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Abstract

Final-answer-based metrics are commonly used for evaluating large lan-1

guage models (LLMs) on math word problems, often taken as proxies for2

reasoning ability. However, such metrics conflate two distinct sub-skills:3

abstract formulation (capturing mathematical relationships using expres-4

sions) and arithmetic computation (executing the calculations). Through5

a disentangled evaluation on GSM8K and SVAMP, we find that the final-6

answer accuracy of Llama-3 and Qwen2.5 (1B-32B) without CoT is over-7

whelmingly bottlenecked by the arithmetic computation step and not by8

the abstract formulation step. Contrary to the common belief, we show9

that CoT primarily aids in computation, with limited impact on abstract10

formulation. Mechanistically, we show that these two skills are composed11

conjunctively even in a single forward pass without any reasoning steps12

via an abstract-then-compute mechanism: models first capture problem13

abstractions, then handle computation. Causal patching confirms these14

abstractions are present, transferable, composable, and precede computa-15

tion. These behavioural and mechanistic findings highlight the need for16

disentangled evaluation to accurately assess LLM reasoning and to guide17

future improvements.118

1 Introduction19

Large language models (LLMs) have demonstrated impressive progress on various math20

problem datasets (Cobbe et al., 2021; Hendrycks et al., 2021b; Patel et al., 2021), often21

leveraging Chain-of-Thought (CoT) prompting (Wei et al., 2022). Despite the availability of22

step-by-step reasoning chains, standard evaluation predominantly relies on final-answer23

accuracy (comparing the model’s final numerical output against a gold answer), which24

reduces model performance to a single metric (Liu et al., 2024; Opedal et al., 2024). This25

reduction limits the possible insights when diagnosing LLMs’ reasoning abilities, especially26

in zero-shot scenarios without CoT. When an LLM fails to produce the correct answer, is it27

due to “reasoning deficits”, or could it be a calculation error?28

To investigate this, we propose a disentangled evaluation framework that separately mea-29

sures two core skills of mathematical problem-solving (See Figure 1): (1) abstract formula-30

tion (hereafter, abstraction) — the ability to identify relevant quantities and translate the31

natural language problem into its underlying mathematical relationships (e.g., 36 + 47 or32

x + y in Figure 1); and (2) arithmetic computation (hereafter, computation) — the capacity33

to calculate the final answer from that expression (e.g., evaluate 36 + 47 to 83).34

Using this disentangled evaluation on GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al.,35

2021) with Llama-3 and Qwen-2.5 models (1B-32B), we find that even without CoT: (i)36

models surprisingly perform better at abstraction than computation, despite the former’s37

perceived conceptual complexity. (ii) if deriving the final answer in math word problems de-38

pends on these two skills conjunctively, final-answer accuracy alone may give a misleading39

picture of models’ reasoning abilities in math word problems. Moreover, we show that CoT40

1Code and data will be made publicly available upon acceptance.
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 Emma has 5 apples, she buys another 3.        
How many apples does Emma have now ? 

 Emma has 36 apples, she buys another 47.        
 How many apples does Emma have now?

x + y 

82
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Mathematical Reasoning

Abstract Formulation

36 + 47

Arithmetic Computation

  Emma has 36 apples, she buys another 47.    
  How many apples does Emma have now?

  Emma has x apples, she buys another y. 
  How many apples does Emma have now?

What is the value of 36 + 47?
36 + 47 =?
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Figure 1: Left (Disentangled evaluation framework): Final-answer accuracy obscures
reasoning ability due to conflating abstract formulation and arithmetic computation. Right
(Abstract-then-Compute Mechanism in Llama-3 8B): (a) Residual stream at the last token
position shows that models first capture problem abstraction (L13-14), followed by computa-
tion (L18). (b) Same as (a), but one critical layer output is patched with a different symbolic
abstraction (e.g., x− y), causally changing the computation from 5 + 3 = 8 to 5− 3 = 2.

primarily improves computation, with limited gains in abstraction, further demonstrating41

the value of disentangled evaluation.42

While these behavioural findings suggest that models can formulate abstractions without43

explicit CoT when separately prompted, it remains unclear whether abstraction and com-44

putation are composed conjunctively when deriving the final answer during single-pass45

inference. To explore this, we move beyond outcome-based evaluation, and conduct mecha-46

nistic interpretability analyses. Using logit attribution and activation patching, we identify47

a consistent and sequential abstract-then-compute mechanism (see Figure 1a). Moreover,48

cross-prompt patching provides evidence that models do form abstractions internally inde-49

pendent of the surface form (numerical or symbolic, see Figure 1b): when these symbolic50

abstractions (e.g. x − y) are transferred into a different problem, they are utilized and51

composed with the subsequent computation stages, altering the final answer.52

Contributions: (i) Through disentangled evaluation, we show that without CoT, mod-53

els exhibit stronger reasoning ability than final-answer accuracy suggests, and that CoT54

primarily aids calculation. (ii) Using mechanistic interpretability, we uncover an abstract-55

then-compute mechanism in a single-pass generation, where abstractions are transferrable56

across problem variants. Collectively, our findings suggest an alternative narrative: poor57

final-answer accuracy without CoT (Wei et al., 2022; Sprague et al., 2025), or performance58

declines on problem variants (Zhang et al., 2024a; Shi et al., 2023; Mirzadeh et al., 2025), can59

stem from arithmetic errors rather than reasoning deficits.60

2 Related work61

Mathematical reasoning evaluation Existing math problem-solving benchmarks spans62

elementary word problems (Cobbe et al., 2021; Patel et al., 2021; Amini et al., 2019; Miao63

et al., 2020; Ling et al., 2017; Koncel-Kedziorski et al., 2016; Shi et al., 2015) to higher levels64

(Hendrycks et al., 2021b;a; Zhong et al., 2024; Zhang et al., 2023; He et al., 2024). Early65

datasets paired expressions with answers, but evaluation largely focused on final-answer-66

based metrics (Patel et al., 2021; Shi et al., 2015). With the rise of LLMs and CoT prompting67

(Wei et al., 2022), rationale-based formats became common (Hendrycks et al., 2021b; Cobbe68

et al., 2021), yet standard evaluations still predominantly use final-answer metrics, and69

occasionally code execution from rationales (Mishra et al., 2022; Gao et al., 2023). In contrast,70

we move beyond this final-answer-centric paradigm, by decomposing problem-solving into71

abstract formulation and arithmetic computation, inspired by the cognitive theories (Opedal72

et al., 2024).73
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Memorization vs. generalization Variants of math word problems with perturbations74

were introduced to test generalization beyond memorization (Zhang et al., 2024a; Ye et al.,75

