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Abstract

A wide variety of benchmark datasets with many classes (80-1000) have been1

created to assist Computer Vision architectural evolution. An increasing number of2

vision models are evaluated with these many-class datasets. However, real-world3

applications often involve substantially fewer classes of interest (2-10). This gap4

between many and few classes makes it difficult to predict performance of the5

few-class applications using models trained on the available many-class datasets.6

To date, little has been offered to evaluate models in this Few-Class Regime. We7

propose Few-Class Arena (FCA), as a unified benchmark with focus on testing8

efficient image classification models for few classes. We conduct a systematic9

evaluation of the ResNet family trained on ImageNet subsets from 2 to 1000 classes,10

and test a wide spectrum of Convolutional Neural Networks and Transformer11

architectures over ten datasets by using our newly proposed FCA tool. Furthermore,12

to aid an up-front assessment of dataset difficulty and a more efficient selection13

of models, we incorporate a difficulty measure as a function of class similarity.14

FCA offers a new tool for efficient machine learning in the Few-Class Regime,15

with goals ranging from a new efficient class similarity proposal, to lightweight16

model architecture design, to a new scaling law. FCA is user-friendly and can be17

easily extended to new models and datasets, facilitating future research work. Our18

benchmark is available at https://github.com/fewclassarena/fca.19

1 Introduction20

The de-facto benchmarks for evaluating efficient vision models are large scale with many classes21

(e.g. 1000 in ImageNet [1], 80 in COCO [2], etc.). Such benchmarks have expedited the advance of22

vision neural networks toward efficiency [3, 4, 5, 6, 7, 8, 9, 10] with the hope of reducing the financial23

and environmental cost of vision models [11, 12]. More efficient computation is facilitated by using24

quantization [13, 14, 15], pruning [16, 17, 18, 19], and data saliency [20]. Despite efficiency25

improvements such as these, many-class datasets are still the standard of model evaluation.26

Real-world applications, however, typically comprise only a few number of classes (e.g, less than27

10) [21, 22, 23] which we termed Few-Class Regime. To deploy a vision model pre-trained on large28

datasets in a specific environment, it requires the re-evaluation of published models or even retraining29

to find an optimal model in an expensive architectural search space [24].30

One major finding is that, apart from scaling down model and architectural design for efficiency,31

dataset difficulty also plays a vital role in model selection [25] (described in Section 4.3).32
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(a) Accuracies for sub-models (blue) and full models
(red).
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(b) Zoomed window shows accuracy values and
range for full and sub-models in the few-class range.
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(c) Zoomed window shows (c.1) drop of accuracy
as NCL decreases, (c.2) accuracy scales with model
size for full models in the few-class range.
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(d) Zoomed window shows (d.1) rising accuracy as
NCL decreases, (d.2) accuracy does not scale with
model size for sub-models in the few-class range.

Figure 1: Top-1 accuracies of various scales of ResNet, whose model sizes are shown in the legend, and whose
plots vary from dark to light by decreasing size. Plots range along number of classes NCl from the full ImageNet
size (1000) down to the Few-Class Regime. Each model is tested on 5 subsets whose NCl classes are randomly
sampled from the original 1000 classes. (a) Plots for sub-models trained on subsets of classes (blue) and full
models trained on all 1000 classes (red). (b) Zoomed window shows the standard deviation of subset’s accuracies
is much smaller than for the full model. (c.1) Full model accuracies drop when NCL decreases. (c.2) Full model
accuracies increase as model scales up in the Few-Class Regime. (d.1) Sub-model accuracies grow as NCL

decreases. (d.2) Sub-model accuracies do not increase when model scales up in the Few-Class Regime.

