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Abstract001

End-to-end Large Speech Language Models002
(LSLMs) have demonstrated impressive con-003
versational generation abilities, yet consistently004
fall short of traditional pipeline systems on005
semantic understanding benchmarks. In this006
work, we reveal through systematic experimen-007
tation that although LSLMs lose some text in-008
put performance after speech-text alignment009
training, the performance gap between speech010
and text inputs is more pronounced, which011
we refer to as the modality gap. To under-012
stand this gap, we analyze both coarse- and013
fine-grained text and speech representations.014
At the coarse-grained level, representations of015
speech and text in deeper layers are found to be016
increasingly aligned in direction (cosine sim-017
ilarity), while concurrently diverging in mag-018
nitude (Euclidean distance). We further find019
that representation similarity is strongly corre-020
lated with the modality gap. At the fine-grained021
level, a spontaneous token-level alignment pat-022
tern between text and speech representations023
is observed. Based on this, we introduce the024
Alignment Path Score to quantify token-level025
alignment quality, which exhibits stronger cor-026
relation with the modality gap. Building on027
these insights, we design targeted interventions028
on critical tokens through angle projection and029
length normalization. These strategies demon-030
strate the potential to improve correctness for031
speech inputs. Our study provides the first sys-032
tematic empirical analysis of the modality gap033
and alignment mechanisms in LSLMs, offering034
both theoretical and methodological guidance035
for future optimization.036

1 Introduction037

The emergence of Large Speech Language Models038

(LSLMs) has revolutionized human-computer inter-039

action by enabling direct processing of both speech040

representations and text inputs, subsequently gen-041

erating textual or spoken outputs (Bu et al., 2024).042

Compared to traditional pipeline architectures that043

sequentially chain Automatic Speech Recognition 044

(ASR), Large Language Models (LLMs), and Text- 045

To-Speech (TTS) components, end-to-end LSLMs 046

offer significant advantages, including reduced la- 047

tency, inherent error resilience, and more expres- 048

sive speech synthesis capabilities (Ji et al., 2024). 049

Recent studies in LSLMs have focused on align- 050

ing speech modalities with text space through 051

speech tokenizers (Zhang et al., 2023) or encoder- 052

based approaches (Fang et al., 2024; Zhao et al., 053

2024; Chu et al., 2023). These cross-modal align- 054

ment strategies aim to harness the linguistic capabil- 055

ities of pretrained LLMs while integrating speech 056

processing functionalities (Cui et al., 2025). 057

However, significant performance disparities per- 058

sist between LSLMs and conventional pipeline 059

models in semantic understanding tasks. Bench- 060

mark results from VoiceBench (Chen et al., 2024) 061

reveal a striking contrast: the Whisper-v3-large 062

+ LLaMA-3.1-8B pipeline achieves 79.06 overall 063

score, while its LSLM counterpart LLaMA-Omni 064

(Fang et al., 2024) scores merely 37.51. This pat- 065

tern continues in Uro-bench (Yan et al., 2025) eval- 066

uations, where the Whisper-v3-large + Qwen2-7B- 067

Instruct pipeline attains 78.13 overall score com- 068

pared to Freeze-Omni’s (Wang et al., 2024) 48.28, 069

despite both systems employing the same underly- 070

ing LLM. Notably, while Uro-bench’s dependence 071

on transcribed speech outputs might inherently fa- 072

vor pipeline architectures, the magnitude of these 073

performance drops remains substantial and war- 074

rants investigation. 075

Nevertheless, contemporary investigations into 076

LSLMs remain largely confined to engineering 077

practices, adopting unverified integrated solutions 078

spanning training stages, dataset scales, parameter- 079

efficient strategies, and multimodal objectives with- 080

out systematic analysis of their individual contribu- 081

tions or synergistic effects (Chu et al., 2024; Zhong 082

et al., 2024; Liu et al., 2025b). This practice of 083

design-by-intuition raises critical concerns, as in- 084
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validated architectural choices may inadvertently085

