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Abstract
Specifications — precise mathematical representa-
tions of correct domain-specific behaviors — are
crucial to guarantee the trustworthiness of net-
working systems. With increasing development
of neural networks (NNs) as networking system
components, specifications gain more importance
as they can be used to regulate the behaviors of
these black-box models. Traditionally, specifica-
tions are designed by domain experts. However,
this is labor-intensive and hence not scalable. We
hypothesize that the traditional (aka reference)
algorithms that NNs replace for higher perfor-
mance can act as effective proxies for correct be-
haviors of the models, when available. This is
because they have been used for long enough to
encode several aspects of the trustworthy/correct
behaviors in the underlying domain. Driven by
our hypothesis, we develop a novel automated
framework, SpecTRA to generate specifications
for NNs using references. We formulate speci-
fication generation as an optimization problem
and solve it with observations of reference behav-
iors. SpecTRA clusters similar observations into
compact specifications. We present SpecTRA’s
specifications for NNs as adaptive bit rate and con-
gestion control algorithms. Our specifications aid
formal verification and show previously unknown
vulnerabilities of NNs for networking systems.

1. Introduction
Neural Networks (NNs) have recently found numerous ap-
plications in networking systems such as to enhance video
streaming quality (Mao et al., 2017; Yan et al., 2020), con-
gestion control (Jay et al., 2019; Yan et al., 2018), and
scheduling (Mao et al., 2019). Compared to traditional
heuristic approaches, NNs reduce development overhead
and offer better average performance (Kraska, 2021).

Despite recent advancements, skepticism remains about the
practicality of NNs in networking systems. A key con-
cern is that user-facing systems, like video streaming, re-
quire high standards of performance and reliability in dy-
namic environments. Although NNs often surpass tradi-
tional methods in average performance, they are fundamen-
tally opaque (Chaudhary et al., 2024) and lack guarantees.

Prior works have identified numerous counterintuitive be-
haviors of these NNs in networking systems. For example,
Eliyahu et al. (2021) observed that Aurora (Jay et al., 2019),
a congestion control system, in certain conditions, would
repeatedly decrease its sending rate, ultimately reaching
and maintaining the minimal rate despite excellent network
conditions. In another example, Meng et al. (2020, §6.3)
“debugged” Pensieve (Mao et al., 2017), a bitrate controller
for video streaming, which systematically avoided two spe-
cific bitrates (1200 and 2850kbps); they introduced these
bitrates back to enhance performance.

Note that these observations are not unique and have been
studied in other domains, such as lack of robustness in vi-
sion (Szegedy et al., 2014; Athalye et al., 2018). To address
this, robustness specifications have been introduced, requir-
ing that despite additive noise, the image should still be
classified correctly (Gehr et al., 2018; Mirman et al., 2020).

However, unlike vision where some notions of correctness
exist, determining correctness in system applications is more
challenging. This is especially the case for wireless systems
which are known to be dynamic, more unstable, and inse-
cure than their wired counterparts (Goh and Chua, 2024;
Franjic, 2022). Typically, manually developed specifica-
tions are hard to design, error-prone, and limited to some
corner-cases. Consider the example of a video bitrate con-
troller: given the current network conditions and buffered
video frames, it is difficult to manually label bitrate choices
as “incorrect”. Prior work (Eliyahu et al., 2021) has in-
troduced specifications based on extreme cases, excluding
several desirable trustworthy behaviors as we observe in our
experiments. Furthermore, He et al. (2022) acknowledge
that their specifications are inherently subjective. Our aim is
to mitigate these drawbacks of manually developed specifi-
cations with automated specification generation for NNs in
networking systems. We desire the specifications to be ex-
pressive, containing multiple aspects of correct/trustworthy
behaviors. Thus, we investigate automatically generating
specifications encoding several trustworthy behaviors
for NNs in networking systems.

Main idea. We observe that a unique characteristic of net-
working systems is the presence of traditionally-used rule-
based algorithms and heuristics—aka references. Although
these references may not match the performance of neural
networks, they are considered reliable, having been crafted
according to domain experts’ understanding of correct be-
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havior and rigorously tested in production environments.
By collecting the outputs of these references across various
inputs and environments, we can define specifications for
their neural network counterparts.

Implementing this idea presents three key challenges. First,
multiple traditional implementations often exist for the same
application; for instance, model predictive control (Yin et al.,
2015) and buffer-based algorithms (Huang et al., 2014) are
both widely used adaptive bitrate algorithms. These imple-
mentations may exhibit divergent behaviors on the same
input, making it unclear how to consolidate their feedback
into specifications for NNs. Second, the set of specifica-
tions derived from references is not unique, and some spec-
ifications are more useful than others. Thus, we need to
design criteria to identify high-quality specifications. Fi-
nally, synthesizing specifications is generally expensive and
error-prone (Wen et al., 2024; Albarghouthi et al., 2016;
Bastani et al., 2015). We need an efficient algorithm capable
of generating specifications with the desired traits.

Approach. We propose an automated specification gener-
ation method for networking system domains where refer-
ences are available. Our specifications are based on pre and
postconditions consisting of constraints on the NN inputs
and outputs respectively (Hoare, 1969). We specify that if
the NN’s input satisfies the precondition, its output must sat-
isfy the postcondition. The postconditions are constructed
by combining the behaviors of multiple references.

We formalize the desired traits that specifications should
satisfy and pose their generation as an optimization problem
(§ 2). We design an effective algorithm, SpecTRA to solve
the optimization problem using clustering. Our algorithm as-
sumes access to offline observations (i.e., we do not use the
source code or make custom queries to get observations of
the reference behaviors), therefore, our algorithm can handle
references that have complicated implementations, whose
source code is unavailable or inference is either impossi-
ble or expensive. As the behaviors of individual references
may be suboptimal, we form specifications using only the
behaviors that are common across multiple references. We
generate expressive and useful specifications for NNs for
two challenging and practically important networking appli-
cations in the wireless domain: adaptive bit rate streaming
and congestion control (Appendix A).

As the first step towards automatically generated specifi-
cations for NNs in networking systems, the specifications
learned from references serve as guidance rather than strict
requirements. Behavioral expectations are not absolute
given the dynamic environments of wireless systems; and
hence specifications from references are likely encodings
of the notion of trustworthiness in this domain. Nonethe-
less, the specifications are useful for testing and verification
(§4) and can serve as concise, interpretable descriptions of

desirable behaviors. The specifications can also be used to
compare different NNs; a network that satisfies the speci-
fication while achieving high performance is more aligned
with developer expectations than one that does not.

Contributions.

1. We formalize generating expressive and useful specifi-
cations from references as an optimization problem.

2. We develop an automated specification gener-
ation algorithm—SpecTRA (Specifications from
Trustworthy Reference Algorithms) using our formal-
ism, also handling complicated and closed-sourced ref-
erences. SpecTRA clusters common observations from
references to form specifications. Code: https://

anonymous.4open.science/r/spectra-D1DC/.

