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Abstract
In practice, training using federated learning can
be orders of magnitude slower than standard cen-
tralized training. This severely limits the amount
of experimentation and tuning that can be done,
making it challenging to obtain good performance
on a given task. Server-side proxy data can be
used to run training simulations, for instance for
hyperparameter tuning. This can greatly speed up
the training pipeline by reducing the number of
tuning runs to be performed overall on the true
clients. However, it is challenging to ensure that
these simulations accurately reflect the dynam-
ics of the real federated training. In particular,
the proxy data used for simulations often comes
as a single centralized dataset without a partition
into distinct clients, and partitioning this data in
a naive way can lead to simulations that poorly
reflect real federated training. In this paper we ad-
dress the challenge of how to partition centralized
data in a way that reflects the statistical hetero-
geneity of the true federated clients. We propose
a fully federated, theoretically justified, algorithm
that efficiently learns the distribution of the true
clients and observe improved server-side simula-
tions when using the inferred distribution to create
simulated clients from the centralized data.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) is a ma-
chine learning paradigm in which a (possibly very large)
number of data holding devices, called clients, collaborate
with a central server to train a model while keeping their
data private and stored on device. FL has become the default
for training on distributed private data with successful appli-

*Equal contribution 1Institute of Science and Technology
Austria (ISTA) 2Apple. Correspondence to: Jonathan Scott
<jonathan.scott@ist.ac.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

cations in a range of settings, including on mobile devices
(Hard et al., 2018; Ramaswamy et al., 2019; Granqvist et al.,
2020) as well as in healthcare (Brisimi et al., 2018; Huang
et al., 2019; Rieke et al., 2020). Despite this, FL poses a mul-
titude of challenges. These include: statistical and systems
heterogeneity, high communication costs, high latency, low
client compute and scheduling difficulties that arise from
practical restrictions, such as a device needing to be charg-
ing and not in use to participate in training (Kairouz et al.,
2021). This makes on device training not only technically
challenging but also significantly more time consuming than
standard centralized training. This effect is compounded by
the fact that in most modern machine learning pipelines we
do not train a model just once, but rather many times, to
select the right architecture, optimization algorithm, hyper-
parameters (HP) etc. Running large scale model selection
and HP tuning on real clients in a federated network is often
infeasible, making it difficult to obtain good performance.

One way to address this issue is using simulations on the
server. For instance, to select good model hyperparame-
ters, which are then used directly in live training, thereby
avoiding expensive HP tuning in the true federated network.
This is possible because, in practice, it is common for the
server to have some related proxy data that can be used to
simulate the real federated training. For instance this could
be public data from some related task, data from a partic-
ular sub-sample of consenting clients, or client data with
certain sensitive features removed. Usually, however, the
server-side data come without a client identifier, that is to
say, it is a single central dataset with no natural partitioning
into distinct FL clients. The question then arises how to
use these data to create simulations that actually match the
dynamics of live training. The naive approach would be to
create clients from the proxy data by simply sub-sampling
the data points in an IID fashion. However, this approach
can fail to capture client data distribution heterogeneity and
it is a well documented fact in FL that clients having non-
IID data has a significant effect on FL training dynamics
(Zhao et al., 2018; Li et al., 2020a;b).

In this paper we address the challenge of partitioning cen-
tralized data in a way that reflects the statistical hetero-
geneity of the true FL clients. The goal being to use this
partition to run server-side federated training simulations,
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Figure 1. Proposed approach to server-side simulations. From left to right: learn Mixture-of-Dirichlet-Multinomials distribution from true
federated clients (in this case 2 mixture components); use learned distribution to partition server proxy data into simulated clients; run
server-side simulated federated model training using the simulated clients.

see Figure 1. On a high level our approach does this by
choosing some categorical feature of the client data (for
example the target class) and representing each client as a
histogram over this feature. We propose using a Mixture-of-
Dirichlet-Multinomials (MDM) as a probability distribution
over these histograms, meaning that each client corresponds
to a single draw from this distribution. We then use the ob-
served client histograms to infer the parameters of our distri-
bution by maximum likelihood estimation (MLE) using the
true FL clients. Thus we obtain a learned distribution, which
we can sample from, and these samples are histograms that
look like the histograms we observed in the true clients. It is
now simple to create simulated clients from our centralized
data. First sample a histogram from our learned distribution,
then sub-sample the centralized data so that its histogram
matches this sampled histogram. In this way we create sim-
ulated clients whose data distributions match the true client
distributions along the chosen feature.

There are several key features of our approach that make it
effective in overcoming the challenges of a federated setting.
Firstly, the inference algorithm is specifically designed to
preserve client privacy. It adheres to the hard restriction that
the server only works with aggregates of client statistics.
This means a secure aggregator can be used, which is crucial
to not exposing any single client’s data. It also ensures the
algorithm is compatible with differential privacy (DP) both
on a user or an example level. By post-processing this
means that simulations using DP inferred parameters do not
degrade our privacy budget. Secondly, inference is efficient
in terms of computation and communication. Clients do
not run expensive model training, rather they only compute
statistics of their data. These statistics, which are transferred
between the server and clients, are low dimensional. This
ensures low communication overhead. Finally, the proposed

inference algorithm is designed not to have hyperparameters
that need to be tuned, as such it can be run one-shot on
the true clients. This is crucial given our goal is to limit
how often we train on the true federated clients. The only
hyperparameter choice that needs to be made is the number
of mixture components of the distribution and, given the
aforementioned efficiency, in practice we simply run a few
reasonable options for this HP independently but in parallel.
We are, to the best of our knowledge, the first work to deal
with the challenge of explicitly modelling the statistical
heterogeneity of FL clients. Our main contributions are:

• We propose a novel mixture distribution to model his-
tograms of FL clients.

• We derive, with theoretical justification, a fully feder-
ated algorithm to efficiently infer the MLE parameters
of this distribution over the true FL clients.

• We demonstrate empirically that this algorithm is able
to successfully infer meaningful parameters.

• We show that using these inferred parameters to create
simulated clients on the server leads to more represen-
tative training simulations.

Our experiments are implemented using the pfl-research
framework (Granqvist et al., 2024). Our code can
be found at https://github.com/apple/
pfl-research/tree/develop/publications/
mdm.

