drawer; and (ii)
train-from-scratch on Pick Place with diffusion policy [8].
We collect training data following the L-shape strategy of Gao
et al. [16], where each demonstration varies exactly one factor.
For visual experiments, we vary table texture, lighting, camera
pose, and distractors. We drop the background variation as
we find it has negligible effect in policy performance in our
experiment setup. Fold Towel – Spatial and Mouse in Drawer
additionally vary object and robot poses. To fit the factored
scaling curves and evaluate each policy, we run roughly 15
out-of-distribution trials per policy in which multiple factors
are simultaneously varied beyond the training distribution.
Implementation and hardware details are given in Appendix C.

d) Baselines.: We consider three baseline methods: (1)
Equal: Collect an equal number of demonstrations for each
factor where we vary exactly one factor value when collecting
demos; this is equivalent to the L-shape strategy of Gao et al.
[16]. Outperforming this baseline requires prioritizing the most
influential factors. (2) Greedy: After evaluating the initial
policy, we allocate the data budget to the single factor with
the lowest success rate. (3) Re-Mix: Following Hejna et al.
[20], we apply distributionally robust optimization to compute
factor weights and construct the initial dataset and collect data
in proportion to those weights.



A. How well does FSC guide data collection?

Simulation results are summarized in Table I. If not else
specified, we adopt the Group construction on the x-axis
and the Top allocation strategy for the FSC result, which
Appendix C later identifies as the best balance between
performance and data-collection cost. Results are reported
under two data budgets: a small budget (K = 20) and a large
budget (K = 100). FSC outperforms all baselines in every
task except one cell (Pick Place, K = 100), where it is a close
second to Greedy, which is otherwise the best-performing
baseline on average. In the challenging, long-horizon task Pull
Cube Tool – Visual, FSC delivers around 10% improvement
over all baselines at K=100, confirming that the factored
scaling curves extrapolate well beyond their fit range and guide
data collection effectively. We show visualizations of factored
scaling curves in Section IV-B and Appendix F. Notably,
performances of Equal and Greedy are highly inconsistent
across tasks, and Re-Mix remains consistently weak, whereas
FSC provides stable gains throughout. For example, in the
Pull Cube Tool – Spatial task, Equal performs poorly when
K = 20 but has reasonable performance when K = 100.
However, in the Peg Insertion – Visual tasks, this trend is
reversed. The same observation holds for another heuristic
baseline Greedy, where it consistently has unsatisfactory
performance in the Peg Insertion - Visual task and inconsistent
performance in Pull Cube Tool - Spatial.

Pick Place

π0DP

Mouse in Drawer Fold Towel 

Data Budget: K=20 Data Budget: K=100

π0DP

Fig. 3: Evaluating FSC in the real world. We visualize the task
rollouts and report the average policy success rate trained with
additional collected data. For pick-place task, we train the policies
with diffusion policy. For all other experiments, we obtain policies
by fine-tuning π0. FSC achieves the best performance in all tasks,
achieving up to 26% more improvement over all baseline methods.
Compared to the zero-shot setting, fine-tuning π0 with FSC yields
up to 30% success rate improvement. FSC-Proxy achieves nearly the
same high success rate as FSC while eliminating the need for any
on-hardware policy execution.

a) Real-world experiments.: Fig. 3 shows that real-world
results closely match findings in simulation: FSC outperforms
every baseline by a wide margin. In the fine-tuning VLA
setting, FSC raises success on demanding long-horizon tasks
—Fold Towel and Mouse in Drawer — by up to 25% and
21% respectively over the strongest baseline. Increasing the
budget from K = 20 to K = 100 brings great gains for
FSC, whereas Equal and Greedy improve only marginally

or even degrade. A similar pattern emerges in the Pick Place
task trained with diffusion policy, where FSC achieves up to
a 26% advantage. These results confirm that FSC not only
guides data collection effectively but also generalizes across
real-world settings of varying task difficulty and policy type.

B. How well do factored scaling curves predict performance
with additional data?

We visualize our factored scaling curve for the real-world
fine-tuning tasks in Fig. 4. As we adopt the Top strategy
for data collection, we are essentially collecting data for the
factor with the highest expected improvement. In Mouse in
Drawer, the (Table Texture, Lighting) curve offers the highest
expected improvement, so we allocate the entire additional
data budget to that factor pair (blue stars at n=80 and n=160,
matching the K=20 and K=100 settings). Even though the
curve is fitted only on n=0–60, its extrapolation matches the
actual performance almost perfectly. The same holds for Fold
Towel – Spatial: adding data for (Camera Pose, Distractor)
improves success rate exactly as predicted. This accuracy
underpins FSC’s large margins over baselines. Furthermore,
FSC is robust to real evaluation noise. In Fold Towel – Visual
an outlier at n=60 slightly distorts the fit, yet FSC still selects
the right factor; factor combinations are helpful here since they
widen the data range and improve the signal-to-noise ratio.