Figure 1 summarizes several key findings under the Few-Class Regime. On the left graph in red33

are accuracy results for a range of number of classes NCL for what we call the “full model”, that34

is ResNet models pre-trained on the full 1000 classes of ImageNet (generally available from many35

websites). On the right are accuracy results for what we call “sub-models”, each of which is trained36

and tested on the same NCL, where this number of classes is sampled from the full dataset down to37

the Few-Class Regime. Findings include the following. (a) Sub-models attain higher upper-bound38

accuracy than full models. (b) The range of accuracy widens for full models at few-classes, which39

increases the uncertainty of a practitioner selecting a model for few classes. In contrast, sub-models40

narrow the range. (c) Full models follow the scaling law [26] in the dimension of model size - larger41

models (darker red) have higher accuracy from many to few classes. (4) Surprisingly, the scaling law42

is violated for sub-models in the Few-Class Regime (see the zoomed-in subplot) where larger models43

(darker blue) do not necessarily perform better than smaller ones (lighter blue). From these plots,44

our key insight is that, instead of using full models, researchers and practitioners in the Few-Class45

Regime should use sub-models for selection of more efficient models.46

However, obtaining sub-models involves computationally expensive training and testing cycles since47

they need to be converged on each of the few-class subsets. By carefully studying and comparing the48

experiment and evaluation setup of these works in the literature, we observe that, how models scale49

down to Few-Class Regime is rarely studied. The lack of comprehensive benchmarks for few-class50

research impedes both researchers and practitioners from quickly finding models that are the most51
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efficient for their dataset size. To fill this need, we propose a new benchmark, Few-Class Arena (FCA),52

with the goal of benchmarking vision models under few-class scenarios. To our best knowledge, FCA53

is the first benchmark for such a purpose.54

We formally define Few-Class Regime as a scenario where the dataset has a limited number of classes.55

Real-world applications often comprise only a few number of classes (e.g. NCL < 10 or 10% classes56

of a dataset). Consequently, Few-Class Arena refers to a benchmark to conduct research experiments57

to compare models in the Few-Class Regime. This paper focuses on the image classification task,58

although Few-Class Regime can generalize to object detection and other visual tasks.59

Statement of Contributions. Four contributions are listed below:60

• To be best of our knowledge, we are the first to explore the problems in the Few-Class61

Regime and develop a benchmark tool Few-Class Arena (FCA) to facilitate scientific research,62

analysis, and discovery for this range of classes.63

• We introduce a scalable few-class data loading approach to automatically load images and64

labels in the Few-Class Regime from the full dataset, avoiding the need to duplicate data65

points for every additional few-class subset.66

• We incorporate dataset similarity as an inverse difficulty measurement in Few-Class Arena67

and propose a novel Silhouette-based similarity score named SimSS. By leveraging the visual68

feature extraction power of CLIP and DINOv2, we show that SimSS is highly correlated69

with ResNet performance in the Few-Class Regime with Pearson coefficient scores ≥ 0.88.70

• We conduct extensive experiments that comprise ten models on ten datasets and 2-100071

numbers of classes on ImageNet, totalling 1591 training and testing runs. In-depth analyses72

on this large body of testing reveal new insights in the Few-Class Regime.73

2 Related Work74

Visual Datasets and Benchmarks. To advance deep neural network research, a wealth of large-scale75

many-class datasets has been developed for benchmarking visual neural networks over a variety of76

tasks. Typical examples 1 include 1000 classes in ImageNet [1] for image classification, and 80 object77

categories in COCO [2] for object detection. Previous benchmarks also extend vision to multimodal78

research such as image-text [27, 28, 29, 30]. While prior works often scale up the number of object79

categories for general purpose comparison, studies [31, 32] raise a concern on whether models trained80

on datasets with such a large number of classes (e.g. ImageNet) can be reliably transferred to real81

world applications often with far fewer classes. A close work to ours is vision backbone comparison82

[33] whose focus is on model architectures. Our perspective differs in a focus on cases with fewer83

number of classes, which often better aligns with real-world scenarios.84

Dataset Difficulty Measurement. Research has shown the existence of inherent dataset difficulty85

[32] for classification and other analytic tasks. Efficient measurement methods are proposed to86

characterize dataset difficulty using Silhouette Score [34], K-means Fréchet inception distance87

[35, 36, 37], and Probe nets [25]. Prior studies have proposed image quality metrics using statistical88

heuristics, including peak signal-to-noise ratio (PSNR) [38], structural similarity (SSIM) Index89