2. Related Work
Dirichlet Distributions in FL Dirichlet distributions are
a popular tool used by FL researchers and practitioners to
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create heterogeneous federated datasets out of existing cen-
tralized data to evaluate new learning methods (Yurochkin
et al., 2019; Hsu et al., 2019; Li et al., 2022). Given some
chosen value of the α parameter, a federated dataset is cre-
ated by sampling a class proportion vector p ∼ Dir(α) for
each client and assigning data points to the client so that the
assigned classes match the sampled class proportions. The
level of heterogeneity is controlled by the magnitude of α.
In this approach it is assumed that we know a priori how we
would like to choose α, and the resulting federated dataset
will reflect the desired level of heterogeneity specified by α.
This paper focuses on the opposite scenario in which there
exists some federated dataset, and we would like to choose
the distribution parameters, such as α, that well reflect the
heterogeneity of this dataset. This is a classic Bayesian in-
ference problem which has been well studied in the context
of Dirichlet distributions (Minka, 2000; Blei et al., 2001;
Huang, 2005). The distribution we would like to infer is
our own proposed Mixture-of-Dirichlet-Multinomials. A
similar approach is taken by Holmes et al. (2012). Here the
authors propose using a mixture of Dirichlet multinomials to
model Microbial Metagenomic data, though their approach
differs to ours in several key ways. Firstly, the proposed
mixture distribution is different as Holmes et al. (2012) do
not explicitly model the number of sample distributions for
each component. Secondly, the inference procedures differ
since Holmes et al. (2012) take a Maximum a posteriori
(MAP) approach and solve the resulting MAP optimiza-
tion using EM and leveraging optimization algorithms such
BFGS. This approach assumes all data is centrally available
and is incompatible with federated learning. In contrast, we
take an approach of maximum likelihood estimation, and
solve the MLE optimization using parameter update rules
that are derived using generalized EM and compatible with
the restrictions imposed by an FL setting.

Server-side data in FL Although a key tenant of FL is
that data are decentralized and stored locally on client de-
vices, it is common in practice that the central server pos-
sesses related proxy data. A number of works propose using
server-side data to improve federated training in a range of
settings. For instance, Hard et al. (2018) use public data
to pre-train language models for improved next word pre-
diction, before running federated training. Other works
use server-side data during federated training. Song et al.
(2022b) use server data to improve meta-gradient calcula-
tion in a meta learning approach to personalized FL. Gao
et al. (2022); Dimitriadis et al. (2020) alternate between
training on the clients and training on the server to mitigate
the effects of client statistical heterogeneity and improve
convergence and performance of acoustic models. Mai et al.
(2022) analyse the convergence behaviour of such an alter-
nating update scheme theoretically. Finally, in federated
semi supervised learning, it is often assumed that the server

possesses a small amount of labeled data which is used in
combination with unlabelled client data (Diao et al., 2022;
Jeong et al., 2021). Our viewpoint and approach differ from
the above in that we are interested in how to use server side
data to run realistic simulations that guide our downstream
federated training.

Clustered and meta FL The notion that clients in a fed-
erated network can belong to different groups or clusters
has received ample attention, particularly with respect to
personalization in federated learning (Sattler et al., 2019;
Ghosh et al., 2020; Mansour et al., 2020). Closely related
to this is the multi-task or meta learning viewpoint of FL
(Smith et al., 2017; Fallah et al., 2020; Scott et al., 2024)
in which clients are thought of as samples (or tasks) drawn
from some meta-distribution over clients. We draw inspi-
ration from both the meta and clustered viewpoints in FL.
We propose a meta-distribution over clients and infer the
parameters of this distribution that explain the observed
clients. Moreover, the form of this distribution is motivated
by the view that clients naturally form clusters, with shared
statistical properties within clusters.

3. Method
3.1. Background

Notation Let M denote the number of clients in a fed-
erated learning system. We use square bracket notation
[n] := {1, . . . , n} to denote the first n integers. We assume
that each client i ∈ [M ] has ni data points zi1, . . . z

i
ni
∈

Rd. For instance, for a classification task we could have
zij = (xi

j , y
i
j). As is common in FL the clients may be sta-

tistically heterogeneous, meaning that the underlying data
generation processes of the clients may differ from each
other. This can occur in variety of ways including, but not
limited to, differences between label distributions, feature
distributions or the number of samples clients have (Song
et al., 2022a). We assume we have an upper bound, N , on
the number of samples any client holds, so that ni ≤ N
for all i ∈ [M ]. Let f ∈ [d] be some categorical feature
of the data, which can take up to C different values, i.e.
zijf ∈ [C] for all i, j. For instance f could be the target
class in the case of a C-class classification task. We call f
the modelled feature. For the modelled feature f each client
computes a histogram, or count vector, ci ∈ ZC of the fea-
ture. Namely, entry l of this vector counts how often f took
value l across the client’s dataset: cil =

∑ni

j=1 1zi
jf=l. Note

that
∑C

l=1 cil = ni. Thus each client is now represented as
a tuple (ci, ni).

Mixture-of-Dirichlet-Multinomials Our goal is now to
construct a statistical model (probability distribution) of the
(ci, ni). Then drawing a new sample from this distribution is
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like drawing the modelled feature histogram and the number
of samples information of a new simulated client.

The building block of our distribution is the Dirichlet-
Multinomial (DM) distribution. DM is a compound dis-
tribution over vectors of discrete counts parameterized by
α ∈ RC

+ and n ∈ N. A vector of counts c ∈ ZC is sam-
pled by first drawing a probability vector from a Dirichlet
distribution p ∼ Dir(α) then sampling the counts from a
multinomial distribution c ∼ Mult(n,p). The probability
mass function for DM is given by

p(c | n,α) =
Γ(α0)Γ(n+ 1)

Γ(n+ α0)

C∏
j=1

Γ(cj + αj)

Γ(αj)Γ(cj + 1)
, (1)

where Γ is the gamma function and α0 :=
∑C

j=1 αj . We
extend DM in two ways to better model clients in real fed-
erated learning scenarios. Firstly, since users may have
different numbers of samples, we are interested in a distri-
bution where n is not fixed. Hence, we jointly model the
distribution of the number of samples and the count vector.
We assume independence of n and α so that we have

p(c, n | α,π) = p(c | n,α)πn, (2)

where πn := p(n) parameterizes the probability that a client
has n samples in total. Since we assume that the number
of samples a client can possess is upper bounded by some
constant N , we have that π ∈ RN and

∑N
j=1 πj = 1.

Our second extension comes from the observation that in
practice clients in a federated learning scenario might be
naturally partitioned into a number of groups/clusters, where
each cluster comes from a different meta distribution over
clients. The natural way to model such an observation is
using a mixture model. LetK be the number of components
in the mixture. Then we define our Mixture-of-Dirichlet-
Multinomials (MDM) model as the joint distribution over
histograms and sample counts with the following probability
mass function

q(c, n | τ ,A,Π) =

K∑
k=1

τkp(c, n | αk,πk), (3)

where τ ∈ RK is the weight of each component, A =
[α1, . . . ,αK ] ∈ RK×C are the per component Dirichlet
parameters and Π = [π1, . . . ,πK ] ∈ RK×N are the per
component number of samples distributions. Additionally,
p is defined through equations (1) and (2).

3.2. Parameter Inference

Given M clients in a federated learning system, each of
which has a modelled feature histogram, number of samples
tuple: (ci, ni), our goal is to infer τ , Π and A from Equa-
tion (3) that well explain the observed clients. Note that

under the statistical model (3) each client corresponds to a
single draw, or data point, from this distribution. Therefore,
we can think of (3) as a ‘meta’ distribution over the clients.
We take the approach of maximum likelihood estimation
(MLE) to infer the statistical model parameters. Therefore
we aim to maximize the log likelihood of the observed data
under the MDM statistical model (3). The log likelihood is:

L(τ ,A,Π) =

M∑
i=1

log q(ci, ni | τ ,A,Π). (4)

The objective function (4) is in general non-concave and
we propose an EM-based algorithm to maximize it in a
federated setting. In the remainder of this section we state
this algorithm, which consists of two main parts: a single
round of initialization of the statistical model parameters;
followed by a multi-round iterative procedure that aims to
maximize (4). Prior to starting inference it is necessary
to specify the number of components, K, to use. In this
section we assume the value of K has already been chosen.
In Appendix A we outline a procedure for the server to
choose the best value of K to use. In Section 3.3 we prove
that the parameter updates used in the algorithm converge
by deriving them as part of a generalized EM approach to
maximizing the objective.