3. We create specifications for NNs in Adaptive Bit Rate
(ABR) and Congestion Control applications. We em-
pirically demonstrate (§4) the high quality of our spec-
ifications. We also use SpecTRA’s specifications to
identify previously unknown vulnerabilities of the
tested NNs. Specifically, we find instances where Pen-
sieve (Mao et al., 2017), an NN for ABR, counterintu-
itively predicts the lowest bit rate despite decent buffer
size and download time history and the highest bit rate
with low buffer size and high download time.

2. Formalizing specifications from references
While neural networks attempt to maximize aggregate per-
formance, we develop a set of specifications Ψ for individ-
ual inferences to satisfy for greater trust. Let X ⊆ Rm be
the sets of all possible m-dimensional (m > 0) inputs to
the neural network for which we want to generate Ψ. Let
Y = [1, . . . , k] be the (discrete) set of all possible outputs
of the neural network, where 1 < k <∞. Such instances
with finite output sets are fairly common, e.g., in RL agents
over finite action spaces such as Pensieve (Mao et al., 2017).
If that is not the case, we discretize Y when possible. For
example, Aurora congestion control model (Jay et al., 2019)
has continuous valued output and we generate specifications
after discretizing its output (§4.1). Each specification S ∈ Ψ
describes the desirable behavior over a set of possible inputs
called a precondition, denoted by the Boolean predicate
φS that evaluates to true for inputs in the precondition. S
mandates that for all inputs x ∈ X such that φS(x), the
output y ∈ Y should follow a postcondition, denoted by the
Boolean predicate ψS , i.e., S(x, y) ≜ φS(x) =⇒ ψS(y).
The specifications in Ψ are considered to be in conjunction,
i.e., the overall desirable behavior is

∧
S∈Ψ S.

We leverage the behavior of q (> 0) traditional algorithms,
aka references R1, . . .Rq to determine Ψ. We use multi-
ple references to avoid Ψ that overfit the behavior of one
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reference and contain its suboptimal behaviors. Specifi-
cally, we consider inputs x ∈ X for which the combined
set of outputs from all the references

⋃
j∈[q]Rj(x) is non-

trivial, i.e., excludes some possible outputs from Y . For
other inputs, the references are not selective and do not pro-
vide useful information about desirable behaviors. Hence,
they are not used to form the specifications. We use γ, the
mapping between such x and their corresponding outputs
from references

⋃
j∈[q]Rj(x), as the interesting behaviors

of references (Definition 1), which are used for generating
specifications Ψ. We hypothesize that if a neural network’s
output matches that of any reference for inputs in the inter-
esting behaviors, then it will be more trustworthy.

Definition 1. (Interesting behaviors of references). Inter-
esting behaviors γ contain inputs x ∈ X for which all refer-
encesR1, . . . ,Rq collectively lead to a non-trivial output
set y ⊂ Y , which is a strict subset of all possible outputs.

γ ≜

(x, y) | x ∈ X ∧ y =
⋃
j∈[q]

Rj(x) ∧ y ⊂ Y


We use γx to denote inputs x in the interesting behaviors
γ. A lookup table mapping γx to their outputs from the
references is an exact set of specifications. However, it is
not amenable to downstream applications as it can poten-
tially consist of uncountably many entries. Therefore, we
combine several x ∈ γx into a single concise representation
φS via overapproximation in each of our specifications S
and map it to ψS which captures the permissible output of
x. Typically, concise representations consist of polyhedral
constraints on permissible inputs, each of which is mapped
to a common set of outputs (Brix et al., 2023). The simplest
and widely used polyhedral representation consists of inter-
val constraints. It leads to easily interpretable specifications.
Hence, our specifications are defined using intervals that
overapproximate interesting behaviors.

Preconditions. The precondition of each specification con-
sists of intervals over each dimension of the input space.
Their canonical form is φS(x) = ∀i ∈ {1, . . . ,m}. xi ∈
[li,S , ri,S ] (xi = i-th element of vector x) with li,S ≤ ri,S .
Next, we list desirable properties of preconditions.

(High representation). We want each specification S ∈ Ψ to
capture several interesting behaviors to be meaningful and
important for Ψ. With more interesting behaviors in each
S, we will need fewer specifications in Ψ, making it more
interpretable. Thus, we define representation of S as:

Rep(S) ≜ |{x | x ∈ γx ∧ φS(x)}|
|γx|

(1)

(High coverage). We want all specifications in Ψ to col-
lectively cover a large fraction of γx. This increases the

interesting behavior information conveyed by Ψ. We define
the coverage of Ψ (2) as the fraction of γx captured by any
specification’s precondition in Ψ.

Cov(Ψ) ≜
|
⋃

S∈Ψ{x | x ∈ γx ∧ φS(x)}) |
| γx |

(2)

(Low volume). To reduce overapproximation error due to
interval-based preconditions, we want to reduce the num-
ber of inputs allowed by any specification S ∈ Ψ while
maintaining high coverage and representation scores. This
can be done by minimizing the volume of Ψ which is the
sum of the volume of each φS (3). The parts of X ac-
cepted by φS are hyperrectangles denoted by the intervals
[li,S , ri,S ],∀i ∈ {1, . . . ,m}. Hence their volumes are de-
fined as products of their ranges along each dimension.

V ol(Ψ) ≜
∑
S∈Ψ

∏
i∈{1,...,m}

(ri,S − li,S) (3)

Postconditions. Let φS(γx) ≜ {x ∈ γx | φS(x)} de-
note the interesting behavior inputs that satisfy φS . We
define the postcondition ψS for a given precondition φS as
ψS(y) ≜ y ∈

⋃
x∈φS(γx)

⋃
j∈[q]Rj(x), i.e., ψS accepts all

the outputs of all the references for the interesting behaviors
captured by φS . Let ηS = |{y | y ∈ Y ∧ ψS(y)}| denote
the number of allowed outputs by S. Ideally, we should
map each input x ∈ φS(γx) only to its permissible output
from the references

⋃
j∈[q]Rj(x). However, this can be

difficult to satisfy with the coverage and representation con-
straints on precondition. Hence, we relax this requirement
to overapproximate the allowed outputs of x with outputs
permissible for other elements of φS(γx). To minimize
the overapproximation error, we do not allow more than a
specific number of outputs to be accepted by ψS , given by a
threshold τmax ∈ {1, . . . , |Y − 1|}, i.e., ηS ≤ τmax.

Optimization problem. For high-quality specifications, we
generate specification sets Ψ satisfying a minimum cover-
age threshold τcov ∈ (0, 1], with each specification having
a representation score higher than a threshold τrep ∈ (0, 1]
and having a maximum of τmax outputs in the postcondition.
With these constraints, we want to minimize the volume of
Ψ. The optimal specifications set Ψ∗ is the solution to the op-
timization problem in Equation (4). We allow the thresholds
τcov, τrep, τmax to be user-defined to generalize to varying
domain-specific requirements for coverage, representation,
and maximum number of outputs in postconditions.

