
Can Neural Networks Improve Classical Optimization
of Inverse Problems?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Finding the values of model parameters from data is an essential task in science.1

While iterative optimization algorithms like BFGS can find solutions to inverse2

problems with machine precision for simple problems, their reliance on local in-3

formation limits their effectiveness for complex problems involving local minima,4

chaos, or zero-gradient regions. This study explores the potential for overcoming5

these limitations by jointly optimizing multiple examples. To achieve this, we6

employ neural networks to reparameterize the solution space and leverage the7

training procedure as an alternative to classical optimization. This approach is as8

versatile as traditional optimizers and does not require additional information about9

the inverse problems, meaning it can be added to existing general-purpose opti-10

mization libraries. We evaluate the effectiveness of this approach by comparing it11

to traditional optimization on various inverse problems involving complex physical12

systems, such as the incompressible Navier-Stokes equations. Our findings reveal13

significant improvements in the accuracy of the obtained solutions.14

1 Introduction15

Estimating model parameters by solving inverse problems [Tar05] is a central task in scientific16

research, from detecting gravitational waves [GH18] to controlling plasma flows [MLA+19] to17

searching for neutrinoless double-beta decay [AAA+13, AAA+18]. Iterative optimization algorithms,18

such as limited-memory BFGS [LN89] or Gauss-Newton [GM78], are often employed for solving19

unconstrained parameter estimation problems [PTVF07]. These algorithms offer advantages such20

as ease of use, broad applicability, quick convergence, and high accuracy, typically limited only21

by noise in the observations and floating point precision. However, they face several fundamental22

problems that are rooted in the fact that these algorithms rely on local information, i.e., objective23

values L(xk) and derivatives close to the current solution estimate xk, such as the gradient ∂L/∂x|xk
24

and the Hessian matrix ∂2L/∂x2|xk
. Acquiring non-local information can be done in low-dimensional25

solution spaces, but the curse of dimensionality prevents this approach for high-dimensional problems.26

These limitations lead to poor performance or failure in various problem settings:27

• Local optima attract the optimizer in the absence of a counter-acting force. Although using a28

large step size or adding momentum to the optimizer can help to traverse small local minima,29

local optimizers are fundamentally unable to avoid this issue.30

• Flat regions can cause optimizers to become trapped along one or multiple directions.31

Higher-order solvers can overcome this issue when the Hessian only vanishes proportionally32

with the gradient, but all local optimizers struggle in zero-gradient regions.33

• Chaotic regions, characterized by rapidly changing gradients, are extremely hard to optimize.34

Iterative optimizers typically decrease their step size to compensate, which prevents the35

optimization from progressing on larger scales.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

In many practical cases, a set of observations is available, comprising many individual parameter37

estimation problems, e.g., when repeating experiments multiple times or collecting data over a time38

frame [CCC+19, DJO+18, GH18, AAA+13, MAL13] and, even in the absence of many recorded39

samples, synthetic data can be generated to supplement the data set. Given such a set of inverse40

problems, we pose the question: Can we find better solutions xi to general inverse problems by41

optimizing them jointly instead of individually, without requiring additional information about the42

problems?43

To answer this question, we employ neural networks to formulate a joint optimization problem.44

Neural networks as general function approximators are a natural and straightforward way to enable45

joint optimization of multiple a priori independent examples. They have been extensively used in46

the field of machine learning [GBCB16], and a large number of network architectures have been47

developed, from multilayer perceptrons (MLPs) [Hay94] to convolutional networks (CNNs) [KSH12]48

to transformers [VSP+17]. Overparameterized neural network architectures typically smoothly49

interpolate the training data [BHM18, BPL21], allowing them to generalize, i.e., make predictions50

about data the network was not trained on.51

It has recently been shown that this generalization capability or inductive bias benefits the optimization52

of individual problems with grid-like solution spaces by implicitly adding a prior to the optimization53

based on the network architecture [UVL18, HSDG19]. However, these effects have yet to be54

investigated for general inverse problems or in the context of joint optimization. We propose using55

the training process of a neural network as a drop-in component for traditional optimizers like BFGS56

without requiring additional data, configuration, or tuning. Instead of making predictions about new57

data after training, our objective is to solve only the problems that are part of the training set, i.e.,58

the training itself produces the solutions to the inverse problems, and the network is never used for59

inference. These solutions can also be combined with an iterative optimizer to improve accuracy.60

Unlike related machine learning applications [KAT+19, SGGP+20, SFK+21, RT21, SHT22, HKT21,61

SF18, RPM20, ALGS+22], where a significant goal is accelerating time-intensive computations, we62

accept a higher computational demand if the resulting solutions are more accurate.63

To quantify the gains in accuracy that can be obtained, we compare this approach to classical64

optimization as well as related techniques on four experiments involving difficult inverse problems:65

(i) a curve fit with many local minima, (ii) a billiards-inspired rigid body simulation featuring zero-66

gradient areas, (iii) a chaotic system governed by the Kuramoto–Sivashinsky equation and (iv) an67

incompressible fluid system that is only partially observable. We compare joint optimization to direct68

iterative methods and related techniques in each experiment.69

2 Related work70

Neural networks have become popular tools to model physical processes, either completely replac-71

ing physics solvers [KAT+19, SGGP+20, SFK+21, RT21] or improving them [TSSP17, UBF+20,72

