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ABSTRACT

In this paper, we present a runtime-efficient method for 2D
pathloss (PL) map prediction in complex indoor environ-
ments, based on the U-Net convolutional neural network.
The proposed approach reconstructs full PL maps from sparse
measurements in highly-cluttered environments. Using the
radial symmetry of the PL, we construct several environment-
aware geometrical features for the network to process. We
empirically show that such features help the network not
only generalize to unseen points in the same environment
but to different environments as well. Some of these fea-
tures include the obstruction count map, accumulated trans-
mittance maps, free-space pathloss and log-scaled distance
map, which are collectively used as input features to the
network. Our method is evaluated in the context of MLSP
2025 The Sampling-Assisted Pathloss Radio Map Predic-
tion Data Competition. The evaluation results demonstrate
that the proposed method achieves a weighted final root mean
square error of 4.80 dB with an average total runtime of 14.36
milliseconds.

Index Terms— Radio map prediction, U-Net, sparse
sampling, pathloss

1. INTRODUCTION

Accurate prediction of pathloss (PL) maps in indoor wireless
environments is fundamental to a wide range of applica-
tions including user-cell site association, fingerprint-based
localization, and path planning [1]. Traditionally, indoor PL
maps are generated using deterministic ray tracing simula-
tors, which model electromagnetic wave propagation using
known environment maps [2, 3]. Such ray tracing simula-
tors provide highly accurate results, but are computationally
expensive and time-consuming. Although methods such as
Instant-RM [4] can be very fast, like traditional ray-tracing
software they require a detailed 3D-map of the environment.
Though the cost of the 3D map generation can be amor-
tized for static environments, due to the dynamic nature of
indoor environments, these traditional methods can become
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impractical for use. Additionally, disparity between simu-
lated and real-world measurements cannot be used to inform
and improve the simulators. To effectively and efficiently in-
corporate real-world measurements, data-driven methods are
widely adopted as practical alternatives to simulation-based
approaches [5]. More importantly, for these data-driven
methods to replace the traditional methods, they need to gen-
eralize to new points in the same environment and preferably
to different environments as well. As a first step in achieving
such environment-agnostic models, the PL prediction prob-
lem in 3D is relaxed to that of its 2D counterpart. 2D maps
are more readily available than the 3D maps, and are easier to
update as well. Learning-based models, particularly convolu-
tional neural networks (CNNs), can use 2D maps along with
the sparse measurements to learn a mapping from the envi-
ronment to its corresponding PL map. Such neural network
architectures have been shown suitable for PL prediction but
with additional environmental priors [6].

In this work1, we use 2D environmental priors along with
sparse measurements to predict the 2D PL map of the in-
door environment. We use the dataset and the correspond-
ing benchmarking constraints in [7] to evaluate our learning-
based PL reconstruction methods. The dataset consists of 2D
environmental priors including reflectance and transmittance
parameters of the different objects in the environment, which
are encoded as images [8]. Our model is evaluated on the
following two tasks, Task 1: Evaluate the reconstruction per-
formance of our model under a fixed sampling methodology.
For each distinct map layout, a unique set of measurement lo-
cations is randomly generated. Task 2: Evaluation of model
under custom sampling methodology. Both tasks are per-
formed for each of the two different sampling densities, 0.5%
and 0.02%. We develop a lightweight U-Net-based model
that incorporates multiple domain-informed priors including
obstruction count map (OC map), accumulated transmittance
maps (Tsum), free-space PL (FSPL), and log-scaled distance
along with sparse PL measurements. Our model achieves
high reconstruction accuracy and fast inference speed, mak-
ing it suitable for practical deployment in indoor RF systems.