Initialization We start by initializing the parameters τ ,
Π and A. The full procedure is given in Algorithm 1. The
simplest parameter to initialize is τ , we set

τ (0) = [
1

K
, . . . ,

1

K
], (5)

namely all mixture components start with equal weight.
Next we must initialize Π and A, both of which consist of a
parameter for each component k, namely πk and αk. To do
this the server samples a single cohort of clients S0 and each
client i ∈ S0 uniformly at random chooses a component, ki,
to contribute to initializing. To initialize the estimated num-
ber of samples distribution the server obtains a histogram of
the number of samples of each client in each component and
then normalizes this per component. Specifically, client i ini-
tializes a matrix of zeros Ei ∈ RK×N and sets Ei

kini
= 1.

The server obtains the aggregate E =
∑

i∈S0
Ei and then

initializes Π by normalizing each row of E to obtain a per
component probability distribution:

π
(0)
k =

1

mk
Ek, (6)

where mk =
∑S

j=1Ekj is the number of clients that con-
tributed to component k. Finally, we use a per component
moment matching estimate to initialize A. Namely, α(0)

k is
chosen so that the first two moments of a Dirichlet distribu-
tion with parameter α(0)

k match the empirical moments of
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Algorithm 1 Dirichlet-Multinomial Mixture Initialization
Input: client count tuples (ci, ni)Mi=1

S0 ← server samples a cohort of clients
for client i in S0 do
ki ∼ U{1, . . . ,K}
Ei = 0K×N , Ei

kini
= 1

Pi = 0K×C , Pi
ki

= 1
ni
ci

Qi = 0K×C , Qi
ki

= ( 1
ni
ci)⊙ ( 1

ni
ci)

end for
E =

∑
i∈S0

Ei, P =
∑

i∈S0
Pi, Q =

∑
i∈S0

Qi

mk =
∑S

j=1Ekj

P̄k = 1
mk

Pk, Q̄k = 1
mk

Qk

τ (0) = [ 1K , . . . ,
1
K ]

π
(0)
k = 1

mk
Ek

α
(0)
k = P̄k1−Q̄k1

Q̄k1−P̄ 2
k1

P̄k

Output: τ (0), Π(0), A(0)

the normalized histograms of the clients that are assigned
to component k. That is to say, we assume that the client
normalized histograms are drawn from a Dirichlet and we
initialize under the constraint that moments of this Dirichlet
match the empirical moments of the normalized histograms.
Client i initializes zero matrices Pi,Qi ∈ RK×C and sets
Pi

ki
= 1

ni
ci and Qi

ki
= ( 1

ni
ci)⊙ ( 1

ni
ci) where ⊙ denotes

entry-wise product. The server then obtains the aggregates

P =
∑
i∈S0

Pi Q =
∑
i∈S0

Qi (7)

and normalizes both row-wise by the number of clients
contributing to each row (component), which is mk.

P̄k =
1

mk
Pk Q̄k =

1

mk
Qk. (8)

Thus the server has computed the empirical estimates of
the first two moments of the client normalized histograms
for each component. Under the constraint that the first two
moments of the kth Dirichlet must match the empirical
moments (8) we have that

α
(0)
k =

P̄k1 − Q̄k1

Q̄k1 − P̄ 2
k1

P̄k, (9)

which gives A’s initialization. Appendix B.1 derives (9).

Solving the MLE Our goal is to infer the maximum like-
lihood estimates for τ , Π and A which we do via an EM
based approach, stated in full in Algorithm 2. In Section 3.3
we derive the update formulas and prove their convergence.

The server starts by running the initialization procedure
from Algorithm 1. Inference of the parameters then takes

place over T rounds. During each round the server samples
a cohort of clients and sends to each the previous rounds
computed estimates of the parameters. Each sampled client
i then computes how well each component k describes their
data using this latest estimate of the parameters. Let Zi

denote the latent (unobserved) random variable indicating
to which mixture component client i belongs. The client
then computes:

ωi
k = Pr{Zi = k | ci, ni, τ (t),Π(t),A(t)}, (10)

∝ p(Zi = k | τ (t))p(ci, ni | π(t)
k ,α

(t)
k ), (11)

∝ τ (t)k p(ci | ni,α(t)
k )π

(t)
k,ni

, (12)

using equation (1). The aggregates of the ωi
k are needed

by the server to compute the update to τ . For Π and A
the client uses ωi

k to weight their contribution to the kth
component parameter updates on the server. Intuitively,
ωi
k tells us how likely it is that client i was drawn from

component k and the higher this value is the more client i
contributes to the kth component parameter update.

For Π each client i initializes Ei = 0K×N and sets column
ni equal to ωi, so that Ei

kni
= ωi

k for k = 1, . . . ,K. This
corresponds to a soft assignment of the clients number of
samples to the overall histogram computed across all clients.
For the update to A the client computes two quantities to be
aggregated by the server to be used in the parameter update:

ui
k = ωi

k

(
ψ(ci +α

(t)
k )− ψ(α(t)

k )
)
, (13)

vik = ωi
k

(
ψ(ni + (α

(t)
k )0)− ψ((α(t)

k )0)
)
, (14)

where ψ is the digamma function, which in (13) is applied
entry-wise. The server gets aggregates of the client statistics

ω =
∑

i∈St+1

ωi E =
∑

i∈St+1

Ei (15)

uk =
∑

i∈St+1

ui
k vk =

∑
i∈St+1

vik (16)

and uses these to compute the parameter updates

τ (t+1) =
1

|St+1|
ω, (17)

π
(t+1)
k =

1

ωk
Ek, (18)

α
(t+1)
k =

1

vk
α

(t)
k ⊙ uk. (19)

3.3. Theoretical Results

In this section we state our theoretical result, in which we
derive the previously stated parameter update formulas.
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Algorithm 2 Dirichlet-Multinomial Mixture MLE
Input: client count tuples (ci, ni)Mi=1, steps T
Initialize τ (0), Π(0), A(0) using Algorithm 1.
for t = 0 to T − 1 do
St+1 ← server samples cohort of clients
Server sends (τ (t), Π(t),A(t)) to each client in St+1

for client i in St+1 do

ωi
k =

τ
(t)
k p(ci|ni,α

(t)
k )π

(t)
k,ni∑K

k=1 τ
(t)
k p(ci|ni,α

(t)
k )π

(t)
k,ni

Ei = 0K×N , Ei
kni

= ωi
k

ui
k = ωi

k

(
ψ(ci +α

(t)
k )− ψ(α(t)

k )
)

vik = ωi
k

(
ψ(ni + (α

(t)
k )0)− ψ((α(t)

k )0)
)

end for
ω =

∑
i∈St+1

ωi, E =
∑

i∈St+1
Ei

uk =
∑

i∈St+1
ui
k, vk =

∑
i∈St+1

vik
τ (t+1) = 1

|St+1|ω

π
(t+1)
k = 1

ωk
Ek

α
(t+1)
k = 1

vk
α

(t)
k ⊙ uk

end for
Output: τ (T ), Π(T ), A(T )