2025; Gao et al., 2023; Shi et al., 2023; Li et al., 2024; Mirzadeh et al., 2025). While performance76

drops are often interpreted as reasoning failures, our results suggest they may instead stem77

mainly from arithmetic errors, pointing to a different improvement strategy.78

Mechanistic interpretability Mechanistic interpretability methods, such as logit attribu-79

tion (nostalgebraist, 2020; Belrose et al., 2023) and causal patching (Goldowsky-Dill et al.,80

2023; Wang et al., 2023; Meng et al., 2022; Zhang & Nanda, 2023; Merullo et al., 2024; Cheng81

et al., 2025), have been used to trace model computations. Prior work on math reasoning82

largely focuses on the mechanisms behind arithmetic computations (Nikankin et al., 2025;83

Zhang et al., 2024b), while recent work on word problems use probing classifiers to track84

explicit variable reasoning (Ye et al., 2025). In contrast, we examine implicit reasoning85

within a single forward pass to uncover abstraction beyond computation.86

3 Dataset and experimental design87

Task and dataset We study math word problems using GSM-8K (Cobbe et al., 2021) and88

SVAMP (Patel et al., 2021). GSM-8K spans 2–8 steps without distractors (See Figure 6 in89

Appendix A.1 for statistics), while SVAMP involves single-step reasoning with distractor90

variants. To evaluate abstract formulation, we create symbolic variants: SVAMP expressions91

are templated into variable-based forms; GSM-8K symbolic versions from the test set are92

generated using gpt-4o-mini (OpenAI, 2024) via a two-stage generate-then-validate to ensure93

the correctness. See Appendix A.2 and Table 4 for details and examples. For interpretability,94

we generate 3,600 simple 1–2 step2 word problems involving basic operations (+,−,×,÷)95

from 1,200 diverse LLM-generated templates, covering varied scenarios, verb choices,96

entities, names and sentence structures. See Appendix B.1 and Table 7 for details and97

examples.98

Models We evaluate instruction-tuned Llama-3 (1B, 3B, 8B) (Grattafiori et al., 2024) and99

Qwen 2.5 (Yang et al., 2024) (3B, 7B, 14B, 32B) models. Mechanistic interpretability analyses100

focus on Llama-3 8B, Qwen 2.5 7B, and Qwen 2.5 14B.101

Evaluation All experiments use greedy decoding and FP16 precision on RTX 8000/A100L102

GPUs. Numeric answers are evaluated via normalized Exact Match. Symbolic expressions103

are evaluated using gpt-4o-mini (94% agreement with humans on 120 samples, prompt104

and details in Appendix A.3) and with sympy for numeric expressions. We report standard105

accuracy. CoT generations are capped at 512 tokens. See Appendix A.3 for details.106

4 Disentangled evaluation107

We first introduce the disentangled evaluation framework, then present results without CoT108

in Sec. 4.1, followed by an analysis of CoT’s impact in Sec. 4.2.109

Framework Suppose a task T can be decomposed into a set of sub-skills {s1, s2, . . . , sn},110

such that solving T requires executing these skills conjunctively (i.e., T = s1 ∩ s2 ∩ · · · ∩ sn).111

Disentangled evaluation aims to assess each sub-skill si independently via a correspond-112

ing subtask ti, designed to isolate and test that specific skill. Let Eval(T) denote the113

evaluation metric on the full task, and Eval(ti) the metric for subtask ti. Measuring114

Eval(t1), . . . , Eval(tn) enables finer-grained attribution of performance, identifying fail-115

ure of specific skills. In math word problems, let (Q, E, A) be the question, expression and116

answer triplets, we decompose mathematical problem-solving into abstract formulation117

(translating Q to mathematical relationships E) and arithmetic computation (executing the118

2We focus on 1–2 step problems, as models often fail simple word problems involving multi-step
computations in a single forward pass.
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Setting Skills Tested Question Form and Example Answer Form
and Example

Original Abstraction
+Computation

Numerical: Weng earns $12 for every hour
she works. If she worked for 50 minutes,
how much did she earn?

Number: 10

Arithmetic
Computation

Computation Numerical: What is the value of 12×
(

50
60

)
?

or 12×
(

50
60

)
=?

Number: 10

Numerical
Abstraction

Abstraction Numerical: Weng earns $12 for every hour
she works. If she worked for 50 minutes,
how much did she earn?

Expression:

12×
(

50
60

)
Symbolic
Abstraction

Abstraction Symbolic: Weng earns $x for every hour she
works. If she worked for y minutes, how
much did she earn?

Expression:
x×

( y
60
)

Table 1: Disentangled evaluation in math word problems with tested skills, varying by
question and answer forms. Instructions in Appendix Table 5.

Figure 2: Model zero-shot without CoT performance on GSM8K. (i) Models exhibit much
better abstraction performance (Symbolic and Numerical) than in actually computing the
expressions (Arithmetic Computation). (ii) Final-answer accuracy in the Original setting
may provide a misleading picture of models’ reasoning ability, possibly due to arithmetic
limitations.

calculation from E to produce A). Besides the standard Original setting (requiring both ab-119

straction and computation), we design three targeted subtasks: Symbolic Abstraction, which120

assess abstraction using symbolic variables; Numerical Abstraction, evaluating abstraction121

with concrete numbers but without computation; and Arithmetic Computation, which directly122

tests execution of fully specified expressions from Q. See Table 1 and Appendix A.3 for123

details.124

4.1 Understanding model failures: reasoning or arithmetic error?125

We first apply disentangled evaluation zero-shot without CoT across multiple model sizes126

of Llama-3 and Qwen2.5 families. As shown in Figure 2, the error rates are consistently lower127

for abstract formulation (both Numerical and Symbolic Abstraction) compared to arithmetic128

computation. This suggests that if final-answer accuracy in the Original setting depends on129

both competencies conjunctively, poor performance observed in the Original setting could130

stem from arithmetic computation failures, rather than reasoning deficits. Consequently,131

this indicates that final-answer accuracy alone from the Original setting may substantially132

mislead a model’s underlying reasoning ability. See additional results in Appendix A.4.133

To assess the reliability and external validity of the symbolic abstraction evaluation, we134

perform ablations over symbol order and symbol choice in Appendix A.6.135
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4.2 Disentangling CoT gains136

We now apply disentangled evaluation with CoT to disentangle CoT gains (Table 2). We137

show that CoT yields the largest gains in computation (e.g., +62.8%), confirming its effec-138

tiveness in multi-step arithmetic. In contrast, abstraction shows limited improvement (e.g.,139

+6.7% for Symbolic abstraction and +17.6% for Numerical abstraction), even with extended140

generation budgets (512 tokens), suggesting CoT is less helpful for abstraction. Gains in141

the Original setting (e.g., +62.8%) likely reflect a mix of benefits from both components and142

possible data leakage. See additional results in Appendix A.5.143

∆ Accuracy 8B 7B 14B 32B Avg.