KSA+21]. This can improve performance since network evaluations and solvers may be run at lower73

resolution while maintaining stability and accuracy. Additionally, it automatically yields a differen-74

tiable forward process which can then be used to solve inverse problems [SF18, RPM20, ALGS+22],75

similar to how style transfer optimizes images [GEB16].76

Alternatively, neural networks can be used as regularizers to solve inverse problems on sparse tomog-77

raphy data [LSAH20] or employed recurrently for image denoising and super-resolution [PW17].78

Recent works have also explored them for predicting solutions to inverse problems [HKT21, SHT22].79

In these settings, neural networks are trained offline and then used to infer solutions to new inverse80

problems, eliminating the iterative optimization process at test time.81

Underlying many of these approaches are differentiable simulations required to obtain gradients of82

the inverse problem. These can be used in iterative optimization or to train neural networks. Many83

recent software packages have demonstrated this use of differentiable simulations, with general84

frameworks [HAL+20, SC19, HKT20] and specialized simulators [TLQL21, LLK19].85

Physics-informed neural networks [RPK19] encode solutions to optimization problems in the network86

weights themselves. They model a continuous solution to an ODE or PDE and are trained by87

formulating a loss function based on the differential equation, and have been explored for a variety88

2

of directions [YZWX19, LPY+21, KGZ+21]. However, as these approaches rely on loss terms89

formulated with neural network derivatives, they do not apply to general inverse problems.90

3 Reparameterizing inverse problems with neural networks91

We consider a set of n similar inverse problems where we take similar to mean we can express all of92

them using a function F (ξi |xi) conditioned on a problem-specific vector xi with i = 1, ..., n. Each93

inverse problem then consists of finding optimal parameters ξ∗i such that a desired or observed output94

yi is reproduced, i.e.95

ξ∗i = arg minξiL(F (ξi |xi), yi), (1)

where L denotes an error measure, such as the squared L2 norm || · ||22. We assume that F is96

differentiable and can be approximately simulated, i.e., the observed output yi may not be reproducible97

exactly using F due to hidden information or stochasticity.98

A common approach to finding ξ∗i is performing a nonlinear optimization, minimizing L using99

the gradients ∂L
∂F

∂F
∂ξi

. In strictly convex optimization, many optimizers guarantee convergence to100

the global optimum in these circumstances. However, when considering more complex problems,101

generic optimizers often fail to find the global optimum due to local optima, flat regions, or chaotic102

regions. Trust region methods [Yua00] can be used on low-dimensional problems but scale poorly to103

higher-dimensional problems. Without further domain-specific knowledge, these methods are limited104

to individually optimizing all n inverse problems.105

Instead of improving the optimizer itself, we want to investigate whether better solutions can be found106

by jointly optimizing all problems. However, without domain-specific knowledge, it is unknown107

which parameters of ξi are shared among multiple problems. We therefore first reparameterize the108

full solution vectors ξi using a set of functions ξ̂i, setting ξi ≡ ξ̂i(θ) where θ represents a set of109

shared parameters. With this change, the original parameters ξi become functions of θ, allowing θ110

to be jointly optimized over all problems. Here, the different ξ̂i can be considered transformation111

functions mapping θ to the actual solutions ξi, similar to transforming Cartesian to polar coordinates.112

Second, we sum the errors of all examples to define the overall objective function L =
∑n

i=1 Li.113

For generality, all ξ̂i(θ) should be able to approximate arbitrary functions. We implement them as an114

artificial neural network N with weights θ: ξ̂i(θ) ≡ N (xi, yi | θ). Inserting these changes into Eq. 1115

yields the reparameterized optimization problem116

ξ∗i = ξ̂i(θ
∗) , θ∗ = argminθ

n∑
i=1

L(F (N (xi, yi | θ) |xi), yi). (2)

Net𝑥𝑖 , 𝑦𝑖

𝜃

Fwd. ℒ𝑖 𝑦𝑖

+

𝐿

𝜉𝑖

Figure 1: Reparameterized optimiza-
tion

We see that the joint optimization with reparameterization117

strongly resembles standard formulations of neural network118

training where (xi, yi) is the input to the network and F ◦119

L represents the effective loss function. However, from120

the viewpoint of optimizing inverse problems, the network121

is not primarily a function of (xi, yi) but rather a set of122

transformation functions of θ, each corresponding to a fixed123

and discrete (xi, yi). Figure 1 shows the computational graph124

corresponding to Eq. 2.125

While the tasks of optimizing inverse problems and learning126

patterns from data may seem unrelated at first, there is a127

strong connection between the two. The inductive bias of a chosen network architecture, which128

enables generalization, also affects the update direction of classical optimizers under reparame-129

terization. This can be seen most clearly if we consider gradient descent steps. There, individual130

optimization yields the updates ∆ξi = −η ∂Li

∂ξi
with η denoting the step size. After reparameterization,131

the updates are ∆θ = −η
∑

i
∂Li

∂ξi
∂N
∂θ . As we can see, ∂N

∂θ , which is independent of the specific132

example, now contributes a large part to the update direction, allowing for cross-talk between the133

different optimization problems.134

3

Despite the similarities to machine learning, the different use case of this setup leads to differences135

in the training procedure. For example, while overfitting is usually seen as undesirable in machine136

learning, we want the solutions to our inverse problems to be as accurate as possible, i.e. we want to137