Theorem 3.1. Let (ci, ni)
M
i=1 be observed histogram, sam-

ple count data and (τ (0), Π(0), A(0)) be an initialization
of the parameters of the Mixture-of-Dirichlet-Multinomials
model (3). For t ≥ 1, i = 1, . . . , N and k = 1, . . . ,K let

ωi
k = p(Zi = k | ci, ni, τ (t),Π(t),A(t)),

where Zi is the latent variable indicating the mixture compo-
nent that the ith sample was drawn from. Then the iteration

τ
(t+1)
k =

1

M

M∑
i=1

ωi
k

π
(t+1)
kj =

1∑M
i=1 ω

i
k

M∑
i=1

ωi
k1ni=j

α
(t+1)
kj = α

(t)
kj

∑M
i=1 ω

i
k

(
ψ(cij + α

(t)
kj )− ψ(α

(t)
kj )

)
∑M

i=1 ω
i
k

(
ψ(ni + (α

(t)
k )0)− ψ((α(t)

k )0)
)

corresponds to a generalized EM update of the log likeli-
hood (4) and hence converges to a stationary point.

The proof is in Appendix B.2. These update rules are
identical to those in Algorithm 2 except that the latter are
computed on a subset of the data (equivalently a cohort of
clients). Thus the updates in Algorithm 2 can be thought of
as stochastic versions of the iteration given in Theorem 3.1.

4. Experiments
We separate our empirical evaluation into two orthogonal
aspects. In Section 4.1 we investigate the inference of the
MDM parameters, τ ,A and Π. We evaluate Algorithms 1
and 2 in terms of how accurately they recover ground truth
parameters. We also examine whether they infer meaningful
parameters on real federated datasets for which no ground
truth values exist. In Section 4.2 we investigate the utility
of the parameters after they have been inferred. We evaluate
how well simulations run on the server using these inferred
parameters reflect training on the real federated clients.

Datasets We evaluate using synthetic data that follows the
MDM distribution, CIFAR10 (Krizhevsky, 2009), FEM-
NIST (Caldas et al., 2018) and Folktables (Ding et al.,
2021). CIFAR10 is a non-federated multi-class classifi-
cation dataset with 10 classes which we partition into clients
with target class histograms that follow an MDM distribu-
tion. For inference we use the target class as the modelled
feature over which we compute our histograms. FEMNIST
is a federated dataset with a predefined partitioning into
clients. It is a character recognition dataset with 62 classes
(including digits and lower and upper case letters). Each
character is uniquely identified with one of the 3,550 clients
in the dataset. For FEMNIST we use the target class as the
modelled feature. Folktables is a US census dataset where
each datapoint corresponds to an individual person present
in the census. The dataset has a natural partitioning into
2,373 clients based on geographical location. Specifically, a
client holds the data of all individuals that live in the same
PUMA code region. We model two separate features of the
data: the race feature and the income feature. For full details
of the dataset and its federated partitioning see Appendix
C.2

Baselines The primary baseline for simulating users on
the server is the IID approach. This first computes the true
per client number of samples distribution. Then, to simulate
a client, it draws a number of samples count n from this
distribution and IID samples n points from the centralized
dataset. In this baseline each client’s distribution of the
modelled feature (and all other features) is the same as
the marginal distribution of that feature in the centralized
dataset. We therefore call this baseline fully IID simulation.
As a sanity check we also consider an oracle that cannot
be used in practice but gives a valuable comparison to our
MDM simulation. In this oracle, which we call conditionally
IID simulation, we ensure that the simulated clients exactly
follow the marginal distributions of the modelled feature
of the true clients, but when conditioned on the modelled
feature, the remaining features are IID. This is done as
follows. First, each true client computes a histogram over
the modelled feature. For each of these true histograms we
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Figure 2. Normalized mean squared error (MSE) between the ground truth distribution parameter value and the inferred parameter value
over time. Ground truth corresponds to medium levels of client statistical heterogeneity. On the left for A, on the right for τ .

Figure 3. t-SNE visualization of FEMNIST clients, each point cor-
responds to a single client’s class histogram. True clients (green),
fully IID simulated clients (blue) and MDM clients (red).

randomly sample points from the centralized dataset while
ensuring that the histogram of the modelled feature for these
samples matches the true histogram. The simulated clients
in this oracle capture the heterogeneity in the modelled
feature but nothing more. The best we can hope for is for
our MDM simulations to match this oracle as we also only
capture the heterogeneity in the modelled feature. Note that
in a real FL setting this oracle cannot be used as it requires
each client to share with the server their histogram of the
modelled feature, which could be a serious privacy leak.

4.1. Distribution Parameter Inference

Inference with known parameters We first assess the
correctness of Algorithms 1 and 2 in terms of how accu-
rately they recover ground truth distribution parameters for
synthetic clients that follow our assumed MDM distribution.
We test this over a range of different settings for τ ,A and
Π. For 1, 2 and 3 mixture components we choose param-
eter values corresponding to low, medium and high levels
of client heterogeneity. The exact values as well as addi-
tional experiment details can be found in Appendix C.3.
The results for medium levels of heterogeneity can be see in

Figure 2, with the others in Appendix D.1. We plot the mean
squared error (MSE) of the inferred parameters from the
ground truth values, normalized by the size of the ground
truth parameter (see Appendix C.1), against the number of
training iterations, T . As we can see in all cases we obtain
approximate convergence and quickly in terms of the num-
ber rounds required. As expected, convergence is slower
when we have more mixture components to infer.

Inference without known parameters We now consider
the more challenging and interesting scenario where the
true clients do not necessarily follow our assumed MDM
distribution. We use the FEMNIST and Folktables datasets
which are naturally partitioned into heterogeneous federated
clients. For FEMNIST we take the target class to be the
modelled feature and represent each client as a histogram
over the classes they hold. For Folktables we model two
features of the data independently, namely the race feature
and the income feature. The race feature is categorical, with
C = 9 possible values. The income feature is continuous,
so in order to model it using MDM we convert it into a
categorical feature by binning. Specifically, each client bins
their continuous income value into one ofC = 41 bins, with
each bin having a range of $5,000. We now represent clients
as histograms over this binned income feature. For full de-
tails of the feature modelling on Folktables see Appendix
C.2. We then run MDM inference on these histograms to
obtain values for τ ,A and Π. Using these inferred param-
eter values we then sample from our distribution to obtain
the histograms of new simulated clients. We then sample
data for each client from the centralized version of the corre-
sponding dataset so that each simulated client matches their
sampled class histogram. As a baseline we also consider
histograms corresponding to fully IID sampled clients. We
plot 2-dimensional t-SNE visualizations of the results, for
FEMNIST in Figure 3, and Folktables in Figure 4. Each
point corresponds to a client (histogram), in green we have
the true clients, in blue we have the simulated fully IID
clients and in red the simulated MDM clients. We can draw
several conclusions from these visualizations. Firstly, we
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Figure 4. t-SNE visualizations of Folktables clients, each point corresponds to a single client’s histogram over the race feature (left) and
over the binned income feature (right). True clients (green), fully IID simulated clients (blue) and MDM clients (red). Inferred in both
cases using K = 7.