Original 64.8 68.5 58.4 59.7 62.8
Arith. Comp. 64.8 60.5 51.2 58.2 58.7
Numerical Abstr. 15.8 21.6 21.6 11.6 17.6
Symbolic Abstr. 11.0 13.2 1.1 1.3 6.7

Table 2: Accuracy difference (%) with and without CoT. Results are shown for Llama 3 (8B)
and Qwen2.5 models (7B, 14B, 32B).

Summary: These findings challenge the view that poor final-answer accuracy in math144

reasoning benchmarks always implies ‘poor reasoning’. Instead, our disentangled design145

reveals that many models do possess a level of abstract formulation capabilities, which are146

often obscured in standard evaluations due to their limited arithmetic competence. Crucially,147

while abstraction variants indicate far higher performance than the Original setting, models148

are still not perfect — performance in Symbolic Abstraction remains far from 100% (45.7%149

for Llama-8B, 76.8% for Qwen-32B), but the gap is significantly narrower than previously150

assumed, calling for more precise definition and evaluation of reasoning.151

5 Inside the model: probing abstraction and computation152

 

(i) Clean Run: Numerical Addition (ii) Corrupted Run: Different Logic + Same Numbers  

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?         Emma has 5 apples, she eats 3. How many apples does Emma have now ?

8 8?
(iii) Patch Clean States

  (“+” logic)
(i) Clean Run: Numerical Addition (ii) Corrupted Run: Same Logic + Different Numbers

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?   Emma has 11 apples, she buys another 7. How many apples does Emma have now ?

Abstraction: 
“buys” → “+”?

Computation: 
“5, 3” → “8”?

(i) Clean Run: Numerical Addition (ii) Corrupted Run: Different Logic + Different Numbers

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?           There was 11 birds, but 7 birds flew away. How many birds are there now?

Numerical
Abstraction:

Do clean states 
encode “+” logic?

Can clean logic and corrupted numbers be composed? (11 + 7 = 18)
(i) Clean Run: Different Logic + No Numbers (ii) Corrupted Run: Numerical Addition

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?         There was x birds, but y birds flew away. How many birds are there now?

Symbolic
Abstraction:

 Can sym. logic be 
used in num. 

addition?

(iii) Patch Clean States
(computation)

8?

18?(iii) Patch Clean States 
            (“+” logic)

(iii) Patch Clean States 
(Symbolic “-” logic)

2?

Can clean symbolic logic and corrupted numbers be composed? (5 - 3 = 2) 

Can we recover the addition logic?

Can we recover the computation of 5+3?
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Figure 3: Overview of interpretability methods probing the abstract-then-compute mecha-
nism in simple math problems, focusing on hidden states at the last token position across
layers.

To investigate whether abstraction and computation are composed conjunctively when153

producing a final numerical answer in a single forward pass, we move beyond outcome-154
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based evaluation and apply mechanistic interpretability. We hypothesize an abstract-then-155

compute process: first inferring the abstraction (e.g., ‘+’ from “buys”), then performing the156

computation (e.g., 5 + 3). Section 5.1 identifies key layers for each stage; Section 5.2 validate157

these layers and tests abstraction transferability across forms (symbolic/concrete) and logic.158

5.1 Uncovering the abstract-then-compute mechanism in one forward pass159

5.1.1 Methods160

We use logit attribution (nostalgebraist, 2020; Belrose et al., 2023) and activation patching161

(Ghandeharioun et al., 2024; Zhang & Nanda, 2023; Meng et al., 2022) to probe whether162

abstraction and computation occur during single-step generation. As summarized in163

Figure 3, we seek evidence of abstraction and computation.164

Logit attribution We use logit attribution to examine specific information (e.g., opera-165

tor or answer tokens) at each layer (See Figure 3a for illustration). Specifically, we com-166

pute direct logit attribution (nostalgebraist, 2020; Belrose et al., 2023) of a target token t167

by projecting hidden states at various points in each layer onto the vocabulary space:168

logit(t) = ⟨WU [t], LN(h)⟩, where h is the hidden state, LN is LayerNorm, and WU [t] is the169

unembedding vector. We probe four points within each layer at the last token position:170

the attention output, MLP output, and the residual stream immediately after merging the171

attention output (resid mid) and after merging the MLP output (resid final). As summarized in172

Figure 3a, we track abstraction via the logits of operator tokens (e.g., “+”, “add”, “addition”)173

and computation via the logits of operand and answer tokens across layers.174

Algorithm 1 Activation Patching

1: Input: Set Ω of clean and corrupted sample pairs (Xcl , Xcor), modelM with hidden
states S .

2: Output: Patching effects for S : ES .
3: for (X(i)

cl , X(i)
cor) ∈ Ω do

4: logito, Acl ←M(X(i)
cl , Acl) # Clean run: get clean logits and store all layer activations

Acl

5: logitc, Acor ←M(X(i)
cor, Acor) # Corrupted run: get corrupted logits and store all layer

activations Acor
6: for s ∈ S do
7: A′cor(s)← Acl(s) # Patched run: replace hidden state s in Acor by Acl

8: logitp ←M(X(i)
cor, A′cor) # get patched logits

9: e(i)s ←
logitp−logitc
logito−logitc

# patching effect
10: end for
11: end for
12: Return: Es ← 1

|Ω| ∑
|Ω|
i=1 e(i)s

Activation patching To identify components causally responsible for abstraction and175

computation, we apply activation patching (Algorithm 1, see Figure 3b for visualization))176

(Ghandeharioun et al., 2024; Zhang & Nanda, 2023; Meng et al., 2022). To quantify the177

contribution of each component across layers, this method replaces a single intermediate178

hidden state in the corrupted forward pass with the corresponding hidden state from the179

clean run and measures how much this single hidden state injected in corrupted forward180

pass can restore the prediction of the clean answer. This patching effect per state per layer181

is a normalized score from 0 (no recovery) to 1 (full recovery to clean performance), with182

higher indicating more contribution. We patch attention, MLP and final layer outputs across183

layers at the last position. Formally, we quantify causal impact using the logit difference184

6
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(i) Attention (ii) MLP (iii) Abstraction

(iv) Resid Final (v) Resid Mid (vi) Computation

Figure 4: Visualizations of internal computations at last token position in Llama-3 8B for
addition math word problems: (i,ii, iv, v) for logit attribution results where a, b are operands
and c is the result; (iii, vi) for activation patching results. We label the starting layer of
abstraction, operand moving and computation in pink, blue and green, respectively.