In Fig. 4, the pie plots beside each curve show weights
allocated to each factor. FSC allocates the entire budget to
the best factor group and is then split evenly inside that
group (e.g., 50% each to table texture and lighting). Greedy
often misallocates budget to insignificant factors. Re-Mix
consistently performs poorly because it either learn near-
uniform weights or concentrate on irrelevant factors — it
produces near-uniform weights for the Fold Towel - Spatial and
Fold Towel - Visual task, while not prioritizing the important
factors enough (i.e., lighting and table texture) in the Mouse
in Drawer task.

Interestingly, the pre-trained π0 is still vulnerable to visual
perturbations. Across all three tasks, additional demonstrations
that vary visual factors deliver the greatest improvements in
success rate. In contrast, spatial robustness depends more on
the diversity than the quantity of spatial data: enlarging the
set of robot- or object-pose variations produces little further
gain, indicating that the initial dataset already captures spatial
variation well. This pattern matches the findings of Xue et al.
[49].

C. How effective is FSC constructed with proxy metrics?

We additionally investigate the construction of factored
scaling curves without evaluating trained policies on hardware.
Specifically, we explore the policy embedding similarity [36]
as a proxy for the real-world success rate for guiding data
collection. Given policy π and two policy inputs xi and xj , we
define the embedding similarity cπ to be the cosine similarity
between the embeddings:

cπ(xi, xj) =
ϕπ(xi) · ϕπ(xj)

||ϕπ(xi)|| ||ϕπ(xj)||
(9)



TABLE II: Success rates (%) on simulation tasks when guiding data collection with factored scaling curves built from embedding similarity
of diffusion policy (FSC-Proxy). For Peg Insertion and Pull Cube Tool, we show results with spatial factors. For both small (K = 20) and
large (K = 100) data-collection budgets, FSC-Proxy matches or surpasses the original FSC and consistently outperforms the baselines.

K = 20 K = 100

Method Pick Place Peg Insertion Pull Cube Tool Pick Place Peg Insertion Pull Cube Tool

Equal 56.1 43.8 57.7 64.3 49.5 78.5
Greedy 58.7 42.0 73.3 65.9 52.7 62.5
Re-Mix 61.6 31.7 50.5 64.7 44.1 64.5

FSC-Proxy 70.9 45.2 73.5 74.1 53.3 73.4
FSC 62.0 45.5 76.3 64.4 57.9 83.4

Mouse in Drawer Fold Towel - Spatial 
FSC-Top Re-Mix GreedyFSC-Top Re-Mix Greedy FSC-Top Re-Mix Greedy

Table Texture Lighting Camera Pose Distractor Robot Pose Object Pose

Table Texture, Lighting Camera Pose, Distractor Robot Pose, Object Pose

FSC Equal Greedy Re-Mix

Fold Towel - Visual 

Fig. 4: Visualizing factored scaling curves for real world fine-
tuning π0 experiments. Solid lines are factored scaling curves
we construct based on the initial dataset, and dashed lines are the
extrapolations that predicts how policy performance change with
additional factor data. Based on the Top strategy, FSC suggests
picking the curve with the highest slope, shown in blue (left), purple
(middle) and purple (right). Factored scaling curves can accurately
predict how policy performance changes with additional factor data,
thus able to provide informed data collection strategies. We also
visualize how different methods allocate data collection budget to
the factors in the top pie charts.

where ϕ(·) is the policy embedding, e.g., the output of the
vision encoder.

