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Abstract001

Emotions are fundamental to conversational un-002
derstanding. While significant advancements003
have been achieved in conversational emotion004
recognition and emotional response generation,005
recognizing the causes of eliciting emotions is006
less explored. Previous studies have primar-007
ily focused on identifying the causes of emo-008
tions by understanding verbal contextual utter-009
ances, overlooking that non-verbal emotional010
cues can elicit emotions. To address this issue,011
we develop an Emotional Contagion Graph Net-012
work (ECGN) that simulates the impact of non-013
verbal implicit emotions on the counterpart’s014
emotions. To achieve this, we construct a het-015
erogeneous graph that simulates the transmis-016
sion of non-verbal emotions alongside verbal017
influences. By applying message passing be-018
tween nodes, the constructed graph effectively019
models both the implicit emotional dynamics020
and explicit verbal interactions. We evaluate021
ECGN ’s performance through extensive ex-022
periments on the benchmark dataset and com-023
pare it against multiple state-of-the-art models.024
Experimental results demonstrate the effective-025
ness of the proposed model.026

1 Introduction027

Emotions are widely present in human communi-028

cation. It is crucial for humans to infer others’029

thoughts that are accompanied by the change of030

emotions. Understanding the mindset of others031

may involve not only understanding the contents032

and emotions of utterances but also digging out the033

potential causes of emotions. The ability of models034

to reason the cause of emotions is crucial in many035

contexts–it enhances the accuracy of responses by036

mining the intents, reduces the possible negative037

emotions for the opposite, and provides more sub-038

stantive emotional support. Therefore, developing039

a model for recognizing the causes behind emo-040

tions is crucial for a more reliable dialogue system.041

042

Where are you going 
this weekend? [Neutral]

I have no idea. Maybe I will sleep
 for the whole day. [Neutral]

So boring! Shall we go out for a picnic 
with my friends? [Happy]

Fred and David, my college class 
mates and Rachel. [Happy]

Sounds interesting. Who are 
the other people? [Happy]

Speaker A

Speaker B

Speaker A

Speaker B

Speaker A

Figure 1: An example of a conversation in the
RECCON-DD dataset. The arrow indicates the cause
utterance for any target utterance.

Over the past few years, significant progress has 043

been made in conversational emotion analysis. Pre- 044

vious studies (Hu et al., 2023; Song et al., 2022; 045

Zhang et al., 2023a) on Emotion Recognition in 046

Conversation (ERC) have primarily focused on la- 047

beling emotions for individual utterances, but this 048

study often lacks recognizing the underlying emo- 049

tional stimuli present in these utterances. To ad- 050

dress this limitation, Poria et al. (Poria et al., 2021) 051

introduce the Causal Emotion Entailment (CEE) 052

task, which aims to determine which specific utter- 053

ances stimulate a non-neutral emotional response 054

in the target utterance. Compared to the Emotion 055

Cause Extraction (ECE) (Lee et al., 2010; Gui et al., 056

2017, 2018; Fan et al., 2019) and Emotion Cause 057

Pair Extraction (ECPE) (Xia and Ding, 2019; Hu 058

et al., 2021b; Ding et al., 2020a; Wei et al., 2020) in 059

discovering the cause triggers in a document, identi- 060

fying conversational emotion causes is challenging 061

because of the complex conversational structure 062

and interactions. Many works focus on understand- 063

ing verbal contextual utterances (Bosselut et al., 064

2019; Zhao et al., 2023a; Zhou et al., 2024a), but 065

neglecting emotions themselves can also be the 066

cause of emotions on the counterparts beyond ver- 067
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bal utterances. For example, in Figure 1, speaker068