Ψ∗ = argminΨV ol(Ψ) (4)
s.t. Cov(Ψ) ≥ τcov, ∀S ∈ Ψ. Rep(S) ≥ τrep,
∀S ∈ Ψ. ηS ≤ τmax
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3. SpecTRA
3.1. Practical optimization problem

The optimization problem (4) is hard to solve in general
settings, as identifying all the interesting behaviors for
any given references is not trivial. The references can be
complex functions and may lack closed-form expression.
To identify the interesting behaviors across multiple refer-
ences, we need to encode them in languages such as SMT-
Lib (Barrett et al., 2016) to use specialized solvers, such as
Z3 (De Moura and Bjørner, 2008), which requires extensive
manual efforts and may not be feasible for complicated refer-
ences based on thousands of lines of intricate low-level code
(e.g., for congestion control). Thus, for general applicability
and ease of usage of our framework, we only assume access
to the references through some of their observations, from
which we identify the interesting behaviors. We use obser-
vations available from the references in production settings.
However, the assumption of a static, given dataset of obser-
vations imposes several constraints, requiring the following
adaptations to solve the optimization problem in (4).

Interesting input regions. A drawback of our assuming
a static, given dataset of observations is that we cannot
ensure the availability of the outputs of all references for
any specific input x ∈ X , to identify interesting behaviors.
However, we may have observations from references for
‘close-by’ inputs, which can indicate the behaviors of the
references in a local input region. Let X be such an input
region containing x1, . . . , xi, . . . ∈ X observations. The
referenceRj’s output YX,j ⊆ Y for X is the set of outputs
of Rj for any input in X in the given observations, i.e.,
YX,j ≜ Rj(X) =

⋃
x∈X Rj(x). We treat a local region X

as a single entity for the following discussion.

Definition 2. (Interesting behavior regions) Interesting be-
havior regions ΓX ≜ {. . . , Xi, . . . } is a potentially infinite
set of non-overlapping local regions Xi, where each Xi

contains multiple observations from each reference and
YXi =

⋃
j∈[q] YXi,j ⊂ Y . Γy denotes the set of outputs

corresponding to Γx, i.e., Γy = {. . . , YXi
, . . . }.

The preconditions of specifications, φS are still based on
intervals and an input region X is accepted by φS when all
points in X satisfy the precondition φS(X) ⇐⇒ ∀x ∈
X.φS(x). An output y satisfies the postcondition if it is
included in the output of a X ∈ ΓX for which φS(X)
is true, i.e., ψS(y) ≜ (y ∈

⋃
X∈ΓX∧φS(X) YX ). Inter-

esting behavior regions overapproximate ideal interesting
behaviors introducing overapproximation errors as we map
each X ∈ ΓX to outputs based on the observations in X ,
which may exclude some outputs for inputs of X that are
not observed. We require the interesting behavior regions
to be generated with more observations to reduce the er-
ror. Note that such interesting behavior regions are similar

to robustness regions around given inputs as defined and
used in manually designed specifications in several prior
works (Chakravarthy et al., 2022; Seshia et al., 2018). How-
ever, the salient difference from the latter is that the inter-
esting behavior regions are automatically determined using
several observations of references.

Relaxed metrics. To incorporate the above notion of inter-
esting behavior regions, ΓX , we adapt our desirable proper-
ties of high representation (1) and high coverage (2) metrics.
Originally coverage denotes the fraction of interesting be-
haviors captured by a specifications set Ψ. In this case,
coverage modifies to the fraction of ΓX captured in Ψ (5).
Similarly, representation relaxes to the fraction of ΓX cap-
tured in a given specification (6).

C̃ov(Ψ) ≜
|
⋃

S∈Ψ{X | X ∈ ΓX ∧ φS(X)}) |
| ΓX |

(5)

R̃ep(S) ≜ | {X | X ∈ ΓX ∧ φS(X)}) |
| ΓX |

(6)

The final practical optimization problem (7) thus minimizes
the volume of the specifications set, while covering at least
τcov fraction of interesting behavior regions overall, with
each specification covering at least τrep fraction of interest-
ing behavior regions and allowing less than τmax outputs.

Ψ̃∗ = argminΨV ol(Ψ) (7)

s.t. C̃ov(Ψ) ≥ τcov, ∀S ∈ Ψ. R̃ep(S) ≥ τrep,
∀S ∈ Ψ. ηS ≤ τmax

3.2. Implementation

Figure 1 presents a high-level overview of SpecTRA’s work-
ing. Algorithm 1 gives the pseudocode of SpecTRA’s algo-
rithm to solve (7). Let D1, . . .Dq be the set of observations
from the referencesR1, . . . ,Rq respectively.

Identifying interesting behavior regions. To identify the
interesting behavior regions across references, Algorithm 1
first identifies non-overlapping local input regions, which
could potentially be interesting, from X . We form the in-
put regions by partitioning X along each dimension into a
fixed number p > 0 of equally-sized parts (line 4). Input
regions may be identified with other partitioning methods
too, however, SpecTRA is agnostic to them. We selected
this partitioning method for simplicity. Not all input regions
thus obtained can be worth considering, as some may have
very few or 0 observations of some references. Therefore,
we identify the important input regions having at least a

4
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Figure 1: (Overview of SpecTRA) Observations from all the references (a) are given as input to our specification generation
algorithm, SpecTRA. For illustration purposes, a 2-D feature space is considered and each input is classified in either the red
or black class by the corresponding reference algorithm. SpecTRA takes the observations and from them develops a set of
likely specifications (e). To generate the specifications, SpecTRA first partitions the input space into input regions and from
them identifies the regions which have several observations for each reference separately (b) to form the important input
regions for the reference. These important regions are combined into interesting behavior input regions (c) according to
Definition 1. Clusters are identified in the interesting behavior regions with the same output set according to density (d).
These clusters form the specifications (e) that map the inputs in each cluster to the corresponding output set of the cluster.

Algorithm 1 SpecTRA Algorithm

1: Input: X , Y , D1, . . .Dq , τcov , τrep, τmax, p
2: Output: Ψ
3: Ψ← ∅

{ Identifying interesting behavior regions}
4: input_regions← Partition(X , p)
5: I ← Important(input_regions, D1, . . . ,Dq)
6: ΓX , Γy ← Interesting(I)

{Combining interesting behavior regions}
7: for i ∈ [1, . . . , τmax] do
8: for each subset Ω ⊂ Y with |Ω| = i do
9: ΓΩ,x ← {X | X ∈ ΓX , YX ⊆ Ω}

10: ΓΩ,y ← {YX | X ∈ ΓX}
11: L ← Cluster(ΓΩ,x,τrep)
12: S1, . . . ,Sl ← Cluster2Spec(L,ΓΩ,x,ΓΩ,y)
13: Ψ.extend(S1, . . . ,Sl)
14: if C̃ov(Ψ) ≥ τcov then
15: return Ψ
16: return Ψ

certain fraction of the available observations for every ref-
erence (line 5) to reduce the overapproximation error due
to considering input regions. We then obtain the interest-
ing behavior regions from the important regions common
across all the references by applying the condition for inter-
esting behaviors (Definition 1). We thus obtain the set of
input regions ΓX and their corresponding outputs Γy from
D1, . . . ,Dq as interesting behavior regions (line 6).