We define the training dataset Dtrain = {xi}Ntrain
i=1 that varies

in environment factors, and an evaluation (holdout) dataset
Deval = {xi}Neval

i=1 collected in the target environment distri-
bution. Both datasets contain only the initial observation and
thus collecting Deval does not require rolling out trajectories
on hardware. We compute the embedding similarity between
an input xi ∈ Deval and Dtrain:

cπ(xi, Dtrain) = max
xj∈Dtrain

cπ(xi, xj), (10)

which is maximized when there exist points in Dtrain that are
similar to xi. A generalization of Eq. (10) is a k-nearest-
neighbor variant, which averages the k largest similarities
between xi and Dtrain. After obtaining all cπ(xi, Dtrain), we
normalize them to [0, 1]. Then, we define the policy embed-
ding similarity c̄π as the embedding similarity between the
two datasets Dtrain and Deval averaged over instances in Deval:

c̄π =
∑

xi∈Deval

c(xi, Dtrain)

|Deval|
. (11)

Intuitively, higher policy embedding similarity c̄π , indicating

consistent behavior of the policy between environments where
the data is collected and those where the policy is evaluated,
should correspond to higher performance at the target environ-
ments. After obtaining the embedding similarity c̄π for each
policy π, we construct the factored scaling curve with it and
use the Top strategy to collect data, following Algorithm 1
and Algorithm 2.

We report results for Diffusion Policy (DP) [8] and π0 [3].
For DP, we use the output feature from the vision encoder
(ResNet-18 [19]) as our embedding ϕ(·). We tabulate results
for DP in Table II, and show the result for real-world Pick
Place task in Fig. 3. We use k = 1 for FSC-Proxy for
the k-nearest-neighbor step, and ablate other choices of k
in Appendix D. Generally, we find that FSC-Proxy achieves
performance comparable to FSC, sometimes even surpassing
it, while consistently outperforming the baseline methods. Our
results provide preliminary evidence on the effectiveness of
using embedding similarity as a surrogate metric for guiding
data collection in place of success rates from expensive real-
world evaluations.

For π0, we define ϕ(·) to be the attention weights from the
final denoising step of the flow-matching-based action expert
[3]. We take the mean weight over each attention head and ac-
tion token so that the embedding has the same size as the VLM
sequence length. We define Dtrain and Deval in the same way
as DP. As shown in Fig. 3, FSC-Proxy successfully prioritizes
the same factor for data collection as FSC for the Fold Towel
- Spatial and Mouse in Drawer task, achieving the highest
success rate. This further shows that embedding similarity is an
effective surrogate metric for guiding data collection for pre-
trained VLA models. We additionally visualize the correlations
between embedding similarity and real success rate and ablate
other embedding choices in Appendix D.

V. CONCLUSIONS

We propose Factored Scaling Curves, which quantify how
a policy’s performance change with factor data, enabling
principled data collection. We study a wide range of simulation
tasks and real-world tasks, including ones where we train from
scratch and fine-tune a pre-trained VLA. Overall, our method
can achieve up to 26% success rate improvement compared to
state-of-the-art data collection methods.
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APPENDIX

APPENDIX A
ADDITIONAL RESULTS

A. Algorithms

We present the construction of factored scaling curves
and the subsequent data collection strategies. We provide
pseudocode for curve construction and data collection strategy
in the Group setting of pairs of factors. For this setting,
curve construction requires the following inputs. First, a policy
parametrization π denotes the policy (e.g., diffusion policy [8]
and π0 [3]) trained on varying amounts of data as a part of
scaling curve construction. Second, a set of training demon-
strations D to guide further data collection. Third, a set of
factor combinations Fgroup specified by the Group setting,
which divides N factors into ⌈N/2⌉ factor pairs. We construct
a factored scaling curve for each factor combination. Finally,
we require a metric S to evaluate the policy on a fixed set of
evaluation environments. In addition to these inputs, we set a
hyperparameter m which sets the number of points used to
construct the scaling curve.

Algorithm 1 Factored Scaling Curves (Construction)

Require: Policy parametrization π, demonstrations D, factor
combinations Fgroup, metric S, hyperparameter m

Ensure: A set of factored scaling curves {Φ̂ij | {fi, fj} ∈
Fgroup}, one for each factor combination.

1: for each factor combination {fi, fj} ∈ Fgroup do
2: Factor combination dataset sizes for training N =
{ |Dij |(i−1)

m−1 | i ∈ {1, . . . ,m}}
3: for k ∈ N do
4: Assemble training dataset Dk

ij := (D\Dij)∪ δDk
ij

5: Train policy π(Dk
ij)

6: Record policy performance S(π(Dk
ij))

7: end for
8: Construct Φ̂ij by fitting points {(k, S(π(Dk

ij)))}k∈N
according to a power-law (Eq. (5)).

9: end for

Following Algorithm 1, we can use the constructed factor
scaling curves to determine a data collection strategy for some
data budget K. We consider three strategies for splitting the
data budget amongst factor combinations: Top, Top-Half, and
All, as shown in Algorithm 2.