”overfit” to the data. Consequently, we do not have to worry about the curvature at θ∗ and will not use138

mini-batches for training the reparameterization network.139

Supervised training. Our main goal is obtaining an optimization scheme that works exactly like140

classical optimizers, only requiring the forward process F , xi in the form of a numerical simulator,141

and desired outputs yi. However, if we additionally have a prior on the solution space P (ξ), we can142

generate synthetic training data {(xj , yi), ξj} with yj = F (xj , ξj) by sampling ξi ∼ P (ξ). Using143

this data set, we can alternatively train N with the supervised objective144

L̃ =
∑
j

||N (xj , yj)− ξj ||22. (3)

Since N has the same inputs and outputs, we can use the same network architecture as above145

and the solutions to the original inverse problems can be obtained as ξi = N (xi, yi). While this146

method requires domain knowledge in the form of the distributions P (x) and P (ξ), it has the distinct147

advantage of being independent of the characteristics of F . For example, if F is chaotic, directly148

optimizing through F can yield very large and unstable gradients, while the loss landscape of L̃ can149

still be smooth. However, we cannot expect the inferred solutions to be highly accurate as the network150

is not trained on the inverse problems we want to solve and, thus, has to interpolate. Additionally, this151

method is only suited to unimodal problems, i.e. inverse problems with a unique global minimum.152

On multimodal problems, the network cannot be prevented from learning an interpolation of possible153

solutions, which may result in poor accuracy.154

Refinement Obtaining a high accuracy on the inverse problems of interest is generally difficult155

when the training set size is limited, which can result in suboptimal solutions. This is especially156

problematic when the global minima are narrow and no direct feedback from F is available, as in the157

case of supervised training. To ensure that all learned methods have the potential to compete with158

gradient-based optimizers like BFGS, we pass the solution estimates for ξ to a secondary refinement159

stage where they are used as an initial guess for BFGS. The refinement uses the true gradients of F160

to find a nearby minimum of L.161

4 Experiments162

We perform a series of numerical experiments to test the convergence properties of the reparameterized163

joint optimization. An overview of the experiments is given in Tab. 1 and additional details of all164

performed experiments can be found in Appendix B. We run each experiment and method multiple165

times, varying the neural network initializations and data sets to obtain statistically significant results.166

To test the capabilities of the algorithms as a black-box extension of generic optimizers, all experi-167

ments use off-the-shelf neural network architectures and only require hyperparameter tuning in terms168

of decreasing the Adam [KB15] learning rate until stable convergence is reached. We then compare169

the reparameterized optimization to BFGS [LN89], a popular classical solver for unconstrained170

optimization problems, and to the neural adjoint method, which has been shown to outperform171

various other neural-network-based approaches for solving inverse problems [RPM20].172

Neural adjoint The neural adjoint method relies on an approximation of the forward process173

by a surrogate neural network S(xi, ξi | θ). We first train the surrogate on an independent data set174

Table 1: Overview of numerical experiments.

Experiment ∇ = 0 areas Chaotic xi known P (ξ) known

Wave packet localization No No No Yes
Billiards Yes No Yes No
Kuramoto–Sivashinsky No Yes Yes Yes
Incompr. Navier-Stokes No Yes No Yes

4

generated from the same distribution as the inverse problems and contains many examples. We use175

the same examples as for the supervised approach outlined above but switch the labels to match the176

network design, {(xi, ξi), yi}. After training, the weights θ are frozen and BFGS is used to optimize177

ξi on the proxy process F̃ (ξi |xi) = S(ξi, xi) +B(ξi) where B denotes a boundary loss term (see178

Appendix A). With the loss function L from Eq. 1, this yields the effective objective L(F (ξi |xi), yi)179

for solving the inverse problems. Like with the other methods, the result of the surrogate optimization180

is then used as a starting point for the refinement stage described above.181

4.1 Wave packet localization182

First, we consider a 1D curve fit. A noisy signal u(t) containing a wave packet centered at t0 is183

measured, resulting in the observed data u(t) = A · sin(t− t0) · exp(−(t− t0)
2/σ2) + ϵ(t) where184

ϵ(t) denotes random noise and t = 1, ..., 256. An example waveform is shown in Fig. 2a. For fixed185

A and σ, the task is to locate the wave packed, i.e. retrieve t0. This task is difficult for optimization186

algorithms because the loss landscape (Fig. 2b) contains many local optima that must be traversed.187

This results in alternating gradient directions when traversing the parameter space, with maximum188

magnitude near the correct solution.189

0 100 200
X

1.0

0.5

0.0

0.5

(a)
Signal

0.2 0.4 0.6 0.8
t0

20

0

20

(b)

 / 50

101 102 103

Steps

101

8 × 100

9 × 100

Lo
ss

(c)

BFGS
Reparameterized
Supervised
Neural Adjoint

2 8 32 128
Dataset Size

0

2

4

6

8

10

12
(d)

Figure 2: Wave packet localization. (a) Example waveform u(t), (b) corresponding loss and gradient
landscape for t0, (c) optimization curves without refinement, (d) refined loss L/n by the number of
examples n, mean and standard deviation over multiple network initializations and data sets.