1This work was part of the MLSP 2025 The Sampling-Assisted Pathloss
Radio Map Prediction Data Competition
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2. DATASET AND FEATURE ENGINEERING

2.1. Dataset

For reader’s reference, we give a brief exposition of the
dataset, while more details can be obtained in [8]. The train-
ing dataset consists of PL maps corresponding to three dif-
ferent frequencies, namely 868 MHz, 1.8 GHz, and 3.5 GHz.
The training set includes 3750 PL maps generated across 25
unique indoor layouts, each with 50 unique transmitter po-
sitions. The testing dataset contains PL maps corresponding
to only 868 MHz. The test set comprises 200 PL maps from
5 unique layouts, different than the training dataset, with 50
transmitter positions for 3 layouts and 25 transmitter posi-
tions for the other 2 layouts. The ground truth (GT) PL map
is a 2D gray-scale whose pixel values represent the signal
attenuation in decibels (dBs). Along with the GT PL map
(label), the dataset consists of the following 2D environmen-
tal priors (i) reflectance map of the objects, (ii) transmittance
map of the objects. Additionally, the location of the transmit-
ter in the environment is used as prior information to regress
the PL values. All the above maps have the same resolution,
and the spatial resolution is fixed to 0.25 m per pixel. Note
that the image dimensions vary depending on the physical
size of each indoor environment. A key characteristic of
the dataset is that along with the environmental priors, PL
measurements, sampled at either 0.5% or 0.02% of the total
pixels is made available. In Task 1, these sampling points are
selected randomly. In Task 2, a custom sampling strategy is
used to obtain the sparse measurements.

2.2. Data preprocessing

A key insight behind the following features is to align the
network’s inductive bias with the inherent radial symmetry
observed in the attenuation patterns of PL maps. In this re-
gard, our feature engineering is informed with the geometri-
cal structure of rays. A fundamental underpinning is to sketch
rays from the transmitter to each pixel where the PL is to be
predicted. Given the discrete nature of the inputs, the ray has
to be discretized and in the next section we outline an efficient
and GPU accelerated algorithm to do this.

2.2.1. Accelerated Ray Sketching

We adopt an accelerated version of the classic 2D Bresen-
ham’s lines algorithm [9]. The Bresenham algorithm com-
putes the sequence of integer grid cells that approximate a
straight line between two points, using only integer arithmetic
and comparison operations. To enable large-scale parallel
processing, we implement a GPU-accelerated batch version
of the Bresenham algorithm using CuPy [10]. For a given
indoor scene, we simultaneously compute all paths from the
transmitter to every pixel on the grid. This fast and accu-

rate Bresenham algorithm implementation serves as a foun-
dational step for further data pre-processing methods.

2.2.2. Obstruction count map

In PL prediction tasks, line of sight (LOS) masks are widely
used to indicate whether a direct path exists between the trans-
mitter and each receiver location [11]. While effective in dis-
tinguishing fully visible from fully obstructed regions, such
binary representations fail to capture the degree of obstruc-
tion, treating all non-LOS pixels equally regardless of how
many objects the rays must traverse. To better exploit the
spatial information embedded in the environment layout, we
introduce the obstruction count (OC) map. Each pixel value
is the count of object intersections encountered along the di-
rect path of a ray originating from the transmitter to that pixel.
This representation allows the model to distinguish between
lightly and heavily obstructed paths, offering a more fine-
grained prior about signal power degradation. An example
of an OC map is shown in Fig. 1. The OC map serves as one
of the feature maps to our model.
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Fig. 1. Example of an OC map. The number indicates the
exact OC value at each pixel.

2.2.3. Transmittance Feature Map

While the OC map provides geometric information, it implic-
itly assumes all objects have the same attenuation properties.
In practice, however, different materials exhibit varying de-
grees of transmittance attenuation. To account for this, we
introduce the transmittance sum (Tsum) map based on Bresen-
ham algorithm, which aggregates the transmittance value (in
dB) of each object encountered by a ray from the transmitter
to a given pixel. This sum reflects the cumulative attenuation
experienced by the ray solely based on the physical materials
encountered along its propagation trajectory. An example of
a Tsum map is illustrated in Fig. 2. The distance based sig-
nal attenuation is not captured by Tsum map, to incorporate



this attenuation we use the FSPL. The FSPL is modeled using
Friis equation [12], and in the dB scale is given as

FSPL(d, f) = 20 log10

(
4πfd

c
+ ϵ

)
, (1)

where2 d is the Euclidean distance (in meters) between the
transmitter and the receiver, and f is the frequency, with c =
3× 108 m/s. We add the Tsum map to the FSPL map to incor-
porate distance-based attenuation. Hereafter, Tsum map refers
to the combined attenuation of Tsum and FSPL values.
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Fig. 2. Example of a Tsum map. Each value represents the
cumulative transmittance along the path from the transmitter
to the corresponding pixel.