Combining interesting behavior regions into specifica-
tions. The identified interesting behavior regions are used

to solve the optimization problem in (7). Firstly, SpecTRA
considers the constraint on the maximum number of outputs
accepted by the postconditions, i.e., ∀S ∈ Ψ. ηS ≤ τmax.
To satisfy the constraint, SpecTRA forms individual spec-
ifications only over X (∈ ΓX ) which combine to yield
a postcondition accepting less than τmax outputs. To do
so, SpecTRA enumerates all subsets Ω of Y , such that
|Ω| ∈ [1, . . . , τmax]. For each Ω, it filters out the interesting
behavior regions having output as a subset of Ω (lines 9-10).
The problem thus reduces to generating specifications for
ΓΩ,x,ΓΩ,y without any constraints on the postconditions.

The precondition of each specification that allows any sub-
set of ΓΩ,x should be the tightest bounding hypercube the
subset, to minimize the volume of the specification. More-
over, as all input regions have the same volume, minimizing
the volume of specification sets reduces to minimizing the
number of input regions allowed by the preconditions of
the specifications, while satisfying the representation and
coverage constraints. The optimization problem becomes
minimizing the number of input regions in the preconditions
(volume) while retaining a minimum number of interesting
behavior input regions in every specification (representation)
and over all the specifications (coverage). Exactly solving
this optimization problem is hard, as (i) the search space is
large with several observations, high number of parts p along
each input dimension, high number of input dimensions, (ii)
there are no obvious structures (e.g., decomposability or
differentiability) that we can exploit in our setting where
we cannot query or access the reference implementations.
Hence, we develop an approximate solution by identifying
clusters in ΓΩ,x according to the proximity of constituent
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regions. To minimize the volume, we apply density-based
clustering methods such as the DBSCAN algorithm (Ester
et al., 1996) as they find dense clusters and are resistant
to outliers. The general Cluster(.) function in line 11
uses the selected clustering algorithm to returns l clusters
from ΓΩ,x, denoted as cluster labels L ∈ [1, . . . , l]|ΓΩ,x|

for each element in ΓΩ,x. We encode the representation
constraint into the clustering process, requiring each cluster
to have at least τrep samples. Each cluster thus identified
can be combined to form a specification (line 12). Specif-
ically, each Si, i ∈ [1, . . . , l] has φSi

as the tightest hyper-
rectangle bounding R ≜ {X | X ∈ ΓΩ,x,L(X) = i},
where L(X) denotes the cluster label for input region X .
ψSi =

⋃
X∈R YX , i.e., the post condition allows for the out-

puts corresponding to any element of ΓΩ,x in the ith cluster.
For the coverage constraint, we adopt a best-effort approach
(lines 14-15), wherein we keep generating specifications till
either τcov is achieved or all options for Ω are exhausted.

4. Experiments
In this section, we study the quality and utility of Spec-
TRA’s specifications. We illustrate SpecTRA’s specifica-
tions in two applications having reference algorithms and
their neural counterparts — Adaptive Bit Rate (ABR) al-
gorithms in video streaming and Congestion Control (CC)
algorithms. Pensieve (Mao et al., 2017) is a popular neu-
ral network (NN) based RL-agent for ABR that decides
the bit rate for the next video chunk. Pensieve needs
to choose from 6 possible bit rates for the next video
chunk — 300, 750, 1200, 1850, 2850, 4300 kbps. While
ABR has several traditional (reference) algorithms, there are
two salient ones, that we use as references for generating
specifications for Pensieve — the Buffer-based (BB) algo-
rithm (Huang et al., 2014) and the Model Predictive Control
(MPC) algorithm (Yin et al., 2015). Aurora (Jay et al., 2019)
is a popular NN-based RL-agent for CC that proposes real-
valued changes to the rate of sending packets over a network
to reduce congestion. The CC references that we consider
for generating specifications for Aurora are the BBR (Card-
well et al., 2017) and Cubic (Ha et al., 2008) algorithms.
Note that our framework is general to handle more than two
references. However, we expect to get fewer interesting
behavior regions with additional references, which may de-
teriorate the quality of the specifications. Hence, we choose
to limit to two references for each application. As SpecTRA
uses several thresholds and parameters to generate specifi-
cations, we show an ablation study on them in Appendix F
and use the best settings.

4.1. Experimental setup

We conducted our experiments on a 12th Gen 20-core Intel
i9 processor. We collect the observations from references

Reference SpecTRA Prior
Support Conf Support Conf

ABR

BB 0.96 1.0 0.01 0.99
MPC 0.59 0.87 0.07 0.84
Pensieve (small) 0.13 0.99 0.25 0.85
Pensieve (mid) 0.26 0.97 0.13 0.91
Pensieve (big) 0.21 0.98 0.18 0.92

CC

BBR 0.74 0.81 0.01 0.38
Cubic 0.79 0.79 0.07 0.42
Aurora (small) 1.0 1.0 0.01 1.0
Aurora (mid) 0.96 1.0 0.34 0.01

Table 1: Support and confidence (conf) of SpecTRA’s spec-
ifications and that of the specifications in (Eliyahu et al.,
2021) on the testing observations of the references and NNs
for both the ABR and Congestion Control (CC) applications

in the training environments of the NN, to generate relevant
specifications. For ABR, as we have the implementations of
the references readily available, we run them in the training
environment of the target model Pensieve, with its train-
ing traces that govern the network characteristics for video
streaming at each time step. We use the publicly available
training dataset of Pensieve consisting of 128 traces, each
having 100s of time steps. We test the specifications on Pen-
sieve’s test set that consists of 143 traces, also having 100s
of time steps each. For CC, however, the reference algo-
rithms are embedded in the operating system kernels, mak-
ing them less amenable to run in the target model Aurora’s
training environment. Hence, we obtain observations for
them from their execution logs in the Pantheon project (Yan
et al., 2018). We retrain the Aurora models using some of
the corresponding network traces from Pantheon so as to
align the reference observations with the training environ-
ment of the models. We use 75% traces for training and
remaining for testing the Aurora models. We describe the
details of the retraining and mention the specific traces used
in training and testing in Appendix E. We generate speci-
fications for both applications with the observations from
references on the training traces and use the observations
from the testing traces to evaluate the specifications.