B’s emotion is attributed to speaker A’s happiness,069

which makes it difficult to reason from only verbal070

utterances.071

To address this challenge, we turn to Emotion072

Contagion Theory (Hatfield et al., 1993, 2011; Liu073

et al., 2024), which demonstrates a process in074

which a person or group influences the emotions or075

behavior of another person through the conscious076

or unconscious induction of emotion states and be-077

havioral attitudes. This means that the emotions078

of counterparts can elicit emotions without any lin-079

guistic cues. Generally, emotional contagion can080

be either implicit (Tee, 2015; Wróbel and Imbir,081

2019), which relies on mainly non-verbal commu-082

nication (Schoenewolf, 1990), or explicit, which af-083

fects the emotions of counterparts by content (Kelly084

and Barsade, 2001).085

Inspired by the emotional contagion process, we086

propose a novel Emotional Contagion Graph Net-087

work (ECGN) to identify emotion causes, which088

simulates the emotional contagion process through089

both explicit and implicit emotional pathways. Ex-090

plicit emotional contagion is modeled through the091

interactions of verbal utterances called verbal cues,092

while implicit emotional contagion is captured093

through the dynamics of non-verbal emotional la-094

bels called non-verbal cues. ECGN consists of095

several key steps. First, ECGN extracts both non-096

verbal and verbal cues from the conversational con-097

text and constructs a heterogeneous conversational098

graph. This graph captures two types of inter-099

actions: implicit emotional contagion from non-100

verbal emotional labels, and explicit emotional con-101

tagion from verbal utterances. Moreover, ECGN102

effectively transmits the dynamics within and be-103

tween non-verbal and verbal cues through rela-104

tional graph neural networks. Finally, a classifier105

predicts the emotion cause based on the integrated106

information.107

To evaluate the proposed ECGN, we conduct ex-108

tensive experiments on the RECCON-DD dataset.109

Results consistently demonstrate that ECGN effec-110

tively promotes the detection of causal utterances111

from the target utterance.112

2 Related Work113

Causal Emotion Entailment Poria et al.(Poria114

et al., 2021) introduced the RECCON task to iden-115

tify the causes of a speaker’s emotions in con-116

versations. Based on the granularity of causes,117

it is divided into the CEE task (utterance-level 118

causes) and the CSE task (phrase-level causes). 119

Their approach concatenates potential causal ut- 120

terances with the target utterance but overlooks 121

conversational interactions. To improve this, re- 122

cent works focus on contextual understanding. For 123

instance, MuTECCEE(Bhat and Modi, 2023) em- 124

ploys multi-task learning to model conversational 125

context, KEC (Li et al., 2022) and KBCIN (Zhao 126

et al., 2023a) incorporate commonsense knowledge 127

via directed acyclic graphs, PAGE (Gu et al., 2023) 128

leverages positional relationships, TSAM (Zhang 129

et al., 2022) integrates attention for intra- and inter- 130

speaker influences, and recent works (Huang et al., 131

2024; Zhou et al., 2024b) explores reasoning with 132

Large Language Models (LLMs). The above works 133

take emotion as auxiliary information accompanied 134

by the utterances and pay attention to the verbal 135

information, but neglect the effects of non-verbal 136

emotional dynamics themselves. ECGN recog- 137

nizes and bridges this gap. 138

Emotion Recognition in Conversations. Emo- 139

tion Recognition in Conversations (ERC) is a 140

highly relevant task to CEE, which involves iden- 141

tifying emotion categories for the target utterance. 142

ERC needs to predict unknown emotions in the 143

conversation, differentiating from CEE which emo- 144

tion is already known. Most of the present works 145

adopt graph-based and sequence-based methods. 146

The former (Ghosal et al., 2019; Ishiwatari et al., 147

2020; Hu et al., 2021c; Shen et al., 2021; Zhang 148

et al., 2023a) builds a graph to handle interactions 149

between utterances and speakers. 150

Another group of works exploits transformers 151

and recurrent models to learn the interactions be- 152

tween utterances (Majumder et al., 2019; Hu et al., 153

2021a; Liu et al., 2022). Commensense Knowl- 154

edge is explored by KET (Zhong et al., 2019). 155

Contrastive learning methods are also prevailing 156

for ERC (Lewis et al., 2019; Song et al., 2022; 157

Yu et al., 2024) which separates utterances from 158

representation space. The above approaches use 159

encoders to extract utterance representations. Sev- 160

eral recent works explore LLMs (Lei et al., 2023; 161

Zhang et al., 2023b; Wu et al., 2024b) for ERC 162

tasks. Unlike ERC methods that only rely on con- 163

textual utterances for prediction, ECGN introduces 164

contextual emotional interactions to enhance cause 165

predictions. 166

Emotion Cause (Pair) Extraction. Emotion 167

cause extraction (ECE) aims to identify the causes 168
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or stimuli that trigger the emotions in each sen-169