B. Data Collection Strategies for Factor Combinations

The two-factor analog to the factor dataset is denoted by
Dij = Di ∪ Dj for factors fi and fj , and Dn

ij follows as
Dn

ij := (D\Dij)∪ (δDni
i ∪δD

nj

j ), where ni+nj = n and are
proportional to the sizes of Di and Dj . We choose |Di| = |D|

N ,
for all i, which forms a uniform prior on factor importance.
The combination of fi and fj is denoted fij , and the scaling
curve is referred by Φ̂ij .

Recall that K is the total budget allocated for new demon-
strations. We present the data collection strategy for factor

Algorithm 2 Data collection guided by Factored Scaling
Curves

Require: Factored scaling curves {Φ̂ij}, factor combinations
Fgroup, factors F , data budget K

Ensure: Recommendation of additional dataset size |∆Di| for
each factor fi

1: Initialize |∆Di| = 0 for each factor fi ∈ F
2: for each factor combination {fi, fj} ∈ Fgroup do
3: PK

ij ← Approximate the slope of FSC Φ̂ij us-
ing Eq. (12)

4: end for
5: Rank all pairs in Fgroup by slope PK

ij in descending order
6: Ginc = set() ▷ To store factor combinations selected for

data allocation
7: if strategy is Top then
8: Ginc ← {(i∗, j∗)}, where PK

i∗j∗ = maxij P
K
ij

9: else if strategy is Top-Half then
10: Ginc ← Set of top ⌈|Fgroup|/2⌉ pairs
11: else ▷ strategy is All
12: Ginc ← Fgroup
13: end if
14: for each factor combination {fi, fj} ∈ Ginc do
15: Allocate |∆Dij | proportionally using Eq. (8).
16: |∆Di| ← |∆Di|+ |∆Dij | |Di|

|Dij | ▷ Divide pairwise
allocation in half

17: end for

combinations (i.e., Pairwise and Group), which covers the
three methods presented in Section III-B. For two-factor pairs,
we let G2 denote the set of all index pairs. For each factor
combination, the predicted policy performance after adding K
demonstrations is Φ̂ij

(
|Dij | + K

)
. We coarsely approximate

the slope of the scaling curve as

PK
ij :=

Φ̂ij

(
|Dij |+K

)
− Φ̂ij

(
|Dij |

)
K

. (12)

Based on Eq. (12) we consider three strategies that vary
in index inclusion set Ginc: (1) Top: Identify the factor
combination fi∗j∗ with fastest predicted performance gain
PK
i∗j∗ and set Ginc = {(i∗, j∗)}; (2) Top-Half: Identify the

top half of the factor combinations according to PK
ij and set

Ginc to contain half of the two-factor indices; (3) All: Spread
the budget over all factor combinations and set Ginc = G2.
New demonstrations are allocated by:

|∆Di| =
∑

j P
K
ij

2
∑

(i′,j′) P
K
i′j′

K, (13)

and |∆Di| = 0 if no pair in Ginc contains index i. We evaluate
each of these strategies in the subsequent experiments.

C. What is the best curve construction choice and prediction
strategy?

We provide ablation studies on different design choices of
the curve construction. Because the cost of Pairwise grows
quadratically with N , we test it only on the tasks with visual
factors, where N = 5. In Table III, we find that in K = 20



TABLE III: Comparisons of different curve construction choices. The Group setting achieves high performance with lowest computational
costs.

K = 20 K = 100

Task One Factor Pairwise Group Equal One Factor Pairwise Group Equal

Pick Place 69.5 68.6 62.0 56.1 73.2 78.8 64.4 64.3
Peg Insertion 22.4 26.0 22.2 20.2 41.9 38.1 45.3 28.1
Pull Cube Tool 51.1 75.5 68.4 62.7 53.0 79.5 83.5 56.6

setting the performance drop of using Group compared to
Pairwise is small, while One Factor is generally not good due
to the small curve construction range. At K = 100, Group
beats Pairwise except in the Pick Place task. This is likely
because Group heuristically filters out unrelated factor pairs
based on human priors, whereas Pairwise becomes vulnerable
to a single poorly-fitted curve among many. Furthermore,
Group needs only 12 policies in this scenario, offering an
order-of-magnitude lower cost while retaining the full perfor-
mance advantage over the baselines.

We also ablate the prediction strategies we use, see Table IV.
Among tasks with only visual factors (N = 5), Top and
Top-Half are the same as we pick

⌊
N
2

⌋
factors for Top-Half

strategy. Top delivers the best results in the last three tasks,
where one factor group clearly dominates, matching the large
gaps visible in their factored scaling curves (see Appendix F).
However, in Pick Place, factor importance is nearly uniform
(Fig. 7); here the All rule prevails because over-focusing on
the top group hurts coverage. Hence, in practice, we can adopt
a simple decision strategy: If the curves show similar gains for
all factors, use All; if one factor group stands out, use Top.