Remark: The introduction of the Tsum achieves two
things. First, it incorporates how each ray is attenuated as it
intersects and propagates through objects along its path. Sec-
ond, by transforming the original transmittance map into the
Tsum map, we enable the network to disentangle reflectance
and transmittance features more effectively. Without this
transformation, the network would struggle to differentiate
between the two normalized feature maps—let alone infer
how each one changes the ray’s behavior. Hence, by replac-
ing the transmittance map with the Tsum map it provides
the network with a more structured and physically grounded
representation of the transmittance channel.

2.2.4. Logarithmic Distance Channel

The logarithmic distance channel is obtained for each pixel at
a radial distance d, whose value is given by

dnorm = log10(d+ ϵ). (2)

This logarithmic mapping encodes the distance based attenu-
ation and provides signal attenuation independent of the fre-
quency. More details of its utility is empirically demonstrated
in section 4.

2The additive constant ϵ inside the logarithm prevents overflow when d ≈
0, near the transmitter, and compresses the dynamic range for more stable
learning. We consider ϵ = 1

3. DEEP LEARNING MODEL

To recover dense PL maps from sparse measurements, we
adopt a convolutional encoder–decoder architecture based on
the U-Net architecture [13], which is well-suited for spatially
structured image-to-image regression problems. To capture
local context, average pooling is employed within the net-
work. Additionally, dropout with a rate of 0.2 is applied at
the bottleneck to enhance generalization and reduce overfit-
ting. The input to the network is a five-channel tensor, which
includes reflectance, the Tsum channel, a log-scaled distance
map, an OC map, and sparse PL measurements. The output
is a single-channel map representing the predicted PL in dB.
In the following subsections, we describe the loss function,
training methodology, and fine-tuning strategy of our model.

3.1. Loss Function

The loss function used to train the model is a weighted RMSE
loss. This loss is computed only on the pixels where the PL
measurements are unknown. Let H × W denote the size of
an indoor layout, ŷ ∈ RH×W denote the predicted PL map,
y ∈ RH×W denote the GT PL map, and M ∈ {0, 1}H×W be
a binary mask indicating where Mi,j = 1 if the corresponding
pixel (i, j) is not sampled. The loss function is defined as

LRMSE =
1

||M ||F

√
Tr (MT (y − ŷ)2), (3)

where Tr(.) denotes the trace operation and the Frobenius
norm of a matrix X is denoted by ||X||F .

3.2. Experiment Settings and Methodology

In our experiments, 80% of the dataset is selected for training
and the remaining 20% is reserved for validation. The result-
ing split yields 3000 samples for training and 750 samples for
validation.

3.2.1. Input Normalization

Each input channel is individually normalized to ensure that
the dynamic range is consistent across different features. This
ensures stable training. The reflectance channel is scaled by a
factor of 0.05. The Tsum map is min–max normalized to the
[0,1] range. The log-transformed Euclidean distance channel
is divided by 2.5 to compress its scale. The sparse PL mea-
surements are normalized by dividing by 100. Finally, the
OC map is scaled by its maximum value to produce a smooth
auxiliary input channel.