As SpecTRA assumes a finite discrete set of outputs, which
is not the case for Aurora (output is real-valued change of
packet sending rate), we discretize the output using the sign
function, which gives the sign of the change resulting in
3 possible outcomes: ‘+’, ‘-’, and ‘0’. SpecTRA uses the
DBSCAN (Ester et al., 1996) clustering algorithm to solve
the optimization problem in (7). We detail the settings of
DBSCAN in Appendix C. SpecTRA develops the specifi-
cations on a subset of input features of the target NN for
which we empirically observe the best quality of specifica-
tions. For ABR, SpecTRA uses the current buffer size and
the download times observed in the last 3 time steps. For
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CC, SpecTRA uses the history of latency gradient, latency
ratio, and sending ratio features used by Aurora, over previ-
ous 4 time steps. We have selected these specific features
following the manually-designed specifications in Eliyahu
et al. (2021) and selected the history of the features in speci-
fications with an ablation study in Appendix F. We set the
coverage threshold, τcov = 1 for specification sets with
maximum coverage. SpecTRA generates specifications for
either application in less than 30 seconds.

4.2. Quality of Specifications

4.2.1. QUANTITATIVE ANALYSIS

To evaluate the quality of the specifications, we check them
against the observations from references over the training
and testing environments for the neural models. We use the
specification evaluation metrics of support and confidence
inspired from prior specification mining work, Lemieux
et al. (2015) and data mining literature (Han et al., 2011).

Support. We want the specifications to cover most of the ob-
servations Dj from each referenceRj to correctly describe
their behavior. For this, we measure the fraction of observa-
tions from Dj that are accepted by the precondition φS of
any specification S in SpecTRA’s generated specifications
set Ψ—a.k.a. support.

Confidence. Let Dj,Ψ denote the observations from ref-
erence Rj contributing to the support for Ψ. Alongside
support, we want the specifications to be correct on the ob-
servations. Thus, we check the fraction of instances in Dj,Ψ

where ∀S ∈ Ψ. φS =⇒ ψS — a.k.a. confidence.

We report the support and confidence for SpecTRA’s speci-
fications for both applications for the testing observations
in Table 1. Support and confidence for the training obser-
vations are in Appendix G. We compare our specifications
with those given by prior works (Brix et al., 2023; Eliyahu
et al., 2021). We find that the specifications in VNN-COMP
2023 (Brix et al., 2023) have 0 support over the observations
for the references in both applications. Hence, we do not
include them in our study. The specifications in (Eliyahu
et al., 2021) are temporal in nature and, therefore, not di-
rectly comparable. Hence, we use the negation of their
specifications for bad system states for individual transi-
tions and compare with our specifications. We present the
support and confidence of the prior specifications in Eliyahu
et al. (2021) in Table 1. The total number of training and
testing observations for the ABR algorithms are 77981 and
27837 respectively. We filter out the observations for CC
to consist of those that fall within the observation space on
which the Aurora models are typically trained. The total
number of training and testing observations for the CC ref-
erences are ∼ 130k and ∼ 40k respectively, and those for
the Aurora models are ∼ 140k and ∼ 200k respectively.

The specifications in the prior work have low support for the
observations from the references and similar confidence as
our specifications. These results indicate that our specifica-
tions correctly encode more of the trusted behaviors of the
references over the relevant (training and testing) input dis-
tributions of the NNs than the existing specifications. The
existing specifications show comparable support over the
training and testing observations from Pensieve models but
lower confidence than our specifications.

4.2.2. QUALITATIVE ANALYSIS WITH CASE STUDIES

Next, we qualitatively analyze SpecTRA’s specifications for
ABR. Analysis of specifications for CC is in Appendix H.
SpecTRA generates a specification set with 30 specifica-
tions for Pensieve models. We present some specifications
from the generated set next, to demonstrate their quality and
conformance with intuitively correct behavior. Note that
all specifications are in conjunction, so they need to hold
simultaneously for the satisfaction of the generated specifi-
cations set. We give the entire specification set for Pensieve
in Appendix I. The ranges of buffer size (BS — duration
of pre-retrieved video stored in the buffer) and video chunk
download-time (DT) features are [4, 60] seconds and (0,∞)
seconds respectively. Each video chunk is 4 seconds.

Specification 1a shows the conditions for which the lowest
2 bitrates — 300 and 750 kbps are allowed by the postcon-
dition. These conditions consist of low BS and > 2 seconds
of DTs. Intuitively, the ABR algorithm should output low
bit rates for such states of video streaming systems, as the
buffer does not have enough video chunks to render and
there is some delay in downloading new video chunks. In
such scenarios, to prevent rebuffering, the video chunks
should be fetched at lower bit rates. Manually-designed
specifications, such as those in Eliyahu et al. (2021) capture
only extreme behaviors, such as situations when the lowest
bit rate must be output by the ABR algorithm. However,
SpecTRA’s specifications can encode intermediate behav-
iors, such as cases when the lowest 2 bit rates can be per-
missible, as well. Specification 1b shows cases where we
specify that the ABR algorithm does not output the lowest
bit rate. We specify that the buffer should contain more than
2 video chunks, each of which is 4 seconds long, and the
DT should be a moderate value for the lowest bit rate to
not get selected. Note that, this specification supplements
the intuitive specification about avoiding the lowest bit rate
in Eliyahu et al. (2021). The prior work’s specification for-
bids the lowest bit rate when BS is > 4 seconds and the
DTs are < 4 seconds, whereas SpecTRA’s specification
disallows the lowest bit rate even when DTs can be > 4
seconds, with large enough buffer. The prior work does not
specify the desirable behavior for > 4 seconds of DT with
BS > 4 seconds. Moreover, the permissible ranges of the
input features at different points in their history can vary
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in the preconditions of automatically generated specifica-
tions, unlike those in manually-designed, intuition-based
specifications. Obtaining such fine-grained specifications is
beyond the scope of manually-designed specifications but
can be achieved using automated methods such as SpecTRA.