[39], and visual information fidelity VIF [40]. A neuroscience-based image difficulty metric [32]90

is defined as the minimum viewing time related to object solution time (OST) [41]. Another type91

of difficulty measure method consists of additional procedures such as c-score [42] , prediction92

depth [43] , and adversarial robustness [44] . Our work aligns with the line of research [45, 46, 47]93

involving similarity-based difficulty measurements: similar images are harder to distinguish from94

each other while dissimilar images are easier. Previous studies are mainly in the image retrieval95

context [48, 49, 50]. Similarity score is used in [51] with the limitation that a model serving similarity96

measurement has to be trained for one dataset. We push beyond this limit by leveraging large vision97

models that learn general visual features using CLIP [52] and DINOv2 [53]. The study [32] shows98

that CLIP generalizes well to both easy and hard images, making it a good candidate for measuring99

1A detailed list of many-class datasets used in this paper can be found in the Appendix.
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image difficulty. Supported by the evidence that better classifiers can act as better perceptual feature100

extractors [54] , in later sections we show how CLIP and DINOv2 will be used as our similarity base101

function.102

Despite the innovation of difficulty measure algorithms on many-class datasets, little attention has103

been paid to leveraging these methods in the Few-Class Regime. We show that, as the number of104

classes decreases, sub-dataset difficulty in the Few-Class Regime plays a more critical role in efficient105

model selection. To summarize, unlike previous work on many-class benchmarks and difficulty106

measurements, our work takes few-class and similarity-based dataset difficulty into consideration,107

and in doing so we believe the work pioneers the development of visual benchmark dedicated to108

research in the Few-Class Regime.109

3 Few-Class Arena (FCA)110

We introduce the Few-Class Arena (FCA) benchmark in this section. In practice, we have integrated111

FCA into the MMPreTrain framework [55], implemented in Python3 and Pytorch2.112

3.1 Goals113

1. Generality. All vision models and existing datasets for classification should be compatible in this114

framework. In addition, users can extend to custom models and datasets for their needs.115

2. Efficiency. The benchmark should be time- and space-efficient for users. The experimental setup116

for the few-class benchmark should be easily specified by a few hyper-parameters (e.g. number of117

classes). Since the few-class regime usually includes sub-datasets extracted from the full dataset, the118

benchmark should be able to locate those sub-datasets without generating redundant duplicates for119

reasons of storage efficiency. For time-efficiency, it should conduct training and testing automatically120

through use of user-specified configuration files, without users’ manual execution.121

3. Large-Scale Benchmark. The tool should allow for large-scale benchmarking, including training122

and testing of different vision models on various datasets when the number of classes varies.123

3.2 Few-Class Dataset Preparation124

Few-Class Arena provides an easy way to prepare datasets in the Few-Class Regime. By leveraging125

the MMPreTrain framework, users only need to specify the parameters of few-class subsets in the126

configuration files, which includes the list of models, datasets, number of classes (NCL), and the127

number of seeds (NS). Few-Class Arena generates the specific model and dataset configuration128

files for each subset, where subset classes are randomly extracted from the full set of classes, as129

specified by the seed number. Note that only one copy of the full, original dataset is maintained during130

the whole benchmarking life cycle because few-class subsets are created through the lightweight131

configurations, thus maximizing storage efficiency. We refer readers to the Appendix and the publicly132

released link for detailed implementations and use instructions.133

3.3 Many-Class Full Dataset Trained Benchmark134

We conducted large-scale experiments spanning ten popular vision models (including CNN and135

ViT architectures) and ten common datasets 3. Except for ImageNet1K, where pre-trained model136

weights are available, we train models in other datasets from scratch. While different models’137

2Code is available at https://github.com/fewclassarena/fca, including detailed documentation and
long-term plans of maintenance.

3Models include: ResNet50 (RN50), VGG16, ConvNeXt V2 (CNv2), Inception V3 (INCv3), EfficientNet
V2 (EFv2), ShuffleNet V2 (SNv2), MobileNet V3 (MNv2), Vision Transformer base (ViTb), Swin Transformer
V2 base (SWv2b) and MobileViT small (MViTs). Datasets include CalTech101 (CT101), CalTech256 (CT256),
CIFAR100 (CF100), CUB200 (CB200), Food101 (FD101), GTSRB43, (GT43), ImageNet1K (IN1K), Indoor67
(ID67), Quickdraw345 (QD345) and Textures47 (TT47).