We generate the inverse problems by sampling random t0 and ϵ(t) from ground truth prior distributions190

and simulating the corresponding outputs u(t) = Fϵ(t) | t0). Because the noise distribution ϵ(t) is191

not available to any of the optimization methods, a perfect solution with L = 0 is impossible.192

Fig. 2c shows the optimization process. Iterative optimizers like BFGS get stuck in local minima193

quickly on this task. In most examples, BFGS moves a considerable distance in the first iteration and194

then quickly halts. However, due to the oscillating gradient directions, this initial step is likely to195

propel the estimate away from the global optimum, leading many solutions to lie further from the196

actual optimum than the initial guess.197

The neural adjoint method finds better solutions than BFGS for about a third of examples for n = 256198

(see Tab. 2). In many cases, the optimization progresses towards the boundary and gets stuck once199

the boundary loss B balances the gradients from the surrogate network.200

To reparameterize the problem, we create a neural network N that maps the 256 values of the observed201

signal u(t) to the unknown value t0. We chose a standard architecture inspired by image classification202

networks [SZ14] and train it according to Eq. 2. The network consists of five convolutional layers203

with ReLU activation functions, batch normalization, and max-pooling layers, followed by two204

fully-connected layers. During the optimization, the estimate of t0 repeatedly moves from minimum205

to minimum until settling after around 500 iterations. Like BFGS, most examples do not converge to206

the global optimum and stop at a local minimum instead. However, the cross-talk between different207

examples, induced by the shared parameters θ and the summation of the individual loss functions,208

regularizes the movement in t0 space, preventing solutions from moving far away from the global209

optimum. Meanwhile, the feedback from the analytic gradients of F ensures that each example finds210

a locally optimal solution. Overall, this results in around 80% of examples finding a better solution211

than BFGS.212

For supervised training of N , we use the same training data set as for the neural adjoint method. This213

approach’s much smoother loss landscape lets all solution estimates progress close to the ground214

5

truth. However, lacking the gradient feedback from the forward process F , the inferred solutions215

are slightly off from the actual solution and, since the highest loss values are close to the global216

optimum, this raises the overall loss during training even though the solutions are approaching the217

global optima. This phenomenon gets resolved with solution refinement using BFGS.218

Fig. 2d shows the results for different numbers of inverse problems and training set sizes n. Since219

BFGS optimizes each example independently, the data set size has no influence on its performance.220

Variances in the mean final loss indicate that the specific selection of inverse problems may be slightly221

easier or harder to solve than the average. The neural adjoint method and reparameterized optimization222

both perform better than BFGS with the reparameterized optimization producing lower loss values.223

However, both do not scale with n in this example. This feature can only be observed with supervised224

training whose solution quality noticeably increases with n. This is due to the corresponding increase225

in training set size, which allows the model to improve generalization and does not depend on226

the number of tested inverse problems. For n ≥ 32, supervised training in combination with the227

above-mentioned solution refinement consistently outperforms all other methods.228

A detailed description of the network architecture along with additional learning curves, parameter229

evolution plots as well as the performance on further data set sizes n can be found in Appendix B.1.230

4.2 Billiards231

Next, we consider a rigid-body setup inspired by differentiable billiards simulations of previous work232

[HAL+20]. The task consists of finding the optimal initial velocity v⃗0 of a cue ball so it hits another233

ball, imparting momentum in a non-elastic collision to make the second ball come to rest at a fixed234

target location. This setup is portrayed in Fig. 3a and the corresponding loss landscape for a fixed x235

velocity in Fig. 3b. A collision only occurs if v⃗0 is large enough and pointed towards the other ball.236

Otherwise, the second ball stays motionless, resulting in a constant loss value and ∂L
∂v⃗0

= 0.237

0.0 0.5 1.0 1.5 2.0
X

0.0

0.5

Y

Cue

Ball

Target

(a)

3 2 1 0
Cue Vy

4

2

0

2

4

6

(b)

101 102 103

Steps

10 2

10 1

100

Lo
ss

(c)

BFGS
Reparameterized
Supervised
Neural Adjoint

4 16 64 256
Dataset Size

0.0

0.1

0.2

0.3

0.4

(d)

Figure 3: Billiards experiment. (a) Task: the cue ball must hit the other ball so that it comes to rest
at the target, (b) corresponding loss and gradient landscape for vy, (c) optimization curves without
refinement, (d) refined loss L/n by number of examples n, mean and standard deviation over multiple
network initializations and data sets.