3.2.2. Padding Strategy

Samples within a training batch must share the same dimen-
sions in order to be collated into a single tensor. To accom-
modate this, we apply an additional dynamic padding step at



Table 1. U-Net Architecture and Model Configuration

Name Symbol Value

Input channels Cin 5
Output channels Cout 1

Encoder filter widths — 64 → 128 → 256
Bottleneck filter width Wb 512
Decoder filter widths — 256 → 128 → 64

Convolution kernel size k 3×3
Convolution padding dpad 1

Dropout p 0.2
Pooling stride lp 2

Upsampling stride lq 2
Maximum epoch n 100

Batch size B 4
Learning rate η0 1× 10−4

Learning rate for fine-tuning η1 1× 10−5

the batch level. During training, each minibatch is padded to
match the maximum height and width among its samples. All
5 input channels are padded with the value zero. To prevent
the contribution of the padded regions to the loss value, we
apply a binary mask. This mask is set to one for the padded
pixels and for the pixels where ground-truth PL values are
available (i.e., sampled points), and to zero elsewhere. It
is important to note that the sampling mask is not an input
channel, but a persistent variable maintained for calculating
the RMSE. By applying this mask, supervision is restricted to
unsampled regions within the original image boundary. The
predicted output is cropped to recover the original spatial res-
olution.

3.2.3. Fine-tuning

The training dataset spans across all three frequency bands,
while the test set contains only samples from the 868 MHz
(f1) band. To leverage this prior information, we adopt a two-
stage training strategy. After training on the full training set
covering all three frequency bands, we fine-tuned the model
using only f1 training samples with a smaller learning rate.
This fine-tuning step adapts the model more precisely to the
distribution of the target frequency band.

3.2.4. Training settings and hyperparameters

All experiments were conducted using PyTorch on a NVIDIA
A100 Tensor Core GPU. Adam optimizer is used for training.
The complete training configuration and hyperparameter set-
tings are summarized in Table 1.

4. RESULTS

4.1. Task 1: Random Sampling

In Task 1, we evaluate the model under random sampling at
two predefined rates: 0.5% and 0.02%. The training and val-
idation RMSEs are reported before fine-tuning, while the test
RMSEs are obtained after fine-tuning the model on the f1
subset. A summary of the results is provided in Table 2,
where the column headers indicate the stage of evaluation
(Pre-Finetune vs. Finetuned).

Table 2. RMSE (dB) on Train/Val/Test Sets for Task 1
Sampling Rate Pre-Finetune Finetuned

Train Validation Test

0.5% 2.64 2.90 3.17
0.02% 5.26 6.92 6.12

To further illustrate prediction quality, Fig. 3 presents a
visual comparison between the predicted and ground-truth PL
maps in dB scale when the sampling density is 0.5%.
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Fig. 3. Task 1 prediction quality of a scene under sampling
rate of 0.5%.

These results demonstrate that our approach reconstructs
the PL map with high fidelity under both sampling rates. In-
terestingly, we observe from Fig. 3 that prediction errors tend



to accumulate along the lines connecting the transmitter (Tx)
to corner regions in the layout. These corner points often ex-
hibit sharp discontinuities due to diffraction and heavy ob-
struction, making these pixels difficult to predict. This error
pattern provides a useful insight for Task 2.

4.2. Task 2: Adaptive Sampling

Our experiments reveal that uniform sampling outperforms
random sampling. However, uniform sampling alone may
overlook important structural features like corners, which
tend to accumulate error due to sharp propagation discontinu-
ities. To address this, for sample rate of 0.5%, we propose a
hybrid sampling strategy that allocates 95% of the sampling
budget to uniform points and 5% to corner points, extracted
using the Harris detector [14] from the original reflectance
channel. For sample rate of 0.2%, standalone uniform sam-
pling is applied.

We evaluate this corner-aware sampling approach under
the same two sparsity levels used in Task 1. The training and
validation RMSEs are reported before fine-tuning, while the
test RMSEs are obtained after fine-tuning on the f1 subset.
Table 3 summarizes all results, with column headers indicat-
ing the evaluation stage.

