Testing Calibration in Nearly-Linear Time

Lunjia Hu Arun Jambulapati
Harvard University University of Michigan
lunjia®@alumni.stanford.edu jmblpati@gmail.com
Kevin Tian Chutong Yang
University of Texas at Austin University of Texas at Austin
kjtian@cs.utexas.edu cyang98Q@utexas.edu
Abstract

In the recent literature on machine learning and decision making, calibration has
emerged as a desirable and widely-studied statistical property of the outputs of
binary prediction models. However, the algorithmic aspects of measuring model
calibration have remained relatively less well-explored. Motivated by [BGHN23a],
which proposed a rigorous framework for measuring distances to calibration, we
initiate the algorithmic study of calibration through the lens of property testing.
We define the problem of calibration testing from samples where given n draws
from a distribution D on (predictions, binary outcomes), our goal is to distinguish
between the cases where D is perfectly calibrated or e-far from calibration. We
make the simple observation that the empirical smooth calibration linear program
can be reformulated as an instance of minimum-cost flow on a highly-structured
graph, and design an exact dynamic programming-based solver for it which runs
in time O(nlog®(n)), and solves the calibration testing problem information-
theoretically optimally in the same time. This improves upon state-of-the-art
black-box linear program solvers requiring 2(n“) time, where w > 2 is the
exponent of matrix multiplication. We also develop algorithms for tolerant variants
of our testing problem improving upon black-box linear program solvers, and
give sample complexity lower bounds for alternative calibration measures to the
one considered in this work. Finally, we present experiments showing the testing
problem we define faithfully captures standard notions of calibration, and that our
algorithms scale efficiently to accommodate large sample sizes.

1 Introduction

Probabilistic predictions are at the heart of modern data science. In domains as wide-ranging as
forecasting (e.g. predicting the chance of rain from meteorological data [MW84, Mur98]), medicine
(e.g. assessing the likelihood of disease [Doi07]), computer vision (e.g. assigning confidence values
for categorizing images [VDDP17]), and more (e.g. speech recognition [AAA™ 16] and recommender
systems [RRSK11]), prediction models have by now become essential components of the decision-
making pipeline. Particularly in the context of critical, high-risk use cases, the interpretability of
prediction models is therefore paramount in downstream applications. That is, how do we assign
meaning to the predictions our model gives us, especially when the model is uncertain?

We focus on perhaps the most ubiquitous form of prediction modeling: binary predictions, represented
as tuples (v, y) in [0, 1] x {0, 1} (where the v coordinate is our prediction of the likelihood of an event,
and the y coordinate is the observed outcome). We model prediction-outcome pairs in the binary
prediction setting by a joint distribution D over [0, 1] x {0, 1}, fixed in the following discussion. In

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

this context, calibration of a predictor has emerged as a basic desideratum. A prediction-outcome
distribution D is said to be calibrated if

E(wy)~ply |v=1] =tforallt € [0,1]. (1)

That is, calibration asks that the outcome is 1 exactly 60% of the time, when the model returns a
prediction v = 0.6. While calibration (or approximate variants thereof) is a relatively weak require-
ment on a meaningful predictor, as it can be achieved by simple models,' it can still be significantly
violated in practice. For example, interest in calibration in the machine learning community was
spurred by [GPSW 17], which observed that many modern deep learning models are far from cali-
brated. Moreover, variants of calibration have been shown to have strong postprocessing properties
for fairness constraints and loss minimization [HKRR 18, DKR™21, GKR*22], which has garnered
renewed interest in calibration by the theoretical computer science and statistics communities.

The question of measuring the calibration of a distribution is subtle; even a calibrated distribution
incurs measurement error due to sampling. For example, consider the expected calibration error,
used in e.g. [NCH15, GPSW17, MDR " 21a, RT21b] as a ground-truth measure of calibration:

ECE(D) := E(vy)~p [[E@w yy~p [y [V) =] — v]] .

Unfortunately, the empirical ECE is typically meaningless; if the marginal density of v is continuous,
we will almost surely only observe a single sample with each v value. Further, [KF08] observed that
ECE is discontinuous in v. In practice, binned variants of ECE are often used as a proxy, where a
range of v is lumped together in the conditioning event. However, hyperparameter choices (e.g. the
number of bins) can significantly affect the quality of binned ECE variants as a distance measure
[KLM19, NDZ* 19, MDR " 21a].? Moreover, as we explore in this paper, binned calibration measures
inherently suffer from larger sample complexity-to-accuracy tradeoffs, and are less faithful to ground
truth calibration notions in experiments than the calibration measures we consider.

Recently, [BGHN23a] undertook a systematic study of various measures of distance to calibration
proposed in the literature. They proposed information-theoretic tractability in the prediction-only
access (PA) model, where the calibration measure definition can only depend on the joint prediction-
outcome distribution (rather than the features of training examples),® as a desirable criterion for
calibration measures. Correspondingly, [BGHN23a] introduced Definition 1 as a ground-truth notion
for measuring calibration in the PA model, which we also adopt in this work.*

Definition 1 (Lower distance to calibration). Let D be a distribution over [0,1] x {0,1}. The lower
distance to calibration (LDTC) of D, denoted dCE(D), is defined by

ﬁ(p) = HeieE(ItED) E(u,u,y)wﬂ |u - 'U| 5

where ext(D) is all distributions 11 over (u,v,y) € [0, 1] x [0, 1] x {0, 1} satisfying the following.
* The marginal distribution of (v,y) is D.

* The marginal distribution (u,y) is perfectly calibrated, i.e. Eri[y|u] = w.

Definition 1 has various beneficial aspects: it is convex in v, computable in the PA model, and
(as shown by [BGHN23a]) polynomially-related to various other calibration measures, including
some which require feature access, e.g. the distance to calibration (DTC, Eq. (1), [BGHN23a]).
Roughly, the DTC of a distribution is the tightest lower bound on the ¢; distance between v and any
calibrated function of the features, after taking features into account. The LDTC is the analog of this
feature-aware measure of calibration when limited to the PA model, so it does not depend on features.
We focus on Definition 1 as our ground-truth measure in the remainder of the paper.

!The predictor which ignores features and always return the population mean is calibrated, for example.

2For example, [NDZ " 19] observed that, in their words, “dramatic differences in bin sensitivity” can occur
“depending on properties of the (distribution) at hand,” a sentiment echoed by Section 5 of [MDR " 21a].

3This access model is practically desirable because it abstracts away the feature space, which can lead to
significant memory savings when our goal is only to test the calibration of model predictions. Moreover, this
matches conventions in the machine learning literature, e.g. loss functions are typically defined in the PA model.

*We note that [BGHN23a] introduced an upper distance to calibration, also defined in the PA model, which
they showed is quadratically-related to the dCE in Definition 1. However, the upper distance does not satisfy
basic properties such as continuity, making it less amenable to estimation and algorithm design.

1.1 Our results

We initiate the algorithmic study of the calibration testing problem, defined as follows.

Definition 2 (Calibration testing). Let ¢ € [0, 1]. We say algorithm A solves the e-calibration testing
problem with n samples, if given n i.i.d. draws from a distribution D over [0,1] x {0,1}, A returns
either “yes” or “no” and satisfies the following with probability > %.5

o Avreturns “no” if dCE(D) > .
» Avreturns “yes” if dCE(D) = 0.
In this case, we also call A an e-calibration tester.

To our knowledge, we are the first to formalize the calibration testing problem in Definition 2,
which is natural from the perspective of property testing, an influential paradigm in statistical
learning [Ron08, Ron09, Gol17]. In particular, there is an €,, = @(n‘l/ 2) so that it is information-
theoretically impossible to solve the €, -calibration testing problem from n samples (see Lemma 5),
so a variant of Definition 2 with an exact distinguishing threshold between “calibrated/uncalibrated”
is not tractable. Hence, Definition 2 only requires distinguishing distributions D which are “clearly
uncalibrated” (parameterized by a threshold ¢) from those which are perfectly calibrated.

We note that a variant of Definition 2 where dCE is replaced by variants of the ECE was recently
proposed by [LHHD23]. However, due to the aforementioned discontinuity and binning choice
issues which plague the ECE, [LHHD23] posed as an explicit open question whether an alternative
calibration metric makes for a more appropriate calibration testing problem, motivating our Defini-
tion 2. Indeed, Proposition 9 of [LHHD23] shows that without smoothness assumptions on the data
distribution, it is impossible to solve the ECE calibration testing problem from finite samples.®

Our first algorithmic contribution is a nearly-linear time algorithm for calibration testing.

Theorem 1. Letn € N, and £ = Q(e,,), where €, = ©(n~"/2) is minimal such that it is information-
theoretically possible to solve the c,,-calibration testing problem (Definition 2) with n samples. There
is an algorithm which solves the c-calibration testing problem with n samples, running in time
O(nlog*(n)).

The lower bound on the acceptable range of ,, in Theorem 1 is well-known, and recalled in Lemma 5
for completeness. Our main contribution is to prove the upper bound (i.e., achieving O(&,,)-calibration

testing) in Theorem 1 by designing a new algorithm for computing smCE(ﬁn), the smooth calibration
error (Definition 3), an alternative calibration measure, of an empirical distribution D,,.

Definition 3 (Smooth calibration error). Let W be the set of Lipschitz functions w : [0,1] — [—1,1].
The smooth calibration error of distribution D over [0,1] x {0, 1}, denoted smCE(D), is

smCE(D) = sup [E@wy~ol(y — v)w(v)]].

It was shown in [BGHN23a] that smCE(D) is a constant-factor approximation to dCE(D) for all D
on [0,1] x {0,1} (see Lemma 4). Additionally, the empirical smCE admits a representation as a
linear program with an O(n) x O(n)-sized constraint matrix encoding Lipschitz constraints.” Thus,
[BGHN23a] proposed a simple procedure for estimating smCE(D): draw n samples from D, and
solve the associated linear program on the empirical distribution. While there have been significant
recent runtime advances in the linear programming literature [LS14, CLS21, vdBLSS20, vdBLL*21],
all state-of-the-art black-box linear programming algorithms solve linear systems involving the
constraint matrix, which takes {2(n*) time, where w > 2.371 [WXXZ23] is the current exponent of

3As is standard in property testing problems, the success probability of either a calibration tester or a tolerant
calibration tester can be boosted to 1 — ¢ for any § € (0,1) ata k = O(log(})) overhead in the sample
complexity. This is because we can independently call k£ copies of the tester and output the majority vote, which
succeeds with probability > 1 — § by Chernoff bounds, so we focus on § = %

The work [LHHD23] considered k-class prediction tasks, extending our focus on binary classification
(k = 2), which we believe is an exciting future direction. However, their Proposition 9 holds even when k = 2.

"Formally, the number of constraints in the smCE linear program is O(n?), but we show that in the hard-
constrained setting, requiring that “adjacent” constraints are met suffices (see Lemma 1).

matrix multiplication. Even under the best-possible assumption that w = 2, the strategy of exactly
solving a linear program represents an §2(n?) quadratic runtime barrier for calibration testing.

We bypass this barrier by noting that the smCE linear program is highly-structured, and can be
reformulated as minimum-cost flow on a planar graph. We believe this observation is already
independently interesting, as it opens the door to using powerful software packages designed for
efficiently solving flow problems to measure calibration in practice. Moreover, using recent theoretical
breakthroughs in graph algorithms [DGG™22, CKL"22] as a black box, this observation readily
implies an O(n - polylog(n))-time algorithm for solving the smooth calibration linear program.

However, these aforementioned algorithms are quite complicated, and implementations in practice are
not available, leaving their relevance to empirical calibration testing unclear at the moment. Motivated
by this, in Section 2 we develop a custom solver for the minimum-cost flow reformulation of empirical
smooth calibration, based on dynamic programming. Our theoretical runtime improvement upon
[DGG'22, CKL™22] is by at least a large polylogarithmic factor, and moreover our algorithm
is simple enough to implement in practice, where it attains faster runtimes than general-purpose
commercial solvers on moderate or large dataset sizes, evaluated in Section 3.

We further define a tolerant variant of Definition 2 (see Definition 4), where we allow for error
thresholds in both the “yes” and “no” cases; “yes” is the required answer when dCE(D) < e9, and
“no” is required when dCE(D) > £;. Our algorithm in Theorem 1 continues to serve as an efficient
tolerant calibration tester when €1 > 4e5, formally stated in Theorem 3. This constant-factor loss
comes from a similar loss in the relationship between smCE and dCE, see Lemma 4. We make the
observation that a constant factor loss in the tolerant testing parameters is inherent following this
strategy, via a lower bound in Lemma 13. Thus, even given infinite samples, computing the smooth
calibration error cannot solve tolerant calibration testing all the way down to the information-theoretic
threshold €1 > £5. To develop an improved tolerant calibration tester, we directly show how to
approximate the LDTC of an empirical distribution, our second main algorithmic contribution.