D. Further Analysis on Embedding Similarity for Guiding
Data Collection
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Fig. 5: Expected improvement for π0 on three task settings using
the Attention Weights from the last denoising step: Camera Pose –
Distractor (CP-D), Table Texture – Lighting (TT-L), and Robot Pose
– Object Pose (RP-OP). Cosine Similarity projections are normalized
to have the same expected value as Expected Improvement. Cosine
similarity predicts the top-ranked expected improvement for Fold
Towel (CP-D) and Mouse in Drawer (TT-L).

In addition to attention weights, we further investigate
another embedding option ϕ(·) for π0 [3]: the latent action
vector after the first denoising step. We analyze the correlation
between different embedding options and real success rate.
We report the results for Attention Weights in Fig. 5 and
summarize two important findings here. Attention weights
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Fig. 6: Expected improvement for π0 on three task settings using
the Latent Action from the first denoising step: Camera Pose –
Distractor (CP-D), Table Texture – Lighting (TT-L), and Robot Pose
– Object Pose (RP-OP). Cosine Similarity projections are normalized
to have the same expected value as Expected Improvement. Cosine
similarity predicts the bottom-ranked expected improvement for Fold
Towel (RP-OP) and Mouse in Drawer (RP-OP).

successfully predict the first ranked factor in Fold Towel –
Spatial and Mouse in Drawer, offering some evidence that
they may be used as a proxy for the Top data collection
strategy—for example, if real data is scarce—when factors can
be clearly differentiated. We additionally conclude that while
the attention weights may not always report the correct ranking
of factors (for example, the two factors of Fold Towel – Visual
and the lesser two factors of Fold Towel – Spatial), the relative
ratio of factors remains accurate across all experiments, which
indicates a close match to the data ratio predicted by the All
strategy. In Fig. 6, we report results for the Latent Action and
conclude that it may be used to filter out the last ranked factor
in Fold Towel – Spatial and Mouse in Drawer. We observe a
similar trend in the ratio between factors, which suggests using
the All strategy.

We then ablate the different choices of k, where k denotes
the value used in the k-nearest-neighbors step. As shown in
Table V, performance is similar across different k values, with
FSC-Proxy (k = 1) performing slightly better in the K = 20
setting and FSC-Proxy (k = 5) performing slightly better in
the K = 100 setting. This indicates that FSC-Proxy is not
sensitive to the hyper-parameter k, and that k = 1 or k = 5
are generally good choices depending on the dataset size.

E. Ablating Different Initial Dataset Size and Prediction Hori-
zon

We further investigate whether FSC maintains strong per-
formance under different initial-dataset sizes. In Table VI,
we show that when the initial dataset contains 300 demon-
strations—double the 150-demonstration setting reported in
Table I—our method attains performance comparable with



TABLE IV: Ablation of data collection strategies. All the results are obtained using Group strategy for curve construction. We find that
Top generally performs the best, in both simulation tasks and real world tasks.

K=20 K=100

Task Top Top-Half All Top Top-Half All

Pick Place 62.0 62.0 67.5 62.0 62.0 70.2
Peg Insertion - Visual 22.2 22.2 29.5 45.3 45.3 41.8
Peg Insertion - Spatial 45.5 40.8 39.0 57.9 47.5 50.3
Pull Cube - Visual 68.4 68.4 55.3 83.5 83.5 49.8
Pull Cube - Spatial 76.3 70.6 69.5 83.4 75.3 79.1
Mouse in Drawer (π0) 58.3 33.3 31.3 66.7 29.2 33.3

TABLE V: Ablations on different choices of k for FSC-Proxy used for k-nearest-neighbor filtering. For Peg Insertion and Pull Cube Tool,
we show results with spatial factors. Overall, FSC-Proxy exhibits comparable performance under different k in most settings, indicating that
it is insensitive to the choice of hyperparameter k.

K = 20 K = 100

Method Pick Place Peg Insertion Pull Cube Tool Pick Place Peg Insertion Pull Cube Tool

FSC-Proxy (k = 1) 70.9 45.2 73.5 74.1 53.3 73.4
FSC-Proxy (k = 5) 68.6 45.5 41.7 73.2 55.0 86.6
FSC-Proxy (k = 10) 69.9 44.1 66.5 71.5 56.2 79.2

the baseline. This result is unsurprising, as task performance
appears to have already saturated in this data regime.