This property prevents classical optimizers from converging if they hit such a region in the solution238

space. The optimization curves are shown in Fig. 3c. BFGS only converges for those examples where239

the cue ball already hits the correct side of the other ball.240

For reparameterization, we employ a fully-connected neural network N with three hidden layers241

using Sigmoid activation functions and positional encoding. The joint optimization with N drastically242

improves the solutions. While for n ≤ 32 only small differences to BFGS can be observed, access to243

more inverse problems lets gradients from some problems steer the optimization of others that get244

no useful feedback. This results in almost all problems converging to the solution for n ≥ 64 (see245

Fig. 3d).246

In this experiment, the distribution of the solutions P (v⃗0) is not available as hitting the target precisely247

requires a specific velocity v⃗0 that is unknown a-priori. We can, however, generate training data with248

varying v⃗0 and observe the final positions of the balls, then train a supervised N as well as a surrogate249

network for the neural adjoint method on this data set. However, this is less efficient as most of the250

examples in the data set do not result in an optimal collision.251

6

The neural adjoint method fails to approach the true solutions and instead gets stuck on the training252

data boundary in solution space. Likewise, the supervised model cannot accurately extrapolate the253

true solution distribution from the sub-par training set.254

4.3 Kuramoto–Sivashinsky equation255

The Kuramoto–Sivashinsky (KS) equation, originally developed to model the unstable behavior of256

flame fronts [Kur78], models a chaotic one-dimensional system, u̇(t) = −∂2u
∂x2 − ∂4u

∂x4 − u · ∇u. We257

consider a two-parameter inverse problem involving the forced KS equation with altered advection258

strength,259

u̇(t) = α ·G(x)− ∂2u

∂x2
− ∂4u

∂x4
− β · u · ∇u,

where G(x) is a fixed time-independent forcing term and α, β ∈ R denote the unknown parameters260

governing the evolution. Each inverse problem starts from a randomly generated initial state u(t = 0)261

and is simulated until t = 25, by which point the system becomes chaotic but is still smooth enough262

to allow for gradient-based optimization. We constrain α ∈ [−1, 1], β ∈ [12 ,
3
2] to keep the system263

numerically stable. Fig. 4a shows example trajectories of this setup and the corresponding gradient264

landscape of ∂L
∂β ∥α=α∗ for the true value of α is shown in Fig. 4b.265

0 20 40
Time

0

5

10

15

20

X

(a)

3 2 1 0

0

200

400

(b)

 / 5

101 102 103

Steps

102

Lo
ss

(c)
BFGS
Reparameterized
Supervised
Neural Adjoint

4 8 32 128
Dataset Size

0

10

20

30

40
(d)

4

2

0

2

4

Figure 4: Kuramoto–Sivashinsky experiment. (a) Example trajectory, (b) corresponding loss and
gradient landscape for β, (c) optimization curves without refinement, (d) refined loss L/n by number
of examples n, mean and standard deviation over multiple network initializations and data sets.

Fig. 4c shows the optimization curves for finding α, β. Despite the complex nature of the loss266

landscape, BFGS manages to find the correct solution in about 60% of cases. The reparameterized267

optimization, based on a similar network architecture as for the wavepacket experiment but utilizing268

2D convolutions, finds the correct solutions in over 80% of cases but, without refinement, the accuracy269

stagnates far from machine precision. Refining these solutions with BFGS, as described above, sees270

the accuracy of these cases decrease to machine precision in 4 to 17 iterations, less than the 12 to 22271

that BFGS requires when initialized from the distribution mean E[P (ξ)].272

Supervised training with refinement produces better solutions in 58% of examples, averaged over273

the shown n. The unrefined solutions benefit from larger n on this example because of the large274

number of possible observed outputs that the KS equation can produce for varying α, β. At n = 2,275

all unrefined solutions are worse than BFGS while for n ≥ 64 around 20% of problems find better276

solutions. With refinement, these number jump to 50% and 62%.277

This property also makes it hard for a surrogate network, required by the neural adjoint method,278

to accurately approximate the KS equation, causing the following adjoint optimization to yield279

inaccurate results that fail to match BFGS even after refinement.280

4.4 Incompressible Navier-Stokes281

Incompressible Newtonian fluids are described by the Navier-Stokes equations,282

u̇(x⃗, t) = ν∇2u− u · ∇u−∇p s.t. ∇2p = ∇ · v

with ν ≥ 0. As they can result in highly complex dynamics [BB67], they represent a particularly283

challenging test case, which is relevant for a variety of real-world problems [Pop00]. We consider284

7

a setup similar to particle imaging velocimetry [Gra97] in which the velocity in the upper half of285

a two-dimensional domain with obstacles can be observed. The velocity is randomly initialized in286

the whole domain and a localized force is applied near the bottom of the domain at t = 0. The task287

is to reconstruct the position x0 and initial velocity v⃗0 of this force region by observing the initial288

and final velocity field only in the top half of the domain. The initial velocity in the bottom half is289

unknown and cannot be recovered, making a perfect fit impossible. Fig. 5a,b show an example initial290

and final state of the system. The final velocity field is measured at t = 56 by which time fast eddies291

have dissipated significantly.292

0 25 50 75 100
X

0

20

40

60

80

100

Y

(a)