exacerbate the modality alignment discrepancy.086

In this work, we take the persistent performance087

gap between end-to-end LSLMs and traditional088

ASR+LLM pipeline systems as our starting point.089

We systematically reproduce and quantify this dis-090

crepancy across various LLM backbones and train-091

ing strategies, and, for the first time, empirically092

reveal the underlying mechanisms behind the per-093

formance difference. Specifically, after speech-text094

alignment training, a clear and consistent perfor-095

mance gap exists between text and speech inputs096

within the same model.097

To gain insight into the modality gap, we system-098

atically analyze the similarity between speech and099

text representations at both sequence and token lev-100

els, aiming to reveal the mechanisms of speech-text101

alignment within LSLMs. At the sequence (coarse-102

grained) level, we observe that as representations103

propagate through deeper layers of the model, their104

cosine similarity increases steadily, reflecting pro-105

gressive directional alignment. In parallel, the Eu-106

clidean distance between modalities also increases,107

indicating a divergence in magnitude that likely108

reflects modality-specific characteristics learned by109

the model. At the token (fine-grained) level, we110

find that the model develops a spontaneous mono-111

tonic alignment pattern between speech and text112

tokens, indicating consistent local correspondence113

across modalities.114

In addition, our study systematically examines115

the relationship between internal representation116

similarity and the modality gap exhibited on eval-117

uation benchmarks. A clear linear correlation is118

observed at both the sequence and token levels,119

suggesting that the nature of internal cross-modal120

alignment is closely related to the performance dis-121

parity between speech and text inputs.122

These observations are further examined through123

targeted intervention experiments, where speech124

token embeddings along the alignment path are125

modified using either angle projection or length126

normalization. We find that such interventions can127

improve performance on challenging cases from128

the sd-qa subset of VoiceBench.129

Our contributions are threefold: (1) We systemat-130

ically identify that the primary source of the perfor-131

mance gap between LSLMs and pipeline systems132

lies in the modality difference between speech and133

text inputs. (2) We analyze internal representations134

and find that the modality gap is closely linked to135

the similarity between speech and text representa-136

tions at both sequence and token levels. (3) We 137

provide the first empirical evidence that targeted in- 138

terventions on speech representations can improve 139

speech input performance on challenging cases. 140

By focusing on understanding and revealing the 141

mechanisms behind modality alignment, our work 142

offers a deeper exploration of the factors influenc- 143

ing LSLM performance. This approach not only 144

addresses the current performance discrepancy but 145

also paves the way for future advancements in inte- 146

grating speech modalities into LLMs. 147

2 Related Work 148

2.1 Speech-Text Alignment in LSLMs 149

The alignment between speech and textual modali- 150

ties is crucial for the performance of LSLMs. Re- 151

cent studies have explored five distinct method- 152

ologies for this task (Ji et al., 2024). The la- 153

tent space mapping approach, exemplified by 154

Qwen2-Audio (Chu et al., 2024), SALMONN (Tang 155

et al., 2023), and VITA (Fu et al., 2024), uses a 156

joint audio encoder-adapter architecture to directly 157

project speech inputs into the LLM’s latent textual 158

space. This paradigm effectively reduces computa- 159

tional overhead by compressing the audio sequence 160

length via the audio adaptor module. Meanwhile, 161

it also preserves the LLM’s inherent reasoning ca- 162

pabilities and has demonstrated competitive perfor- 163

mance across multiple benchmarks. 164

Additionally, SpeechGPT (Zhang et al., 2023) 165

adopts modality chaining by discretizing speech 166

into symbolic units and expanding the LLM’s vo- 167

cabulary, while GLM-4-Voice (Zeng et al., 2024) 168

and Moshi (Défossez et al., 2024) utilize inter- 169

leaved text-speech tokens and parallel generation 170

architectures, respectively. SyncLLM (Veluri et al., 171

2024), IntrinsicVoice (Zhang et al., 2024b), Align- 172

SLM (Lin et al., 2024), and OmniFlatten (Zhang 173

et al., 2024a) pioneers direct speech-to-speech inter- 174

action without textual intermediates. Although sig- 175

nificant progress has been made with these method- 176

ologies in existing research, their performance on 177

audio processing tasks remains suboptimal. 178

2.2 Modality Gap Phenomenon 179

The modality gap phenomenon was systematically 180

analyzed in (Liang et al., 2022), which demon- 181

strated that this issue persists across a wide range of 182

multimodal models. The gap is primarily attributed 183

to the cone effect, where embeddings from differ- 184

ent modalities occupy distinct subspaces, leading 185
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to misalignment and degraded cross-modal perfor-186