TABLE VI: Ablation on different initial dataset size on the Peg
Insertion - Visual task. Initial dataset contains 300 demos.

Top All Equal

K = 20 58.4 64.9 64.2
K = 100 49.3 53.4 52.5

In Table VII, we further examine how FSC performs under
different initial dataset size in another task, as well as how
accurately FSC predicts policy performance over an even
longer horizon. We evaluate settings with up to K = 500
additional demonstrations, starting from an initial dataset of
480 demonstrations (as opposed to the 240-demonstration
setting used in the main results). In the low-data regime
(K = 20), Top achieves the best performance. As the data
budget increases, All becomes superior, likely because the
factors emphasized by Top have already saturated, while All
distributes additional demonstrations across all factors accord-
ing to their estimated importance instead of exploiting only the
top combination. Interestingly, at K = 500 the performance of
All falls by roughly 10%. We hypothesize that this drop stems
from performance saturation in this regime, compounded by
substantial evaluation noise—particularly salient because the
peg-insertion task demands high precision.

F. Additional Curve Visualization

In this section, we visualize the factored scaling curves for
all experiments.

TABLE VII: Ablation on different initial dataset size on the Peg
Insertion - Spatial task. Initial dataset contains 480 demos.

Top Top-Half All Equal

K = 20 67.1 64.1 65.6 68.5
K = 40 66.2 63.4 68.9 63.4
K = 100 62.3 62.8 72.4 56.0
K = 250 55.4 55.3 69.1 61.4
K = 500 56.5 48.4 59.4 63.0

Fig. 7: Factored scaling curves for the simulation Pick Place task.
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Fig. 8: Factored scaling curves for the simulation Peg Insertion -
Visual task.
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Fig. 9: Factored scaling curves for the simulation Pull Cube Tool -
Visual task.
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Fig. 10: Factored scaling curves for the simulation Peg Insertion -
Spatial task.
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Fig. 11: Factored scaling curves for the simulation Pull Cube Tool -
Spatial task.

APPENDIX B
SIMULATION EXPERIMENTS

All experiments are done in Maniskill3 [45] on a Franka
Panda robot.

A. Task and Factor Description

We visualize all simulation tasks in Fig. 13. To collect
training data, we sample continuous-factor values according
to Table VIII. Note that robot pose and table height are varied
only in experiments that involve spatial factors. For tasks with
two cameras, we only vary the pose of the third-person view
camera. The object-pose range shown in Table VIII is used
for all data except the object-pose-variation subset, for which
we extend the range by an additional 25%.

For table-texture and background variations, we draw four
instances from a fixed texture dataset. We also prepare four
sets of distractors for the distractor-factor variation, each set
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Fig. 12: Factored scaling curves for the real Pick Place task. For
real world tasks, we do not obtain the ground truth test points for
visualization.

containing two objects (e.g., eggplant, cup, cucumber). All
visual factors are illustrated in Fig. 14.

Pick-Place: The robot must pick up a round toy tomato and
place it onto a metal plate. Success is defined as the tomato is
within 5cm to the center of the plate. For this task, we collect
training data by replaying real-world trajectories of the real
Pick Place task. We use two 192 × 192 RGB cameras: one
mounted on the wrist and one positioned off-table, pointing at
the table center. The initial dataset contains 150 demonstra-
tions, with 30 demos per factor.

Peg Insertion: The robot must pick up a rectangular peg
and insert it into a hole in a box, requiring high precision.
Success is defined as half of the peg is inserted into the hole.
Two 256× 256 RGB cameras are used: a wrist camera and a
third-person-view camera positioned off-table, pointing at the
table center. We adapt this task from the ManiSkill3 codebase
[45] and use a scripted policy to collect data. For the visual
task, the initial dataset includes 150 demos (30 per factor); for
the spatial task, it includes 240 demos (30 per factor).

Pull Cube Tool: The robot must first pick up an L-shaped
tool and then use it to pull a cube closer, beyond its unaided
reach. Success is defined as pulling the cube to within 45, cm
of the robot base. One 192 × 192 RGB camera is placed
off-table, pointing at the table center. We adapt this task from
the ManiSkill3 codebase [45] and use a scripted policy to
collect data. For the visual task, the initial dataset contains
150 demos (30 per factor); for the spatial task, it contains 240
demos (30 per factor).