Theorem 2 (Informal, see Theorem 4, Corollary 3). Letn € N, and let 1 —eo = Q(e,,), where e, =

@(n_l/ %) is minimal such that it is information-theoretically possible to solve the &,,-calibration

testing problem (Definition 4) with n samples. There is an algorithm which solves the (1, £2)-tolerant

calibration testing problem with n samples, running in time O(%) = O(n?log(n)).

While Theorem 2 is slower than Theorem 1, it directly approximates the LDTC, making it applicable
to tolerant calibration testing. We mention that state-of-the-art black-box linear programming based
solvers, while still applicable to (a discretizeation of) the empirical LDTC, require £(n?°) time
[vdBLL"21], even if w = 2. This is because the constraint matrix for the e-approximate empirical
LDTC linear program has dimensions O(2) x O(n), resulting in an ~ 1 = Q(y/n) overhead in
the dimension of the decision variable. We prove Theorem 2 in Appendix C, where we use recent
advances in minimax optimization [JT23] and a custom combinatorial rounding procedure to develop
a faster algorithm, improving state-of-the-art linear programming runtimes by an (/n) factor.

In Appendix D, we complement our algorithmic results with lower bounds (Theorems 5, 6) on
the sample complexity required to solve variants of the testing problem in Definition 2, when dCE
is replaced with different calibration measures. For several widely-used distances in the machine
learning literature, including binned and convolved variants of ECE [NCH15, BN23], we show that

Q(e72%) samples are required to the associated e-calibration testing problem. This demonstrates a
statistical advantage of our focus on dCE as our ground-truth notion for calibration testing.

We corroborate our theoretical findings with experimental evidence on real and synthetic data in
Section 3. First, on a simple Bernoulli example, we show that dCE and smCE testers are more reliable
measures of calibration than a recently-proposed binned ECE variant. We then apply our smCE tester
to postprocessed neural network predictions to test their calibration levels, validating against the
findings in [GPSW17]. Finally, we implement our method from Theorem | on our Bernoulli dataset,
showing that it scales to high dimensions and runs faster than both a linear program solver from
CVXPY for computing the empirical smCE, as well as a commercial minimum-cost flow solver from
Gurobi Optimization (combined with our reformulation in Lemma 2).®

80ur code is included in the supplementary material.

1.2 Our techniques

Theorems 1 and 2 follow from designing custom algorithms for approximating empirical linear

programs associated with the smCE and dCE of a sampled dataset ﬁn = {(vi, %) Yien) ~iia. D. In
both cases, generalization bounds from [BGHN23a] show it suffices to approximate the value of the
empirical calibration measures to error ¢ = Q(n~'/2), though our solver in Theorem 1 will be exact.

We begin by explaining our strategy for estimating smCE(ZSn) (Definition 3). By definition, the
smooth calibration error of D,, can be formulated as a linear program,

1
min — x;(v; —y;), where |x; — x| < |v; —v;| forall (¢,7) € [n| X [n]. 2)
””Zu (vi — i) 2 =] < |y — vy forall (i,) € [n] x [n]

Here, x; € [—1, 1] corresponds to the weight on v;, and there are 2(2) constraints on the decision
variable x, each of which corresponds to a Lipschitz constraint. We make the simple observation that
every Lipschitz inequality constraint can be replaced by two constraints of the form x; —z; < |v; —v;]
(with 4, j swapped). Moreover, the box constraints 2z € [—1,1]™ can be handled by introducing
a dummy variable x,,,1 and writing max(z; — Zp41, Tpy1 — x;) < 1, after penalizing x,,41
appropriately in the objective. Notably, this substitution makes every constraint the difference of two
decision variables, which is enforceable using the edge-vertex incidence matrix of a graph. Finally,
the triangle inequality implies that we only need to enforce Lipschitz constraints in (2) corresponding
to adjacent 7, j. After making these simplifications, the result is the dual of a minimum-cost flow
problem on a graph which is the union of a star and a path; this argument is carried out in Lemma 2.

Because of the sequential structure of the induced graph, we show in Appendix B.2 that a dynamic
programming-based approach, which maintains the minimum-cost flow value after committing to the
first ¢ < n flow variables in the graph recursively, succeeds in computing the value (2). To implement
each iteration of our dynamic program in polylogarithmic time, we rely on a generalization of the
classical segment tree data structure that we develop in Appendix B.3; combining gives Theorem 1.

On the other hand, the linear program corresponding to the empirical dCE is more complex (with two
types of constraints), and to our knowledge lacks the graphical structure to be compatible with the
aforementioned approach. Moreover, it is not obvious how to use first-order methods, an alternative
linear programming framework suitable when only approximate answers are needed, to solve this
problem more quickly. This is because the empirical dCE linear program enforces hard constraints to
a set that is difficult to project to under standard distance metrics. To develop our faster algorithm
in Theorem 2, we instead follow an “augmented Lagrangian” method where we lift the constraints
directly into the objective as a soft-constrained penalty term. To prove correctness of this lifting,
we follow a line of results in combinatorial optimization [Shel3, JST19]. These works develop a
“proof-by-rounding algorithm” framework to show that the hard-constrained and soft-constrained
linear programs have equal values, summarized in Appendix C.1 (see Lemma 14).

To use this augmented Lagrangian framework, it remains to develop an appropriate rounding algorithm
to the feasible polytope for the empirical dCE linear program, which enforces two types of constraints:
marginal satisfaction of (v,y), and calibration of (u,y) (using notation from Definition 1). In
Appendix C.3, we design a two-step rounding procedure, which first fixes the marginals on the (v, y)
coordinates, and then calibrates the u coordinates without affecting any (v, y) marginal.

1.3 Related work

The calibration performance of deep neural networks has been studied extensively in the literature (e.g.
[GPSW17, MDR " 21b, Rt21a, BGHN23b]). Measuring the calibration error in a meaningful way can
be challenging, especially when the predictions are not naturally discretized (e.g. in neural networks).
Recently, [BGHN23a] addresses this challenge using the distance to calibration as a central notion.
They consider a calibration measure to be consistent if it is polynomially-related to the distance to
calibration. Consistent calibration measures include the smooth calibration error [KF04], Laplace
kernel calibration error [KSJ 18], interval calibration error [BGHN23a], and convolved ECE [BN23].°

The calibration measure we call the convolved ECE in our work was originally called the smooth ECE
in [BN23]. We change the name slightly to reduce overlap with the smooth calibration error (Definition 3), a
central object throughout the paper.

On the algorithmic front, substantial observations were made by [BGHN23a] on linear programming
characterizations of calibration measures such as the LDTC and smooth calibration. While there have
been significant advances on the runtime frontier of linear programming solvers, current runtimes
for handling an n x d linear program constraint matrix with n > d remain Q(min(nd + d*®°, n*))
[CLS21, vdBLL ™21, JSWZ21]. Our constraint matrix is roughly-square and highly-sparse, so it is
plausible that e.g. the recent research on sparse linear system solvers [PV21, Nie22] could apply to
the relevant Newton’s method subproblems and improve upon these rates. Moreover, while efficient
estimation algorithms have been proposed by [BGHN23a] for (surrogate) interval calibration error
and by [BN23] for convolved ECE, these algorithms require suboptimal sample complexity for
solving our testing task in Definition 2 (see Appendix D). To compute their respective distances to
error £ from samples, these algorithms require Q(¢75) and £2(¢~3) time. As comparison, under this

parameterization Theorems 1 and 2 require O(c~2) and O(~*) time, but can solve stronger testing
problems with the same sample complexity, experimentally validated in Section 3.

Notation. Throughout, D denotes a distribution over [0, 1] x {0, 1}. When D is clear from context,
we let D,, = {(vi, ¥i) }ie[n) denote a dataset of n independent samples from D and, in a slight abuse

of notation, the distribution with probability % for each (v;, y;). We say d is a calibration measure if
it takes distributions on [0, 1] x {0, 1} to the nonnegative reals R>, so dCE (Definition 1) and smCE

(Definition 3) are both calibration measures. We use O and €2 to hide polylogarithmic factors in the
argument. We denote [n] := {i € N | i < n}. We denote matrices in boldface throughout. For any
A € R™ " we refer to its i row by A;. and its ;" column by A.;. For a set S identified with rows
of a matrix A, we let A . denote the row indexed by s € S, and use similar notation for columns.
For a directed graph G = (V, E), we define its edge-vertex incidence matrix B € {—1,0, 1}2xV
which has a row corresponding to each e = (u,v) € E with B,,, = 1 and B, = —1. When G is
undirected, we similarly define B € {—1,0,1}*V with arbitrary edge orientations.

2 Smooth calibration

In this section, we overview our main result on approximating the smooth calibration of a distribution
on [0, 1] x {0, 1}, deferring some aspects of the proof to Appendix B. We first show that the linear
program corresponding to the smooth calibration of an empirical distribution can be reformulated
as an instance of minimum-cost flow on a highly-structured graph. We then explain our dynamic
programming approach to solving this minimum-cost flow problem and state a runtime guarantee.
Finally, we give our main result on near-linear time calibration testing, Theorem 1.

Throughout this section, we fix a dataset under consideration, D,, := {(v;, Yi)tiern C [0,1]x{0,1},

and the corresponding empirical distribution (which, in an abuse of notation, we also denote ﬁn),

i.e. we use (v,y) ~ D, to mean that (v,y) = (v;,y;) with probability + for each i € [n]. We also
assume without loss of generality that the {v;},c/,) are in sorted order, s0 0 < vy < ... <w, < 1.
Recalling Definition 3, the associated empirical smooth calibration linear program is

smCE(D,) := max bz,
ze[—-1,1]"
where |z; — x| < wvj —wv; forall (4,7) € [n] x [n] withi < j, 3)

1
and b; := —(y; —v;) forall i € [n].
n

We first make a simplifying observation, which shows that it suffices to replace the Lipschitz
constraints in (3) with only the Lipschitz constraints corresponding to adjacent indices (7, 5).

Lemma 1. Ifz,v € R™, where v has monotonically nondecreasing coordinates, and |x; — x;11] <
Vig1 — v foralli € [n — 1], then |x; — x| < v; — v, forall (i,5) € [n] X [n] withi < j.

We now reformulate (3) as a (variant of a) minimum-cost flow problem.

Lemma 2. Consider an instance of (3). Let G = (V, E) be an undirected graph on n + 1 vertices
labeled by V' := [n + 1], and with 2n — 1 directed edges E defined and with edge costs as follows.

* Foralli € [n — 1], there is an edge between vertices (i,1 + 1) with edge cost vi11 — v;.

* Foralli € [n], there is an edge between vertices (i,n + 1) with edge cost 1.

Let ¢ € RE be the vector of all edge costs, let d € R"T! be the demand vector which concatenates
—b in (3) with a last coordinate set to b;, and let B € {—1,0,1}E*V be the edge-vertex

incidence matrix of G. Then the problem

i T = elfe 4
min c'|f] > celfel)

eckE

1€[n]

B f=d

has the same value as the empirical smooth calibration linear program (3).

QW

Figure 1: Example graph G for n = 5 with n 4+ 1 = 6 vertices and 2n — 1 = 9 edges.

Proof. By Lemma 1, solving (3) is equivalent to solving

{nin] —b"z, where |x; — @ip1| < vip1 —v; foralli € [n — 1], 5)
z€[—1,1]"

We create a dummy variable x,, 1, and rewrite (5) as

min —b;i(z; — Tpy1), Where |z; — zi41| < vip1 — v; foralli € [n — 1],
zERnFL 6)

and — 1 < z; — x4 < 1foralli € [n].

Next, consider a directed graph G= (v, E) with 4n — 2 edges which duplicate the undirected edges
described in the lemma statement in both directions. Let B € {-1,0, 1}E *V be the edge-vertex
incidence matrix of G, and let ¢ € RE be the edge cost vector so that both edges in E corresponding
to e € F have the same cost c,. Then (6) is equivalent to the linear program max,cgn+1 d ' 2 such
that Bz < ¢, where d is described as in the lemma statement. The dual of this linear program is

min et
feRE, (N
BT f=d

a minimum-cost flow problem on G. In particular, based on the way we defined B, we can check
that BT f encodes the net flow at each vertex of (&, which is set according to the demand vector d in
the above optimization problem. Next, for each pair of directed edges (€', €’’) in G corresponding to
some e € F, note that an optimal solution to (7) will only put nonzero flow on one of ¢’ or ", else
we can achieve a smaller cost by canceling out redundant flow. Therefore, we can collapse each pair
of directed edges into a single undirected edge, where we allow the flow variable f to be negative but
charge its magnitude | f| in cost, proving equivalence of (7) and (4) as claimed.]