tence in a long document, which was first pro-170

posed by (Lee et al., 2010). Early studies are171

devoted to designing rule-based methods (Chen172

et al., 2010; Neviarouskaya and Aono, 2013). Re-173

cent works propose various deep networks to tackle174

this task (Cheng et al., 2017; Zheng et al., 2022).175

The ECE task has been researched for nearly a176

decade, but its reliance on additional emotion an-177

notations limits its applicability in real-world sce-178

narios. To this end, Emotion-Cause Pair Extraction179

(ECPE) (Xia and Ding, 2019) is proposed to ex-180

tract all pairs of emotions and corresponding causes181

in a document without emotion annotation. They182

propose a two-step framework to perform ECPE. In183

the following work, ECPE-2D (Ding et al., 2020a)184

utilizes a 2D Transformer to model clause pairs.185

Sequence-labeling scheme is also constructed for186

ECPE (Yuan et al., 2020; Cheng et al., 2021; Wu187

et al., 2023). Recent works have started to explore188

the strong reasoning and understanding abilities of189

LLMs for ECPE (Wu et al., 2024a; Gu et al., 2024).190

Unlike these two tasks, which predict emotional191

causes in documents, ECGN focuses on captur-192

ing the complex emotional interactions between193

interlocutors in real-life conversation scenarios.194

3 Methodology195

3.1 Problem Definition196

We start by formulating the CEE task. Con-197

sider a conversation as a sequence of ut-198

terances with speakers and emotions as199

C = {(u1, e1, s1), (u2, e2, s2), . . . , (uT , sT , eT )},200

where ut is the utterance at the timestamp t in the201

conversation, et ∈ {happy, angry, sad, disgusted,202

fearful, surprised, neutral} is the corresponding203

emotion label, and st is the speaker identity of ut.204

The goal of CEE is to identify the set of utterances205

{ui}(i ≤ t) which are the emotion causes of ut206

in the conversation history if ut is a non-neutral207

utterance.208

3.2 Model Overview209

Figure 2 shows the pipeline of ECGN. It consists210

of several key components designed to simulate211

explicit and implicit emotional contagion.212

The first component is to encode utterances and213

emotions, using a language model to extract textual214

representations while generating emotion represen-215

tations with emotion labels.216

The second component is the construction of the217

emotion contagion graph with the extracted repre- 218

sentations. The emotion contagion graph contains 219

the explicit and implicit ones. The explicit emo- 220

tion contagion graph simulates the triggering of 221

emotions by language content in the conversational 222

context. The implicit emotion contagion graph sim- 223

ulates the influence of non-verbal cues on emotions 224

in the conversational context, which are represented 225

by emotion encodings. In this graph, vertices rep- 226

resent utterances or emotions. Interactions within 227

emotion nodes pass unconscious contagion silently, 228

dynamics between emotion and utterances or ut- 229

terances themselves actively trigger emotions. To 230

learn the transition process, we employ relational 231

graph neural networks and graph transformers to 232

integrate such interactive relationships, which al- 233

lows ECGN to capture causes in terms of contents 234

and emotions. 235

The last component combines both the learned 236

emotional and utterance information together to 237

construct cause representations which are used to 238

distinguish the causal and non-causal utterances. 239

3.3 Context Encoding with Emotions 240

Given an utterance history U = {u1, u2, . . . , uT } 241

and emotion history E = {e1, e2, . . . , eT }, where 242

T is the number of utterances contained in a conver- 243

sation, we use a language model to extract verbal 244

utterance representations. More specifically, we 245

add special tokens such as [CLS] and [SEP] which 246

serve as markers to indicate the beginning and end 247

of each utterance. To facilitate verbal utterance rep- 248

resentations with emotion semantics, we construct 249

a prompt: 250

Xi(si, ui, ei) = si ei says ∶ ui, (1) 251

where X(⋅, ⋅, ⋅) transforms each utterance into an 252

implicit emotion-rich form. For instance, an utter- 253