25 50 75
X

20

40

60

80

Y

(b)

101 102 103

Steps

102

Lo
ss

(c)
BFGS
Reparameterized
Supervised
Neural Adjoint

4 16 64 128
Dataset Size

0

20

40

60

80

100

120

(d)

3

2

1

0

1

2

0.4

0.2

0.0

0.2

0.4

Figure 5: Fluid experiment. (a,b) Example initial and final velocity fields, obstacles in gray. Only the
upper half, y ≥ 50, is observed. (c) Optimization curves without refinement, (d) refined loss L/n by
the number of examples n, mean and standard deviation over multiple network initializations and
data sets.

Fig. 5c shows the optimization curves. On this problem, BFGS converges to some optimum in all293

cases, usually within 10 iterations, sometimes requiring up to 40 iterations. However, many examples294

get stuck in local optima.295

For joint optimization, we reparameterize the solution space using a network architecture similar296

to the previous experiment, featuring four 2D convolutional layers and two fully-connected layers.297

For all tested n, the reparameterized optimization produces larger mean loss values than BFGS,298

especially for small n. This results from about 10% of examples seeing higher than average loss299

values. Nonetheless, 66.7% of the inverse problems are solved more accurately than BFGS on average300

for n > 4.301

The neural adjoint method nearly always converges to solutions within the training set parameter302

space, not relying on the boundary loss. With solution refinement, this results in a mean loss that303

seems largely independent of n and is slightly lower than the results from direct BFGS optimization.304

However, most of this improvement comes from the secondary refinement stage which runs BFGS on305

the true F . Without solutions refinement, the neural adjoint method yields inaccurate results, losing306

to BFGS in 98.2% of cases.307

Supervised training does not suffer from examples getting stuck in a local minimum early on. The308

highest-loss solutions, which contribute the most to L, are about an order of magnitude better than309

the worst BFGS solutions, leading to a much smaller total loss for n ≥ 16. With solution refinement,310

64%, 73% and 72% of examples yield a better solution than BFGS for n = 16, 64, 128, respectively.311

5 Discussion312

In our experiments, we have focused on relatively small data sets of between 2 and 256 examples to313

quantify the worst-case for machine learning methods and observe trends. Using off-the-shelf neural314

network architectures and optimizers with no tuning to the specific problem, joint optimization finds315

better solutions than BFGS in an average of 69% of tested problems. However, to achieve the best316

accuracy, the solution estimates must be passed to a classical optimizer for refinement as training317

the network to this level of accuracy would take an inordinate amount of time and large data sets.318

Tuning the architectures to the specific examples could lead to further improvements in performance319

but would make the approach domain-dependent.320

When training data including ground truth solutions are available or can be generated, supervised321

learning can sidestep many difficulties that complex loss landscapes pose, such as local minima,322

8

Table 2: Fraction of inverse problems for which neural-network-based methods with refinement find
better or equal solutions than BFGS. Mean over multiple seeds and all n shown in subfigures (d).

Experiment Reparameterized Supervised Neural Adjoint
Better Equal Better Equal Better Equal

Wave packet fit 86.0% 1.8% 65.1% 14.4% 40.2% 47.4%
Billiards 61.7% 9.0% 27.0% 27.2% 1.6% 98.4%
Kuramoto–Sivashinsky 62.3% 0.0% 57.7% 0.0% 23.9% 62.2%
Incompr. Navier-Stokes 64.1% 0.0% 66.2% 0.1% 56.9% 0.1%

alternating gradient directions, or zero-gradient areas. This makes supervised learning another323

promising alternative to direct optimization, albeit a more involved one.324

The neural adjoint method, on the other hand, yields only very minor improvements over BFGS325

optimization in our experiments, despite the surrogate network successfully learning to reproduce the326

training data. This is not surprising as the neural adjoint method tries to approximate the original327

loss landscape which is often difficult to optimize. Improvements over BFGS must therefore come328

from regularization effects and exposure to a larger part of the solution space. The fact that the neural329

adjoint method with solution refinement produces similar results almost independent of the number330

of data points n shows that the joint optimization has little benefit here. Instead, the refinement stage,331

which treats all examples independently, dominates the final solution quality. Note that the neural332

adjoint method is purely data-driven and does not require an explicit form for the forward process F ,333

making it more widely applicable than the setting considered here.334

Tab. 2 summarizes the improvements over classical optimizations for all methods. A corresponding335

table without solution refinement can be found in Appendix B. Considering that reparameterized336

optimization is the only network-based method that does not require domain-specific information337

and nevertheless shows the biggest improvement overall, we believe it is the most attractive variant338

among the three learned versions. Inverse problems for which reparameterized training does not339

find good solutions are easy to identify by their outlier loss values. In these cases, one could simply340

compare the solution to a reference solution obtained via direct optimization, and choose the best341

result.342

Limitations We have only considered unconstrained optimization problems in this work, enforcing343

hard constraints by running bounded parameters through a scaled tanh function which naturally344

clamps out-of-bounds values in a differentiable manner.345

The improved solutions found by joint optimization come with an increased computational cost346

compared to direct optimization. The time it took to train the reparameterization networks was 3x to347