We believe this observation in Lemma 2 is already interesting, as it lets us to use specialized graph
algorithms to achieve faster runtimes in both theory and practice for solving (3). By using the
special structure of the graph (the union of a star and path), we show in Appendix B that we can
develop a more efficient custom algorithm for this problem. Specifically, we show how to replace the
constrained problem (4) with an unconstrained problem on only the path edges, of the form

nglzinI{lA(f) = |dy + fi] + |dn = fa1| + | > fi— fin —dia| + | > el ®
i1€[n—2] i€[n—1]
We prove the following result in Appendix B.2.

Proposition 1. There is an algorithm which computes a minimizer f € R"~! to A in (8), as well as
the minimizing value A(f), in time O(nlog®(n)).

Our algorithm for establishing Proposition 1 is based on dynamic programming, and recursively
represents partial solutions to A as a piecewise-linear function. We implement updates to this
representation via a segment tree data structure in polylogarithmic time, giving our overall solution.

Corollary 1. There is an algorithm which computes the value of (3) in time O(nlog?(n)).

Proof. This is immediate from Lemma 2, the equivalence between the constrained problem (4) and
the unconstrained problem (8) established in Appendix B.2, and Proposition 1. O

We now describe how to build upon Corollary 1 to give an algorithm for proving Theorem 1, using a
result from [BGHN23a] which bounds how well the smooth calibration of an empirical distribution
approximates the smooth calibration of the population.

Lemma 3 (Corollary 9.9, [BGHN23a)). Fore € (0,1), there is an n = O(Z) such that if D, is the
smCE(D)—smCE(ﬁnﬂ <e.

empirical distribution over n i.i.d. draws from D, with probability > 3,

Further, we recall the smooth calibration error is constant-factor related to the LDTC.

Lemma 4 (Theorem 7.3, [BGHN23al). For any distribution D over [0,1] x {0,1}, we have
+dCE(D) < smCE(D) < 2dCE(D).

Proof of Theorem 1. We take n = O(Z;) samples so Lemma 3 ensures |smCE(D)—smCE(D,)| < 5
with probability > % We then compute 8 = smCE(ﬁn) using Corollary 1, and return “yes” iff
B < £, which distinguishes between the two cases in Definition 2 via Lemma 4. O

3 Experiments

In this section, we present experiments on synthetic data and CIFAR-100 supporting our argument
that dCE and smCE are reliable measures of calibration for use in defining a testing problem. We
then evaluate our custom algorithms from Section 2 and Appendix B, showing promising results on
their runtimes outperforming standard packages for linear programming and minimum-cost flow. The
experiments in the first and third part of this section are run on a 2018 laptop with 2.2 GHz 6-Core
Intel Core i7 processor. The experiments in the second part are run on a cluster using 2x AMD EPYC
7763 64-Core Processor and a single NVIDIA A100 PCIE 40GB.

Synthetic dataset. In our first experiment, we considered the ability of e-d-testers (Definition 5) to
detect the miscalibration of a synthetic dataset, for various levels of ¢ € {0.01,0.03,0.05,0.07,0.1},
and various choices of d € {smCE, dCE, ConvECE}.'” The synthetic dataset we used is 7 indepen-
dent draws from D, where a draw (v, y) ~ D first draws v ~yyi. [0, 1 — €*], and y ~ Bern(v + €*),
for e* := 0.01.'" Note that dCE(D) = £* = 0.01, by the proof in Lemma 13. In Table 1, where the
columns index n (the number of samples), for each choice of d we report the smallest value of € such
that a majority of 100 runs of an e-d-tester report “yes.” For d = ConvECE, we implemented our
tester by running code in [BN23] to compute ConvECE and thresholding at §. Ford € {smCE,dCE},
we used the standard linear program solver from CVXPY [DB16, AVDB18] and again thresholded at
5. We remark that the CVXPY solver, when run on the dCE linear program, fails to produce stable

results for n > 29 due to the size of the constraint matrix. As seen from Table 1, both smCE and dCE
testers are more reliable estimators of the ground truth calibration error £* than ConvECE.

Table 1: Calibration testing thresholds (smallest passed on half of 100 runs).

n 2641 2741 2841 2941 20471 2141
smCE 0.07 0.05 0.03 0.03 0.01 0.01
dCE 0.03 0.01 0.01
cECE 0.1 0.1 0.07 0.07 0.05 0.03
Ground Truth 0.01 0.01 0.01 0.01 0.01 0.01

%We implemented ConvECE using code from [BN23], which automatically conducts a search for o.
"This is a slight variation on the synthetic dataset used in [BGHN23al.

Table 2: Empirical smCE on postprocessed DenseNet40 predictions (median over 20 runs)

D Dbase Diso Dlemp
Empirical smCE | 0.2269 0.2150 0.1542

In Figure 2, we plot the median error with error bars for each calibration measure, where the x axis
denotes log,(n — 1), and results are reported over 100 runs.

—+~- ConvECE

010 smCE
~- LDTC
0.08 \{
AN

5 6 7 8 9 10 11

Figure 2: The 25% quantile, median, and 75% quantile (over 100 runs) for smCE, dCE and cECE
respectively. The x-axis is for dataset with size 2* 4 1.

Postprocessed neural networks. In [GPSW17], which observed modern deep neural networks
may be very miscalibrated, various strategies were proposed for postprocessing network predictions
to calibrate them. We evaluate two of these strategies using our testing algorithms. We trained a
DenseNet40 model [HLvdMW 17] on the CIFAR-100 dataset [Kri09], producing a distribution Dygse,
where a draw (v, y) ~ Dyase selects a random example from the test dataset, sets y to be its label, and
v to be the prediction of the neural network. We also learned calibrating postprocessing functions fig,
and fiemp from the training dataset, the former via isotonic regression and the latter via temperature
scaling. These induce (ideally, calibrated) distributions Disy, Diemp, Where a draw from Dj, samples
(v,9) ~ Dpase and returns (fiso(v),y), and Diemp is defined analogously. The neural network and
postprocessing functions were all trained by adapting code from [GPSW17].

We computed the median smooth calibration error of 20 runs of the following experiment. In each run,
for each D € {Dyase, Disos Dremp }» We drew 256 random examples from D, and computed the average
smooth calibration error smCE of the empirical dataset using a linear program solver from CVXPY.
We report our findings in Table 2. We also compared computing smCE using the CVXPY solver and
a commercial minimum-cost flow solver from Gurobi Optimization [Opt23] (on the objective from
Lemma 2) in this setting. The absolute difference between outputs is smaller than 10~° in all cases,
verifying that minimum-cost flow solvers accurately measure smooth calibration.

Qualitatively, our results (based on smCE) agree with findings in [GPSW 17] (based on binned variants
of ECE), in that temperature scaling appears to be the most effective postprocessing technique.

smCE tester. Finally, we evaluated the efficiency of our proposed approaches to computing the
empirical smCE. Specifically, we measure the runtime of four solvers for computing (3): a linear
program solver from CVXPY, a commercial minimum-cost flow solver from Gurobi Optimization,
a naive implementation of our algorithm from Corollary 1 using Python, and a slightly-optimized
implementation using the PyPy package [PyP19]. We use the same experimental setup as in Table 1,
i.e. measuring calibration of a uniform predictor on a miscalibrated synthetic dataset, with ¢* =
0.01."% In Table 3, we report the average runtimes for each trial (across 10 runs), varying the sample
size. Again, the absolute difference between the outputs of all methods is negligible (< 10~ in
all cases). As seen in Table 3, our custom algorithm (optimized with PyPy) outperforms standard
packages from CVXPY and Gurobi Optimization starting from moderate sample sizes. We believe
that Table 3 demonstrates that our new algorithms are a scalable, reliable way of testing calibration,
and that these performance gains may be significantly improvable by further optimizing our code.

2We found similar runtime trends when using our algorithms to test calibration on the postprocessed neural
network dataset, but the runtime gains were not as drastic as the sample size n = 2° was smaller in that case.

Acknowledgements

We thank Edgar Dobriban for pointing us to the reference [LHHD23], and Yang P. Liu and Richard
Peng for helpful discussions on the segment tree data structure in Section B.3. We also thank Yue
Zhao for advice on running our experiments.

Table 3: Runtimes (in seconds) for computing the value of (3), using various solvers

n 210 211 212 213 214 215

CVXPY LP solver 0.105 0.370 1.58 6.51 45.7 245

Gurobi minimum-cost flow solver | 0.063 0.179 0.238 0.539 1.45 3.19
Solver from Corollary 1 0.177 0.389 0.899 2.01 4.66 10.6
Solver from Corollary 1 with PyPy | 0.079 0.115 0.176 0.307 0.621 2.05

References

[AAAT16] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric
Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi
Fan, Christopher Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick LeGresley,
Xiangang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Chong Wang, Yi Wang, Zhigian Wang, Bo Xiao, Yan Xie, Dani Yogatama, Jun
Zhan, and Zhenyao Zhu. Deep speech 2 : End-to-end speech recognition in english
and mandarin. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 173—-182. JMLR.org, 2016.

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A
rewriting system for convex optimization problems. Journal of Control and Decision,
5(1):42-60, 2018.

[BGHN23a] Jarostaw Btasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. A unify-
ing theory of distance from calibration. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 1727-1740, 2023.

[BGHN23b] Jarostaw Btlasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. When does
optimizing a proper loss yield calibration? arXiv preprint arXiv:2305.18764, 2023.

[BN23] Jarostaw Btasiok and Preetum Nakkiran. Smooth ECE: Principled reliability diagrams
via kernel smoothing. arXiv preprint arXiv:2309.12236, 2023.

[Can22] Clément L. Canonne. Topics and techniques in distribution testing: A biased but
representative sample. Foundations and Trends® in Communications and Information
Theory, 19(6):1032-1198, 2022.

[CKL*22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 612—-623. IEEE, 2022.

[CLS21] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the
current matrix multiplication time. J. ACM, 68(1):3:1-3:39, 2021.

[CST21] Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative lipschitzness in extragra-
dient methods and a direct recipe for acceleration. In 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, volume 185 of LIPIcs, pages 62:1-62:18.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling lan-
guage for convex optimization. Journal of Machine Learning Research, 17(83):1-5,
2016.

10

[DGGT22]

[DKR*21]

[Doi07]

[GKR'22]

[Gol17]

[GPSW17]

[HKRR18]

[HLvdMW17]

[IS03]

[JST19]

[JSWZ21]

[JT23]

[KF04]

[KF08]

[KLM19]

Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva,
and Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-
linear time. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2022, pages 124-153. SIAM, 2022.

Cynthia Dwork, Michael P. Kim, Omer Reingold, Guy N. Rothblum, and Gal Yona.
Outcome indistinguishability. In STOC °21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, 2021, pages 1095-1108. ACM, 2021.

Kunio Doi. Computer-aided diagnosis in medical imaging: historical review, current
status and future potential. Computerized medical imaging and graphics, 31(4—
5):198-211, 2007.

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi
Wieder. Omnipredictors. In /3th Innovations in Theoretical Computer Science
Conference, ITCS 2022, volume 215 of LIPIcs, pages 79:1-79:21. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2022.

Oded Goldreich. Introduction to Property Testing. Cambridge University Press,
2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In International conference on machine learning, pages
1321-1330. PMLR, 2017.

Ursula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum.
Multicalibration: Calibration for the (computationally-identifiable) masses. In Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
volume 80 of Proceedings of Machine Learning Research, pages 1944-1953. PMLR,
2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, pages 2261-2269. IEEE Computer Society,
2017.

Y. L. Ingster and 1. A. Suslina. Nonparametric Goodness-of-Fit Testing under Gaus-
sian Models, volume 169 of Lecture Notes in Statistics. Springer-Verlag, New York,
2003.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct O(1/¢) iteration parallel
algorithm for optimal transport. Advances in Neural Information Processing Systems,
32, 2019.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm
for solving general Ips. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 823-832, 2021.

Arun Jambulapati and Kevin Tian. Revisiting area convexity: Faster box-simplex
games and spectrahedral generalizations. arXiv preprint arXiv:2303.15627, 2023.

Sham M. Kakade and Dean P. Foster. Deterministic calibration and nash equilibrium.
In John Shawe-Taylor and Yoram Singer, editors, Learning Theory, pages 33-48,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Sham M. Kakade and Dean P. Foster. Deterministic calibration and nash equilibrium.
J. Comput. Syst. Sci., 74(1):115-130, 2008.

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, pages 3787-3798,
2019.