observe in all three cases that the true users (green) exist in
several distinct clusters, indicating that there are indeed dif-
ferent types of client heterogeneity present in the modelled
feature. This validates our motivation for using a mixture
model over the clients. Secondly, we see that in all cases
the fully IID approach clearly fails to capture the hetero-
geneity in the client modelled feature distributions. Each of
these simulated clients look like a subset of the centralized
dataset, which poorly represents the true clients. Finally, in
all cases the MDM distribution, with the parameters learned
by Algorithms 1 and 2, does an admirable job of simulating
the modelled feature heterogeneity of the true clients. This
can be seen in the closeness between the true client distribu-
tion (green points) and the simulated client distribution (red
points) in the t-SNE visualizations. In Appendix D.1 we in-
clude ablation studies where we infer the MDM parameters
using a range of values for K and compare the differences
in the corresponding simulated clients.

4.2. Federated Training Simulations

We now turn our attention to using our inferred parame-
ters to run simulations on the server. We evaluate how
closely model performance when training on simulated
clients reflects performance when training on the true fed-
erated clients. As federated datasets we use FEMNIST as
well as CIFAR10, partitioned into clients which follow an
MDM distribution using the same settings of the parameters
as in Section 4.1. The server-side proxy data is the cen-
tralized version of our federated dataset, i.e. the same data
but without client identifiers. This setup ensures there is no
distribution shift between the server and client data, which
could be a confounding factor when evaluating the differ-
ences between simulated and true model training, beyond
just the partitioning of the server data. In Appendix D.2
we provide results for additional experiments that simulate
the practically relevant scenario when the server simulation
data and client data are disjoint. We choose a range of HP

settings and for each setting we train a model with federated
averaging on the true clients, the MDM simulated clients,
the fully IID simulated clients and the conditionally IID
simulated clients. For FEMNIST we vary the local learning
rate and local number of epochs used in FedAvg while for
CIFAR10 we vary local batch size, local learning rate and
local number of epochs. See Appendix C.4 for model and
HP details. We compare the final accuracies of these trained
models across the range of HP settings. The closer the final
accuracy of the model trained on simulation clients is to
the one trained on the true clients, the better, and more pre-
dictive the simulation is. Figures 5 and 6 show the results
for FEMNIST and CIFAR10. The results for CIFAR10 are
for true clients generated using 2 mixtures and high hetero-
geneity, see Section 4.1. The results for the other settings
are in Appendix D.2. We can draw several conclusions
from these plots. Firstly, for both datasets the accuracies are
highest on the fully IID simulated clients across (nearly) all
settings of the hyperparameters. In other words this baseline
suffers from giving an overly optimistic prediction as to
the performance on the true clients. This is to be expected
given that federated averaging tends to perform better in the
presence of low client heterogeneity. Secondly, training on
the MDM simulated clients (red) gives a better indicator
of performance on the true clients (dotted green) as seen
by the closeness of the curves. Across all HP settings the
mean of the absolute accuracy difference between the true
clients and our MDM simulated clients was 1.6% compared
to 3.3% for the fully IID simulated clients for FEMNIST
and 0.8% compared to 6.6% for CIFAR10. Finally, while
on CIFAR10 the MDM simulation exhibits near identical
performance to the true clients, with non-trivial differences
occurring on two particular settings on HPs which we at-
tribute to randomness in the training process, for FEMNIST
there is a non-negligible gap between MDM and the true
clients. In general the MDM simulations overestimate per-
formance on the true clients. We do observe, however, that
the MDM simulations very closely match the conditionally
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Figure 5. FEMNIST test accuracy when training with FedAvg for different settings of local learning rate and local epochs. True clients
(dotted green), conditionally IID simulated clients (green), learned MDM simulated clients (red) and fully IID simulated clients (blue).
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Figure 6. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue).

IID oracle (green) on FEMNIST. Recall that this oracle cap-
tures exactly the label heterogeneity of the true clients (but
nothing more). This again confirms that the parameters we
inferred for FEMNIST in Section 4.1 successfully model
the true client label distributions, and that this transfers over
to federated model training. It also confirms the existence
of client heterogeneity within the true dataset that goes be-
yond just the client label distributions. In other words the
MDM simulated clients make it part of the way in captur-
ing the true client heterogeneity but there is still remaining
heterogeneity in the other features that is affecting training.

5. Conclusion
In this paper we presented a novel approach to modelling
heterogeneous FL clients using a Mixture-of-Dirichlet-
Multinomials. We proposed an efficient and fully feder-
ated optimization procedure to infer the maximum likeli-
hood estimates of the distribution parameters and showed
theoretically the convergence of the update formulas. We
empirically evaluated both the correctness of the proposed
algorithm, in terms how well it infers the distributional pa-
rameters, as well as the utility of the inferred parameters
themselves. We found that simulations run using clients
generated with the inferred parameters were more represen-
tative of true federated training than those using IID clients.
The proposed algorithm is private and compatible with dif-
ferential privacy, on either a user or example level. In future

work we would like to further investigate the combination of
DP with our proposed inference method, both in the central
DP setting, where a secure aggregator adds noise to the ag-
gregated statistics, and the local DP setting where the clients
themselves add noise prior to aggregation.
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A. How to select the number of mixture components
We detail here a strategy for choosing which K to use in Algorithms 1 and 2 based on selecting the value that maximizes the
log likelihood of a validation cohort of clients.

A.1. Choosing K by validation log likelihood

1. Run Algorithms 1 and 2 until convergence on multiple choices of K in parallel.

2. Sample a new cohort of clients that we have not yet seen and for each choice of K evaluate the log likelihood, quation
4, on this cohort of clients.

3. Use the K that gave the highest log likelihood on this validation cohort of clients. In the case of (approximate) ties
choose the smallest K.

The crucial point here is that this procedure to choose K can be done one shot and does not require multiple federated
training runs which would be highly inefficient. This is because practically it is possible to run inference using multiple
values of K in parallel due to the very low computational and communication related overheads of Algorithms 1 and 2.

A.2. Experimental evaluation

We provide here an experimental evaluation of the proposed method. Our evaluation procedure is as follows. We first fix the
values of the ground truth MDM parameters. Specifically, we set the ground truth number of mixture components to K = 3,
the mixture weights to

τ = [0.2, 0.5, 0.3],

the Dirichlet parameters to

A =

0.1 0.2 0.1 0.3 0.1
1 4 1 2 0.5
10 5 3 2 30

 ,
and we set the number of samples of each component to 100, with Π defined accordingly. We then draw M clients
(histograms) from this ground truth MDM distribution, and for K ∈ {1, . . . , 6} we infer MDM parameters using Algorithms
1 and 2 from the paper, using this sample of clients. Finally, we sample a new validation cohort of 1000 clients from the true
distribution and we compute the mean log likelihood of this validation cohort, using the parameters infered for each K. We
do this for M = 100, 200 and 1000 and plot the results in Figure 7.