ance can be organized as John happily says: I’m so 254

glad I bought this watch! Finally, we concatenate 255

all the prompts in a conversation and feed them 256

into a pretrained language model: 257

Ht = PLM([CLS]X1[SEP] . . . [CLS]XT [SEP]),
(2) 258

Where the conversational textual representations 259

Ht = Concat(ht1, ht2, . . . , htT ) ∈ RT×d is the con- 260

catenation of all last hidden states at the [CLS] to- 261

ken’s position, d is the dimension of hidden states. 262

3.4 Emotion Encoding 263

To leverage the non-verbal cues, we generate emo- 264

tional representations at each time step with emo- 265
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Figure 2: Overview of our proposed method. The structure of the model is shown at the bottom. First, we input the
utterances and emotions into the language model to obtain the encodings of them. Then we construct a heterogenous
graph modeling the complex interaction relations, including the simulated implicit and explicit emotional contagion.
Having the heterogeneous graph, we build up a graph-learning model for learning dynamics between different node
features. Different relations indicate distinct information passing needed. Finally, a cause prediction module is
employed to identify the causes of emotions within the conversation.

tion labels. Given a candidate set of emotion labels266

S = {e1, e2, . . . , e∣S∣}, each emotion ei can be rep-267

resented as an embedding vector:268

gi = PLM(ei), (3)269

Where gi ∈ Rd, and then we concatenate emo-270

tion representations as a lookup table P =271

Concat(g1, g2, . . . , g∣S∣) ∈ R∣S∣×d. These emotion272

representations are initialized with the original pre-273

trained language model. Given an emotion history274

E = {e1, e2, . . . , eT }, we generate the representa-275

tions for et through:276

het = Lookup(P , et), (4)277

Where het ∈ Rd is the representation of et, concate-278

nating them can get the conversation emotional279

representation He = Concat(he1, he2, . . . , heT ) ∈280

RT×d.281

3.5 Emotion Contagion Graph Construction282

To mimic both explicit and implicit emotional con-283

tagion processes, we construct a heterogeneous284

graph for each conversation history. We denotes a285

graph as G = (V,E ,R), with vertices vi ∈ V , edges286

ϵk ∈ E , rij ∈R is the relation type between vi and287

vj .288

Our graph G contains two types of nodes:289

Utterance node: We consider ith utterance in290

the conversation as a node vti ∈ Vt, whose repre-291

sentations are initialized with its utterance-level292

features ht,(1)i = hti for any time step i.293

Emotion node: We treat each emotion in the 294

conversation as a node vei ∈ Ve and initialize the 295

representations with h
e,(1)
i = hei . 296

Then the set of nodes can be represented as: 297

V = Vt ∪ Ve, (5) 298

where utterance node Vt = {ui}, emotion node 299

Ve = {ei} and i ∈ [1, T ]. 300

Our graph G contains three types of edges: 301

Emotion-Emotion edge: To simulate the non- 302

verbal implicit emotion contagion, we connect the 303

current utterance i with a past context window size 304

of p and a future context window size of f . We 305

believe that the adjacent utterances of utterance i 306

have the most significant impact. For the sake of 307

message passing between utternaces, each utter- 308

ance vertex has an edge with the timestamp i utter- 309

ance of the past: vei−p, v
e
i−p+1, . . . , v

e
i−1, the future 310

utterances: vei+1, v
e
i+2, . . . , v

e
i+f and vei itself. These 311

edges are denoted as Euu = {(ei, ej), (ej , ei)}, 312

where max(0, i − p) ≤ j ≤ min(i + f, T ), and 313

i ∈ [1, T ]. Eee enables the non-verbal emotional 314

information to transmit intra- and inter- speakers. 315

Utterance-Utterance edge: Verbal communi- 316

cations may elicit emotions, we connect utter- 317

ance nodes to construct explicit emotion conta- 318

gion graph to capture the conscious emotions as 319

Eee = {(ui, uj), (uj , ui)}, which allows utterances 320

themselves to cause the emotions. 321

Utterance-Emotion edge: To further estab- 322

lish the interactions between emotions and ut- 323
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terances, we connect utterance node i with its324