11

[Kri09]

[KSJ18]

[LHHD23]

[LS14]

[MDR*21a]

[MDR*21b]

[Mur98]

[MW84]

[NCHIS5]

[NDZ*19]

[Nie22]

[Opt23]

[PV21]

[PyP19]
[QM22]

Alex Krizhevsky. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf, 2009. Accessed:
2024-01-31.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for
neural networks from kernel mean embeddings. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2805-2814. PMLR,
10-15 Jul 2018.

Donghwan Lee, Xinmeng Huang, Hamed Hassani, and Edgar Dobriban. T-cal: An
optimal test for the calibration of predictive models. Journal of Machine Learning
Research, 24:1-72, 2023.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming:
Solving linear programs in d(vrank) iterations and faster algorithms for maximum
flow. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, pages 424-433. IEEE Computer Society, 2014.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern
neural networks. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, pages 15682—-15694,
2021.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern
neural networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 15682—15694. Curran Associates, Inc., 2021.

Allan H. Murphy. The early history of probability forecasts: Some extensions and
clarifications. Weather and forecasting, 13(1):5-15, 1998.

Allan H. Murphy and Robert L. Winkler. Probability forecasting in meteorology.
Journal of the American Statistical Association, 79(387):489-500, 1984.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using bayesian binning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, pages 2901-2907.
AAAI Press, 2015.

Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin
Tran. Measuring calibration in deep learning. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2019, pages 38—41.
Computer Vision Foundation / IEEE, 2019.

Zipei Nie. Matrix anti-concentration inequalities with applications. In STOC °22:
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 568—581.
ACM, 2022.

Gurobi Optimization. Minimum-cost flow. https://gurobi-optimization-gurobi-
optimods.readthedocs-hosted.com/en/latest/mods/min-cost-flow.html, 2023. Ac-
cessed: 2024-05-21.

Richard Peng and Santosh S. Vempala. Solving sparse linear systems faster than
matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pages 504-521. SIAM, 2021.

PyPy. Pypy. https://www.pypy.org/, 2019. Accessed: 2024-05-21.
Benjamin Qi and Dustin Miao. Segment tree beats. https://usaco.guide/adv/segtree-

beats?lang=cpp, 2022. Accessed: 2024-05-20.

12

[Ron08]

[Ron09]

[RRSK11]

[Rt21a]

[RT21b]

[Shel3]

[Shel7]

[vdBLL*21]

[vdBLSS20]

[VDDP17]

[WXXZ23]

Dana Ron. Property testing: A learning theory perspective. Found. Trends Mach.
Learn., 1(3):307-402, 2008.

Dana Ron. Algorithmic and analysis techniques in property testing. Found. Trends
Theor. Comput. Sci., 5(2):73-205, 20009.

Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender
Systems Handbook. Springer New York, 2011.

Rahul Rahaman and alexandre thiery. Uncertainty quantification and deep ensembles.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages
20063-20075. Curran Associates, Inc., 2021.

Rahul Rahaman and Alexandre H. Thiéry. Uncertainty quantification and deep
ensembles. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, pages 20063-20075,
2021.

Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, pages 263-269. IEEE
Computer Society, 2013.

Jonah Sherman. Area-convexity, log regularization, and undirected multicommodity
flow. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 452-460. ACM, 2017.

Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and ¢; -regression in nearly
linear time for dense instances. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, 2021, pages 859-869. ACM, 2021.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 775-788. ACM,
2020.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computational
Intelligence and Neuroscience, 2018, 2017.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New
bounds for matrix multiplication: from alpha to omega. CoRR, abs/2307.07970,
2023.

13

A Additional preliminaries

We first introduce some notation used in Appendices B, C, and D. When applied to a vector, we let
[[[|,, denote the £, norm for p > 1. We let Oq and 14 denote the all-zeroes and all-ones vectors in

dimension d. We let A® := {z € R%, | [|z[|; = 1} denote the probability simplex in dimension d.
The i" coordinate basis vector is denoted e;. We say & € R is an e-additive approximation of 2 € R
if |Z — x| < e. Foraset S C R, we say another set T C R is an e-cover of S if for all s € S, there is
t € T'with |s —t| < e. Fora,b € Rwith a < b, we let clip, ;(t) := min(b, max(a, t)) denote the

result of projecting ¢ € R onto [a, b].

We next formally define our tolerant variant of the calibration testing problem in Definition 2.

Definition 4 (Tolerant calibration testing). Let 0 < €5 < &1 < 1. We say algorithm A solves the
(e1,€2)-tolerant calibration testing problem with n samples, if given n i.i.d. draws from a distribution
D over [0,1] x {0, 1}, A returns either “yes” or “no” and satisfies the following with probability
> 2

» Avreturns “no” if dCE(D) > e;.
o Avreturns “yes” if dCE(D) < ea.
In this case, we also call A an (£1,¢€2)-tolerant calibration tester.

Note that an algorithm which solves the (1, £5)-tolerant calibration testing problem with n samples
also solves the ¢;-calibration testing problem with the same sample complexity. Moreover, we give a
simple impossibility result on parameter ranges for calibration testing.

Lemma 5. Let 0 < g9 < &1 < % satisfy €1 — e = €. There is a universal constant Cey, such
that, given n < % samples from a distribution on [0, 1] x {0, 1}, it is information-theoretically
impossible to solve the (g1, 2)-tolerant calibration testing problem.

Proof. Suppose € < 1—10, else we can choose C.,;, small enough such that n < 1. We consider two
distributions over [0, 1] x {0,1}, D and D', with dCE(D) > &1 but dCE(D’) < &5, so if A succeeds
at tolerant calibration testing for both D and D', we must have dpy (D®™, (D')®") > 1, where we
denote the n-fold product of a distribution with -®™. Else, A cannot return different answers from n
samples with probability > 2, as required by Definition 4. Specifically, we define D, D’ as follows.

* To draw (v,y) ~ D, letv = 1 + &1 and y ~ Bern(3).

¢ Todraw (v,y) ~ D', letv = 3 + &1 and y ~ Bern(3 + ¢).

We claim that dCE(D) = &;. To see this, let IT € ext(D) and (u,v,y) ~ II, 50 E(y y)~mi[u] =
because wu is calibrated. By Jensen’s inequality, we have:

N

1
E(u,v,y)NH Hu - U” > ‘E(u,v,y)NH [U] - (2 + E1) ‘ =£1.

The equality case is realized when u = % with probability 1, proving the claim. Similarly, dCE(D’) =
g9. Finally, let 7 := Bern(}), n’ := Bern(3 + ¢), and 7", (7/)®" denote their n-fold product
distributions. Pinsker’s inequality shows that it suffices to show that dgi (7®"(|(7")®") < L to
contradict our earlier claim dpv ((D)®™, (D')®") > 1. To this end, we have

i (7" [|(7") ") = n - de (7l|7") = g <log < —%—5) +log < : 5))

1 1 _
2 2
n 1 n 1
=_—log|——) <—-5e2< =
2 °g<1452) =9 =5
where the first line used tensorization of dk; , and the last chose Ci;, small enough. O

We also generalize Definitions 2 and 4 to apply to an arbitrary calibration measure.

14

Definition 5 (d testing). Let d be a calibration measure. For € € R>, we say algorithm A solves the
e-d-testing problem (or, A is an e-d tester) with n samples, if given n i.i.d. draws from a distribution
D over [0,1] x {0, 1}, A returns either “yes” or “no” and satisfies the following with probability
> 2
— 3'

1. A returns “no” if d(D) > e.

2. Avreturns “yes” if d(D) = 0.
For 0 < ey < &1, we say algorithm A solves the (¢1,¢e2)-tolerant d testing problem (or, A is
an (g1,¢€2)-tolerant d tester) with n samples, if given n i.i.d. draws from a distribution D over
[0,1] x {0, 1}, A returns either “yes” or “no” and satisfies the following with probability > %

1. Avreturns “no” ifd(D) > e;.

2. A returns “yes” if d(D) < es.

B Appendix for Section 2

B.1 Deferred lemma proofs

Proof of Lemma 1. This follows from the triangle inequality:

j—1 j—1
i — 2] <ok — araa]) vkg1 — ve =05 — v,
k=i =i

B.2 Dynamic programming

In this section, we give our dynamic programming approach to solving (4), which establishes
Proposition 1. The graph G in (4) is the union of a path P on n vertices and a star S to the (n + 1)
vertex. Let us identify the edges in P with [n — 1] (where edge ¢ corresponds to vertices (z,¢ + 1)),
and the edges in S with [2n — 1] \ [n — 1]. We first make a simplifying observation, which is that
given the coordinates of a flow variable f € R on the edges in the path P, there is a unique way to
set the values of f on the edges in the star S so that the demands B f = d are satisfied. Concretely,
we require

fon-1+i =di+ fi— fimiforall2 <i<n-—1,
fn = dl +f17 and f2n71 = dn - fn71~

Hence, minimizing the constrained problem in (4) is equivalent to minimizing the following uncon-
strained problem on the first n — 1 flow variables, stated in (8) and reproduced here:

min A(f) := |di + f1| + |dn — fa1] + Z |fi = fix1 — diga] + Z cil fil-

FerRn i€[n—2] i€[n—1]
We now solve (8). We first define a sequence of partial functions {A4; : R — R};e[n—1) by
A1(2) = |d1 + z| + a1|7],

Aj(z) == min |di + fi] + § |fi = fix1 — dipa| + E ci|fi| forall2 < j <n—2,
fER? e i
Fi=z i€j—1] i€lj—1]
Ap—1(z) := min A(f).

fERI

fi=z
&)
In other words, A;(z) asks to minimize the partial function in (8) over the first j flow variables
{fi}iep;» corresponding to all terms in which these flow variables participate, subject to fixing f; = z.

We make some preliminary observations about the partial functions { A, }je[n_l].

15

Lemma 6. Forall j € [n — 2|, A; is a convex, continuous, piecewise linear function with at most
j + 2 pieces, and A,,—1 is a convex, continuous, piecewise linear function with at most n + 2 pieces.

Proof. We first establish convexity by induction; the base case j = 1 is clear. We next observe that

Aj(z) = ¢}z —|—mig|w —z—d;|+A;_1(w)forall2 < j<n-—2
we

10
Ap_1(2) = |dp — 2| + etz + meirRl lw—2—dp_1] + Ap—2(w). (10)

In other words, each partial function A; can be recursively defined by first minimizing the first j — 2
flow variables for a fixed value f;_1 = w, and then taking the optimal choice of w. Moreover,
supposing inductively A;_; is convex, A; is the sum of a convex function and a partial minimization
over a jointly convex function of (w, z), so it is also convex, completing the induction.

To see that A; is continuous (assuming continuity of A;_; inductively), it suffices to note A; is the
sum of a continuous function and a partial minimization over a continuous function in two variables.

We now prove the claims about piecewise linearity, and the number of pieces. Clearly, A; is
continuous and piecewise linear with at most 3 pieces. Next, for some 2 < j < n — 2, suppose A;_;
is piecewise linear with vertices {v; };<[;) in nondecreasing order (possibly with repetition) and slopes

{ti}fzo, so ¢; is the slope of the segment of A;_; between v; and v; 11, and o and ¢; are the leftmost

and rightmost slopes. For convenience we define vy := —oo and v;; := 0o. Consider the function
min jw — z — d;j| + A1 (w). (11)
weR

For all values z satisfying v; < z+d; < v;41 where 0 < ¢ < j, the function |w —z —d,;| + A;_1 (w)
is piecewise linear with vertices v1, ..., v, 2 + d;, Vi1, . . ., v, and correspondingly ordered slopes
to—1,t1 —1,...,t; — 1,¢; + 1,...,t; + 1. The minimizing w in (11) corresponds to any v &
{vi}ieyj) U {z + d;} where the slope switches from nonpositive to nonnegative, which is either a
fixed vertex v = vy, for the entire range v; < z + d; < v;11, or the new vertex z + d; for this entire
range.

In the former case, we have

mEiIR} lw—2z—d;|+A;-1(w) = |vg — 2 —d;| + Aj_1(vk), (12)

which up to a constant additive shift is |z — (vy — d;)|, a linear function in z in the range v; <
z + d; < v;41 because the sign of z — (vy, — d;) does not change. In the latter case, we have

min|w—zfdj|+Aj_1(w) :Aj_1(2+dj)7 (13)
weR
which again is a linear function in z in the range v; < z + d; < v;41 by induction. In conclusion,
(11) is linear in each range z € [v; —d;, vi+1 — d;], so it is piecewise linear with at most j + 1 pieces;
adding c;|z|, which introduces at most 1 more piece, completes the induction. An analogous argument
holds for j = n — 1, but we potentially introduce two more pieces due to adding |d,, — z| + ¢,—1]2|.