Table 3. RMSE (dB) on Train/Val/Test Sets for Task 2
(Corner-Aware Sampling)

Sampling Rate Pre-Finetune Finetuned

Train Validation Test

0.5% 2.42 2.54 3.22
0.02% 4.47 5.57 6.84

The results show that our corner-aware sampling strat-
egy yields consistent improvements in training and valida-
tion RMSE compared to the fixed random sampling used in
Task 1. This indicates that allocating sampling points to geo-
metrically complex regions such as corners enhances learning
within the observed data distribution. However, we observe a
slight increase in test RMSE after fine-tuning, particularly at
the 0.02% sampling rate. We attribute this to potential overfit-
ting; the corner-aware strategy may induce sampling patterns
that are overly tuned to the training layouts, thereby reducing
the model’s ability to generalize to unseen environments with
different geometric structures.

4.3. Overall performance

In this section, we report the performance of our method in the
MLSP 2025 Competition, where the average weighted RMSE
is computed as follows [7]:

T = 0.3× (T1a + T1b) + 0.2× (T2a + T2b), (4)

where T denotes the average weighted RMSE, T1a, T1b, T2a,
and T2b denote the test RMSE of Task 1 at sampling rates
0.02% and 0.5%, and Task 2 at sampling rates 0.02% and
0.5%, respectively. Our method achieves T = 4.80 and an
average total runtime of 14.36 ms, of which 1.23 ms is used
for model inference and 13.13 ms for data preprocessing.

4.4. Ablation Study

To assess the impact of various input features under the ran-
dom sampling setting of Task 1 (with a 0.5% sampling rate),
we conduct an ablation study using different feature com-
binations by selectively removing specific input channels.
The configurations and corresponding results are summa-
rized in Table 4. All models are trained using the same
hyper-parameters as listed in Table 1.

From Table 4, we observe that systematically adding pre-
processed features consistently improves model performance.
In particular, incorporating hand-crafted environmental pri-
ors—such as physical features (e.g., log-distance, Tsum) and
geometric structures (e.g., the OC map)—leads to steady per-
formance improvement. Among all configurations, setting
(v), which integrates the full set of engineered inputs (in-
cluding modified transmittance, distance, and the OC map),
achieves the lowest validation RMSE. This highlights the ben-
efit of jointly using physical and geometric priors to enhance
spatial generalization under sparse supervision.

Comparing configuration (v) with (vi), which excludes
sparse PL samples, further emphasizes the value of sampled
ground-truth observations. While prior-only models like (vi)
can estimate coarse PL patterns, they fail to capture the fine-
grained variations driven by layout-specific signal propaga-
tion. This confirms that even sparse PL inputs provide essen-
tial guidance for accurate map reconstruction. Overall, these
findings validate our design strategy of combining domain-
informed input features with limited but meaningful super-
vision to enable both accurate and generalizable indoor PL
prediction.

5. CONCLUSIONS

This paper presents a sparse-supervision framework for
pathloss (PL) map prediction, developed as part of MLSP
2025 The Sampling-Assisted Pathloss Radio Map Prediction
Data Competition. Our method incorporates environment-
specific priors which include physics-informed propaga-
tion effects—namely the Tsum map, free-space pathloss
(FSPL), log-scaled distance map, and obstruction count (OC)
map—into a lightweight U-Net architecture trained with
sparse measurement samples at 0.5% and 0.02% sampling
rates. Evaluation results demonstrate that the proposed ap-
proach achieves a weighted average RMSE of 4.80 with an
average runtime of 14.36 ms, highlighting its effectiveness
under real-time constraints.



Table 4. U-Net Architecture and Model Configuration

Configuration Val RMSE (dB)

(i) Reflectance + Transmittance + Distance + Sampled GT 3.2709
(ii) Reflectance + Transmittance + Log-scaled Distance + Sampled GT 3.2066

(iii) Reflectance + Transmittance + Log-scaled Distance + OC Map + Sampled GT 2.9645
(iv) Reflectance + Tsum + Log-scaled Distance + Sampled GT 2.9320

(v) Reflectance + Tsum + Log-scaled Distance + OC Map + Sampled GT 2.9004
(vi) Reflectance + Tsum + Log-scaled Distance + OC Map 15.1922
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