between clean a(i)cl and corrupted answers a(i)cor in Eq. 2.185

LD∗(i) = logit∗(a(i)cl )− logit∗(a(i)cor) (1)

e(i)s =
LDp(i)− LDc(i)
LDo(i)− LDc(i)

(2)

To probe abstraction (Figure 3b), we construct minimally different clean/corrupted pairs186

that vary in their underlying logic (e.g., “buys” for addition vs. “eats” for subtraction) but187

have the same numbers (e.g., “5,3”). In Figure 3b, the clean input implies 5 + 3 = 8, while188

the corrupted input implies 5− 3 = 2. We patch individual clean states to the corrupted run189

to identify critical layers for restoring the addition logic and recovering the clean answer190

‘8’. For computation (Figure 3b), we use pairs with the same logic (e.g., addition), but191

different numbers (e.g., “5,3” vs. “11,7”). Here, we seek to identify layers whose states when192

patched individually from the clean run to the corrupted run, are critical to perform the193

clean-run-specific computation with clean operands 5, 3 and output “8”.194

5.1.2 Abstract-then-compute hypothesis195

As shown in Figure 4, we observe distinct stages for abstraction and computation, sup-196

porting the abstract-then-compute hypothesis. Logit attribution reveals that around L13–14,197

attention begins moving the inferred operator (e.g., ‘+’, plus’, add’) to the last position198

(Figure 4i, iv). This coincides with a divergence in logit differences between target operators199

(+’ vs. ‘–’) in addition and subtraction problems (Figure 4v), suggesting that while earlier200

layers encode generic operator features, problem-specific abstraction emerges here. Subse-201

quently, around L15–16, Figure 4i,iv shows operands transfer to the last position; Following202

abstraction, the computation phase appears to begin at L18, primarily through MLPs layers203

(Figure 4ii, iv). Activation patching confirms the distinct stages: abstraction starts at around204

L13, with rising attention and layer patching effects (Figure 4iii); The rise of attention and205

layer patching effects in L15,16 in Figure 4vi aligns with our previous observation that206

operands are being moved to the last position. Finally, the peak patching effect of MLP at207

L18 highlight their crucial role in calculating the answer. These combined results support208

our hypothesis that the model follows an abstract-then-compute mechanism within a single209

forward pass. Additional logit attribution and activation patching results for other models210

and two-operator problems are in Appendix B.2.211
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5.2 Validation and abstraction transfer with cross-prompt patching212

We now validate the causal role of the critical layers for abstraction (L13,14) and computation213

(L15,16 for operands, L18 for execution). We also investigate if the abstraction representa-214

tions formed at around L13,14 are transferable across problem forms (symbolic/concrete)215

and templates, and can be composed with subsequent computation stage.216

Method Cross-prompt patching also uses Algorithm 1, but instead of computing patching217

effects, we track the log-probability of specific tokens across layers in each patched run. This218

acts as a form of “knock-out” intervention: we overwrite a single layer’s activations in the219

corrupted run with clean activations that are hypothesized to contain specific information220

(e.g., abstraction, operands, computation), and observe whether this information is reflected221

in the output level.222

To validate the critical layers for each stage, we cross-patch for numerical abstraction223

(Figure 3c), where both the clean and corrupted inputs are numerical problems, but differ224

in both underlying logic and operands. As shown in Figure 3c, the clean run corresponds225

to 5 + 3 = 8 and the corrupted to 11− 7 = 4. We patch hidden states from the clean run226

into the corrupted run and validate our hypothesis: (i) Abstraction (L13-14): At these layers,227

operands have not been transferred yet, so patching should only transfer the clean logic. If228

these layers encode addition logic, the model should apply the clean addition operator to229

the corrupted operands, computing 11 + 7 = 18 in the remaining forward pass. We expect230

the log-probability of this target answer (‘18’) to rise. (ii) Operand Transfer (L15–16): L15231

begins operand transfer and already contains both clean run logic and operand information.232

Patching them should increase the log-prob of the clean answer (e.g., ‘8’), while reducing233

probability of the corrupted (‘4’) and target answers (‘18’). (iii) Computation (Layer 18): By this234

point, the full ingredients (abstraction and computation) are available. Patching here should235

fully recover the clean answer (‘8’). We expect the log-prob close to 0. To evaluate these236

effects, we track log-probabilities across layers for the target answer (18 = 11+ 7, clean logic237

+ corrupted operands) – testing numerical abstraction transfer, the clean answer (8 = 5 + 3)238

– testing operand alignment and execution, and the corrupted answer (4 = 11− 7).239

To investigate if the abstraction representations can be transferred across problem forms240

(symbolic/numerical) and templates, and if they can be composed with subsequent compu-241

tation stage, we cross-patch for symbolic abstraction (See Figure 3c) – patching symbolic242

clean states to numerical corrupted run. Here, clean inputs are symbolic (no concrete243

numbers), and corrupted inputs are numerical problems with a different underlying logic.244

This ensures that only abstraction (no operands or computation) is transferred from the245

clean run, unlike numerical abstraction cross-patching. In the example in Figure 3c, clean246

run predicts x− y, while the corrupted run corresponds to 5 + 3 = 8. By patching clean247

states from the symbolic problem to the numerical corrupted run, we examine (i) if symbolic248

abstractions are also formed at around L13-14, despite predicting ‘x’ as the first token, and (ii)249

if this abstraction (x− y), when transferred into numerical corrupted run, can be used and250

composed with corrupted operands (5, 3) to compute 5− 3 = 2. To assess this, we track the251

per-layer log-probabilities of the target answer (clean logic + corrupted operands, 2 = 5− 3)252

and corrupted answer (8 = 5 + 3), and omit the clean answer ‘x’. If symbolic abstraction253

transfer occurs, we expect an increase in the target answer log-prob, and a corresponding254

decrease in the corrupted answer starting around L13. Note that since the symbolic clean255

states across layers are predicting ‘x’, we expect both answer log-probs to drop.256

Results Figure 5a shows results for numerical abstraction cross-patching results cor-257

responding to the example illustrated in Figure 3. As expected, the target answer log-258

probability (‘18’) begins rising at L13 (abstraction onset), peaks at L14 (abstraction formed),259

and drops when clean operands are introduced (L15). The clean answer (‘8’) log-probability260

keeps rising from L13 (abstraction) and continue at 15 (operand integration), stabilizing by261