For convenience, we now describe how to update the slopes and vertices going from the piecewise
linear function A;_; to A;. Also, as above suppose the vertices of A;_; are {v;};c[;) and the

corresponding slopes are {¢;}7_,. Then because we argued (11) is linear in each range z € [v; —
dj,viy1 — dj], it has vertices {v; — d;}iey). If 2 € [v; — dj, vi41 — dj] and t; € [—1, 1], then we
are in the case of (13) and the corresponding slope in this range is ¢;. Otherwise, if t; < —1 we are in
the case of (12) with slope —1, and if ¢; > 1 the slope of the piece is similarly 1. We then add c¢;|z|
(and |d,, — z| if j = n — 1). In summary, the new slopes and vertices are as follows.

* If j < n — 2, the new vertices are {v; — d; }ic[;) U {0}. If vp —dj <0 < wpyy — dj for
some 0 < k£ < j, using our convention vg = —oo and v;,1 = 00, the new slopes are
{elip;_y 47 (t:) — ¢jto<icr U {elipj_y 4y (k) — ¢;}

. . (14)
U{elip_y 3 (tx) + ¢} U {elip_q 1)(t:) + ¢jbr<izy-

16

* If j = n — 1, the new vertices are {v; — d; }ic[;) U{0} U {d, }. If v, —dj <0 < vpyq —d
and v, —d; < d, < vpq1 — dy, for some 0 < b, k < j, the new slopes are

{elip;_y 17 (ti) = ¢jtva<d; + Cito,>a;} o<i<
igthJ)

U {clip[fl’l] (tx) — cj} U {clipPLl] (tr) + cj} (15)
U {etipp_y 1y(tn) = 1} U {etipp_y yy(tn) + 1},

where we let tg denote the 0-1 indicator variable of an event £.

The ordering of these vertices and their slopes are uniquely determined, because they are sorted
similarly due to convexity, which implies nondecreasing slopes as z increases. Finally, we note that

assuming the invariant that at least one {ti}gzo is nonnegative and at least one is nonpositive (which
holds in the first iteration), in either of the cases (14) or (15) this invariant is preserved, since clipping
preserves signs, the smallest slope decreases, and the largest slope increases. O

We require one additional property of the slope updates (14).

Lemma 7. For j € [n — 1], let {ti}i;o be the nondecreasing slopes of A;. Then ty < —1 and
t;> 1

Proof. By observation, the smallest and largest slopes of A; (9) are —1 — ¢; and 1 4 ¢;. Hence,
assuming inductively the lemma statement is true for A;_1, the slope updates (14) result in smallest
and largest slopes —1 — ¢; and —1 + ¢; in A;, completing the induction. O

We next observe that, by storing a constant amount of information in each iteration, we can work
backwards from an optimal solution to A,,_1 and recover all flow variables which realized this value.

Lemma 8. Let {v;};c[;) and {ti}f-;o be the nondecreasing vertices and slopes of A;_1 for some
2 < j <mn— 1. Suppose we know vy and v,. for £,r € [j], defined such that ty_; < —1 but t, > —1,
and similarly t,_y < 1 but t, > 1. Then given a value of z, we can compute in O(1) time

argmin,, cg|w — z — d;| + Aj 1 (w).

Proof. Note that existence of vy, v, is guaranteed by Lemma 7. We consider three cases.

First, if z + d; € [vg,v,], we claim w = z 4 d;. To see this, recall that if z + d; € [v;, vi41], we
proved in Lemma 6 that the slopes of |w—z—d;|+ A,;_1(w) (inw) are to— 1,41 —1,...,t; —1,¢;+
1,...,t;+1. Hence, the assumptions imply ¢; € [—1, 1], so a vertex of |[w—z—d;|+ A, _1 (w) where
the slope changes from nonpositive to nonnegative (i.e. the minimizing argument w) is w = z + d;,
as claimed.

To handle the other two cases, if z 4+ d; < vy, then the above calculation shows the new optimal
vertex is w = vg; similarly, if 2 4+ d; > v, the new optimal vertex is w = v,. O

We now describe an interface for a data structure that we use to efficiently implement the updates (14)
and (15), whose existence we prove in the following Appendix B.3.

Lemma 9. There is a data structure, SegmentTree, which initializes a vector t € R™ to t < 0, and
supports the following operations each in O(logn) time.

* Query(i): Return t.
* Add(¢,r,c): Update t; + t; + cforall ¢ <i <r.
* Set({,r,c): Update t; < cforall £ <i <.
Given access to SegmentTree, we now describe how to solve (8) in nearly-linear time, proving

Proposition 1.

17

Proof of Proposition 1. We first describe how to compute all of the vertices and slopes {v; }ic—1]s
{t;}7=4 of A,,_5 in time O(nlog®(n)). The proof of Lemma 6 shows that the vertices are

n—2

n—2
=Y dy : (16)

k=j+1 =0

where we treat the empty sum as 0. Moreover, the vertex — Z:;jz 1 d is the new vertex which was
inserted (as 0) when computing A;, and then advanced through the remaining iterations. We sort the
vertices (16) into nondecreasing order, keeping track of the resulting permutation 7 : [n —2]U{0} —
[n — 1], i.e. if the vertex — ZZ;?_H dy. is the i™ smallest in (16), then 7(j) = 4. This step takes time
O(nlogn) and does not dominate.

We next initialize a SegmentTree (Lemma 9) with n vertices. We update it through the first n — 2
recursive computations of slopes, via (14), keeping track of a time counter 7, i.e. after we are done
updating the slopes of A; the time counter increments. The state of SegmentTree at the end of time j
is as follows. For all k € [j], letting 7(h) be the next largest value after 7(k) amongst {7 (k') } xre[;]»
we require that ¢; equals the slope of the segment to the right of the vertex inserted at time & in A,
for all the coordinates m(k) + 1 < ¢ < w(h). In other words, SegmentTree stores all of the slopes of
A; in its coordinates (with redundancies due to vertices which will be inserted after time 5), and 7
maps the times vertices are inserted to their coordinate values in SegmentTree.

We next show how to maintain this state in O(log?(n)) time per time increment. In iteration j, the
update (14) requires us to clip all previous slopes to the range [—1, 1], subtract ¢; from all slopes in
the range [1, 7(j)], and add ¢; to all slopes in the range [(j) + 1, n]. We first use Query to perform
binary searches for the values ¢, r as defined in Lemma 7. We then sequentially apply

Set(1,¢,-1), Set(r + 1,n,1), Add(1,7(j), —¢;), Add(7(j) + 1,7, ¢;).

The dominant runtime term is the cost of O(log(n)) calls to Query to perform the binary search,
giving the claimed O(log?(n)) runtime per time increment. We can now call Query n times to
compute all slopes and vertices of A,,_o. We will also store the values of vy and v, at time j, which
takes O(1) time given £, r, 7, and partial sums which can be precomputed in time O(n).

Given these slopes and vertices, it is straightforward to apply (15) to compute all slopes and vertices
of A,_; in time O(n), at which point we can find z := argmin, g A, _1(z). Next, by using our
stored values of vy and v, in every iteration, we can then use Lemma 8 to compute all the optimal
flow values realizing A,,_1(z). Finally, we can compute the optimal value (8) in time O(n). O

B.3 Implementation of SegmentTree

In this section, we develop a data structure known as a segment tree which plays a vital role in our
main algorithm. In particular, it allows us to prove Lemma 9. While this data structure is well-known
folklore in the competitive programming community (see e.g. an overview of this technique in
[QM22]), we provide a full description and proof for completeness.

For integers ¢ and r satisfying ¢ < r, we use [¢ : r] to denote the set {¢, ¢ + 1,...,7}.

Lemma 10 (Segment tree). Let G be a semigroup with an identity element e, where the semigroup
product of a,b € G is denoted by a - b or ab and is not necessarily commutative. Let v be an array
of length n, where each element of v is initialized to be the identity element e of G. There is a data
structure D, called a segment tree, that can perform each of the following operations in O(logn)
time (assuming a semigroup product can be computed in constant time).

1. Access(i): giveni € [1 : n), return the i’ element in v.

2. Apply(g,2,7): given £,r € [1 : n] satisfying £ < r, and given a semigroup element g € G,
for each index i € [{ : 1], replace v[i] with g - v[i].

Before proving Lemma 10, we first use it to prove Lemma 9.

Proof of Lemma 9. We apply the data structure in Lemma 10 to a specific semigroup G defined as
follows. The elements of GG are functions 7 : R — R, where the identity element e is the identity

18

function e(u) = u for every u € R, and the semigroup product is defined as function composition:
(a-b)(u) = a(b(u)) for every a,b € G and u € R. The semigroup G consists of the following
functions: add. and set. for every ¢ € R. These functions are defined as follows:

add.(u) =u+e¢, set.(u)=c, foreveryu€R.
It is easy to check that these functions are closed under composition:
add,. - add,, = add ./,
set. - set,y = set.,
add, - sety = seteq(r,
set, - add. = set...

Therefore, GG is a valid semigroup. We can now implement the operations Query, Add, Set in
Lemma 9 using the operations Access and Apply in Lemma 10 as follows.

To implement Query (i), we run Access(4) to obtain its output g = v[i] € G, and return g(0).
To implement Add (¢, r, ¢), we run Apply(add,, ¢,).
To implement Set(Z, r, ¢), we run Apply(set., £,).

The correctness of this implementation can be shown inductively. At initialization, v[i] = e, and
thus Query(é) returns e(0) = 0, which is the correct value of ¢; at initialization. It remains to
show inductively that after each Add and Set operation, the output of Query(i), i.e., v[i](0), is the
intended value of ¢;. Indeed, after an Add operation, for any 7 € [¢ : 7], the element v[i] is updated to
v[i] := (add. - v[7]), and thus
v[i)(0) = (add, - v[i])(0) = add.(v[i](0)) = v[i](0) + ¢ = ; + ¢,

which is the intended new value of ¢;. For ¢ ¢ [¢ : 7], the element v[i] remains unchanged, and thus
v[i](0) remains unchanged. This is as desired because the new value of ¢; is intended to be the same
as the old value. Combining these two cases, we have shown that the Add operation maintains that
v[i](0) is the intended value of ¢; for every ¢ € [1 : n]. We can similarly show that the Set operation
also has this property, and thus our implementation is correct. The running time guarantee of the
implementation follows directly from the running time guarantee in Lemma 10. O

We prove Lemma 10 by describing the construction of the segment tree data structure and analyzing
its correctness (Lemma 11) and efficiency (Lemma 12). By appending to the array an appropriate
number of auxiliary entries, we can assume without loss of generality that the array length n is a
power of 2, i.e., n = 2" for a positive integer r. The data structure is implemented using a complete
binary tree 1" with depth r, where the 2" leaves correspond to the n = 2" entries in the array.

More specifically, we use seg(7) C [1 : n] to denote the set of indices i that anode 7 € T is associated
with. For the root 7 of the tree T', we set seg(79) = [1 : n] = [1 : 2"], and for its two children 71, 72
we setseg(m1) = [1:n/2] = [1: 277! and seg(72) = [n/2 + 1 :n] = [2""1 + 1 : 27]. In general,
for any non-leaf node 7 and its two children 71, 72, we set seg(71) as the first half of seg(7), and set
seg (7o) as the second half. In particular, for every leaf 7, seg(7) is a singleton set consisting of a
unique index ¢ € [1 : n], and we say 7 is the (unique) leaf corresponding to index i. See Figure 3 for
an example with depth r = 3.

Layer 0
Layer 1
Layer 2

Layer 3

Figure 3: Example of segment tree with depth r = 3.

At every node 7 of the tree, we maintain a semigroup element g, € G initialized to be the identity
element e.

19

Access. We implement Access(¢) as follows. Let 79 — - -- — 7. be the directed path from the root
7o to the leaf 7. corresponding to index 7. Return the semigroup product g, g, - - - gr,.

Apply. We implement Apply(g, ¢, r) recursively. That is, we implement Apply(g, ¢, r,) in Al-
gorithm 1 which takes a node 7 € T as an additional input. We then define Apply(g, ¢, r) to be
Apply(g, ¢, r, 79), where the additional input is set as the root 7 of the tree 7.

Algorithm 1 Apply(g, ¢, r, 7)
1: if seg(T) N [¢: r] = () then
2: return
3: end if

4: if seg(7) C [¢: r] then

5 gr<9-9r

6.