6x longer for the first three experiments and 22x for the fluids experiment.348

6 Conclusions and outlook349

We have investigated the effects of joint optimization of multiple inverse problems by reparameterizing350

the solution space using a neural network, showing that joint optimization can often find better351

solutions than classical optimization techniques. Since our reparameterization approach does not352

require any more information than classical optimizers, it can be used as a drop-in replacement. This353

could be achieved by adding a function or option to existing optimization libraries that internally354

sets up a standard neural network with the required number of inputs and outputs and runs the355

optimization, hiding details of the training process, network architecture, and hyperparameters from356

the user while making the gains in optimization accuracy conveniently accessible. To facilitate this,357

we will make the full source code publicly available.358

From accelerating matrix multiplications [FBH+22] to solving systems of linear equations [CHL+23,359

SSHR19], it is becoming increasingly clear that machine learning methods can be applied to purely360

numerical problems outside of typical big data settings, and our results show that this also extends to361

solving nonlinear inverse problems.362

9

References363

[AAA+13] M Agostini, M Allardt, E Andreotti, AM Bakalyarov, M Balata, I Barabanov, M Barnabé364

Heider, N Barros, L Baudis, C Bauer, et al. Pulse shape discrimination for gerda phase365

i data. The European Physical Journal C, 73(10):2583, 2013.366

[AAA+18] Craig E Aalseth, N Abgrall, Estanislao Aguayo, SI Alvis, M Amman, Isaac J Arnquist,367

FT Avignone III, Henning O Back, Alexander S Barabash, PS Barbeau, et al. Search368

for neutrinoless double-β decay in ge 76 with the majorana demonstrator. Physical369

review letters, 120(13):132502, 2018.370

[ALGS+22] Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-371

Gonzalez, Peter Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using372

differentiable learned simulators. arXiv preprint arXiv:2202.00728, 2022.373

[BB67] Cx K Batchelor and George Keith Batchelor. An introduction to fluid dynamics. Cam-374

bridge university press, 1967.375

[BHM18] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk376

bounds for classification and regression rules that interpolate. Advances in neural377

information processing systems, 31, 2018.378

[BPL21] Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension379

always amounts to extrapolation. arXiv preprint arXiv:2110.09485, 2021.380

[CCC+19] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali381

Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical382

sciences. Reviews of Modern Physics, 91(4):045002, 2019.383

[CHL+23] Salvatore Calì, Daniel C Hackett, Yin Lin, Phiala E Shanahan, and Brian Xiao. Neural-384

network preconditioners for solving the dirac equation in lattice gauge theory. Physical385

Review D, 107(3):034508, 2023.386

[DJO+18] S Delaquis, MJ Jewell, I Ostrovskiy, M Weber, T Ziegler, J Dalmasson, LJ Kaufman,387

T Richards, JB Albert, G Anton, et al. Deep neural networks for energy and position388

reconstruction in exo-200. Journal of Instrumentation, 13(08):P08023, 2018.389

[FBH+22] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-390

Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian391

Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algo-392

rithms with reinforcement learning. Nature, 610(7930):47–53, 2022.393

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning.394

MIT press Cambridge, 2016.395

[GEB16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using396

convolutional neural networks. In Proceedings of the IEEE conference on computer397

vision and pattern recognition, pages 2414–2423, 2016.398

[GH18] Daniel George and EA Huerta. Deep learning for real-time gravitational wave detection399

and parameter estimation: Results with advanced ligo data. Physics Letters B, 778:64–400

70, 2018.401

[GM78] Philip E Gill and Walter Murray. Algorithms for the solution of the nonlinear least-402

squares problem. SIAM Journal on Numerical Analysis, 15(5):977–992, 1978.403

[Gra97] Ian Grant. Particle image velocimetry: a review. Proceedings of the Institution of404

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1):55–405

76, 1997.406

[HAL+20] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-407

Kelley, and Frédo Durand. Difftaichi: Differentiable programming for physical simula-408

tion. International Conference on Learning Representations (ICLR), 2020.409

10

[Hay94] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,410

1994.411

[HKT20] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differ-412

entiable physics. In International Conference on Learning Representations (ICLR),413

2020.414

[HKT21] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Scale-invariant learning by physics415

inversion. arXiv preprint arXiv:2109.15048, 2021.416

[HSDG19] Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization417

improves structural optimization. arXiv preprint arXiv:1909.04240, 2019.418

[KAT+19] Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross,419

and Barbara Solenthaler. Deep fluids: A generative network for parameterized fluid420

simulations. Computer Graphics Forum, 2019.421

[KB15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In422

International Conference on Learning Representations (ICLR), 2015.423

[KGZ+21] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W424

Mahoney. Characterizing possible failure modes in physics-informed neural networks.425