L18 (computation). The corrupted answer (‘4’) log-probability drops after L13. These trends262

hold across underlying logic (Figure 5b-d), confirming the roles of these critical layers as263

identified earlier. In symbolic abstraction cross-patching (Figure 5e-h), we observe consis-264

tent behaviour: from L13 onward, the target answer probability increases while the clean265

answer decreases, eventually flipping. This indicates that (i) abstractions injected via patch-266

8
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(a) Cl: a + b; Cor: a− b (b) Cl: a− b; Cor: a + b (c) Cl: a× b; Cor: a÷ b (d) Cl: a÷ b; Cor: a× b

(e) P. Cl:x− y; Cor: a + b (f) Cl: x− y; Cor: a + b (g) Cl: x× y; Cor: a + b (h) Cl: x÷ y; Cor: a + b

Figure 5: Cross-patching results for Llama-3 8B with corresponding clean and corrupted
run. a, b indicate concrete numerical problems, while x, y indicate symbolic problems. Top
(Numerical Abstraction): Patching concrete problems with different abstractions shows
target log-prob rising at 13 (abstraction onset), peaking at 14 (abstraction formed), then
falling as clean operands are introduced. Meanwhile, the clean answer’s log-prob rises from
13 (abstraction) and 15 (operand integration), stabilizing at layer 18 (computation). Bottom
(Symbolic Abstraction): Patching symbolic problems into concrete addition shows target
log-probability rising at layer 13, peaking at 15 (where predictions flip), then declining.

ing are composed with corrupted operands to produce valid outputs, and (ii) abstraction267

representations at L13–14 are invariant to surface form and problem template. Concretely,268

comparing Figure 5e and Figure 5f, where minimally different templates are used in (e)269

and random templates in (f), we observe near-identical effects in both cases —suggesting270

abstraction transfer is template-invariant. Furthermore, (g) and (h) show that injecting271

symbolic multiplication and division abstractions into concrete addition problems still flips the272

model’s prediction—demonstrating the generality of abstraction transfer. Cross-patching273

results for other models, and two-operator problems are in Appendix B.3.274

Together, these results provide strong support for the abstract-then-compute hypothesis275

with critical layers for abstraction (L13,14) and computation (L15,16 for operands and L18276

for computation), and further demonstrate that: (i) abstraction can be transferred and277

composed with subsequent computation across surface forms (symbolic/concrete) and278

templates, and (ii) even at the last position in symbolic problems, when predicting the279

first output token ‘x’, middle layers already encode abstraction (e.g., the correct operator),280

indicating that next-token prediction reflects not just immediate token prediction, but also281

anticipates future outputs.282

6 Conclusion283

Disentangled evaluation reveals that, without CoT, models perform better at abstraction284

than computation, with the latter bottlenecking final-answer accuracy — challenging the285

view that poor performance always imply reasoning failure. Mechanistic interpretability286

uncovers an abstract-then-compute mechanism with transferable abstractions. We argue for287

disentangled evaluation to more precisely assess model abilities and inform architectural288

design.289
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A Disentangled evaluation details and additional results449

A.1 Dataset statistics450

(a) N-steps (b) Distractor

Figure 6: Distribution of problem characteristics by number of reasoning steps (GSM8K)
and presence of distractors (SVAMP).

A.2 Symbolic variant creation for GSM8K and SVAMP451

Question: Weng earns $12 an hour for 
babysitting. Yesterday, she just did 50 
minutes of babysitting. How much did she 
earn?

Abstracted Question: Weng earns $x an 
hour for babysitting. Yesterday, she just did 
y minutes of babysitting. How much did she 
earn?

Symbolic Answer: x * (y/60)

Question-Solution Pair (GSM-8K)

Question
Solution 

Pair

Abstracted Question 
+ Symbolic Answer +

Substitution Rule

Solution: Weng earns 12/60 = 
$<<12/60=0.2>>0.2 per minute. Working 
50 minutes, she earned 0.2 x 50 = 
$<<0.2*50=10>>10. #### 10

1) Automated Generation with API 2) Automated Validation with Python

Substitution Rule: x = 12, y = 50

Generated Triplet (GPT-4o-mini)

Validation of the 
generated symbolic 
answer against gold 
answer answer using 

substitution rule

Keep 
only 

verified 
correct 
samples

Figure 7: Generate-then-validate pipeline: We use API calls to obtain abstract question-
answer-substitution triplets from the concrete question-solution pair from GSM-8K, then
validate them against gold answer using sympy. Triplets that fail this check are manully
reviewer and corrected.

All our evaluations are conducted on the GSM8K test set and the full SVAMP dataset. To452

support our evaluation of abstract formulation and arithmetic computation in Section 4, we453

construct symbolic question and expression answer variants for both SVAMP and GSM-8K.454

Examples are shown in Table 4.455

For SVAMP, which already includes both the expression (e.g., 20 × 10) and the final numer-456

ical answer (e.g., 200), we create symbolic abstraction variants by replacing all numeric457

values with symbolic variables (e.g., x, y) in both the question and the corresponding expres-458

sion. This preserves the structure and semantics of the original problem while abstracting459

away from the concrete numbers. For arithmetic computation variant, we use the paired460

expression.461

For GSM-8K, which lacks such annotations, we generate both the symbolic abstraction462

variant and the numerical expressions using a two-stage generate-then-validate pipeline463

(Figure 7). In the generation stage, we use GPT-4o-mini (OpenAI, 2024) to produce triplets464

from original question–solution pairs. Each triplet consists of: (1) a symbolic version of465

the question, where relevant numbers are replaced with variables while maintaining the466
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semantic content; (2) a symbolic expression that represents the solution in closed-form using467

those variables; and (3) a substitution rule that maps each variable to its original numeric468

value. In the validation stage, we verify the correctness of each generated sample. We469

apply the substitution rule to the symbolic expression, obtaining a numerical expression,470

then using sympy to evaluate the expression, and compare the resulting numeric answer471

to the gold answer from GSM-8K. Triplets that fail this check are manually reviewed and472

corrected.473

Box 1: Symbolic evaluation prompt

Determine whether the following two mathematical expressions are equivalent. The
expressions may be written in simplified or unsimplified symbolic form (e.g., 1/2x + 3),
natural language (e.g., “Susan made 1/2x + 3 buttons”) or in LaTeX notation. Consider
expressions equivalent if they represent the same mathematical value, even if written
differently (e.g., different notation, simplification, or variable order when valid). Respond
only with: True or False.