Precondition
BS ∈ [4.0, 5.0],

DT [−1] ∈ [2.8, 6.6],

DT [−2] ∈ [2.8, 6.6],

DT [−3] ∈ [5.4, 9.2]

Postcondition
BR ∈ {300, 750}

(a)

Precondition
BS ∈ [10.9, 12.3],

DT [−1] ∈ [4.1, 7.9],

DT [−2] ∈ [1.5, 6.6],

DT [−3] ∈ [1.5, 5.4]

Postcondition
BR ∈ {750, 1200, 1850, 2850, 4300}

(b)

Specifications 1: Conjunctive specifications for ABR. (BS:
Buffer Size, DT[−i]: ith last download time, BR: Bit Rate)

4.3. Utility of Specifications

4.3.1. NN VERIFICATION

Next, we explore a popular downstream application of NN
specifications — verifying trained NNs. We attempt to ver-
ify the NNs in each application for SpecTRA’s specifications
using the SOTA complete-verifier, αβ-CROWN (Xu et al.,
2020). As the overall specification set is a conjunction of all
elements in the specification set generated by SpecTRA, we
attempt to verify each specification in the set individually
by encoding it in the VNN-Lib format (Demarchi et al.,
2023). SpecTRA generates a specification set containing
30 specifications for ABR and 1 specification for the CC
setting. We set αβ-CROWN’s timeout as 10 minutes. We
use the more precise activation splitting for the Pensieve
models and input-splitting for Aurora models. This is be-
cause αβ-CROWN does not support activation splitting for
regression models currently, to the best of our knowledge.
As our specifications encode only a subset of the inputs in
the preconditions, we specify the other input features as their
ranges as seen in the observations used to generate the speci-
fications. Table 2 presents our findings for both applications.
The Verified instances occur when the specification is satis-
fied by the model, the Falsified instances are when we can
find a successful attack for the specification on the model,
and Timeout is when the verifier times out. We find that
none of the Pensieve models satisfy the overall conjunctive
specification, as some of the constituent specifications can
be falsified. This indicates that the models, while optimiz-
ing for average reward, may not be trustworthy for practical
usage. Moreover, we see that the SOTA verifier times out
for some of the specifications for both Pensieve and Aurora.
This suggests that the specifications are challenging for con-
temporary verifiers and can be used to guide the design of

Model Verified Falsified Timeout

Pensieve (small) 5 20 5
Pensieve (mid) 2 22 6
Pensieve (big) 1 28 1

Aurora (small) 0 0 1
Aurora (mid) 0 0 1

Table 2: Verifying SpecTRA’s specifications sets consisting
of 30 specifications for ABR and 1 specification for CC.

customized verifiers for NNs in computer systems.

4.3.2. TARGETED ATTACKS ON NNS

Next, we attack Pensieve to falsify SpecTRA’s specification
and study the attacks qualitatively. We generate Projected
Gradient Descent attacks (Madry et al., 2019) on the mod-
els to identify inputs that cause the models to give extreme
outputs (lowest/highest bit rates). As SpecTRA’s overall
specifications set is a conjunction of specifications, violat-
ing a single specification will falsify the specifications set.
Hence, we attack the specifications from the generated spec-
ifications set that does not allow the extreme outputs in their
postconditions. We show only the features of the attack
input specified by the specifications. These features are
sufficient to show the violation of intuitive behavior from
the models. We show attacks on the Pensieve (big) model
and note that similar attacks exist for other models too.

Input :
BS = 11.2,

DT [−1] = 6.9,

DT [−2] = 2.9,

DT [−3] = 2.0

Output : BR = 300

(a)

Input :
BS = 4.0,

DT [−1] = 11.8,

DT [−2] = 0.2,

DT [−3] = 0.2

Output : BR = 4300

(b)

Attack (a) consists of an input where the BS is high and only
the last DT is high, with the other DTs low. The model still
conservatively predicts the lowest bit rate, while a higher
bit rate could be supported by the system. The Buffer-based
(BB) algorithm, a simple ABR algorithm, can also predict a
higher bitrate (1850 kbps) for this case. Attack (b), on the
other hand, consists of an input where the buffer consists of
only 1 video chunk and the previous DT had been high. For
this input, the model predicts the highest bit rate, which may
result in rebuffering of the system and, therefore, affect the
quality of experience for the users. The simple BB reference
algorithm predicts 300 kbps for this instance.
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A. Background
We demonstrate specifications for 2 applications — Adap-
tive Bit Rate (ABR) video streaming (Sani et al., 2017) and
Network Congestion Control (CC) (Jiang et al., 2020).

Adaptive Bitrate. Adaptive Bit Rate (ABR) algorithms
are used to optimize the bit rate for streaming videos
from servers to clients such that the Quality of Experience,
QoE (Balachandran et al., 2013) for the users is maximized.
Quality of experience is typically determined by the bit rate
of video chunks (higher is better), and the startup time, re-
buffering time, and bitrate variations (lower is better). An
ABR algorithm observes the video streaming system’s state
consisting of buffer size and video chunk download time,
observed throughput, size of the next video chunk at all pos-
sible bit rates, etc. to determine the bit rate at which the next
video chunk should be fetched. Pensieve (Mao et al., 2017)
is a popular neural network (NN) used for ABR. It is trained
using reinforcement learning (RL) to maximize the QoE.
We provide Pensieve’s architectural details in Appendix D.

Congestion control. Congestion control is a regulatory pro-
cess that determines the packet sending rate across a given
network at any time, to maximize the network through-
put (packets sent over the network) and minimize latency
and packet loss (Jay et al., 2019). Congestion control al-
gorithms use latency gradient (Dong et al., 2018) and la-
tency ratio (Winstein et al., 2013) as input features and
output the change in sending rate for the next time step.
Aurora (Jay et al., 2019) is a popular NN-based solution for
congestion control, trained with RL (architectural details
in Appendix E). The reward here is a combination of the
throughput, latency, and packet loss observed in the system.

B. Related Work
Specifications for neural networks. The current approach
to generate specifications for neural networks (NNs) is
largely dependent on human design. Many existing works,
such as (Eliyahu et al., 2021; Wu et al., 2022; Wei et al.,
2023), rely on experts to design their specifications. Also,
in the International Verification of Neural Networks Compe-
tition, VNN-Comp (Brix et al., 2023), expert-designed spec-
ifications are used in benchmarks, including for Adaptive
Bit Rate and Congestion Control. However, the quality and
relevance of these expert-designed specifications remain un-
clear. Recent work (Geng et al., 2023) proposes to automati-
cally mine neural activation patterns (NAP) as specifications.
NAP refers to the pattern of activation functions—whether
they are activated or deactivated—given a specific neural
network and an input. Geng et al. (2024) introduces mul-
tiple approaches to mine NAPs for a given neural network.
SpecTRA differs from NAP mining as SpecTRA’s specifica-
tions can generalize beyond the target neural networks and

can be intuitively validated with domain knowledge.

Specification generation for programs. There is a long
history of work focused on synthesizing specifications for
traditional programs, which has inspired SpecTRA. Unlike
prior work (Ernst et al., 1999; Ammons et al., 2002; Park
et al., 2023; Astorga et al., 2019; 2021), SpecTRA targets
neural networks instead of traditional general programs. To
the best of our knowledge, SpecTRA is the first to mine spec-
ifications for neural networks in computer systems using
reference algorithms. Astorga et al. (2023) also synthesize
contracts for neural networks, but they operate in a setting
with query-access to an oracle, which is not practically ex-
tensible to the applications we study.

NN verification. NN verification formally verifies given
neural networks for desirable properties such as robustness
to input perturbations. It can be broadly classified as com-
plete (Jaeckle et al., 2021; Ferrari et al., 2022; Xu et al.,
2021) and incomplete (Xu et al., 2020; Singh et al., 2019)
verification. NN verification is NP-complete (Katz et al.,
2017), which is hard to scale to larger NNs. However, the
NNs in computer systems are generally small due to effi-
ciency requirements and hence are conducive to verification.