7

8

: return
: end if
. Let 71, 75 be the two children of 7
9: 97, <~ 0r 9
10: gry <= 97 9ry
11: gr < e
12: APPIY(% E? T, Tl)
13: Appl}’(% K? T, TQ)

Correctness. At initialization, each array element v[é] is initialized to be the identity element e.
The semigroup element g, stored at each tree node 7 is also initialized to be e, so Access(¢) returns
the correct value e. It remains to show that Access(?) still returns the correct value of v[¢] after each
Apply operation. This is established in the following lemma:

Lemma 11. Fori € {1,...,n}, let 79 — - -+ — 7, be the directed path from the root Ty fto the leaf
T, corresponding to index i. Let §+,, . .., §r. € G denote the current states of the semigroup elements
Gro» - - - » §r,. Stored in the data structure. Then after we call Apply(g,l,r), we have

g {ggg ifiell:r);
0 TT gT()"'gTr? lfz¢[£ﬂ

Proof. Ttis clear that [1 : n] = seg(19) D --- 2 seg(r,) = {i}. If i € [¢ : 7], let 7; be the first node
among 7y, . .., 7, such that seg(7;) C [¢,r]. We can inductively show that for every j' =1,...,7,
right before we make the recursive call to Apply(g, ¢, 7, 7;:), we have

e, ifi < j',
gTi: QTOH.gT]‘V lf’L:j/a
0r.s ifi> .

When we call Apply(g, £, r, 7;), since seg(7;) C [¢ : 7], Line 5 is executed and the function returns
after that. Now we have

e, ifi<j,
9r; = g.gTO...gTj’ 1fZZJ7
Gris ifi > j.

This implies g, - - gr. = g Gr, * * - §r,., as desired.

Similarly, if ¢ ¢ [¢,r], let 7; be the first node among T, . . ., 7,- such that seg(7;) N [¢ : r] = . We
can show that
e, ifi < j;
9r; = g‘m"'g’rja ifi = j;
G, ifi > j.
This implies g, - - - g7, = gr, - - - Jr, as desired. O

20

Efficiency. The following result establishes the running time guarantee in Lemma 10.

Lemma 12. Both Access and Apply run in O(logn) time.

Proof. Tt is clear that Access runs in time O(r) = O(logn). When we run Apply(g, ¢, r, 7), the
recursive calls at Lines 12-13 are made only when [¢ : 7] intersects but does not contain seg(7), i.e.,
0 C seg(T) N [€: r] S seg(7). There are at most 2 such nodes 7 at each level of the binary tree, so
the total number of such nodes 7 is O(logn). This implies that Apply runs in time O(log n). O

B.4 Tolerant testing via smooth calibration

For completeness, we first make the simple (but to our knowledge, new) observation that, while the
constants in Lemma 4 are not necessarily tight, there is a constant gap between dCE and smCE.

Lemma 13. Suppose for constants B > A > 0, it is the case that A - dCE(D) < smCE(D) <
B - dCE(D) for all distributions D over [0,1] x {0,1}. Then, & > 3.

Proof. First, we claim that A < 1. To see this, let (v,y) ~ D be distributed where v = 1 with

probability 1, and y ~ Bern(3 + ¢) for some ¢ € [0, 3]. Clearly, smCE(D) = |3 — (3 +¢)| = .
Moreover, dCE(D) = &, which follows from the same Jensen’s inequality argument as in Lemma 5,
so this shows that A < 1. Next, we claim that B > %, concluding the proof. Consider the joint

distribution over (u, v,y) in Table B.4, and let D be the marginal of (v,y). It is straightforward

Probability mass u« v y w(v)
1 11

1 111 1

! P o0 1o
2 2 2

)
smCE(w) 2 Elly - o] =3 ((34) 1) +5 ((-3) -0-9) = %,

Using these claims, we now give our tolerant calibration tester in the regime €; > 4ea.

Theorem 3. Let 0 < g5 < &1 < 1 satisfy e1 > 4eo, and let n > Cl - mfor a universal

constant Cy. There is an algorithm A which solves the (€1, e2)-tolerant calibration testing problem
with n samples, which runs in time

O (n log? (n)).
Proof. Throughout the proof, let a := 5 — 2e5 > 0. Consider the following algorithm.

1. Sample n > % samples to form an empirical distribution ﬁn, where Ci is chosen large

enough so that Lemma 3 guarantees |smCE(D) — smCE(ﬁn)| < 2 with probability > 2.

2. Call Corollary 1 to obtain 3, the value of smCE(YSn).

3. Return “yes” if 8 < 2e4 + %, and return “no” otherwise.

Conditioned on the event [smCE(D) — smCE(D,,)| < §, we show that the algorithm succeeds in
tolerant calibration testing. First, if dCE(D) < €5, then smCE(D) < 2e5 by Lemma 4, and therefore
by the assumed success of Lemma 3, the algorithm will return “yes.” Second, if dCE(D) > &1, then
smCE(D) > & by Lemma 4, and similarly the algorithm returns “no” in this case. Finally, the
runtime is immediate from Corollary 1; all other steps take O(1) time. O

21

C Lower distance to calibration

In this section, we provide our main result on approximating the lower distance to calibration of
a distribution on [0, 1] x {0,1}. We provide details on a framework for lifting constrained linear
programs to equivalent unconstrained counterparts in Appendix C.1. In Appendix C.2, we next state
preliminary definitions and results from [BGHN23a] used in our algorithm. In Appendix C.3, we
then develop a rounding procedure compatible with a linear program which closely approximates the
empirical lower distance to calibration. Finally, in Appendix C.4, we use our rounding procedure to
design an algorithm for calibration testing, which solves the problem for a larger range of parameters
than Theorem 4 (i.e. the entire relevant parameter range), at a quadratic runtime overhead.

C.1 Rounding linear programs

In this section, we give a general framework for approximately solving linear programs, following
similar developments in the recent combinatorial optimization literature [She3, JST19]. Roughly
speaking, this framework is a technique for losslessly converting a constrained convex program to an
unconstrained one, provided we can show existence of a rounding procedure compatible with the
constrained program in an appropriate sense. We begin with our definition of a rounding procedure.

Definition 6 (Rounding procedure). Consider a convex program defined on the intersection of convex
set X with linear equality constraints Ax = b:

min ¢ z. 17
reX
Azxz=b

We say Round is a (A, B,p)-equality rounding procedure for (A, b,c, X) ifp > 1, and for any x € X,
there exists x' := Round(x) € X such that Ax’ = b, Az’ = b, and

o <c'x+ H:&x —b

(18)

p

Intuitively, rounding procedures replace the hard-constrained problem (17) with its soft-constrained
variants, i.e. the soft equality-constrained

) 19)

minc' x + HK(E —b
p

zeX

for some (_/1, b, p) constructed from the corresponding hard-constrained problem instance (parame-
terized by A, b, ¢, X'). Leveraging the assumptions on our rounding procedure, we now show how to
relate approximate solutions to these problems, generalizing Lemma 1 of [JST19].

Lemma 14. Let x be an c-approximate minimizer to (19), and let Round be a (11, B, p)-equality
rounding procedure for (A, b, ¢, X). Then ' := Round(x) is an e-approximate minimizer to (17).

Proof. We first claim that a minimizing solution to (19) satisfies the constraints Ax = b. To see this,
given any z € X, we can produce &’ € X with Az’ = b and such that 2’ has smaller objective value
in (19). Indeed, letting 2’ := Round(z’), (18) guarantees

)

el =ca + HAm’ —b
p

gch+ H;ﬂc—g

p

as claimed. Now let z* € X satisfying Ax* = b minimize (19). Then, if x is an e-approximate
minimizer to (19) and 2’ = Round(z), we have the desired claim from Az’ = b, and

cTz’:ch'JrHAz’fl;H ScTaerH;&xfBH <clz*+ ng*fl;H =clz*+e.
P P P
O

In the remainder of the section, we apply our rounding framework to a hard-constrained linear
program, in the p = 1 geometry. To aid in approximately solving the soft-constrained linear programs
arising from our framework, we use the following procedure from [JT23], building upon the recent

22

literature for solving box-simplex games at accelerated rates [Shel7, JST19, CST21]. In the statement
of Proposition 2, we use the notation

[IA]l = max HAxHq.

P24 geRrnllz|,<1

Notice that in particular, ||A||,_,, is the largest £; norm of any column of A.

Proposition 2 (Theorem 1, [JT23]). Let A € R™*% b € R? ¢ € R®, and ¢ > 0. There is an
algorithm which computes an e-approximate saddle point to the box-simplex game

min max wTAy — bTy +c'z, (20)
z€[-1,1]" yeAd

O (nnZ(A) 1Al logd logd> .

in time
€

We also require a standard claim on converting minimax optimization error to error on an induced
minimization objective. To introduce our notation, we say that x € X is an e-approximate minimizer
of f: X = Rif f(2) — mingex f(a') <e Wecall (z,y) € X x Y an e-approximate saddle point
to a convex-concave function f : X x) — R if its duality gap is at most ¢, i.e.

/ _ . ! <€.
g}g§f(x,y) glél}(f(my)_

Lemma 15. Let f : X x Y — R be convex-concave for compact X,Y, and let g(x) :=
maxyey f(x,y) for x € X. If (x,y) is an e-approximate saddle point to f, x is an e-approximate
minimizer to g.

Proof. Lety' = argmax,cy f(z,y) and 2’ := argmin,, . » f(2’, 7). The conclusion follows from

: * — : * * — : * * > : /
Inin g(a”) ;pég(gggggf(x 2 Y") g}g%rpég(f(w ,y") 2 min f(z,y),

where we used strong duality (via Sion’s minimax theorem), so that
9(x) = min g(z*) < g(x) = f(2",y) = flx,y) = fl@',y) <e.
O
The following corollary of Proposition 2 will be particularly useful in our development, which is

immediate using Lemma 15, upon negating the box-simplex game (20), exchanging the names of the
variables (x,y), (b, ¢), and explicitly maximizing over y € [—1, 1]", i.e.

min (¢, x Ax —b||;, = min ma c, T T(Az —b).
min (e.) + Az~ b, = min, max (e.a)+y" (Az)

Corollary 2. Let A € R"*4 b € R", c € RY, and & > 0. There is an algorithm which computes an
e-approximate minimizer to mingcaa ¢’ x + ||Ax — b|,, in time

A 1
O <nnZ(A) Al Togd Ogd> .
5

C.2 LDTC preliminaries

In this section, we collect preliminaries for our testing algorithm based on estimating the LDTC.
First, analogously to Lemma 3, we recall a bound from [BGHN23a] on the deviation of the empirical
estimate of dCE(D) from the population truth which holds with constant probability.

Lemma 16 (Theorem 9.10, [BGHN23a]). For any € € (0,1), there is ann = O(E%) such that, if
ﬁn is the empirical distribution over n i.i.d. draws from D, with probability > 2,

dCE(D) — dCE(D,)| < e.

Next, given a set U C [0, 1], we provide an analog of Definition 1 which is restricted to U.

23

Definition 7 (U-LDTC). Let U C [0, 1], and let D be a distribution over [0,1] x {0,1}. Define
ext’ (D) to be all joint distributions 11 over (u,v,y) € U x [0,1] x {0,1}, with the following
properties.

o The marginal distribution of (v,y) is D.

* The marginal distribution (u,y) is perfectly calibrated, i.e. Er[y|u] = u.
The U-lower distance to calibration (U-LDTC) of D, denoted dCEY (D), is defined by

U .
dCE™ (D) := Heeleg,ﬁ(m E (u,v,y)~11 [U— 0]

Note that if we require {0,1} C U, then extV (D) is always nonempty, because we can let u = y
with probability 1. We also state a helper claim from [BGHN23a], which relates dCEY to dCE.
Lemma 17 (Lemma 7.11, [BGHN23a]). Let D be a distribution over [0,1] x {0,1}, and let U be a
finite §-covering of [0, 1] satisfying {0,1} C U. Then, dCE(D) < dCEY(D) < dCE(D) + .

To this end, in the rest of the section we define, for any ¢ € (0, 1),

. :{0,1}U{i2€|i€ Hiﬂ} 21

which is an §-cover of [0, 1] satisfying |U.| = O(2). Finally, we state a linear program, derived in

[BGHN23a], whose value equals dCEU(D), when the first marginal of D is discretely supported.