Example:
1. z− (y− x)
2. z - y + x
Answer: True

1. Susan made 1/2*x buttons
2. 0.5x
Answer: True

1. 2(y + x)
2. M = 2(y + x)
Answer: True

1. xz * ((1 - y)/100)
2. x × z - (y/100) × (x × z)
Answer: True

Now evaluate:
1. {symbolic gold answer}
2. {abstract generated answer}
Answer:

Gold Answer Model Generation Our Eval GPT-4o-mini Eval

u ∗ (x + y + z) xu + yu + zu True True
x + x ∗ (1/y) x + (x/y) True True
0.5(x + yz) z ∗ (y + 1) ∗ x/2 False False
(y + z)/x xz− y = xy False False
xz ∗ ((1− y)/100) (x ∗ (1− y/100) ∗ z) False True
(12/x) ∗ y y ∗ 12 False True

Table 3: Comparison of gold answers, model generations, our annotated correctness, and
GPT-4o-mini evaluation on a held-out set of 120 samples.

A.3 Evaluation details474

In this section, we detail the evaluation of the four settings. First, we show the instructions475

used in each settings in Table 5 with and without CoT. The prompt used in each setting is476

then a concatenation of the instruction and the question.477

For the Original and Arithmetic Computation settings, where the expected output is a final478

integer answer, we extract the answer following the token ####, remove any accompanying479
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Dataset Symbolic Question Answer Substitution

GSM8K I have x liters of orange drink that
are y% water and I wish to add it
to z liters of pineapple drink that is
u% water. But as I pour it, I spill
v liters of the orange drink. How
much water is in the remaining w
liters?

(y · (x − v) + u ·
z)/100

x = 10, y =
2
3 , z = 15, u =
3
5 , v = 1, w = 24

GSM8K Jerry has a flock of chickens. The red
chickens produce x eggs a day, and
the white chickens produce y eggs a
day. Every day Jerry collects z eggs.
If he has u more white chickens than
red chickens, how many red chick-
ens does he have?

(z− u · y)/(x + y) x = 3, y = 5, z =
42, u = 2

GSM8K Adrian’s age is x times the age of
Harriet, and Harriet is y the age of
Zack. Calculate the average age of
the three in three years if Harriet is z
years old now.

(x ∗ z + z + (z/y) +
9)/3

x = 3, y = 1
2 , z =

21

SVAMP Each pack of DVDs costs x dollars.
If there is a discount of y dollars on
each pack

x− y x = 76, y = 25

SVAMP An industrial machine worked for
x minutes. It can make y shirts a
minute.

x · y x = 4, y = 5

SVAMP Paco had x salty cookies and y sweet
cookies. He ate z sweet cookies and
u salty cookies. How many salty
cookies did Paco have left?

x− u x = 26, y =
17, z = 14, u = 9

Table 4: Constructed symbolic examples from GSM8K and SVAMP datasets.

units, and normalize formatting (e.g., removing commas, dollar signs, percentage symbols,480

and units like ‘g‘) before comparing it with the gold answer.481

For the Numerical Abstraction setting, where answers are expected to be numerical expressions,482

we first convert LaTeX-style expressions to Python syntax (when written in Markdown483

form), then evaluate them using sympy to check equivalence with the gold expression.484

In the Symbolic Abstraction setting, where outputs are symbolic expressions, we use485

gpt-4o-mini as an automated evaluator. The prompting to gpt-4o-mini is shown in Box486

1, and responses are generated with temperature set to 0. To validate this method, we487

annotated a held-out set of 120 samples manually for correctness, and compared our anno-488

tations with the gpt-4o-mini evaluator’s decisions. We find that gpt-4o-mini achieves 94%489

agreement with our judgment in identifying symbolic expression equivalence. Example490

comparisons are shown in Table 3.491

A.4 Additional result of disentangled evaluation without CoT492

We report zero-shot, no-CoT performance on SVAMP in Figure 8. Compared to GSM8K,493

SVAMP is a significantly simpler benchmark consisting of math word problems that require494

only a single reasoning step — namely, a single arithmetic operation. As with GSM8K,495

models perform better on the abstraction variants than in the original setting, though the496

performance gap is smaller due to the task’s simplicity.497

Interestingly, we observe a notable difference from GSM8K: across all model sizes, even498

small models such as LLAMA 1B and 3B perform well on the Arithmetic Computation variant,499

often outperforming both the abstraction variants and the original setting. This suggests500
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Table 5: Prompting Strategies, Problem Variants and Instructions

Setting Strategy Instruction Question Answer

Original No CoT Please answer the question directly WITH-
OUT showing the reasoning process, you
MUST write the answer as an integer after
‘####’, without including the equation or
units.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

10

Original CoT Let’s think step by step, you MUST write
the answer as an integer after ‘####’ with-
out including the units. Write the answer
at the end.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

10

Arithmetic
Computation

No CoT Please answer the question directly WITH-
OUT showing the reasoning process, you
MUST write the answer as an integer after
‘####’

What is the value of 12 *
(50/60)?

10

Arithmetic
Computation

CoT Let’s think step by step, you MUST write
the answer as an integer after ‘####’ .
Write the answer at the end.

What is the value of 12 *
(50/60)?

10

Numerical
Abstraction

No CoT Please answer the question directly with-
out showing the reasoning process, you
MUST write the expression with appro-
priate round brackets after ‘####’, with-
out including the units, and you DO NOT
need to simplify the expression.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

12 ∗
(50/60)

Numerical
Abstraction

CoT Let’s think step by step, at the end, you
MUST write the expression with appro-
priate parenthesis after ‘####’, without in-
cluding the units, but you DO NOT need
to simplify the expression.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

12 ∗
(50/60)

Symbolic Ab-
straction

No CoT Please answer the question directly WITH-
OUT showing the reasoning process, you
MUST write the expression with appropri-
ate round brackets after ‘####’ without in-
cluding the units, and you DO NOT need
to simplify the expression.

Weng earns $x an hour for
babysitting. Yesterday, she just
did y minutes of babysitting.
How much did she earn?

x ∗
(y/60)

Symbolic Ab-
straction

CoT Let’s think step by step, at the end, you
MUST write the expression with appro-
priate round brackets after ‘####’ without
including the units, but you DO NOT need
to simplify the expression.

Weng earns $x an hour for
babysitting. Yesterday, she just
did y minutes of babysitting.
How much did she earn?

x ∗
(y/60)

Figure 8: Model zero-shot without CoT performance on SVAMP.

that computing one-step expressions (e.g., 5− 3) is less challenging than deriving an abstract501

formulation with only one step. However, in tasks involving multiple steps, abstraction502

becomes comparatively easier than executing the full computation correctly, as shown in503

the case of GSM8K. This highlights how model capabilities depend not just on the skill type504

but also on the complexity of the required operation.505
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A.5 Additional resuls of disentangled evaluation with CoT506

We present the full results on GSM8K for Llama family and Qwen family in Figure 9, and507

full results on SVAMP for Llama family and Qwen family in Figure 10.508

Figure 9: Model zero-shot with and without CoT performance on GSM8K. A.C.: Arithmetic
Computation; N.A.: Numerical Abstraction; O.: Original; S.A.: Symbolic Abstraction.