mance.187

In the context of speech translation, the pres-188

ence and impact of the modality gap is investigated189

by (Fang and Feng, 2023) and (Han et al., 2023).190

Han et al. observed that the modality gap emerges191

during the early stages of fine-tuning. Fang et al.192

finding that modality misalignment can lead to di-193

vergent predictions and performance degradation194

compared to text-only machine translation systems.195

They quantified the gap using cosine similarity be-196

tween speech and text embeddings, offering empir-197

ical evidence of substantial representational diver-198

gence.199

2.3 Analysis of Multimodal Representations200

Previous works have explored a variety of meth-201

ods to accurately quantify the similarity between202

multimodal representations. Canonical Correlation203

Analysis (CCA) and its deep learning variants, such204

as SVCCA and PWCCA (Raghu et al., 2017; Mor-205

cos et al., 2018), have been widely used to capture206

linear and non-linear relationships of representa-207

tions across different modalities.208

To address the challenges of comparing high-209

dimensional representations, Centered Kernel210

Alignment (CKA), a robust similarity measure to211

identify correspondences between neural network212

representations, was proposed (Kornblith et al.,213

2019). In subsequent work, it has been further214

demonstrated that a simple, sample-wise cosine215

similarity metric can effectively capture layer-wise216

similarity in transformer models, closely aligning217

with the results of CKA while offering computa-218

tional efficiency (Jiang et al., 2024).219

Additionally, the Wasserstein distance between220

paired speech and text embeddings has also been221

used to measure cross-modal consistency (Liu et al.,222

2025a). Furthermore, the Gramian Representation223

Alignment Measure (GRAM) is designed to eval-224

uate the alignment of multiple modalities simul-225

taneously (Cicchetti et al., 2024). Both methods226

have been integrated into model training and have227

proven effective in enhancing the alignment be-228

tween representations of different modalities.229

3 Preliminary230

This section investigates the performance degrada-231

tion of LSLMs in processing speech inputs com-232

pared to their base models’ performance on text233

inputs. Through comprehensive experiments con-234

    Speech Encoder️

    Speech Projector

LLM

Speech InputText Input

“Answer the queston”

    Text Tokenizer

    Embedding Layer

(“Who are you”)

“I'm an AI assistant...”

Figure 1: The Model Architecture.

ducted on multiple LLM backbones using both 235

full-parameter and LoRA fine-tuning methods, we 236

find that the primary contributor to this modality 237

gap is the suboptimal alignment between textual 238

and auditory modalities in LSLMs. 239

3.1 Model Architecture 240

As illustrated in Figure 1, the architecture of our 241

LSLMs comprises three core components: a speech 242

encoder, a speech adaptor, and an LLM backbone. 243

The speech signal is first encoded by the speech 244

encoder into a latent representation. Subsequently, 245

the speech adaptor compresses the temporal length 246

of the speech sequence by a factor of N to reduce 247

computational overhead. For text inputs, token 248

embeddings are generated through the LLM back- 249

bone’s embedding layer. The text token embed- 250

dings and compressed speech embeddings are then 251

concatenated and fed into the LLM backbone to 252

produce the final textual response. 253

In our experiments, Whisper-large-v3, a widely 254

used ASR model, serves as the speech encoder. 255

The speech adaptor is implemented as a lightweight 256

module with two fully connected (FC) layers. We 257

conducted experiments with various LLM back- 258

bones, including LLaMA-3.2-3B-Instruct, LLaMA- 259

3.1-8B, Qwen2.5-1.5B-Instruct, and Qwen2.5-7B- 260

Instruct. For brevity, henceforth we omit the suffix 261

"Instruct" when referring to these model variants. 262

3.2 Experiment Setups 263

Our training dataset is constructed following the 264

framework of Ke-Speech-Chat (Zhao et al., 2024), 265

exclusively comprising single-turn dialogue sam- 266

ples. Each sample includes both speech and text 267

instructions, as well as a text response. We refined 268

the raw text using Qwen2.5-72B-Instruct (Yang 269

et al., 2024; Team, 2024), aligning it with natural 270
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Figure 2: Overall Score (%, ↑) on the test set of 8 LSLMs at epoch 2 under different training methods and modality
inputs. The red numbers on each bar show the score difference relative to the bar immediately to its left.