emotion node to model the interaction within a325

speaker. The edges can be represented as Eue =326

{(ui, ei), (ei, ui)}, which connects the mutual ef-327

fect of emotion and utterance within a speaker. Be-328

sides, multi-hop message passing enables such an329

effect to spread across speakers.330

Then the set of edges can be represented as:331

E = Euu ∪ Eue ∪ Eee, (6)332

where E includes non-verbal implicit emotional333

dynamics Eee, and verbal explicit emotional dy-334

namics Eue and Euu.335

3.6 Emotional Dynamic Interaction336

To effectively pass the information between nodes337

and learn the dynamics, we utilize R-GCN338

(Schlichtkrull et al., 2018), which can integrate339

different relationships between vertices and learn340

the node representations:341

h
∗,(l+1)
i = σ

⎛
⎝∑r ∈R

∑
j∈N r

i

1

∣N r
i ∣
W l

rh
∗,(l)
j +W l

0h
∗,(l)
i

⎞
⎠
,

(7)342

Where N r
i is the set of neighboring nodes of node343

i under the relationship r, h∗,li is the representa-344

tions for node i which is either emotional or tex-345

tual node after layer l ∈ [1, L], Wr ∈ Rd1×d2 and346

W0 ∈ Rd1×d2 are learnable parameters to transform347

the neighborhood information within relationship r.348

R-GCN layers not only transmit the emotional dy-349

namics within emotional nodes and utterance nodes350

but also capture the interactions between emotions351

and utterances. Then the node representations are352

mapped to a shared representation space. To step353

further, We exploit GraphTransformer (Shi et al.,354

2020) to learn rich utterance representations. More355

specifically, the representations can be calculated356

as follows:357

h
∗,(l+1)
i =W1h

∗,(l)
i + ∑

j∈Ni

αi,jW2h
∗,(l)
j , (8)358

αi,j = Softmax
⎛
⎜
⎝

(W3h
∗,(l)
i )(W4h

∗,(l)
j )

√
d

⎞
⎟
⎠
, (9)359

where the αi,j is the attention coefficient and d is360

the hidden size. The final utterance representation361

is then obtained by concatenating the emotional362

and utterance node representations at layer L:363

hi = Concat(ht,(L)i , h
e,(L)
i ), (10)364

3.7 Cause Prediction 365

To predict the cause of the target utterance, we 366

obtain the cause representation ct by concatenating 367

the utterance representations between the target 368

utterance T and historical utterance i: 369

ci = ReLU(W5[hi;ht] + b1), (11) 370

ŷi = Sigmoid(W6ci + b2), (12) 371

Where ŷi is the probability of utterance i is the 372

cause of emotion in the target utterance. W5 ∈ 373

Rd2×d3 , W6 ∈ Rd3×1 b1 ∈ Rd3 , b2 ∈ R are learnable 374

parameters. CrossEntropy loss function is adopted 375

for optimization. 376

4 Experimental settings 377

4.1 Dataset and evaluation metrics 378

Dataset. We conduct experiments on a bench- 379

mark dataset RECCON-DD (Poria et al., 2021), 380

which is built upon the DailyDialog dataset (Li 381

et al., 2017). The detail of the RECCON-DD 382

dataset is shown in Table 2. The data samples 383

used for the experiments were constructed by pair- 384

ing each non-neutral emotional utterance with its 385

historical utterances, including itself, one by one. 386

If a historical utterance was found to be the cause 387

of an emotional utterance, the utterance pair was 388

labeled as positive; otherwise, the pair was labeled 389

as negative. Besides, we analyze the distribution 390

of cause pairs in the conversations, as shown in 391

Figure 3, about 80 % of emotion causes are located 392

within two-time steps before the target utterances, 393

indicating the high impact of neighbor emotions 394

and utterances. 395

Metrics. Following previous work (Poria et al., 396

2021), we adopt the macro-averaged F1 score for 397

evaluating performance. Also, the F1 score for 398

positive and negative samples is reported. 399

4.2 Baselines 400

For a comprehensive evaluation, We compare our 401

method with the following baselines: 402

(1) ECE and ECPE methods: KAG (Yan et al., 403

2021) that alleviates positional bias problem and 404

improves the semantic dependencies using CSK; 405

Adapted (Turcan et al., 2021) jointly detecting 406

emotion and emotion cause enhanced by CSK; 407

ECPE-2D (Ding et al., 2020a) uses the 2D rep- 408

resentation to simulate emotion-cause pairs inter- 409

actions with a 2D transformer; ECPE-MLL (Ding 410
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Methods Negative F1 (%) Positive F1 (%) Macro F1 (%)