Figure 10: Model zero-shot with and without CoT performance on SVAMP. A.C.: Arithmetic
Computation; N.A.: Numerical Abstraction; O.: Original; S.A.: Symbolic Abstraction.

A.6 Ablation on symbolic abstraction Variant509

To assess the reliability and external validity of the symbolic abstraction evaluation, we510

perform ablations over symbol order and symbol choice. As illustrated in Figure 11, we511

compare three settings:512

• Original Symbols: Variables are consistently represented using a fixed set of letters513

in order—x, y, z, u, v, w, p, q, r, s, t—e.g., x× (y/60).514

• Reversed Symbols: The same set of symbols is used, but the order is reversed (e.g.,515

y× (x/60)), preserving the semantic and structural content of the problem while516

changing the superficial presentation.517

• Random Symbols: Each original symbol is replaced with a randomly sampled518

letter from the alphabet, unique to each dataset. This preserves the structure of519

the expression while removing any consistent identity cues. The mappings are as520

follows: {’a’: ’h’, ’d’: ’i’, ’m’: ’s’, ’n’: ’r’, ’p’: ’e’, ’q’: ’l’, ’r’:521

’c’, ’s’: ’v’, ’t’: ’j’, ’u’: ’m’, ’v’: ’t’, ’w’: ’o’, ’x’: ’u’, ’y’: ’p’,522

’z’: ’b’, ’Z’: ’f’}523

In Table 6, we observe mild performance degradation with symbol perturbations on both524

models, (e.g., three-point drop with Reversed and another two points with Random), but525

models retain strong accuracy compared to the Original setting. This suggests that Symbolic526

Abstraction is relatively robust to surface-level symbol changes.527

Setting Llama 8B Qwen 7B
No CoT CoT No CoT CoT

original 45.7 56.7 61.5 74.7

reverse 42.8 51.8 61.9 74.8
random 41.0 53.1 58.0 71.9

Table 6: Results of ablation study on symbol choices and symbol order, with and without
CoT under zero-shot setting on GSM8K.
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Weng earns $x an hour for babysitting. 
Yesterday, she just did y minutes of babysitting. 
How much did she earn?

x * (y/60)

Original Symbols

Weng earns $y an hour for babysitting. 
Yesterday, she just did x minutes of babysitting. 
How much did she earn?

y * (x/60)

Reversed Symbols
Weng earns $s an hour for babysitting. 
Yesterday, she just did b minutes of babysitting. 
How much did she earn?

s * (b/60)

Random Symbols

Figure 11: Experiment configurations for the ablation study on symbol choices and symbol
order.

B Mechanistic intepretability additional details and results528

B.1 Interpretability data construction529

To construct a dataset suitable for mechanistic interpretability, we focus on simpler math530

word problems that require only one or two reasoning steps with one or two basic arith-531

metic operations (addition, subtraction, multiplication, or division). We deliberately avoid532

more complex multi-step problems, as model performance on such tasks tends to be poor,533

potentially confounding interpretability analyses.534

For each pair of arithmetic operations—(x + y, x− y) and (x× y, x÷ y) and (x + y + z, x +535

y− z, x− y + z, x− y− z) — we use a proprietary model to generate 150 template pairs,536

totaling 1200 templates. These templates are minimally different in semantics but vary537

across a broad range of topics, verb choices, names, and syntactic structures. Examples are538

presented in Table 7. For instance, a representative pair might include:539

• [name] has {x} apples. They get {y}more apples. How many apples does [name]540

have now? (corresponding to x + y)541

• [name] has {x} apples. They give away {y} apples. How many apples does [name]542

have now? (corresponding to x− y)543

Each template is instantiated by replacing the [name] placeholder with a randomly selected544

name from a curated list of 30 English first names, shown below:545

James, Emma, William, Olivia, Benjamin, Charlotte, Henry, Amelia,546

Alexander, Ava, Samuel, Sophia, Jacob, Mia, Daniel, Lily, Michael, Grace,547

Ethan, Ella, Jack, Chloe, Lucas, Harper, Thomas, Zoe, Matthew, Nora, Nathan,548

Isla.549

The numerical placeholders {x} and {y} are populated with integers ≤ 50, to avoid detok-550

enization issues during model processing.551

B.2 Logit attribution and activation patching additional results552

Other models We observe a similar abstract-then-compute mechanism in other models,553

including Qwen 2.5 7B and Qwen 2.5 14B. In Qwen 2.5 7B, the abstraction stage occurs554

around layers 18–20, with the computation stage beginning around layers 22–23. In Qwen555

2.5 14B, abstraction takes place around layers 29–32, followed by computation starting at556

layer 36.557

For additional interpretability results using logit lens and activation patching:558

• See Figure 12, Figure 13, and Figure 14 for Llama-3 8B on subtraction, multiplication,559

and division.560
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Subset Example Data

(+,−) (+) [name] owns x stuffed animals. A relative sends them y more stuffed
animals. How many stuffed animals does [name] have now?
(−) [name] owns x stuffed animals. They give y stuffed animals to a
younger sibling. How many stuffed animals does [name] have now?

(+,−) (+) [name] finds x seashells at the beach. The next day they find y more
seashells. How many seashells does [name] have now?
(−) [name] finds x seashells at the beach. The tide washes away y
seashells. How many seashells does [name] have now?

(+,−) (+) The storage has x gigabytes free. [name] saves y gigabytes of photos.
How much space remains?
(−) The storage has x gigabytes free. Cloud storage adds y gigabytes.
What is the new capacity?

(×,÷) (×) The glacier recedes x inches daily. How much will it shrink after y
days?
(÷) The glacier retreated x inches over y days. What was the average
daily recession?

(×,÷) (×) Each server rack uses x kilowatts. What’s the total power for y racks?
(÷) The data center used x kilowatts across y racks. What was the average
per rack?

(×,÷) (×) The spaceship’s shield blocks x radiation units hourly. How much
radiation can it block in y hours?
(÷) The shield blocked x units over y hours. What was its average
protection rate?

Two opera-
tions

(x + y + z) [name] collects x stamps, buys y more, and inherits z. Total
stamps?
(x + y− z) [name] has x stamps, acquires y more, but loses z. How many
left?
(x− y + z) [name] owns x stamps, sells y, but trades for z. How many
now?
(x − y − z) [name] has x stamps, donates y, and ruins z. How many
remain?