conversational patterns observed in real-world sce-271

narios. Subsequently, a three-stage filtering mecha-272

nism was applied to purify the data, targeting safety,273

semantic clarity, and linguistic naturalness. The274

speech instruction-response pairs were synthesized275

using CosyVoice (Du et al., 2024). Based on auto-276

mated transcription via Whisper-large-v3 (Radford277

et al., 2022), speech samples exceeding a Word278

Error Rate (WER) threshold of 0.1 are discarded.279

Finally, Our training dataset contains 637,283 sam-280

ples, with speech instructions totaling 1,604 hours.281

All LSLMs are trained for 2 epochs on our train-282

ing dataset using the AdamW optimizer with a peak283

learning rate of 2e-5. For LoRA, we set r = 8,284

α = 4.0, and the dropout rate to 0.1. All experi-285

ments were conducted on a distributed setup with 2286

nodes, each equipped with 8 NVIDIA A100 GPUs.287

Training a single model requires approximately 384288

GPU hours on this setup.289

For evaluation, we adopt five subsets of the290

VoiceBench dataset (Chen et al., 2024)—AdvBench,291

IFEval, OBQA, MMSU, and sd-qa—yielding a total292

of 4,947 test samples after filtering. These sub-293

sets collectively cover 93% of the full VoiceBench294

and are particularly suitable for robust evaluation295

as their metrics do not require additional LLMs,296

thereby minimizing variability. All evaluations297

strictly adhere to the official VoiceBench evaluation298

protocol to ensure consistency and reproducibility.299

3.3 Results and Analysis300

We evaluate the performance of LSLMs after full-301

parameter and LoRA fine-tuning on the 4 models302

introduced in Section 3.1, each tested under both303

speech and text modalities. Detailed results are304

provided in Appendix A.1. Figure 2 presents the305

performance of each model at epoch 2 on both text306

and speech inputs, alongside the corresponding307

base model’s text-only performance.308

For the data shown in Figure 2, on average, 309

LSLMs exhibit a 25% performance decline on 310

speech inputs relative to their base models on text. 311

This decline can be attributed to two factors: (1) 312

fine-tuning–induced erosion of reasoning and gen- 313

eration capabilities, with an average drop of 8.79%; 314

and (2) suboptimal speech–text alignment, with 315

an average drop of 16.46%. Given the variety of 316

model sizes and tuning methods evaluated, this 317

trend appears general. This phenomenon indicates 318

that the observed performance degradation stems 319

primarily from the speech–text modality gap, and 320

that bridging this gap is crucial to enhance LSLM 321

speech processing. 322

4 Empirical Analysis of Coarse-grained 323

Speech-Text Representations 324

In this section, we examine the dynamic relation- 325

ship between text and speech modality represen- 326

tations at a coarse-grained sequence level using 327

similarity measurement techniques. Our analysis 328

uncovers consistent patterns across various LLM 329

architectures and training paradigms. Through ex- 330

tensive experimentation, we observe a strong linear 331

correlation between representation alignment and 332

performance disparities across modalities, partic- 333

ularly under LoRA fine-tuning, highlighting the 334

predictive value of embedding similarity for modal- 335

ity gap estimation. 336

4.1 Methodology 337

Given a set of N speech-text query pairs 338

{(xsi , xti)}Ni=1, where xsi denotes the speech input 339

and xti its corresponding text transcription, we pro- 340

cess each sample through the model as illustrated 341

in Figure 3. 342

For the speech modality, the input xs is encoded 343

by the speech encoder and linear projector, result- 344

ing in an initial embedding sequence hs0 ∈ RTs×d, 345
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Figure 3: Overview of coarse-grained speech-text repre-
sentations computation.