ECE Methods
KAG (Yan et al., 2021) 86.35 58.18 72.26

Adapted (Turcan et al., 2021) 88.18 64.53 76.36

ECPE Methods
ECPE-2D♣ (Ding et al., 2020a) 94.96 55.50 75.23

ECPE-MLL♣ (Ding et al., 2020b) 94.68 48.48 71.59
RankCP♣ (Wei et al., 2020) 97.30 33.00 65.15

HCL-ECPE (Hu et al., 2024) 88.52 66.47 76.93

CEE Methods
ChatGPT 0-shot† (Zhao et al., 2023b) 85.25 51.33 68.29
ChatGPT 1-shot† (Zhao et al., 2023b) 82.10 52.84 67.47
MuTECCEE (Bhat and Modi, 2023) 83.46 61.62 72.54

PAGE (Gu et al., 2023) 89.42 65.20 77.02
KEC † (Li et al., 2022) 88.85 66.55 77.70

KBCIN † (Zhao et al., 2023a) 89.65 68.59 79.12
TSAM (Zhang et al., 2022) 89.75 68.59 79.17
DAM (Kong et al., 2023) 89.35 69.32 79.34

ECGN(ours) 90.57∗±0.19 69.78±0.54 80.17∗±0.24

Table 1: Performance of baselines and ours on the RECCON-DD dataset. †and ♣ denotes the results obtained
from (Zhao et al., 2023b) and (Poria et al., 2021).* represents our method is significant statistically (p-value < 0.05).

RECCON-DD Train Dev Test

Positive Pairs 7026 328 1767
Negative Pairs 20558 838 5296

Number of Dialogues 834 47 225

Table 2: Statistics of the RECCON-DD dataset.

et al., 2020b) extends ECPE-2D by incorporat-411

ing multi-label learning to extract emotion cause.412

RankCP (Wei et al., 2020) emphasizes inter-413

clauses modeling with a ranking perspective for414

ECPE; HCL-ECPE (Hu et al., 2024) introduces415

hierarchical contrastive learning for ECPE.416

(2) CEE methods: KEC (Li et al., 2022) injects417

commonsense knowledge for a directed acyclic418

graph; KBCIN (Zhao et al., 2023a) leverage419

event-centered commonsense knowledge (Bosselut420

et al., 2019) to capture the inter-utterance relation-421

ships; PAGE (Gu et al., 2023): A position-aware422

graph-based model distinguishes different speak-423

ers for causal entailment. MuTECCEE (Bhat and424

Modi, 2023) exploits multi-task learning for ex-425

tracting conversational emotions, emotion causes,426

and entailment. TSAM (Zhang et al., 2022) pro-427

poses a two-stream attention model to separately428

model the emotions and speakers. In-Context-429

Learning (Zhao et al., 2023b): uses ChatGPT430

(GPT-3.5-turbo-0301) with few-shot demonstra-431

tions to test the CEE performance.432

0 5 10 15 20 25 30
Distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

Figure 3: Distribution of the distance between positive
pairs. The distance denotes the temporal difference
between the causal and target utterances. The blue part
indicates the portion that distance is less than 2.

4.3 Implementation Details 433

We conduct all the experiments based on Roberta- 434

base (Liu et al., 2019) for a fair comparison. All 435

experiments are run on a single A100 80GB GPU 436

under Pytorch (Paszke et al., 2019) and Torch Geo- 437

metric (Fey and Lenssen, 2019) framework for five 438

repetitions. 439

5 Results and analysis 440

Table 1 shows the performance comparison of 441

ECGN with state-of-the-art methods. It is ob- 442

served that ECE and ECPE methods perform worse 443

than CEE methods. For example, Adapted (Turcan 444
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Layers Neg. F1 Pos. F1 Macro F1