Lemma 18 (Lemma 7.6, [BGHN23a]). Let U,V C [0, 1] be discrete sets, where {0,1} C U, and
let D be a distribution over V x {0,1}, where for (v,y) € V x {0,1} we denote the probability
of (v,y) ~ D by D(v,y). The following linear program with 2|U ||V | variables 11(u, v, y) for all

(u,v,y) € U x V x {0,1}, is feasible, and its optimal value equals dCEY (D):
min Z lu — v| II(u, v,y)

2|U||V|
IERS, (u,v,y)eUxV x{0,1}

such that Z I(u,v,y) = D(v,y), forall (v,y) € V x {0, 1},
uclU

and (1 — u) Z M(u,v,1) =u Z I(u,v,0), forallu € U.
veV veV

C.3 Rounding for empirical U-LDTC
In this section we fix a dataset under consideration,
Dy = {(v4, yi)}ie[n] C [0,1] x {0, 1},

and the corresponding empirical distribution, also denoted ﬁn, where (v, y) ~ ﬁn means (v,y) =
(vi, y;) with probability L for each i € [n]. Welet V := {v; };¢[n) be identified with [n] in the natural
way. Moreover, for a fixed parameter ¢ € (0, 1) throughout, we let U := U, defined in (21). Finally,
we denote m := |U| = O(1), and let U € [0, 1]™*™ be the diagonal matrix whose diagonal entries
correspond to U. We also identify elements of U with j € [m] in an arbitrary but consistent way,
writing u; € [0, 1] to mean the j™ element of U according to this identification.

We next rewrite the linear program in Lemma 18 into a more convenient reformulation.

Lemma 19. The linear program in Lemma 18 can equivalently be written as:

dCE”(D,) = min ¢z, where X := A*™ and we denote = = (*° < mn | s
TEX r1 €R
Mz=_1,

UBozo=(1,,—U)Bix1
(22)

24

where we define ¢ € R?™™, M € R"*2™" and By, B; € R™*™" by
Cli k) = |uj —vi| forall (i,j,k) € [n] x [m] x {0,1},

1 y=k i =1 . .

M,/ (i) = {0 lee foralli' € [n], (i,7,k) € [n] x [m] x {0,1},
1 j=4,k=0 . ..

and (Bl 5 = {O 1= forall §' € [m], (i,4,k) € [n] x [m] x {0,1},
1 j=4,k=1 . L.

il o= {2 F T forail i e m ag k) € o)) 0.1

Proof. This is clear from observation, but we give a brief explanation of the notation. First, x € X
represents the density function of our joint distribution II over U x V x {0,1}, and has 2mn
coordinates identified with elements (i,7,k) € V x U x {0,1} = [n] x [m] x {0,1}. We let
the subset of coordinates with £ = 0 be denoted zy € R™", defining z; similarly. Recalling the
definition of the linear program in Lemma 18, z(; ; 1 is indeed reweighted by c(; j 1) = |u; — vil.

Next, M represents the marginal constraints in Lemma 18, and enforcing Mz = %]1,1 is equivalent
to the statement that, for each i’ € [n], the sum of all entries (i, j, k) of with i = i’ and k = y; is %,
since that is the probability density assigned to (v;/, y;/) by the distribution D,,.

Lastly, the 5" calibration constraint in Lemma 18 is enforced by the 5" row of the equation UByx¢ =
(I, —U)Byxq, which reads u; ([Bol;:, zo) = (1 —u;) ({B1];:, x1). We can check by the definitions
of [Bo];., [B1];.: that this is consistent with our earlier calibration constraints.

O

We give a convenient way of visualizing the marginal and calibration constraints described in
Lemma 19. For convenience, we identify each x € A2 with an m X 2n matrix

mat(z) = X = (Xp € R™*" Xy € R™*") (23)

where X consists of entries of x arranged in a matrix fashion (with rows corresponding to [m] = U
and columns corresponding to [n] = V), and similarly X, is a rearrangement of x1, recalling (22).
When explaining how we design our rounding procedures to modify X to satisfy constraints, it will
be helpful to view entries of X as denoting an amount of physical mass which we can move around.

There are 2n columns in X, corresponding to pairs (i,k) € V' x {0, 1}; among these, we say n
columns are “active,” where column (i, k) is active iff y; = k, and we say the other n columns
are “inactive.” Following notation (23), the marginal constraints X = %]ln simply ask that the
total amount of mass in each active column is %, so there is no mass in any inactive column since
x € AZmm,

Moreover, there are m rows in X, each corresponding to some j € U. If we let £; denote the amount
of mass on [Xo];. and 7; the amount of mass on [X;];., the j™ calibration constraint simply asks that
ujl; = (1 — u;)r;, i.e. it enforces balance on the amount of mass in each row’s two halves.

Finally, for consistency with Definition 6, the linear program in (22) can be concisely written as

: T . M . _ _ . %]]-n
KI?ElEbc x, where A := (B , B:= (UBy (I, —U)By), b:= b, (24)
and ¢, X are as defined in (22). In the rest of the section, following Definition 6, we develop an

equality rounding procedure for the equality-constrained linear program in (24) in two steps.

1. In Lemma 20, we first show how to take z € X with [Maz — 21,[|; = A, and produce ' €
X such that Mz’ = 11, (i.e. 2/ now satisfies the marginal constraints) and ||z — 2'||; =
o(A).

2. In Lemma 22, we then consider € X such that, following the notation (22), || UBgz¢ —
(I, — U)Bjz1||3s = A. We show how to produce 2’ € X such that Mz = Mz’ (i.e.
the marginals of 2’ are unchanged), UBgz(, = (I, — U)Bz (i.e. 2’ is calibrated), and
(c,x' —x) = O(A).

25

Our rounding procedure uses Lemma 20 to satisfy the marginal constraints in (22), and then applies
Lemma 22 to the result to satisfy the calibration constraints in (22) without affecting the marginal
constraints. By leveraging the stability guarantees on these steps, we can show this is indeed a valid
rounding procedure in the sense of (18). We now give our first step for marginal satisfication.

Lemma 20 (Marginal satisfaction). Following notation in (22), let x € X satisfy |[Mz—11,|; = A.
There is an algorithm which runs in time O(mn), and returns ' with

1
Mz’ = =1, ||z — 2|, <2A.
n

Proof. Recall for i € [n], we say column 7 of X is active if y; = 0, and similarly column ¢ of X, is
active if y; = 1. We call I the set of n inactive columns, and partition A, which we call the set of n
active columns, into three sets A~, A=, and A<, where A~ are the columns whose sums are > %,
A< are the columns whose sums are < %, and A= are the remaining columns. Hence, every column

of X belongs to I, A>, A=, or AS. Note that until | A=| = n, we can never have A< = (), since this
means all column sums in A are > % (with at least 1 strict inequality), contradicting x € X.

We first take columns ¢ € A~ one at a time, and pair them with an arbitrary column in i’ € A<,
moving mass from column ¢ arbitrarily to column ¢’ until either column 7 or column i’ enters A=.
We charge this movement to the marginal constraints corresponding to 7 and ¢/, since the constraints
were violated by the same amount as the mass being moved. After this process is complete, A~ is
empty, and we only moved mass from columns originally in A~ to columns originally in A<.

Next, we take columns 4 € I one at a time, and pair them with an arbitrary column i’ € A<, moving
mass until either column 4 is 0, or column ¢’ enters A=. We can charge half this movement to
the marginal constraint corresponding to ', since the sign of the marginal violation stays the same
throughout. Hence, the overall movement is < 2A. After this is complete, all columns in [are 0,,
and all columns in A are in A=, so we can return 2’ € A?™" corresponding to the new matrix.

It is clear both steps of this marginal satisfaction procedure take O(mn) time, since we can sequen-
tially process columns in A~ until they enter A=, and will never be considered again. O

We next describe a procedure which takes x € A?™", and modifies it to satisfy the calibration
constraints UBgz = (I,,, — U)B;z without changing the marginals Mxz. We first provide a helper
lemma used in our rounding procedure, which describes how to fix the 5 marginal constraint.

Lemma 21. Let v € A?™ and X := mat(z) as defined in (23). Let j € [m] correspond to an
elementuj € U, let ; := ||[Xolj: |1, rj := |[Xilj: |1, and let Aj := |ujl;—(1—wu;)r;|. There exists
4’ € [m] such that we can move mass from only X ;. to X ., resulting in R™*?" 5 X' = z/ € A?mn
such that Mz' = Mz, u;||[Xp]5:01 = (1 — w))[|[X]: 1, and (c,2’ — z) < A;.

Proof. Without loss of generality, suppose that the row j = 1 corresponds to u; = 0, and j = m
corresponds to u; = 1. We split the proof into two cases, depending on the sign of u;¢; — (1 — u;)r;.

Case 1: ujl; > (1 —u;)r;. Welet j/ = 1, i.e. we only move mass from the j™ row to the first row.
Specifically, we leave [X;|;. unchanged, and move mass from [Xy];. to [Xo]1., making sure to only
move mass in the same column. The total amount of mass we must delete from [Xo];. is

gj_ l—u]‘ .Tj:'Lngj—(].—’U,j)’l”j :&

Uj Uj U

Our strategy is to arbitrarily move mass within columns until we have deleted % total mass. If we
J

denote the mass moved in column i € [n] as d;;, and let 2’ be the result after the move,
(e —2) < ey — g0ty = Y lug —vil = Jug =il 655 < D wsdyy = A
1€[n] i€[n] 1€[n]

Here, the first inequality was the triangle inequality, the first equality used the definition of ¢ in (22),
the second inequality used u; = 0 and the triangle inequality, and the last used icn 0ij = %

26

Case 2: ujl; < (1 — u;)r;. This case is entirely analogous; we move mass arbitrarily from row j to
row m, i.e. the last row with u,,, = 1. The amount of mass we must move is

0. — (1 —Uj)Tj —Ujgj _ Aj
J 17’UJj 17’&]'.

Uy

re—
J)
1—u,

Again denoting the amount of mass moved from column ¢ € [n] as d;;, the claim follows:

(ea’ —a) <> g = vil = [—vil| 515 < Y (1 =)oy = A

i€[n] i€[n]

By iteratively applying Lemma 21, we have our marginal-preserving calibration procedure.

Lemma 22 (Marginal-preserving calibration). Following the notation (24), given x € A2™™ with
|IBz||, = A, we can compute ' with Mz' = Mz, Ba' = 0,,,, and (c,z’ — z) < A in O(mn) time.

Proof. Tt suffices to apply Lemma 21 to each row ¢ € [m]. All of the movement in the rows
i1 € [2,m — 1] are independent of each other, and do not affect the imbalance in the rows i € {1,m}
when we have finished applying Lemma 21, since e.g. u;¢; = 0 regardless of how much mass
is moved to [Xo]1., and a similar property holds for the m™ row. The total change in {(c, 2’ — x)
is thus boundable by epm) &5 < A, and applying Lemma 21 to each row takes O(n) time.

Finally, Mx = Mz’ follows because we only move mass within the same column, so no marginal
changes. O

By combining Lemma 20 with Lemma 22, we can complete our rounding procedure.

Lemma 23. Let (A, b, c, X) be defined as in (22), (24), and let (A, b) := (4A.,4b). There exists
Round, a (A, b, 1)-equality rounding procedure for (A, b, ¢, X), running in O(mn) time.

Proof. Throughout the proof, let Apg := HMJ’J — %]lnﬂl and Ag := || Bx
(24). We also denote the total violation by

A= HAx _ bH — 4Ap + 4Ag.

1> following the notation

We first apply Lemma 20 to x to produce satisfying |z — Z||; < 2Am and Mz = 11, in O(mn)
time. Note that, because ||B||,_,; < 1 since all columns of B are 1-sparse, we have

IBz(l, < [[Bzfl, + Bl llz = ’i‘Hl < Ap +2Am-

Next, we apply Lemma 22 to Z, resulting in 2/ with Mz’ = 1 ~1,, Bz’ = 0,,, and (¢, 2’ — x) <

Ap + 2Ap, in O(mn) time. Recalling the definition (19), we have the conclusion from el <1,
$O

'@ —z)<c'(@—z)+c" (2 —7)
<lello 12 = 2]y + ¢ (2" =) < 2Am + Ap + 2Am < A
O

We conclude by applying the solver from Corollary 2 to our resulting unconstrained linear program.
Proposition 3. Let ¢ > 0. We can compute x € X, an e-approximate minimizer to (22), in time

0 (n logQ(n)) .
€
Further, the objective value of x in (22) is a 2¢-additive approximation of dCE(ﬁn).
Proof. Observe that for A = 4A, we have ||A||;_; < 8 and nnz(A) = O(mn), since no column

is more than 2-sparse and all entries of A are in [—1, 1]. Further, recalling the definition of U from
(21), we have m = O(é) So, Corollary 2 shows we can compute an e-approximate minimizer to

min ¢z + H.&x — 5”
1

x6A2mn
within the stated runtime. The rest of the proof follows using Round from Lemma 23, where we
recall |dCE(D,,) — dCEY (D,,)| < e due to our definition of U and Lemma 17. O

27

C.4 Testing via LDTC

We now give analogs of Theorems 1 and 3, using our solver in Proposition 3.
Theorem 4. Let 0 < g5 < &1 < 1satisfyey > €9, and letn > Cyg - mfora universal constant
Cet. There is an algorithm A which solves the (1, e2)-tolerant calibration testing problem with n

samples, which runs in time
O (nlog(n)2> .
(1 —e2)

Proof. Throughout the proof, let a := &1 — €2 > 0. Consider the following algorithm.