where Ts is the number of speech frames and d is346

the hidden dimension. This sequence, along with a347

system prompt, is fed into an L-layer model, yield-348

ing layer-wise representations hsl ∈ RTs×d, where349

l ∈ {1, . . . , L} indexes the model layer. Similarly,350

for the text modality, the input xt is tokenized and351

embedded, producing ht0 ∈ RTt×d, where Tt is the352

length of the token sequence. The corresponding353

layer-wise representations are htl ∈ RTt×d.354

To quantify the relationship between speech and355

text representations, we employ two similarity met-356

rics, denoted in a unified manner as f (·)(x, y),357

where (·) indicates the choice of metric (cos: co-358

sine similarity, d: Euclidean distance):359

f (cos)(x, y) =
x⊤y

∥x∥∥y∥
, f (d)(x, y) = ∥x−y∥2.360

For each layer l, we first compute the mean rep-361

resentation over the sequence dimension for both362

modalities:363

h̄sl =
1

Ts

Ts∑
i=1

hsl,i, h̄tl =
1

Tt

Tt∑
j=1

htl,j ,364

where hsl,i and htl,j denote the i-th and j-th frame or365

token embedding at layer l for the speech and text366

modalities, respectively. The global relationship367

between modalities at each layer is then assessed368

by computing f
(cos)
l

(
h̄sl , h̄

t
l

)
and f

(d)
l

(
h̄sl , h̄

t
l

)
.369

4.2 Sequence-level Speech-Text370

Representation Dynamics371

We evaluate the sequence-level similarity at each372

layer for all test samples using the methodology373

outlined in Section 4.1. Figure 4 summarizes these374

results for various LSLMs under different training375

regimes, with cosine similarity shown in blue and376

Euclidean distance in orange. Each subplot corre- 377

sponds to a specific model configuration, and each 378

curve within a subplot represents a distinct train- 379

ing checkpoint, depicting the layer-wise similarity 380

metrics. 381

Several notable patterns are observed in the sim- 382

ilarity dynamics. For cosine similarity, all models 383

demonstrate a consistent increase as the network 384

depth grows, indicating progressively stronger 385

alignment between speech and text representations 386

in deeper layers. Moreover, later training check- 387

points consistently yield higher similarity scores 388

across all layers, reflecting improved cross-modal 389

alignment as training advances. 390

In contrast, Euclidean distance gradually in- 391

creases in the shallow layers and accelerates in the 392

deeper layers. While models with more extensive 393

training tend to exhibit slightly lower Euclidean 394

distances overall, the upward trend with increas- 395

ing depth remains consistent, suggesting growing 396

representational magnitude divergence despite di- 397

rectional convergence. 398

These trends suggest that deeper layers and ex- 399

tended training foster improved alignment in rep- 400

resentational direction (cosine similarity), while 401

preserving modality-specific distinctions in magni- 402

tude (Euclidean distance). This alignment pattern 403

could facilitate effective multimodal integration 404

while preserving essential characteristics of each 405

modality. 406

4.3 Correlation Between Representation 407

Similarity and Modality Gap 408

To analyze the relationship between representation 409

similarity and downstream performance, we com- 410

pute a scalar similarity score for each model by 411

averaging similarity across layers: 412

f̄ (·) =
1

L

L∑
l=1

f
(·)
l

(
h̄sl , h̄

t
l

)
, 413

where (·) denotes either cosine similarity or Eu- 414

clidean distance. 415

We quantify the modality gap as the drop in 416

benchmark scores between text and speech inputs, 417

as: 418

GAP = M t −M s, 419

where M t and M s are overall benchmark scores 420

obtained from text and speech inputs, respectively. 421

Figure 5 shows the linear relationship between 422

similarity and GAP . Each point corresponds to a 423
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Figure 4: Cosine similarity (blue) and Euclidean distance (orange) between speech and text representations across
model layers and checkpoints.
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Figure 5: Linear relationship between cross-modal similarity and modality performance gap (GAP ).