4

https://github.com/fewclassarena/fca


training procedures may incur various levels of complexity (particularly in our case for MobileNet138

V3 and Swin Transformer V2 base), we have endeavored to minimize changes in the existing training139

pipelines from MMPreTrain. The rationale is that if a model exhibits challenges in adapting it to a140

dataset, then it is often not a helpful choice for a practitioner to select for deployment.141

Results are summarized in Table 1. We make several key observations: (1) models in different datasets142

(in rows) yield highly variable levels of performance by Top-1 accuracy; (2) no single best model143

(bold, in columns) exists across all datasets; and (3) model rankings vary across various datasets.144

The first two observations are consistent with the findings in [25, 31]. For (1), it suggests there exists145

underlying dataset-specific difficulty. To capture this characteristic, we adopt the reference dataset146

classification difficulty number (DCN) [25] to refer to the empirically highest accuracy achieved in147

a dataset from a finite number of models shown in Table 1 and Figure 2 (a). For observation (3),148

we can examine the rankings among the ten models of ResNet50 and EfficientNet V2 in Figure 2149

(b). ResNet50’s ranking varies dramatically for the different datasets, for instance ranking 7th on150

ImageNet1K and 1st on Quickdraw345. This ranking variability is also observed in other models151

(see all models in the Appendix). However, a common practice is to benchmark models – even for152

efficiency – on large datasets, especially ImageNet1K. The varied dataset rankings in our experiments153

expose the limitations of such a practice, further supporting our new benchmark paradigm, especially154

in the Few-Class Regime. In later sections, we leverage DCN and image similarity for further analysis.155

Dataset RN50 VGG16 CNv2 INCv3 EFv2 SNv2 MNv3 ViTb SWv2b MViTs DCN
[56] [57] [58] [59] [4] [9] [7] [60] [61] [10] [25]

GT43 [62] 99.85 96.60 99.83 99.78 99.86 99.87 5.98 99.31 99.78 99.69 99.87
CF100 [63] 74.56 71.12 85.89 75.97 77.05 77.89 1.00 32.65 78.49 76.51 85.89
IN1K [1] 76.55 71.62 84.87 77.57 85.01 69.55 67.66 82.37 84.6 78.25 85.01
FD101 [64] 83.76 75.82 63.80 83.96 80.82 79.36 0.99 52.21 84.30 82.23 84.30
CT101 [65] 77.70 74.99 77.52 77.52 77.82 84.13 76.58 59.59 78.82 80.06 84.13
CT256 [66] 65.07 59.08 73.57 66.09 62.80 68.13 22.63 44.23 67.28 65.80 73.57
QD345 [67] 69.14 19.86 62.86 68.25 68.81 67.32 0.72 19.67 66.54 68.76 69.14
CB200 [68] 45.86 21.26 27.61 45.58 44.48 53.95 47.22 23.73 54.52 58.46 58.46
ID67 [69] 53.75 26.01 33.21 45.95 43.85 54.72 49.10 30.51 48.58 54.05 54.72
TT47 [70] 30.43 12.55 6.49 14.20 21.17 43.83 2.18 31.38 33.94 24.41 43.83

Table 1: Top-1 accuracy across ten models in ten datasets. Models are trained and tested on full
datasets with their original number of classes (e.g. 1K from ImageNet1K); this is denoted in the last
few digits of the abbreviation of the dataset name. The best score is highlighted in bold while the
second best is underlined for each dataset.
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Figure 2: Many-Class Full Dataset Benchmark.