As we can see in the figure, for each M , step 3 of the given procedure (choose the smallest value of K that gives the
maximum log likelihood), leads to us choosing to use the correct ground truth value of K = 3. Interestingly, when we infer
using a smaller number of clients (100 and 200) we observe some overfitting when K is chosen to be too large. This effect
is largely mitigated by inferring on a greater number of clients.

B. Proofs
B.1. Derivation of moment matching estimate

Let p ∼ Dir(α) and recall that α0 :=
∑C

j=1 αj . Then for all j ∈ [C] we have that the first two moments of the Dirichlet
are:

E pj =
αj

α0
, (20)

E p2j =
αj(1 + αj)

α0(1 + α0)
. (21)

Moreover, from these two equations it can be checked that

α0 =
E p1 − E p21

E p21 − (E p1)2
. (22)

13



Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials

Figure 7. Mean log likelihood on the validation cohort of clients with the parameters inferred using different values of K.

Therefore, combining equations (20) and (22) we obtain:

αj =
E p1 − E p21

E p21 − (E p1)2
E pj . (23)

This is precisely the moment matching estimate used in algorithm 1 where each client normalizes their count vector ci to a
probability vector pi =

1
ni
ci which we then assume is drawn from a Dirichlet distribution. Equation (23) is then used to

initialize α where the true expectations are replaced by the empirical mean over the sampled clients.

B.2. Proof of Theorem 3.1

We let θ = (τ ,A,Π) denote the parameter variables and θ(t) = (τ (t),A(t),Π(t)) denote the current values of the
parameters after t steps. Let Zi be the latent (unobserved) variable denoting which component the ith observation was
sampled from. Following standard expectation maximization our goal will be to improve Q, which is guaranteed to lead to
improvements in the log likelihood L.

Q(θ | θ(t)) = E
Z∼p(·|C,n,θ(t))

log p(C,n, Z | θ) (24)

=

M∑
i=1

K∑
k=1

ωi
k log p(ci, ni, Zi = k | θ) (25)

=

M∑
i=1

K∑
k=1

ωi
k(log p(ci, ni | αk,πk) + log τk) (26)

=

M∑
i=1

K∑
k=1

ωi
k(log p(ci | ni,αk) + logπkni

+ log τk) (27)

=

M∑
i=1

K∑
k=1

ωi
k log p(ci | ni,αk) +

M∑
i=1

K∑
k=1

ωi
k logπkni +

M∑
i=1

K∑
k=1

ωi
k log τk (28)

14
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where ωi
k = p(Zi = k | ci, ni,θ(t)) is the probability that the ith observation came from the kth mixture component. This

can be computed via Bayes rule:

ωi
k =

p(ci, ni | Zi = k,θ(t))p(Zi = k | θ(t))∑K
k=1 p(ci, ni | Zi = k,θ(t))p(Zi = k | θ(t))

(29)

=
p(ci | ni,α(t)

k )π
(t)
ni τ

(t)
k∑K

k=1 p(ci | ni,α
(t)
k )π

(t)
ni τ

(t)
k

. (30)

Now that we have computed Q we seek to find new parameter values at step t+ 1 that increase the value of Q compared
to at step t. Note that in standard EM we would be looking to compute θ(t+1) = argmaxθ Q(θ | θ(t)), however, in order
to make the later application to federated learning practical we are satisfied here with a weaker condition, namely we aim
to find θ(t+1) such that Q(θ(t+1) | θ(t)) ≥ Q(θ(t) | θ(t)). This is still sufficient to guarantee improvements in the log
likelihood L, which follows from the standard proof of correctness of EM.

Given that in (28) our variables appear in a decoupled form we can handle each separately. For Π and τ this is quite simple
and we can find a closed form solution that in fact maximizes each term. For A this is trickier as the DM log likelihood does
not have a closed form solution. Instead we derive a fixed point update based on the one in (Minka, 2000), that leads to an
improvement in the term.

Firstly, for Π. We compute the Laplacian

F (Π,Λ) =

M∑
i=1

K∑
k=1

ωi
k logπkni

−
K∑

k=1

λk

S∑
j=1

(πkj − 1), (31)

=

S∑
j=1

K∑
k=1

(

M∑
i=1

ωi
k1ni=j) logπkj −

K∑
k=1

λk

S∑
j=1

(πkj − 1). (32)

Taking derivatives we obtain

∂F

∂πkj
=

1

πkj

M∑
i=1

ωi
k1ni=j − λk, (33)

∂F

∂λk
=

S∑
j=1

(πkj − 1). (34)

Setting to 0 and solving for πkj we obtain

πkj =
1∑M

i=1 ω
i
k

M∑
i=1

ωi
k1ni=j , (35)

where 1ni=j = 1 if ni = j and 0 otherwise. Secondly, for τ . We again define the Laplacian as

G(τ , λ) =

M∑
i=1

K∑
k=1

ωi
k log τk − λ(

K∑
k=1

τk − 1). (36)

Taking derivatives we obtain

∂G

∂τk
=

1

τk

M∑
i=1

ωi
k − λ, (37)

∂G

∂λ
=

K∑
k=1

τk − 1. (38)
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Setting to 0 and solving for τk we obtain

τk =
1

N

M∑
i=1

ωi
k. (39)

Finally, we deal with A. Let

H(A) =

M∑
i=1

K∑
k=1

ωi
k log p(ci | ni,αk) (40)

=

K∑
k=1

M∑
i=1

ωi
k log

Γ((αk)0)Γ(ni + 1)

Γ(ni + (αk)0)

C∏
j=1

Γ(cij +αkj)

Γ(αkj)Γ(cij + 1)
(41)

=

K∑
k=1

M∑
i=1

ωi
k

log
Γ((αk)0)

Γ(ni + (αk)0)
+

C∑
j=1

log
Γ(cij +αkj)

Γ(αkj)

+D (42)

where D is constant w.r.t A. We now recall the following two bounds from (Minka, 2000)

Γ(x)

Γ(n+ x)
≥ Γ(x̂)

Γ(n+ x̂)
exp ((x̂− x)b) (43)

where b = ψ(n+ x̂)− ψ(x̂), and ψ is the digamma function, and

Γ(n+ x)

Γ(x)
≥ cxa (44)

where a = (ψ(n+ x̂)− ψ(x̂))x̂ and c = Γ(n+x̂)
Γ(x̂) x̂−a. These bounds hold for all x, x̂ ≥ 0 and all n ≥ 1. Moreover, both

bounds are tight when x = x̂. We apply (43) with x = (αk)0 and x̂ = (α
(t)
k )0 and (44) with x = αkj and x̂ = α

(t)
kj .