B. Policy Implementation Details

All policies are trained with Diffusion Policy [8]. We use
ResNet-18 [19] as our vision encoder. Each policy undergoes
50000 gradient updates with a fixed batch size of 64, yielding
identical computational cost across datasets of different sizes.
RGB observations are augmented with standard color-jitter
during training. A complete list of hyper-parameters is pro-
vided in Table IX.

The robot state is an 8-dimensional vector comprising the
seven joint positions and a single gripper state. Actions are
specified as 8-dimensional absolute joint-position commands
sent to a absolute position controller.

C. Evaluation Details

Each policy is evaluated on ten discrete settings per factor,
different from the training settings. For every setting we exe-
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Fig. 13: Illustrations of simulation tasks.

TABLE VIII: Range for each continuous factor in meters for simulation tasks.

Factor Parameters Pick Place Peg Insertion Pull Cube Tool

Manipulated object pose
X-position [−0.2, 0.2] [−0.04, 0.04] [−0.04, 0.04]

Y-position [−0.2, 0.2] [−0.04, 0.04] [−0.08, 0.08]

Yaw - [−0.13, 0.13] -

Goal object pose
X-position [−0.15, 0.15] [−0.04, 0.04] [−0.04, 0.04]

Y-position [−0.2, 0.2] [−0.04, 0.04] [−0.08, 0.08]

Yaw - [−0.13, 0.13] [−0.13, 0.13]

Camera position
Eye-X [−0.05, 0.05] [−0.025, 0.025] [−0.05, 0.05]

Eye-Y [−0.1, 0.1] [−0.025, 0.025] [−0.05, 0.05]

Eye-Z [−0.1, 0.1] [−0.025, 0.025] [−0.05, 0.05]

Robot pose Initial joint angles - [−0.015, 0.015] [−0.01, 0.01]

Table height - - [−0.025, 0.025] [−0.025, 0.025]

TABLE IX: Hyper-parameters of simulation diffusion policy.

Model Dimension Dim Mults Time Embedding Dimension History Steps Horizon Action Steps

128 [1,2,4] 128 1 16 8

cute 60 trials with distinct initial states, resulting in N×10×60
rollouts—3000 trials in the visual-factor regime and 4800 trials
in the full-factor regime. Reported success rates are the mean
over all rollouts.

APPENDIX C
REAL ROBOT EXPERIMENT

A. Hardware Setup

We use a Franka Panda robot for our real robot experiment.
We use Logitech C920 webcam as our third person camera,
and RealSense D405 for the wrist camera. Both cameras use
resolution 192× 192. We use a Meta Quest 2 VR headset for
teleoperation to perform data collection.

B. Task and Factor Description

For training, we sample four pre-specified camera poses
for the third-person camera, as visualized in Fig. 15. We
use four textured and colored cloths to set up table texture
variations. We use four sets of distractors for the distractor
factor variation, where each set of distractor contains two
objects, e.g., bread, eggplant, grape, carrot, etc. For spatial
factor experiments, robot initial joint position is drawn from [-
0.015,+0.015] around its nominal joint positions. Table height
is omitted because it is difficult to change in our real world
experiment setting. We increase the range of object pose by
25% more for object pose variation. We visualize the visual
factor variations in Fig. 15.

Pick place: the robot needs to pick up a round tomato and
place it into a metal plate. The tomato position and the plate
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Fig. 14: Visualization of simulation environment visual factor variations.
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Fig. 15: Visualization of real environment factor variations.

position and randomly set in a 40cm×40cm grid. The rotation
of the plate is randomly set across training demonstrations and
evaluations. We consider an initial dataset size of 120 demos,
where we have 30 demos for each factor.

Fold Towel: the robot needs to grasp the end of a rectangu-
lar towel and fold it in half across the line bisecting the longer
side. We collect training data with the towel position randomly
set in a 5cm × 5cm grid and rotation between 30◦ to 60◦

counterclockwise relative to the vertical axis. For Fold Towel -
Visual, we consider an initial dataset size of 120 demos, where
we have 30 demos for each factor. For Fold Towel - Spatial,
we consider an initial dataset size of 180 demos, where we
have 30 demos for each factor.

Mouse in Drawer: the robot needs to open a drawer,
pick up a mouse, place it in the opened drawer, and close
the drawer. We collect training data with drawer and mouse
positions each randomly set within ∼ 10 cm and rotations

within ±10◦ of a fixed initial setup. We consider an initial
dataset size of 180 demos, where we have 30 demos for each
factor.