In the next subsections, we introduce three new types of benchmarks: (1) Few-Class, Full Dataset156

Trained Benchmark (FC-Full), which benchmarks vision models trained on the full dataset with the157

original number of classes; (2) Few-Class, Subset Trained Benchmark (FC-Sub), which benchmarks158

vision models trained on subsets of a fewer number of classes than the full dataset, and (3) Few-Class159

Similarity Benchmark (FC-Sim), which benchmarks image similarity methods and their correlation160

with model performance.161
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3.4 Few-Class Full Dataset Trained Benchmark (FC-Full)162

Traditionally, a large number of models are trained and compared on many-class datasets. However,163

results for such benchmarks are not directly useful to the Few-Class Regime and many real-world164

scenarios. Therefore, we introduce the Few-Class Full Dataset Trained Benchmark (FC-Full), with the165

objective of effortlessly conducting large-scale experiments and analyses in the Few-Class Regime.166

The procedure of FC-Full consists of two main stages. In the first stage, users select the models167

and datasets upon which they would like to conduct experiments. They can choose to download168

pre-trained model weights, which are usually available on popular model hubs (PyTorch Hub [71],169

TensorFlow Hub [72], Hugging Face [73], MMPreTrain [55] etc.). In case of no pre-trained weights170

available from public websites, users can resort to the option of training from scratch. To that end,171

our tool is designed and implemented to generate bash scripts for easily configurable and modifiable172

training through the use of configuration files.173

In the second stage, users conduct benchmarking in the Few-Class Regime. By specifying the list of174

classes, Few-Class Arena automatically loads pre-trained weights of the chosen models and evaluates175

performance of the models on the selected datasets. Note that this process is accomplished through176

configuration files created by the user’s specifications, thus enabling hundreds of experiments to be177

launched by a single command. This dramatically reduces human effort that would otherwise be178

expended to run these experiments without Few-Class Arena.179

3.5 Few-Class Subset Trained Benchmark (FC-Sub)180

Our study in Figure 1 (red lines) reveals the limits of existing pre-trained models in the Few-Class181

Regime. To facilitate further research and analyze the upper bound performance in the Few-Class182

Regime, we introduce the Few-Class Subset Trained Benchmark (FC-Sub).183

FC-Sub follows a similar procedure to FC-Full, except that, when evaluating a model in a subset with184

a specific number of classes, that model should have been trained on that same subset. Specifically, in185

Stage One (described for FC-Full), users specify models, datasets and the list of number of classes in186

configuration files. Then Few-Class Arena generates bash scripts for model training on each subset.187

In Stage two, Few-Class Arena tests each model in the same subset that it was trained on.188

3.6 Few-Class Similarity Benchmark (FC-Sim)189

One objective of our tool is to provide the Similarity Benchmark as a platform for researchers to190

design custom similarity scores for efficient comparison of models and datasets.191

The intrinsic image difficulty of a dataset affects a model’s classification performance (and human)192

[74, 75, 32]. We show – as is intuitive – that the more similar two images are, the more difficult it is193

for a vision classifier to make a correct prediction. This suggests that the level of similarity of images194

in a dataset can be used as a proxy for a dataset difficulty measure. In this section, we first adopt and195

provide the basic formulation of similarity, the baseline of a similarity metric. Then we propose a196

Similarity-Based Silhouette Score to capture the characteristic of image similarity in a dataset.197

We first adopt the basic similarity formulation from [51]. Intra-Class Similarity S
(C)
α is defined as a198

scalar describing the similarity of images within a class by taking the average of all the distinct class199

pairs in C, while Inter-Class Similarity denotes a scalar describing the similarity among images in200

two different classes C1 and C2. For a dataset D, these are defined as the mean of their similarity201

scores over all classes, respectively:202

S(D)
α =

1

|L|
∑
l∈L

S(Cl)
α =

1

|L| × |P (Cl)|
∑
l∈L

∑
i,j∈Cl; i ̸=j

cos(Zi,Zj), (1)

203

S
(D)
β =

1

|P (D)|
∑

a,b∈L;a ̸=b

S
(Ca,Cb)
β =

1

|P (D)| × |P (C1,C2)|
∑

a,b∈L; a ̸=b

∑
i∈C1,j∈C2

cos(Zi,Zj). (2)

6



where |L| is the number of classes in a dataset, Zi is the visual feature of an image i, |P (C)| is the204

total number of distinct image pairs in class C, |P (D)| is the total number of distinct class pairs, and205

|P (C1,C2)| is the total number of distinct image pairs excluding same-class pairs.206