Plugging these into (42) and collecting everything that does not depend on A into the D′ term we obtain

H(A) ≥
K∑

k=1

M∑
i=1

ωi
k

(1− (αk)0)bki +

C∑
j=1

akij logαkj

+D′ = H ′(A). (45)

Now if we maximize H ′ and set A(t+1) = argmaxAH
′(A) and use the fact that the bounds are tight at A = A(t) we

obtain

H(A(t)) = H ′(A(t)) ≤ H ′(A(t+1)) ≤ H(A(t+1)) (46)

as was our initial goal. So all that remains is to maximize H ′(A). Taking partial derivatives w.r.t αkj and setting to 0 we
obtain

M∑
i=1

ωi
k

(
−bki + akij

1

αkj

)
= 0 (47)

hence

αkj =

∑M
i=1 ω

i
kakij∑M

i=1 ω
i
kbki

. (48)

Therefore, we obtain the update rule

α
(t+1)
kj = α

(t)
kj

∑M
i=1 ω

i
k

(
ψ(cij +α

(t)
kj )− ψ(α

(t)
kj )

)
∑M

i=1 ω
i
k

(
ψ(ni + (α

(t)
k )0)− ψ((α(t)

k )0)
) . (49)
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C. Experiment Details
C.1. Normalized MSE

In Section 4.1 we use normalized mean squared as a metric to measure how accurately we recover the ground truth MDM
distribution parameters. Here we define normalized MSE as:

NMSE(x,y) :=

√
||x− y

y
||2 (50)

where the division is entry-wise. Thus we are measuring the MSE but normalized by the size of y, which in our case will be
the ground truth parameters. This simply has the effect of ensuring that our metric is invariant to the size of the parameters
we are trying to recover.

C.2. Folktables Dataset

We provide here details of the Folktables dataset used in our experimental evaluation. Folktables, (Ding et al., 2021), is
a US census dataset from the year 2018 with a natural partitioning into heterogeneous federated clients. Each datapoint
corresponds to an individual, with many features describing the individual, including age, gender, race, employment
details, etc. The dataset comes with a number of different possible prediction tasks, such as predicting employment,
commute time, health etc. given user features. Full details on the dataset can be found at the GitHub page: https:
//github.com/socialfoundations/folktables/tree/main.

The data contains a partitioning into federated clients based on location. Specifically, a feature of the data is the PUMA code,
which is a code specifying the area the individual is registered to live in. Splitting the data based on PUMA code gives 2373
clients, each client holding the data of all individuals that live in the corresponding region. Due to the natural geographical
population heterogeneity within the United States this partitioning leads to clients that are statistically heterogeneous in a
multitude of factors. Figure 8 shows the histogram of the number of samples per client, which shows heterogeneity in the
amount of data per client.

Figure 8. Histogram of the number of samples per client in the federated partition of the Folktables dataset.

Modeling the Race Feature In the Folktables dataset this feature is categorical with C = 9 different possible values.
Given the sensitivity of this feature, as well as it’s importance in many associated questions of fairness in downstream tasks,
this is a good example of a feature one would want to ensure can be both privately learned and accurately represented in our
server-side simulations.
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Modeling the Income Feature As discussed in Section 4 income is a non-categorical feature of the data that describes
an individual’s annual income. These are real values, which in the 2018 census data range from 0 to 1423000. We bin the
values using intervals of length 5000 up to 200000, with the final bin being all values greater than this. That is to say the
bins are defined by the following 41 semi-closed intervals:

[0, 5000), [5000, 10000), . . . , [195000, 200000), [200000,∞).

Thus our binned income is now a categorical feature with C = 41 possible values.

C.3. Hyperparameters for inference

Heterogeneity and num-
ber of components

Parameter Values

Low heterogeneity
1 mixture component

A =
[
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

]
,

τ =
[
1.0

]
Low heterogeneity
2 mixture components

A =

[
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

]
,

τ =
[
0.5 0.5

]
Low heterogeneity
3 mixture components

A =

[
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

]
,

τ =
[
0.333 0.334 0.333

]
Medium heterogeneity
1 mixture component

A =
[
0.1 0.2 0.6 1.0 2.0 0.1 1.0 2.0 0.5 0.5

]
,

τ =
[
1.0

]
Medium heterogeneity
2 mixture components

A =

[
0.1 0.2 0.6 1.0 2.0 0.1 1.0 2.0 0.5 0.5
2.5 2.6 2.7 2.8 3.0 2.5 2.0 3.0 1.0 0.9

]
,

τ =
[
0.4 0.6

]
Medium heterogeneity
3 mixture components

A =

5.0 4.0 5.0 1.0 1.0 1.0 5.0 4.0 5.0 1.0
0.1 0.2 0.6 1.0 2.0 0.1 1.0 2.0 0.5 0.5
2.5 2.6 2.7 2.8 3.0 2.5 2.0 3.0 1.0 0.9

 ,
τ =

[
0.5 0.2 0.3

]
High heterogeneity
1 mixture component

A =
[
0.1 0.2 0.15 0.18 0.1 0.05 0.08 0.4 0.2 0.12

]
,

τ =
[
1.0

]
High heterogeneity
2 mixture components

A =

[
0.1 0.2 0.15 0.18 0.1 0.05 0.08 0.4 0.2 0.12
2.5 2.6 2.0 3.2 1.5 0.9 0.8 1.3 3.1 2.4

]
,

τ =
[
0.1 0.9

]
High heterogeneity
3 mixture components

A =

5.0 5.0 0.2 0.2 3.1 3.0 3.2 0.8 0.9 5.0
0.1 0.2 0.15 0.18 0.1 0.05 0.08 0.4 0.2 0.12
2.5 2.6 2.0 3.2 1.5 0.9 0.8 1.3 3.1 2.4

 ,
τ =

[
0.8 0.05 0.15

]
Table 1. Mixture-of-Dirichlet-Multinomial distribution parameter values.

In Section 4.1 we evaluate how well Algorithms 1 and 2 are able to recover the ground truth distribution parameters, when
they exist, and infer meaningful values for the parameters when run on real federated data.

For the synthetic data which follows a MDM distribution we ran experiments using 1, 2 or 3 ground truth mixture components
with three different settings of ground truth distribution parameters in each case. These settings corresponded to low, medium
and high levels of client statistical heterogeneity. The exact values are given in Table 1. Algorithm 1 was run using a client
cohort size of 1000 followed by Algorithm 2 which was run for 100 global rounds with a client cohort size of 1000.

For inference on FEMNIST we there are no ground truth distribution parameters for us to set, we use the existing partition
of the dataset into the true clients for inference. We run inference using 2 and 3 mixture components. In both cases we run
algorithm 1 using a client cohort size of 3400 followed by Algorithm 2 for 50 global rounds with a client cohort size of 3400.
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Figure 9. Normalized mean squared error (MSE) between the ground truth distribution parameter value and the inferred parameter value
over time. Ground truth corresponds to low levels of client statistical heterogeneity. On the left for A, on the right for τ .
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Figure 10. Normalized mean squared error (MSE) between the ground truth distribution parameter value and the inferred parameter value
over time. Ground truth corresponds to high levels of client statistical heterogeneity. On the left for A, on the right for τ .

C.4. Hyperparameters for model training

In Section 4.2 we train a model using Federated Averaging on the true clients and on various types of simulated clients over
both CIFAR10 and FEMNIST. For both datasets the model used is a CNN with 2 convolutional layers, one dense hidden
layer and ReLU activations. In our experiments we compare the performance on the true clients against the simulated clients
while varying the certain important hyperparameters.