Advances in Neural Information Processing Systems, 34:26548–26560, 2021.426

[KSA+21] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner,427

and Stephan Hoyer. Machine learning accelerated computational fluid dynamics.428

arXiv:2102.01010 [physics], 2021.429

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with430

deep convolutional neural networks. In Advances in Neural Information Processing431

Systems, 2012.432

[Kur78] Yoshiki Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoretical433

Physics Supplement, 64:346–367, 1978.434

[LLK19] Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for435

inverse problems. In Advances in Neural Information Processing Systems, pages436

771–780, 2019.437

[LN89] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale438

optimization. Mathematical programming, 45(1-3):503–528, 1989.439

[LPY+21] Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and440

Steven G Johnson. Physics-informed neural networks with hard constraints for in-441

verse design. SIAM Journal on Scientific Computing, 43(6):B1105–B1132, 2021.442

[LSAH20] Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Nett: Solving443

inverse problems with deep neural networks. Inverse Problems, 36(6):065005, 2020.444

[MAL13] Kohta Murase, Markus Ahlers, and Brian C Lacki. Testing the hadronuclear origin of445

pev neutrinos observed with icecube. Physical Review D, 88(12):121301, 2013.446

[MLA+19] Rajesh Maingi, Arnold Lumsdaine, Jean Paul Allain, Luis Chacon, SA Gourlay,447

CM Greenfield, JW Hughes, D Humphreys, V Izzo, H McLean, et al. Summary448

of the fesac transformative enabling capabilities panel report. Fusion Science and449

Technology, 75(3):167–177, 2019.450

[Pop00] Stephen Pope. Turbulent Flows. Cambridge University Press, 2000.451

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.452

Numerical Recipes. Cambridge University Press, 3 edition, 2007.453

[PW17] Patrick Putzky and Max Welling. Recurrent inference machines for solving inverse454

problems. arXiv preprint arXiv:1706.04008, 2017.455

11

[RPK19] Maziar Raissi, Paris Perdikaris, and George Karniadakis. Physics-informed neural456

networks: A deep learning framework for solving forward and inverse problems in-457

volving nonlinear partial differential equations. Journal of Computational Physics,458

378:686–707, 2019.459

[RPM20] Simiao Ren, Willie Padilla, and Jordan Malof. Benchmarking deep inverse models460

over time, and the neural-adjoint method. Advances in Neural Information Processing461

Systems, 33:38–48, 2020.462

[RT21] Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a463

resnet pretrained on climate simulations: A new model for weatherbench. Journal of464

Advances in Modeling Earth Systems, 13(2):e2020MS002405, 2021.465

[SC19] Samuel S Schoenholz and Ekin D Cubuk. Jax, md: End-to-end differentiable, hardware466

accelerated, molecular dynamics in pure python. arXiv:1912.04232, 2019.467

[SF18] Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural468

networks. In Conference on Robot Learning, pages 317–335, 2018.469

[SFK+21] Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias470

Pfaff, Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-471

Gonzalez. Learned coarse models for efficient turbulence simulation. arXiv preprint472

arXiv:2112.15275, 2021.473

[SGGP+20] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,474

and Peter Battaglia. Learning to simulate complex physics with graph networks. In475

International conference on machine learning, pages 8459–8468. PMLR, 2020.476

[SHT22] Patrick Schnell, Philipp Holl, and Nils Thuerey. Half-inverse gradients for physical477

deep learning. arXiv preprint arXiv:2203.10131, 2022.478

[SSHR19] Johannes Sappl, Laurent Seiler, Matthias Harders, and Wolfgang Rauch. Deep learning479

of preconditioners for conjugate gradient solvers in urban water related problems. arXiv480

preprint arXiv:1906.06925, 2019.481

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-482

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.483

[Tar05] Albert Tarantola. Inverse problem theory and methods for model parameter estimation.484

SIAM, 2005.485

[TLQL21] Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids486

with solid coupling for learning and control. In Proceedings of the AAAI Conference on487

Artificial Intelligence, volume 35(7), pages 6138–6146, 2021.488

[TSSP17] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Acceler-489

ating eulerian fluid simulation with convolutional networks. In Proceedings of Machine490

Learning Research, pages 3424–3433, 2017.491

[UBF+20] Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-492

in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers.493

Advances in Neural Information Processing Systems, 2020.494

[UVL18] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Pro-495

ceedings of the IEEE conference on computer vision and pattern recognition, pages496

9446–9454, 2018.497

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N498

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in499

Neural Information Processing Systems, pages 5998–6008, 2017.500

[Yua00] Ya-xiang Yuan. A review of trust region algorithms for optimization. In Iciam, volume501

99(1), pages 271–282, 2000.502

[YZWX19] XIA Yang, Suhaib Zafar, J-X Wang, and Heng Xiao. Predictive large-eddy-simulation503

wall modeling via physics-informed neural networks. Physical Review Fluids,504

4(3):034602, 2019.505

12

	Introduction
	Related work
	Reparameterizing inverse problems with neural networks
	Experiments
	Wave packet localization
	Billiards
	Kuramoto–Sivashinsky equation
	Incompressible Navier-Stokes

	Discussion
	Conclusions and outlook