Averaging these similarities provides a single scalar score at the class or dataset level. However,207

this simplicity neglects other cluster-related information that can better reveal the underlying dataset208

difficulty property of a dataset. In particular, the (1) tightness of a class cluster and (2) distance to209

other classes of class clusters, are features that characterize the inherent class difficulty, but are not210

captured by Sα or Sβ alone.211

To compensate the aforementioned drawback, we adopt the Silhouette Score (SS) [34, 76]: SS(i) =212
b(i)−a(i)

max(a(i),b(i)) , where SS(i) is the Silhouette Score of the data point i, a(i) is the average dissimilarity213

between i and other instances in the same class, and b(i) is the average dissimilarity between i and214

other data points in the closest different class.215

Observe that the above Intra-Class Similarity S
(C)
α already represents the tightness of the class (C),216

therefore a(i) can be replaced with the inverse of Intra-Class Similarity a(i) = −Sα(i). For the217

second term b(i), we adopt the previously defined Inter-Class Similarity S
(C1,C2)
β and introduce a new218

similarity score as Nearest Inter-Class Similarity S′
β
(C), which is a scalar describing the similarity219

among instances between class C and the closest class of each instance in C. The dataset-level220

Nearest Inter-Class Similarity S′(D)
β is expressed as:221

S′(D)
β =

1

|L|
∑
l∈L

S′(Cl,Ĉl)
β =

1

|L| × |P (Cl,Ĉl)|

∑
l∈L

∑
i∈Cl,j∈Ĉl

cos(Zi,Zj). (3)

where Ĉ is the set of the nearest class to C (Ĉ ̸= C). To summarize, we introduce our novel222

Similarity-Based Silhouette Score SimSS4:223

SimSS(D) =
1

|L| × |Cl|
∑
i∈Cl

Sα(i)− S′
β(i)

max(Sα(i), S′
β(i))

. (4)

4 Experimental Results224

4.1 Results on FC-Full225

In this section, we present the results of FC-Full. A model trained on the dataset with its original226

number of classes (e.g. 1000 in ImageNet1K) is referred to as a full-class model. These experiments227

are designed to understand how full-class model performance changes when the number of classes228

NCl decreases from many to few classes. We analyze the results of DCN-Full, shown in Figure 3229

(details of all models are presented in the Appendix), and we make two key observations when NCl230

reduces to the Few-Class Regime (from right to left). (1) The best performing models do not always231

increase its accuracy for fewer classes, as shown by the solid red lines that represent the average of232

DCN for each NCl. (2) The variance, depicted by the light red areas, of the best models broaden233

dramatically for low NCl, especially for NCl < 10.234

Both observations support evidence of the limitations of using the common many-class benchmark235

for application model selection in the Few-Class Regime, since it is not consistent between datasets236

that a model can be made smaller with higher accuracy. Furthermore, the large variance in accuracy237

means that prediction of performance for few classes is unreliable for this approach.238

4.2 Results on FC-Sub239

In this section, we show how using Few-Class Arena can help reveal more insights in the Few-Class240

Regime to mitigate the issues of Section 4.1.241

4The extended derivation is detailed in the Appendix.
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Figure 3: DCN-Full by Top-1 Accuracy (%). NCl ranges from many to 2.

FC-Sub results are displayed in Figure 4. Recall that a sub-class model is a model trained on a subset242

of the dataset where NCl is smaller than the original number of classes in the full dataset. Observe243

that in the Few-Class Regime (when NCl decreases from 4 to 2) that: (1) DCN increases as shown by244

the solid blue lines, and (2) variance reduces as displayed by the light blue areas.245

The preceding observation for FC-Full 4.1 seems to contradict the common belief that, the fewer the246

classes, the higher is the accuracy that a model can achieve. Conversely, the FC-Sub results do align247

with this belief. We argue that a full-class model needs to accommodate many parameters to learn248

features that will enable high performance across all classes in a many-class, full dataset. With the249

same parameters, however, a sub-class model can adapt to finer and more discriminative features that250

improve its performance when the number of target classes are much smaller.251
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Figure 4: DCN-Sub (red) and DCN-Full (blue) by Top-1 Accuracy (%). NCL ranges from 2 to 4.