For CIFAR10 we vary the local batch size over [10, 15, 20, 25], the local number of epochs over [1, 2, 5, 10] and the local
learning rate over [0.005, 0.01, 0.05, 0.1, 0.5]. We report over all combinations of these HPs. The remaining hyperparameters
are fixed and equal across true client and all simulated client training. Global learning rate for FedAvg is 1.0, client cohort
size is 50, and the number of global training rounds is 1500.

For FEMNIST we vary the local number of epochs over [1, 2, 5, 10] and the local learning rate over [0.005, 0.01, 0.05]. We
report over all combinations of these HPs. The remaining hyperparameters are fixed and equal across true client and all
simulated client training. Global learning rate for FedAvg is 1.0, client cohort size is 50, the number of global training
rounds is 1500 and the local batch size is 10.

D. Additional Experiments
Here we include additional experiments and figures relating to the empirical evaluation in Section 4.
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Figure 11. t-SNE visualisation of FEMNIST clients, each point corresponds to a single client’s class histogram. True clients (green),
fully IID simulated clients (blue) and MDM clients (red). On the left we infer using 2 mixture components and on the right we use 3
components.

D.1. Distribution Parameter Inference

Inference with known parameters In Section 4.1 we first investigated how well we are able to recover ground truth
parameters when the clients follow the assumed MDM distribution. We reported the MSE over time for clients corresponding
the medium levels of heterogeneity. Figures 9 and 10 show the results for when running inference on clients with low and
high levels of client statistical heterogeneity respectively. Recall the exact values are given in Table 1.

Inference without known parameters In Section 4.1 we additionally evaluated inferring the MDM distribution on
federated datasets with a natural partitioning into federated clients. For FEMNIST we showed results when inferring using 3
mixture components. Here we show results when inferring with different numbers of components. The experimental setup
is exactly as described in Section 4.1. We plot t-SNE visualisations of the simulated clients when we infer using both 2
and 3 mixture components. The results are shown in Figure 11. We see that in both cases the inferred MDM distribution
does a superior job of capturing the class heterogeneity of the true clients compared to the fully IID baseline. We see in the
case of 2 components that the inference is dominated by the large left and lower right clusters of true clients while adding
the flexibility of an extra component gives better coverage of the small upper right hand cluster. For the Folktables dataset
we also infer over a range of different values of K, namely K = 1, 3, 5, 7. The results when modeling the race feature are
shown in Figure 12. As we can see in all cases the MDM distribution is able to well model the true federated clients while
the fully IID baseline performs poorly. We observe qualitatively that K ≥ 3 leads to a better simulation of the true federated
clients, with more complete coverage of the tails. The results for modelling the binned income feature are shown in Figure
13. As we can see, with the exception of K = 1, the simulated MDM clients exhibit strong similarity to the true clients
with larger values of K being better. It is interesting to observe that for the case K = 1 the MDM clients fail quite badly at
simulating the heterogeneity of the true clients, again confirming the importance of the mixture model beyond just using a
single Dirichlet-multinomial.

D.2. Federated Training Simulations

We provide here additional experiments when running training simulations on MDM simulated clients as described in
Section 4.2.

Disjoint Server and Client Data We provide here additional experiments in the setting that the server-side data and client
data are different and non-overlapping. We do this in the setting of the hyperparameter sweep experiments described in
Section 4.2 of the paper. We again use the FEMNIST dataset. Previously our server side data was the whole FEMNIST
dataset, i.e. data of all clients shuffled together with client identifiers removed. We now create disjoint server and client
datasets by assigning roughly half of the data to the server and leaving the other half as our true clients. Concretely we do
this split as follows:

We take the first 1302 FEMNIST clients (in the original ordering of clients in the dataset). This corresponds to roughly half
of the data, and we leave these clients unchanged. These are our true federated clients. The data of the remaining clients,
client indices [1302:], is shuffled together into a single dataset and is used as our server-side data.
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This splitting introduces a domain shift between the server data and the true client data. That is because the clients in
FEMNIST are not randomly ordered and there is in fact a difference between the first roughly 1300 clients and the remaining
clients (both in terms of the number of samples they possess and the statistical heterogeneity of the clients). We refer you to
figure 3 in the paper, this difference is in fact exactly shown by the left and right clusters of the true clients (green) in the
t-SNE visualisation.

We now proceed identically to the experimental evaluation of Section 4.2. We infer our MDM distribution parameters using
Algorithms 1 and 2 on the true clients. We use these inferred parameters to partition the server-side data into simulated MDM
clients. We then train on these simulated clients using a range of different HP settings. We compare the obtained accuracy to
the accuracy of training on the true clients as well as our Fully IID and Conditionally IID simulated client baselines. The
results are shown in Figure 14. As we can see there is a much greater similarity between the MDM simulations and true
clients than between the IID simulations and the true clients.

CIFAR10 with MDM partitioning Here we include the additional results for training on MDM partitioned clients of
CIFAR10. There correspond to the settings of the parameters given in Table 1. In Section 4.1 we showed results for
2 components and high heterogeneity. The results for the remaining settings are shown in Figures 15 - 22. In general
these results exhibit very similar properties to what we observed in Section 4.1. We do see in the cases of Medium and
High heterogeneity with 3 components some slightly larger deviations between the MDM simulations, and the true clients,
although they are still very similar. This is a reflection of the fact that the parameters we inferred in Section 4.1 for these
settings differed more than for the other settings.
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Figure 12. t-SNE visualisations of Folktables clients, each point corresponds to a single client’s histogram of the race feature. True clients
(green), fully IID simulated clients (blue) and MDM clients (red). Inferred using (from top to bottom) K = 1, 3, 5, 7.
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Figure 13. t-SNE visualisations of Folktables clients, each point corresponds to a single client’s histogram of the binned income feature.
True clients (green), fully IID simulated clients (blue) and MDM clients (red). Inferred using (from top to bottom) K = 1, 3, 5, 7.
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Figure 14. FEMNIST test accuracy when training with FedAvg for different settings of local learning rate and local epochs. True clients
(dotted green), conditionally IID simulated clients (green), learned MDM simulated clients (red) and fully IID simulated clients (blue).
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Figure 15. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Low Heterogeneity
and 1 mixture component.
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Figure 16. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Low Heterogeneity
and 2 mixture component.
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Figure 17. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Low Heterogeneity
and 3 mixture component.

Sweep over Hyperparameter Settings

0.2

0.4

0.6

Ac
cu

ra
cy

True Clients
MDM Simulated Clients
Fully IID SimulatedClients

Figure 18. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local
epochs. True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Medium
Heterogeneity and 1 mixture component.
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Figure 19. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local
epochs. True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Medium
Heterogeneity and 2 mixture component.
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Figure 20. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local
epochs. True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: Medium
Heterogeneity and 3 mixture component.
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Figure 21. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: High Heterogeneity
and 1 mixture component.
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Figure 22. CIFAR10 test accuracy when training with FedAvg for different settings of local batch size, local learning rate and local epochs.
True clients (dotted green), learned MDM simulated clients (red) and fully IID simulated clients (blue). Ground truth: High Heterogeneity
and 3 mixture component.
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