C. Policy Implementation Details
For Pick Place task, we use diffusion policy [8] to train

all the policies. We follow the same color jitter augmentation
protocol and hyper-parameters in Table IX.

For Fold Towel and Mouse in Drawer task, we fine-tune
π0 on our collected dataset. Specifically, we fine-tune from
π0− base model. We freeze the ViT and the language model,
and only train the action expert. We train all policies for 10,000
gradient steps for the same batch size 32, resulting in an equal
training cost regardless of dataset size.

We use absolute joint position control for all the tasks. The
input to the policy is camera images and a 8-dimensional state
vector, consisting of robot current joint angles and gripper
state. The output is a 8-dimensional vector, consisting of



robot target joint angles and target gripper state. The control
frequency is 15 Hz.

D. Evaluation Details

We evaluate each policy in difficult out-of-distribution cases
where we randomly draw values for each fi different from the
training environment.

For the Pick Place task, we evaluate each policy on 10 factor
value combinations, 2 trials per combination, for 20 trails in
total. We assign 0/1 success.

For Fold Towel task, we evaluate each policy on 4 factor
value combinations, 3 trials per value, for 12 trails in total.
We assign partial credit, where 0 stands for complete failure,
0.25 stands for underfold/overfold by more than 5 centimeters
or more than 20◦, 0.5 stands for underfold/overfold by less
than 5 centimeters and less than 20◦ but more than 3cm or
5◦, and 1 for complete success.

For Mouse in Drawer task, we evaluate each policy on 6
factor value combinations, 3 trials per value, for 18 trails in
total. We assign 0 for failing to open the drawer or pick up the
mouse, 0.25 for successfully picking up the mouse and failing
to put in the drawer, 0.5 for successfully putting the mouse
into the drawer but failing to close the drawer, 1 for complete
success.

The rollout is terminated early if the robot collides with
the table or enters any other hazardous state, and the trial is
marked as a failure. Each rollout is capped at 600 environment
steps; any trial that exceeds this limit is recorded as a failure.

E. Baseline Details

a) Re-Mix.: We train a discrete reference model with do-
main weights proportional to size and select the best reference
model by lowest validation loss. Next, we learn the domain
weights by applying robust optimization that minimizes worst
case excess loss between the learned and reference policy.
We take the average value of the domain weights across
robust optimization training and use it for downstream policy
training.

APPENDIX D
LIMITATIONS AND FUTURE WORK

We discuss the limitations of FSC and outline future work
to address them. Although we have shown that embedding-
space similarity provides a strong proxy for real-world suc-
cess—yielding curves that closely track and effectively guide
data collection—curves built with the actual success rate re-
main marginally more predictive. This superior fidelity comes
at a cost: obtaining real-world success rates demands on-
hardware evaluation and thus substantial human effort (roughly
10–20 trials per policy–factor pair). Future research should
therefore focus on further boosting the reliability of purely of-
fline metrics—such as embedding-space distance or simulation
success—so that practitioners can confidently construct scaling
curves without incurring expensive physical evaluations. In the
meantime, users can choose between lower-cost embedding

metrics and higher-accuracy real success rates, depending on
their resource constraints and precision requirements.

Second, as FSC requires extrapolating the existing curve,
the prediction at large K (large data budget) can be less precise
as shown in Table VII. For such settings, a more adaptive
version of FSC might be useful as the practitioner collects
additional data and re-evaluates the policy before deciding on
the next factors to collect data with.

Lastly, in this work we primarily consider settings where we
use a pre-trained policy or collect data from scratch. It would
be interesting to extend FSC to the retrieval setting [14, 13]
where a large dataset is given and factored scaling curves can
help determine which factors of data are more useful to policy
performance. FSC may also be applied to pre-training in this
setting.



TABLE X: Hyperparameters: Remix

Group Hyperparameter Value

Dataloader batch size 32

Action Head (Reference) head type DDPMActionHead
model class ConditionalUnet1D
down features (256, 512, 1024)
mid layers 2
time features 128
kernel size 5
clip sample 1.0
diffusion timesteps 100
variance type fixed small

Action Head (Remix) head type DiscreteActionHead
model class MLP
hidden dims (512, 512, 512)
dropout rate 0.4
activate final layer True
layer normalization True
number of action bins 48
bin type gaussian

LR Schedule (optax.warmup_cosine_decay_schedule) initial value 1 × 10−6

peak value 1 × 10−4

warm-up steps 1 000
decay steps 500 000
end value 1 × 10−6

Training / DoReMi domain-weight step size 0.2
smoothing 5 × 10−2
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