4.3 Results on FC-Sim252

In this section, we analyze the use of SimSS (Equation 4) as proxy for few-class dataset difficulty.253

Experiments are conducted on ImageNet1K using the ResNet family for the lower NCL ≤ 10% range254

of the original 1000 classes, NCL ∈ {2, 3, 4, 5, 10, 100}, and the results are shown in Figure 5. Each255

datapoint of DCN-Full (diamond in red) or DCN-Sub (square in blue) represents an experiment in a256
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subset of a specific NCL, where classes are sampled from the full dataset. For reproducible results,257

we use seed numbers from 0 to 4 to generate 5 subsets for one NCL by default. A similarity base258

function (sim()) is defined as the atomic function that takes a pair of images as input and outputs a259

scalar that represents their image similarity.260

In our experiments, we leverage the general visual feature extraction ability of CLIP (image + text)261

[52] and DINOv2 (image) [53] by self-supervised learning. Specifically, a pair of images are fed into262

its latent space from which the the cosine score is calculated and normalized to 0 to 1. Note that we263

only use the Image Encoder in CLIP.264

Comparing Accuracy and Similarity To evaluate SimSS, we compute the Pearson correlation265

coefficient (PCC) (r) between model accuracy and SimSS. Results in Figure 5 (a) (b) show that266

SimSS is poorly correlated with DCN-Full (r = 0.18 and r = 0.26 for CLIP and DINOv2) due to the267

large variance shown in Section 4.1. In contrast, SimSS is highly correlated with DCN-Sub (shown268

in blue squares), with r = 0.90 and r = 0.88 using CLIP (dashed) and DINOv2 (solid), respectively.269

The high PCC [77, 78] demonstrates that SimSS is a reliable metric to estimate few-class dataset270

difficulty, and this can help predict the empirical upper-bound accuracy of a model in the Few-Class271

Regime. Comparison between SimSS and all models can be found in the Appendix. Such a high272

correlation suggests this offers a reliable scaling relationship to estimate model accuracy by similarity273

for other values of NCL without an exhaustive search. Due to the dataset specificity of the dataset274

difficulty property, this score is computed once and used for all times the same dataset is used. We275

have made available difficulty scores for many datasets at the Few-Class Arena site.276
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Figure 5: Pearson correlation coefficient (r) between DCN and SimSS when NCl ∈ {2, 3, 4, 5, 10, 100}. DCN-
Sub (blue squares) is more highly correlated than DCN-Full (red diamonds) with SimSS using both similarity
base functions of CLIP (dashed line) and DINOv2 (solid line) with r ≥ 0.88.

5 Conclusion277

We have proposed Few-Class Arena and a dataset difficulty measurement, which together form278

a benchmark tool to compare and select efficient models in the Few-Class Regime. Extensive279

experiments and analyses over 1500 experiments with 10 models on 10 datasets have helped identify280

new behavior that is specific to the Few-Class Regime as compared to for many-classes. One finding281

reveals a new nCl-scaling law whereby dataset difficulty must be taken into consideration for accuracy282

prediction. Such a benchmark will be valuable to the community by providing both researchers and283

practitioners with a unified framework for future research and real applications.284

Limitations and Future Work. We note that the convergence of sub-models is contingent on various285

factors in a training scheduler, such as learning rate. A careful tuning of training procedure may286

increase a model’s performance, but it shouldn’t change the classification difficulty number drastically287

since this represents a dataset’s intrinsic difficulty property. The current difficulty benchmark supports288

image similarity while in the future it can be expanded to other difficulty measurements [25]. As289

CLIP and DINOv2 are trained toward general visual features, it is unclear if they will be appropriate290

for other types of images such as sketches without textures in Quickdraw [67] . For this reason, a291

universal similarity foundation model would be appealing that applies to any image type. In summary,292

Few-Class Arena identifies a promising new path to achieve efficiencies that are focused on the293

important and practical Few-Class Regime, establishing this as a baseline for future work.294
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