C. DBSCAN clustering settings
DBSCAN operates by identifying core points in given data.
Core points have a prespecified minimum number of points
in their neighborhood, specified by a given radius r. We
set the minimum number of samples mins to the number
of points that make the cluster achieve the representation
threshold τrep. For a low volume of specifications, we
keep r as the minimum radius that can ideally contain the
minimum number of points, if densely packed.

D. Pensieve’s architectural details
Pensieve’s original architecture (Mao et al., 2017), that cor-
responds to our mid model has the following structure:

First Layer: 3 parallel fully connected layer, each contains
128 neurons, and an 1D convolution layer with 128 filters
and kernel size is 4. These 4 layers take the input features
in parallel.
Second Layer: A fully connected (linear) layer with 128
neurons.
Output Layer: A fully connected (linear) layer with 6
neurons.

Following the NN4Sys benchmarks in VNN Comp 2024
(https://sites.google.com/view/vnn2024),
we also include the small and big models for Pensieve,
having the following architectures.
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Small
First Layer: 4 parallel fully connected layer, each contains
128 neurons.
Second Layer: A fully connected (linear) layer with 128
neurons.
Output Layer: fully connected (linear) layer with 6 neurons.

Big
First Layer: 3 parallel fully connected layer, each contains
128 neurons, and an 1D convolution layer with 128 filters
and kernel size is 4. These 4 layers are parallel.
Second Layer: A fully connected (linear) layer with 256
neurons.
Output Layer: fully connected (linear) layer with 6 neurons.

E. Training Aurora
Aurora model architectures. In this paper, we provide
two different architectures for the Aurora model: the small
model and the mid model. The mid model retains the same
architecture as the initial Aurora policy agent from the origi-
nal paper (Jay et al., 2019), which utilized a fully-connected
neural network with two hidden layers of 32→ 16 neurons
and employed a tanh nonlinearity function. We have also de-
veloped a small model with a similar architecture but scaled
down to two hidden layers of 16→ 8 neurons, also using
the tanh nonlinearity.

Training and testing setting. The original Aurora model
was trained in a gym simulation environment designed to
replicate network links, with bandwidth and latency ran-
domized to reflect real-world conditions.

To adapt Aurora for conditions similar to those experienced
by BBR and Cubic, we made slight modifications to the
simulation. This included using varied bandwidth from
Pantheon traces (11 in total, available at Pantheon Traces),
as well as adjusting loss rate, packet queue size, and one-way
delay. To ensure broad coverage of bandwidth scenarios,
we increased the training steps.

In training, we simulate network conditions using Pantheon
traces. Each condition includes:

• Bandwidth Trace: Patterns of bandwidth over time.

• Loss Rate: Percentage of packets dropped.

• Delay: Time for a packet to travel one way.

• Queue Size: Maximum packets held in the network
buffer before forwarding or dropping.

Using 11 traces, we had 18 distinct network conditions by
varying loss, delay, and queue size. We split these con-
ditions, with 75% used for training and 25% for testing,

ensuring the RL-based Aurora model is not exposed to test
patterns during training. During training and testing, we
ensure that all testing network conditions are run at least
once.

In our experiment, with a fixed random seed of 0, the split
is as follows:

• Training Conditions: 13, 14, 2, 5, 9, 8, 7, 15, 18, 6, 4,
11, 16

• Testing Conditions: 1, 3, 10, 12, 17

Network condition details can refer below:

No. Trace File Delay Loss Queue Size

1 0.57mbps-poisson 28 0.0477 14
2 2.64mbps-poisson 88 0 130
3 3.04mbps-poisson 130 0 426
4 100.42mbps 27 0 173
5 77.72mbps 51 0 94
6 114.68mbps 45 0 450
7 12mbps 10 0 1
8 60mbps 10 0 1
9 108mbps 10 0 1

10 12mbps 50 0 1
11 60mbps 50 0 1
12 108mbps 50 0 1
13 0.12mbps 10 0 10000
14 10-every-200 10 0 10000
15 12mbps 30 0 6
16 12mbps 30 0 20
17 12mbps 30 0 30
18 12mbps 30 0 60

Table 3: Mapping of Network Parameters to Trace Files

More details can be found in our network simulation imple-
mentation.

Aurora Model Performance. We evaluate the Aurora
model on our testing network conditions. To benchmark
its performance, we include a random model, which is ran-
domly initialized and untrained. The Original model refers
to models trained in Aurora’s original RL environment,
while Current refers to the model we trained under net-
work conditions similar to BBR and Cubic, using Pantheon
traces, which we introduced above.

Model Random Original Current

Aurora (small) 631.38 3195.15 3279.03
Aurora (mid) 631.38 3273.63 1380.22

Table 4: Aurora Model Rewards
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Figure 2: Ablation study for hyperparameters affecting the specifications

F. Ablations
To select the best thresholds and SpecTRA’s parameters,
we study the variation in the support and confidence of
SpecTRA’s specifications over the training observations
with the various settings. Specifically, we consider the
history length of the features used in the specifications,
representation threshold τrep, the number of partitions (p)
of the input space X along each dimension, and the maxi-
mum permissible number of outputs in each specification
τmax. Figures 2a and 2b show the quality of the specifi-
cations for ABR and CC respectively. We select those pa-
rameters for our main experiments that yield specifications
with high support and confidence over all the references,
as observed in this ablation study. We select history = 3
(previous 3 download times will be used in specifications),
τrep = 0.01, p = 100, τmax = 5 for ABR and history = 4
(previous 4 observed features will be used in specifications),
τrep = 0.01, p = 50, τmax = 2 for CC.

G. Support and confidence of specifications on
training observations

Table 5 reports the support and confidence metrics on the
training observations for all applications and models.

H. Qualitative analysis of specifications for CC
SpecTRA generates 1 specification, shown in Specifica-
tion 3, for Aurora models. Interestingly, this specification’s
precondition contains the precondition of the specification

allowing non-zero change of sending rate in its postcondi-
tion in Eliyahu et al. (2021). The latter specification com-
prises of a very small fraction of SpecTRA’s specification.
For example, all latency gradients are specified to be within
[−0.01, 0.01], latency ratios in [1.0, 1.01], and sending ra-
tios as only 1.0. Thus, the corresponding prior specification
is conservative, probably due to its manual design.