1. For |U| =m > g, sample n > % samples to form an empirical distribution D,,, where

Ci is chosen so Lemma 3 guarantees [dCE(D) — dCE(D,,)| < & with probability > 2.

2. Call Proposition 2 with € < ¢ to obtain 3, an -additive approximation to |dCE(D,,)|.

3. Return “yes” if § < g5 + <, and return “no” otherwise.

Conditioned on the event that |dCE(D) — dCE(D,,)| < &, we show that the algorithm succeeds.
First, if dCE(D) < &2, then dCE(D,,) < €2 + § by assumption, and so 3 < g5 + § by Proposition 2,

so the tester will return “yes.” Second, if dCE(D) > ¢4, then dCE(ﬁ,L) > g1 — § by assumption,
so 3 > &1 — 5 by Proposition 2 and similarly the tester will return “no” in this case. Finally, the
runtime is immediate from Proposition 3 and the definition of «.

Theorem 4 has the following implication for (standard) calibration testing, by letting €2 = 0.

Corollary 3. Letn € N and let &,, € (0,1) be minimal such that it is information-theoretically
possible to solve the ,,-calibration testing problem with n samples. For some ¢ = ©(e,,), there is an
algorithm A which solves the e-calibration testing problem with n samples, which runs in time

O (n*log(n)) .

D Sample complexity lower bounds for calibration measures

Recent works [BN23, BGHN23a] have introduced other calibration measures (e.g. the convolved
ECE and interval CE), given efficient estimation algorithms for them, and showed that they are
polynomially related to the lower distance to calibration dCE. Therefore, an alternative approach to
the (non-tolerant) testing problem for dCE is by reducing it to testing problems for these measures.
The main result of this section is that this approach leads to suboptimal sample complexity: the
testing problems for these measures cannot be solved given only O(¢~2) data points { (v, ¥) }ie[n)-

To establish this sample complexity lower bound, we construct a perfectly calibrated distribution Dy
and a family of miscalibrated distributions Dy parameterized by 6 belonging to a finite set. We use
ng " (and Dg@ ™ to denote the joint distribution of n independent examples from Dy (and Dy). In
Lemma 24, we show that the total variation distance between D§ " and the mixture E[D§"™] of D§" is
small unless n is large, and thus distinguishing them requires large sample complexity. Consequently,
the testing problem for a calibration measure has large sample complexity if it assigns every Dy a
large calibration error. Finally, we show every Dy indeed has large convolved ECE and interval CE,
establishing sample complexity lower bounds for these measures in Theorems 5 and 6.

To construct Dy and Dy, we consider ¢ values {u;};c(y) € [5, 2] where u; = % + & fori € [t].
We will determine the value of ¢ € N later. We also define the following distribution, a perfectly
calibrated distribution which is related to the miscalibrated synthetic dataset used in Section 3.

Definition 8. The distribution Dy of (v,y) € [0,1] x {0,1} is defined such that the marginal
distribution of v is uniform over {u;};c[y) and Ep,[y|v] = v.

Fix a € (0, 3). For 8 € {—1, 1}, we define distribution Dy of (v,y) € [0,1] x {0, 1} such that the
marginal distribution of v is uniform over {u; };c4) and Ep, [y|v = u;] = u; + 6;a. In other words,

28

each conditional distribution given v is miscalibrated by «, but the bias takes a random direction. We
now follow a standard approach by [IS03] to bound the total variation between our distributions.

Lemma 24. Foranyt € Nand o € (0, 3),

t

1
drv(DS", Eg[DS"]) < 2\/6XP <

Here, to construct the mixture distribution Eo[D§™], we first draw 0 ~uyit. {—1,1}!, and then draw
n independent examples from Dy. We denote the distribution of the n examples by Eg [Dgz’"}.

11a4n2>
-1

Proof. By a standard inequality between the total variation distance and the x? distance, we have

drv (D", Eg[DE™]) \/x o [DO"]||DE™). (25)

By Ingster’s method [IS03] (see also Section 3.1 of [Can22]),

n

D ’U/Z, ui7‘
CEDIIDE B | [T 2 3 olwind) |y 26)

i=1j€{0,1}

where the expectation is over 6, 0" drawn i.i.d. ~yyr. {—1, 1}, For every i € [t], we have

u; +0; u;+0;
Dg(ui,l)Dgx(ui,l) . (t) (t) o U; + (91 + 9;)0& + 92'92042

Do(ui, 1) % t t ’U/Zf ’

and similarly

(I-u;i—0;cx) (1—u;i—6;c)
Dg(ui, 0) Dy (ui,0) (ut <) (ut -) 1wy (6;-0)) 0,00

Do(ui,O) - litui B t t (1 — ui)t'

Adding up the two equations, we get

Do(ui, j)Dor(ui,j) 1 0,002 [1 1 1 96,0/02
z o(ui, J) 9'(U J):7+ i% - <-4 i
Do(ui,j) t t 1—ui

) —t 2t
j€{0,1}

w\l\')

where the last inequality uses the fact that u; € [%]. Plugging this into (26), we get

t
81 4,2
< H Eg {exp (an 92>} -1 (by Hoeffding’s lemma)

Plugging this into (25) completes the proof. O

D.1 Lower bound for convolved ECE
We now introduce the definition of convolved ECE from [BN23], and show that for every 6 &

{—1,1}!, Dy has a large convolved ECE in Lemma 26. This allows us to prove our sample complexity
lower bound for convolved ECE in Theorem 5, by applying Lemma 24.

29

Definition 9 (Convolved ECE [BN23]). Let g : R — [0, 1] be the periodic function with period

2 satisfying tr(v) = v ifv € [0,1], and mr(v) = 2 — v if v € [1,2]. Consider a distribution D

over [0,1] x {0,1}. For (v,y) ~ D, define random variable © := wr(v + 1), where 1 is drawn

independently from N'(0, 0%) for a parameter o > 0. The o-convolved ECE is defined as follows:
cECE,(D) := E[E[(y —v)[o]],

where the outer expectation is over the marginal distribution of v, and the inner expectation is over
the conditional distribution of (y,v) given v. It has been shown in [BN23] that cECE, (D) € [0, 1]
is a nonincreasing function of o > 0 and there exists a unique o* > 0 satisfying cECE,« (D) = o*.
The convolved ECE cECE(D) is defined to be cECE,« (D).

We also mention that the following relationship is known between cECE and dCE.
Lemma 25 (Theorem 7, [BN23]). For any distribution D over [0, 1] x {0, 1}, it holds that

%@(D) < cECE(D) < 2,/dCE(D).

We have the following lower bound on cECE(Dy):

Lemma 26. For integert > 3, choose o = t\/hTt' Then for every 6 € {—1,1}¢,

1
cECE(Dy) > —————.
Do) 2 oo
Proof. Tt suffices to show that cECE, (Dy) > m whenever o < m.

Consider (v,y) ~ D and © = wg(v + 1), where 7 is drawn independently from N(0,02). By
standard Gaussian tail bounds, we have

1 1
Pr {|77| > 6t} < a2 27

Next, consider a function £ : [0, 1] — [t] such that £(9) € argmin;¢|u; — . Let £ denote the event
that v = uy(4). Let l¢ and |-¢ be the indicators of £ and its complement, respectively. We have

E[(y —v)lg | 0,v] = 1¢Ely — v | 0,7] (Ig is fully determined by v and 9)
= l¢Ely — v | v] (y is independent of ¥ given v)

Taking expectation over v conditioned on ¥, we have
[El(y — v)le [0]] = [Pr[€ | 0]64s)a| = Pr[€ | 9]a.
We also have
E[(w —)1-e 18] | < E[Itw =)1el | 8] < Pr{=e |41,

Therefore,
|[E[y — v | 0]| > Pr[€|0]ac — Pr[=€ | 0].

Taking expectations over 0, we have

CECE,(Dy) = E[[Ely — v | 6][] > Prl€]a — Pr[~€]. (8)
Whenever £ does not occur, it must hold that [v — 9| > &, which can only hold when || > .
Therefore, by plugging (27) into (28), we get
1 1 1
cECE,(Dy) > (1 -5 Ja— =5 > ————. O
P0) (t2> 2~ 100tv/Int

Theorem 5. If A is an e-cECE tester with n samples (Definition 5), for € € (0, 3), then

1

n=Q ————-1.
0.25

<€2~5ln (i))

30

Proof. Without loss of generality, assume that ¢ < 1073, Let t > 3 be the largest integer satisfying

< L . We choose o« = .
€= 100tVIn t tvint

By Lemma 26, we have cECE(Dy) > ¢ for every § € {—1,1}'. By the guarantee of the tester, we
have

drv (D5, Bo[DG"]) = 3.
Combining this with Lemma 24, we get n = Q(a~2v/t) = Q(t?° Int), so the claim holds. O

D.2 Lower bound for (surrogate) interval CE

The interval calibration error was introduced in [BGHN23a] as a modified version of the popular
binned ECE to obtain a polynomial relationship to the lower distance to calibration (dCE). To give an
efficient estimation algorithm, [BGHN23a] considered a slight variant of the interval calibration error,
called the surrogate interval calibration error, which preserves the polynomial relationship. Below
we include the definition of the surrogate interval calibration error, and its polynomial relationship
with dCE. We then establish our sample complexity lower bound (Theorem 6) for surrogate interval
CE by showing that every Dy has a large surrogate interval CE (Lemma 28).

Definition 10 ((BGHN23al). For a distribution D over [0, 1] x {0, 1} and an interval width parameter
w > 0, the random interval calibration error is defined to be

RintCE(D, w) := E, | Y [Equy)~nlly — v)l(v e I¥)]|| (29)
jez

where the outer expectation is over r drawn uniformly from [0, w) and I}, is the interval [r+ je,r+

(j + 1)e). Note that although the summation is over j € Z, there are only finitely many j that can
contribute to the sum (which are the j that satisfy I}’; (1[0, 1] # (). The surrogate interval calibration
error is defined as follows:

SintCE(D) := inf (RintCE(D,2—k)+2—k).

]CEZZO

Lemma 27 (Theorem 6.11, [BGHN23a]). For any distribution D over [0, 1] x {0, 1}, if holds that

dCE(D) < SintCE(D) < 6+/dCE(D

Lemma 28. Fort € N, let o = é Then for every 6 € {—1,1}!, it holds that SintCE(Dyp) > i

Proof. Tt suffices to prove that RintCE(Dg, w) > 4. whenever w < St’ where we recall the definition
(29). Fix some r € [0, 1]. Every u; belongs to the 1nterval I;?;. for a unique j; € Z. Since the interval

width w is smaller than the gap between u; and u;s for dlstlnct 1,4, we have j; # ji. Therefore,

Z|E(v,y)~D[(y) /Ue‘[w | > Z'EUZJND)I(’UEIU’]Jz)”

JjEZ i€[t]

=Y [E@ymnly —)10 =)]

i€[t]

Plugging this into (29), we get RintCE(Dy, w) > . O

Theorem 6. If A is an e-SintCE tester with n. samples (Definition 5), for ¢ € (0,) then

1

31

Proof. Choose t > 1 to be the largest integer satisfying % > ¢, and choose o = % By Lemma 28,
SintCE(Dy) > ¢ for every 0 € {—1,1}!. By the guarantee of the tester, we have

1
drv (D5, Bo[D5"]) = 3
Combining this with Lemma 24, we get n = Q(a~2v/t) = Q(e729). O

32

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed a novel testing problem for measuring calibration, faster algorithms
for solving it, and lower bounds for alternative measures. This is precisely what we provide.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explain that our basic tester does not solve the tolerant testing problem in
all regimes, and that our more powerful tolerant tester has a slower runtimes. We also state
that our practical implementation is preliminary and could be optimized.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

33

Answer: [Yes]
Justification: We give full, detailed proofs of all theoretical claims.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a complete description of our experimental setups, and all of the
relevant code in the supplementary material for reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

34

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: As previously mentioned, we give full descriptions and provide our code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See above.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We replicated our experiments across multiple runs and provide error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe all our computing environments and provide runtime metrics.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read the ethics guidelines and believe we meet them.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We provide a new tool for assessing calibration, a measure of interpretability
of models, which is not tied to any particular societal application, and do not foresee a
pathway to use this tool for negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

36

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We only use simple synthetic or public datasets for our experiments.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We made sure to cite all relevant code and data used in our experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