Table 7: Interpretability dataset examples.

• See Figure 15, Figure 16, Figure 17, and Figure 18 for Qwen 2.5 7B on all four561

operations: addition, subtraction, multiplication, and division.562

• See Figure 19, Figure 20, Figure 21, and Figure 22 for Qwen 2.5 14B on the same set563

of arithmetic tasks.564

Two-operator dataset For two operator dataset, we only report results for Qwen 2.5 7B565

and Qwen 2.5 14B, because Llama-3 8B only achieve 16.5% accuracy on this dataset.566

See Figure 27 and Figure 28 for logit attribution results for Qwen 2.5 7B and Qwen 2.5 14B,567

respectively.568

B.3 Cross-prompt patching additional results569

Other models See Figure 23, Figure 24, and Figure 25 for symbolic abstraction cross-570

prompt patching results (for single operators: +,−,×,÷) on Llama3 8B, Qwen 2.5 7B, and571

Qwen 2.5 14B, respectively. The results are consistent across models: the likelihood of the572

target answer peaks at the abstraction stage, while the likelihood of the corrupted answer573

drops significantly starting from the same stage.574

See Figure 26 for numerical abstraction cross-prompt patching results on Llama3 8B, Qwen575

2.5 7B, and Qwen 2.5 14B. We observe consistent trends across all models: the probability of576

the target answer begins to rise at the onset of the abstraction stage and peaks by its end.577
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Meanwhile, the clean answer probability increases steadily throughout the abstraction stage,578

reaching a log-probability of 0 at the start of the computation stage.579

Two-operator dataset For the two-operator dataset, we report results only for Qwen 2.5580

7B and Qwen 2.5 14B, as Llama-3 8B performs poorly on this setting, achieving only 16.5%581

accuracy.582

See Figure 29 for symbolic abstraction cross-prompt patching results on Qwen 2.5 7B and583

Qwen 2.5 14B.584

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 12: Visualizations of internal computations at last token position in Llama-3 8B for
subtraction math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 13: Visualizations of internal computations at last token position in Llama-3 8B for
multiplication math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 14: Visualizations of internal computations at last token position in Llama-3 8B
for division math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 15: Visualizations of internal computations at last token position in Qwen 2.5 7B
for addition math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 16: Visualizations of internal computations at last token position in Qwen 2.5 7B for
subtraction math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 17: Visualizations of internal computations at last token position in Qwen 2.5 7B for
multiplication math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 18: Visualizations of internal computations at last token position in Qwen 2.5 7B
for division math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 19: Visualizations of internal computations at last token position in Qwen 2.5 14B
for addition math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 20: Visualizations of internal computations at last token position in Qwen 2.5 14B for
subtraction math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 21: Visualizations of internal computations at last token position in Qwen 2.5 14B for
multiplication math word problems: (a, b, d, e) for logit attribution results, (c, d) activation
patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 22: Visualizations of internal computations at last token position in Qwen 2.5 14B for
division math word problems: (a, b, d, e) for logit attribution results, (c, d) activation patch-
ing for results. We label the starting layer of abstraction, operand moving and computation
in pink, blue and green, respectively.

(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 23: Llama-3 8B cross-prompt patching for symbolic abstraction results: First row:
patching symbolic logic to concrete addition; Second row: patching symbolic logic to
concrete subtraction; Third row: patching symbolic logic to concrete multiplication; Fourth
row: patching symbolic logic to concrete division;
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(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 24: Qwen-7b cross-prompt patching for symbolic abstraction results: First row:
patching symbolic logic to concrete addition; Second row: patching symbolic logic to
concrete subtraction; Third row: patching symbolic logic to concrete multiplication; Fourth
row: patching symbolic logic to concrete division;
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(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 25: Qwen-14b cross-prompt patching for symbolic abstraction results: First row:
patching symbolic logic to concrete addition; Second row: patching symbolic logic to
concrete subtraction; Third row: patching symbolic logic to concrete multiplication; Fourth
row: patching symbolic logic to concrete division;

(a) Cl: a + b; Cor: a− b (b) Cl: a− b; Cor: a + b (c) Cl: a× b; Cor: a÷ b (d) Cl: a÷ b; Cor: a× b

(e) Cl: a + b; Cor: a− b (f) Cl: a− b; Cor: a + b (g) Cl: a× b; Cor: a÷ b (h) Cl: a÷ b; Cor: a× b

(i) Cl: a + b; Cor: a− b (j) Cl: a− b; Cor: a + b (k) Cl: a× b; Cor: a÷ b (l) Cl: a÷ b; Cor: a× b

Figure 26: Cross-prompt patching results for numerical abstraction. First row: results for
Llama-3 8B with corresponding clean and corrupted run. Second row: results for Qwen2.5
7B with corresponding clean and corrupted run. Third row: results for Qwen2.5 14B with
corresponding clean and corrupted run.
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(a) Attn (b) MLP (c) Resid Final

(d) Attn (e) MLP (f) Resid Final

(g) Attn (h) MLP (i) Resid Final

(j) Attn (k) MLP (l) Resid Final

Figure 27: Visualizations of internal computations at last token position in Qwen 2.5 7B for
two-operation math word problems. First row: for a + b + c. Second row: for a + b− c.
Third row: for a− b + c. Fourth row: for a− b− c.
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(a) Attn (b) MLP (c) Resid Final

(d) Attn (e) MLP (f) Resid Final

(g) Attn (h) MLP (i) Resid Final

(j) Attn (k) MLP (l) Resid Final

Figure 28: Visualizations of internal computations at last token position in Qwen 2.5 14B
for two-operation math word problems. First row: for a + b + c. Second row: for a + b− c.
Third row: for a− b + c. Fourth row: for a− b− c.
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(a) x + y + z to a + b− c (b) x + y + z to a− b + c (c) x + y− z to a + b + c (d) x− y + z to a + b + c

(e) x− y− z to a + b− c (f) x− y− z to a− b + c (g) x− y + z to a− b− c (h) x + y− z to a− b− c

(i) x + y + z to a + b− c (j) x + y + z to a− b + c (k) x + y− z to a + b + c (l) x− y + z to a + b + c

(m) x− y− z to a+ b− c (n) x− y− z to a− b + c (o) x− y + z to a− b− c (p) x + y− z to a− b− c

Figure 29: Two-operation cross-prompt patching for symbolic abstraction results: First row
& Second row: patching symbolic logic to concrete problems for Qwen 2.5 7B. Third row &
Fourth row: patching symbolic logic to concrete problems for Qwen 2.5 14B.
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