Precondition
LG[−1] ∈ [−1.0, 0.29], LG[−2] ∈ [−0.78, 0.07],

LG[−3] ∈ [−0.78, 0.29], LG[−4] ∈ [−1.0, 0.29]

LR[−1] ∈ [1.0, 1.88], LR[−2] ∈ [1.0, 1.88],

LR[−3] ∈ [1.0, 1.88], LR[−4] ∈ [1.0, 1.88]

SR[−1] ∈ [0.0, 17.18], SR[−2] ∈ [0.0, 17.18],

SR[−3] ∈ [0.0, 17.18], SR[−4] ∈ [0.0, 17.18]

Postcondition
Change in Sending Rate ∈ {+,−}

Specifications 3: For CC. (LG: latency gradient, LR: latency
ratio, SR: sending ratio, x[−i]: ith last value of x)
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Application Reference Support (Spec-
TRA)

Confidence
(SpecTRA)

Support
(prior)

Confidence
(prior)

ABR

BB 0.95 1.0 0.03 1.0
MPC 0.64 0.87 0.09 0.87
Pensieve (small) 0.17 0.99 0.27 0.86
Pensieve (mid) 0.31 0.96 0.14 0.93
Pensieve (big) 0.26 0.97 0.22 0.93

CC

BBR 0.89 0.75 0.01 0.43
Cubic 0.97 0.82 0.001 0.29
Aurora (small) 1.0 1.0 0.01 1.0
Aurora (mid) 0.98 1.0 0.17 0.03

Table 5: Support and confidence of SpecTRA’s specifications and that of the specifications in (Eliyahu et al., 2021) on the
training observations of the references and NNs for both the ABR and Congestion Control (CC) applications

I. SpecTRA’s generated specification set for
ABR

The following specifications 3 were generated by SpecTRA
for ABR, to be used in conjunction.

Specifications 3: Conjunctive specifications for ABR. (BS:
Buffer Size, DT[−i]: ith last download time, BR: Bit Rate)

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [1.50, 6.60],

DT [−2] ∈ [1.50, 7.90],

DT [−3] ∈ [5.40, 10.50]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0}

1

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [1.50, 10.50],

DT [−2] ∈ [0.20, 7.90],

DT [−3] ∈ [1.50, 10.50]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0, 4300.0}

2

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 6.60],

DT [−2] ∈ [1.50, 6.60],

DT [−3] ∈ [5.40, 9.20]

Postcondition
BR ∈ {300.0, 750.0, 2850.0}

3

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 6.60],

DT [−2] ∈ [1.50, 7.90],

DT [−3] ∈ [4.10, 10.50]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 4300.0}

4

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 6.60],

DT [−2] ∈ [2.80, 6.60],

DT [−3] ∈ [5.40, 9.20]

Postcondition
BR ∈ {300.0, 750.0}

5

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 6.60],

DT [−2] ∈ [5.40, 10.50],

DT [−3] ∈ [2.80, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0, 4300.0}

6
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Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 6.60],

DT [−2] ∈ [6.60, 10.50],

DT [−3] ∈ [2.80, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

7

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [2.80, 10.50],

DT [−2] ∈ [1.50, 7.90],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0}

8

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [5.40, 10.50],

DT [−2] ∈ [1.50, 6.60],

DT [−3] ∈ [1.50, 5.40]

Postcondition
BR ∈ {300.0, 750.0, 1850.0}

9

Precondition
BS ∈ [4.00, 5.00],

DT [−1] ∈ [5.40, 10.50],

DT [−2] ∈ [1.50, 6.60],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

10

Precondition
BS ∈ [4.00, 5.40],

DT [−1] ∈ [1.50, 6.60],

DT [−2] ∈ [1.50, 7.90],

DT [−3] ∈ [4.10, 10.50]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 2850.0}

11

Precondition
BS ∈ [4.00, 5.40],

DT [−1] ∈ [5.40, 10.50],

DT [−2] ∈ [1.50, 6.60],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 2850.0, 4300.0}

12

Precondition
BS ∈ [4.00, 10.90],

DT [−1] ∈ [0.20, 11.80],

DT [−2] ∈ [0.20, 11.80],

DT [−3] ∈ [0.20, 11.80]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 1850.0, 4300.0}

13

Precondition
BS ∈ [4.00, 14.80],

DT [−1] ∈ [0.20, 11.80],

DT [−2] ∈ [0.20, 11.80],

DT [−3] ∈ [0.20, 11.80]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 1850.0, 2850.0}

14

Precondition
BS ∈ [5.00, 6.10],

DT [−1] ∈ [5.40, 9.20],

DT [−2] ∈ [1.50, 5.40],

DT [−3] ∈ [1.50, 5.40]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0, 4300.0}

15

Precondition
BS ∈ [6.10, 7.50],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [4.10, 10.50],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1850.0}

16

Precondition
BS ∈ [6.10, 7.80],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [4.10, 10.50],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 4300.0}

17

16
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Precondition
BS ∈ [6.10, 7.80],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [4.10, 11.80],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 4300.0}

18

Precondition
BS ∈ [6.10, 8.20],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [4.10, 10.50],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 2850.0, 4300.0}

19

Precondition
BS ∈ [6.10, 10.60],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [0.20, 11.80],

DT [−3] ∈ [1.50, 11.80]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0, 4300.0}

20

Precondition
BS ∈ [6.40, 7.50],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [1.50, 5.40],

DT [−3] ∈ [5.40, 11.80]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

21

Precondition
BS ∈ [6.40, 7.80],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [1.50, 5.40],

DT [−3] ∈ [5.40, 9.20]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 2850.0}

22

Precondition
BS ∈ [7.50, 8.20],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [1.50, 5.40],

DT [−3] ∈ [5.40, 9.20]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

23

Precondition
BS ∈ [7.80, 9.20],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [5.40, 9.20],

DT [−3] ∈ [2.80, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

24

Precondition
BS ∈ [8.20, 8.90],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [5.40, 9.20],

DT [−3] ∈ [2.80, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1850.0, 2850.0}

25

Precondition
BS ∈ [8.20, 9.60],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [4.10, 9.20],

DT [−3] ∈ [1.50, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 2850.0}

26

Precondition
BS ∈ [8.50, 9.60],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [0.20, 4.10],

DT [−3] ∈ [2.80, 6.60]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

27

Precondition
BS ∈ [8.50, 10.60],

DT [−1] ∈ [0.20, 4.10],

DT [−2] ∈ [0.20, 4.10],

DT [−3] ∈ [5.40, 10.50]

Postcondition
BR ∈ {300.0, 750.0, 1200.0}

28

Precondition
BS ∈ [10.90, 12.00],

DT [−1] ∈ [0.20, 5.40],

DT [−2] ∈ [0.20, 5.40],

DT [−3] ∈ [4.10, 7.90]

Postcondition
BR ∈ {300.0, 750.0, 1200.0, 1850.0}

29

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Precondition
BS ∈ [10.90, 12.30],

DT [−1] ∈ [4.10, 7.90],

DT [−2] ∈ [1.50, 6.60],

DT [−3] ∈ [1.50, 5.40]

Postcondition
BR ∈ {750.0, 1200.0, 1850.0, 2850.0, 4300.0}

30

18