1 90.22 68.27 79.24
2 90.57 69.78 80.17
3 90.38 68.67 79.52
4 90.11 68.70 79.40
5 90.43 68.15 79.29
6 90.46 69.02 79.74

Table 3: The performance of using a different number
of R-GCN layers under the window size 2.

et al., 2021) serves as the best method among ECE445

and ECPE methods that can achieve 76.36% macro446

F1 score, which performs mediocrely among CEE447

methods. ECGN surpasses 3.81%, indicating the448

effectiveness of our design for CEE. ECPE and449

ECE models fail to leverage available emotion la-450

bels of utterances and model utterance and emotion451

interactions in conversation structure, leading to452

their worse performance.453

Compared to CEE methods, we outperform454

the second-best model TSAM by 1% overall and455

KBCIN which incorporates external knowledge.456

While the second-best baseline DAM incorporates457

discourse parsing to enhance long-distance cause458

classification. However, as shown in Figure 3, most459

causal relations occur in the local context, high-460

lighting the effectiveness of our emotional conta-461

gion simulation in the local context for improv-462

ing the overall performance. In addition, ECGN463

has an overwhelming performance advantage over464

ChatGPT, the possible reason is that ChatGPT is465

not well aligned to the complex data annotation466

for CEE. The experimental results are significantly467

better than the baselines under the t-test, which468

validates the robustness of ECGN.469

5.1 Ablation Study470

We conducted a series of ablation studies on471

ECGN. The results, as depicted in Table 4, high-472

light the criticality of each element in our approach.473

Removing the graph structure and concatenating474

the emotional representations with utterance repre-475

sentations, as well as removing the implicit emo-476

tional graph part harm the performance to a large477

extent. This result demonstrates the effectiveness478

of ECGN in dealing with emotional causes happen-479

ing in the local time with the mutual influence of480

emotions. In addition, removing ei in Xi decreases481

Macro F1 0.3%, indicating the importance of the482

influence of emotional state for utterance features.483

Emotion Graph Neg. F1 Pos. F1 Macro F1

90.57 69.78 80.17
89.98 68.48 79.23
89.77 68.45 79.11
89.38 68.29 79.04

Table 4: Effects of different components on the perfor-
mance of the proposed ECGN model.
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Figure 4: Test results under different window sizes on
the RECCON-DD dataset. The red dashed line depicts
the trend generated by polynomial fitting.

5.2 Effect of the Number of R-GCN Layers 484

We conducted an investigation into the influence 485

of the number of layers in the Relational-GCN ar- 486

chitecture. The findings, as presented in Table 3, 487

indicate that incorporating more global informa- 488

tion with the deeper graph networks introduces 489

confused context since most causes are adjacent to 490

the target utterances. Besides, using deep graph 491

neural networks resulted in performance degrada- 492

tion due to over-smoothing, as reported in previ- 493

ous studies (Kipf and Welling, 2016). Experiments 494

show that employing two layers of Relational-GCN 495

proved to be a balanced approach. The decrease in 496

performance when the number of layers is exces- 497

sive possibly owing to redundant information. 498

5.3 Effect of Contextual Window Size 499

We also report the performance under a large range 500

of window sizes. In Figure 4, the trend of per- 501

formance has a trend that first increases with the 502

growth of window size. The increase in window 503

size should have a larger perception field to aggre- 504

gate more information, however, the intrinsic prop- 505

erty of a conversation decides that a non-neutral 506

emotion is more likely to be triggered by the neigh- 507

bor’s utterances and distant utterances may intro- 508

duce irrelevant information (Ding et al., 2019). 509
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Turn Speaker Utterance Emotion w/IEC w/o IEC Label
1 A Hey George, how is your chicken? Neutral - - -
2 B My chicken tastes all right, but it is pretty

dry. How is your fish?
Neutral - - -

3 A My fish is pretty dry too. Sad [3] [3] [3]
4 B It’s almost as if this food has been sitting

a little too long. It doesn’t seem fresh.
Sad [3, 4] [4] [3, 4]

Table 5: Case study of a conversation instance shows that non-verbal implicit emotional dynamics (IEC) enables the
model to rectify incorrect cause predictions.

5.4 Can Implicit Emotional Dynamics510

Identify Causes?511

To verify how much the causes depend on the512

implicit emotion dynamics, we remove utterance513

nodes and only retain emotion nodes to determine514

the causes. As reported in Figure 5, the perfor-515

mance works almost equal to ChatGPT 1-shot and516

slightly better than RankCP on the Macro F1 score.517

It indicates that implicit non-verbal emotional dy-518

namics play a critical role in causal emotion entail-519

ment, as demonstrated by its performance even in520

the absence of explicit utterance-level information.521

6 Case Study522

We exhibit a case study in Table 5. In this case, the523

speaker SA first feels sad when finding his chicken524

tastes dry, which elicits a sad emotion. Subse-525

quently, speaker SB turns his emotion from neutral526

to sad not only because speaker SB’s tastes are dry,527

but also is influenced by SA. As shown in Table 5,528

removing the implicit emotion contagion network529

enables the model to understand only utterance530

semantic, which overlooks speaker SA’s sadness531

as an emotion trigger of SB , leading to mistaken532

classification. Besides, by analyzing our predicted533

emotion causes, we find that the following aspects534

mainly cause prediction errors: First, the causal535

relationship happens when the distance between536

the target utterance and the cause utterance is large.537

This type of error presents a challenge to trace back538

to distant previous dialog history. The second cate-539

gory is sudden emotional change, which confuses540

the model about causal relations. Solving these two541

kinds of errors needs a more fine-grained reasoning542

process to understand the mental state, e.g. Theory543

of Mind (ToM) (Ma et al., 2023; Jin et al., 2024;544

Strachan et al., 2024) because conversational con-545

text is simple, which is unable to provide sufficient546

information to accurately identify those causes, and547

external memory to retrieve relevant information548

Neg F1 Pos F1 Macro F1
F1 Metrics

0

20

40

60

80

100
RankCP
ChatGPT 1-shot
Ours (implicit)

Figure 5: Performance comparison with baselines using
only non-verbal implicit emotional dynamics.

from long conversation histroy (Zhong et al., 2024; 549

Maharana et al., 2024) also have potential capturing 550

distant information. 551

7 Conclusion and Future Work 552

In this paper, we introduce the Emotional Con- 553

tagion Graph Network (ECGN) as an innovative 554

model that improves causal emotion entailment 555

in conversations by simulating the impact of non- 556

verbal implicit emotions on the counterpart’s emo- 557

tions. By drawing inspiration from the Emotional 558

Contagion Theory, the model constructs a hetero- 559

geneous conversational graph to capture explicit 560

and implicit emotional dynamics between speakers, 561

simulating the influence between emotions them- 562

selves and interactions with utterances in a con- 563

versation to determine the emotion causes. Exten- 564

sive experimentation on the RECCON-DD dataset 565

demonstrates superior performance of ECGN over 566

state-of-the-art baselines. Ablation studies and 567

evaluations further validate the robustness and ef- 568

fectiveness of the approach, as well as the impor- 569

tance of implicit emotional dynamics in the conver- 570

sation for causal emotion entailment. 571

8



8 Limitations572

Our method primarily considers the conversation-573

level emotional and utterance information transmis-574

sion but does not consider mental activities among575

different speakers. We believe future work can ben-576

efit from a cognitive science perspective to enable577

more complex mental state reasoning for CEE task.578

Besides, multimodal information such as video and579

audio can better help recognize non-verbal emo-580

tional contagion such as facial expressions, body581

language, posture, tone of voice, and other non-582

verbal signals. Compared to the information trans-583

mission between emotion labels and utterance rep-584

resentations, it can better reflect emotional conta-585

gion in real-life scenarios. This leaves a large room586

for future benchmarks and the development of new587

methods.588

9 Ethical Consideration589

This study focuses on causal emotion entailment590

in conversations, which involves processing and591

analyzing emotional expressions. Ethical concerns592

include ensuring data privacy and avoiding unin-593

tended biases in the model. The dataset used is594

publicly available, and we adhere to ethical guide-595

lines for handling conversational data. While our596

model aims to improve emotional understanding, it597

should not be used for manipulative or deceptive598

purposes.599
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