model checkpoint, with the R2 value indicating the424

strength of correlation.425

Key Findings. Under LoRA fine-tuning, a strong426

linear relationship is observed between cosine sim-427

ilarity and GAP (R2 = 0.75), suggesting that bet-428

ter cross-modal alignment leads to smaller perfor-429

mance disparities. Although Euclidean distance430

shows a weaker correlation overall, it becomes431

more pronounced within specific model families432

(R2 = 0.64 for Qwen and R2 = 0.88 for Llama).433

For full-parameter fine-tuning, the same trend434

persists but with reduced strength: R2 = 0.39 for435

cosine similarity, and R2 = 0.53 and 0.27 for Eu-436

clidean distance in Llama and Qwen, respectively.437

Analysis. These findings empirically validate the438

connection between internal cross-modal represen-439

tations and performance-level modality gaps. The440

stronger correlations observed in LoRA-tuned mod-441

els may stem from the constrained low-rank adapta-442

tion, which preserves the integrity of pretrained text443

representations while facilitating targeted speech-444

text alignment. In contrast, full fine-tuning grants445

more representational flexibility, potentially intro-446

ducing overfitting that weakens this correlation.447

Consequently, representation similarity serves as448

a more reliable predictor of modality performance449

under LoRA than under full-parameter.450

5 Empirical Analysis of Finer-grained 451

Speech-Text Representations 452

Building on the coarse-grained sequence-level anal- 453

ysis in the previous section, this section focuses 454

on token-level alignment patterns, examining the 455

role and contribution of each token in modality 456

alignment. We will begin with case studies, and 457

subsequently introduce more detailed quantitative 458

metrics to facilitate a finer-grained investigation. 459

Through correlation analysis and intervention ex- 460

periments, we explore the relationship between 461

token-level alignment and downstream task perfor- 462

mance, thereby further revealing the underlying 463

speech-text alignment mechanisms in LSLMs. 464

5.1 Monotonic Patterns in Token-wise 465

Similarity Matrices 466

Observations At each layer l, we construct a 467

token-wise similarity matrix A
(·)
l ∈ RTs×Tt , de- 468

fined as: 469

[A
(·)
l ]i,j = f (·)(hsl,i, h

t
l,j), 470

where f (·) denotes the selected similarity metric. 471

Across all models and training paradigms, we con- 472

sistently observed that the token-wise similarity 473

matrix typically exhibits extreme values along a 474

nearly monotonic path. As shown in Fig. 6, with 475

the increase in text token index, there is a mono- 476

tonic alignment path in the speech frame sequence 477

along which the similarity (or distance) values are 478
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Figure 6: Token-wise similarity and distance matrices
for a representative layer, with diamond markers indi-
cating the alignment path.

locally maximized (or minimized). This monotonic479

path does not strictly align with the main diagonal,480

but reflects the actual temporal alignment structure481

between speech and text modalities.482

Statistical Quantification To systematically483

quantify this alignment pattern, for each text to-484

ken j, we identify the index of the speech frame485

with maximal similarity or minimal distance as:486

i∗j =

{
argmaxi[A

(cos)
l ]i,j if f (·) = f (cos)

argmini[A
(d)
l ]i,j if f (·) = f (d)

487

This process produces an alignment path be-488

tween the text and speech sequences. To verify489

the presence of monotonicity in these alignments,490

we use the Spearman rank correlation coefficient491

between text token indices and their aligned speech492

frame indices as the evaluation metric. Detailed493

statistics are provided in Appendix A.2. At the494

final training epoch across all models, the average495

Spearman coefficient is 0.85 for cosine similarity496

and 0.70 for Euclidean distance. The proportion497

of tokens with perfectly identical alignment paths498

under both similarity measures is 0.59, indicating499

substantial consistency in the alignment results.500

Mechanism Analysis The widespread emer-501

gence of this monotonic pattern suggests that the502

model not only aligns modalities globally, but also503

spontaneously learns a soft, monotonic align-504

ment between speech frames and text tokens at505

the token level. Importantly, this alignment pattern506

emerges automatically in end-to-end speech-text507

alignment tasks, reflecting the model’s ability to508

capture and map the temporal structure of speech509

to the semantic structure of text in a robust manner.510

5.2 Alignment Path Score 511

Based on the observed token-level alignment pat- 512

terns, we propose the Alignment Path Score (APS) 513

to quantify the strength of speech-text alignment at 514

the token level. Specifically, APS is defined as: 515

APS(·) =
1

L× Tt

L∑
l=1

Tt∑
j=1

[A
(·)
l ]i∗j ,j , 516

where L denotes the number of layers, Tt is the 517

number of text tokens, and [A
(·)
l ]i∗j ,j represents the 518

maximal similarity (or minimal distance) along the 519

alignment path for each token. 520

We systematically evaluate the relationship be- 521

tween APS and GAP defined in Section 4.3 on 522

the LSLMs using a linear regression analysis. As 523

shown in Figure 7, LoRA-trained LSLMs yield 524

higher R2 values for both cosine (0.81 vs. 0.75) 525

and Euclidean APS (0.72 vs. 0.64 for Qwen; 0.95 526

vs. 0.88 for Llama) compared to previous base- 527

lines, indicating stronger linear correlations with 528

GAP . Under full-parameter finetuning, the corre- 529

lation between APS and GAP is similar to that of 530

sequence-level metrics, with both showing low R2 531

values. As previously suggested, the greater train- 532

ing noise and instability in this setting may limit 533

the explanatory power of both sequence-level and 534

token-level alignment metrics. 535

These results suggest that APS offers a more di- 536

rect and sensitive measurement of the relationship 537

between alignment quality and downstream per- 538

formance. The stronger correlation between APS 539

and GAP highlights that fine-grained, token-level 540

alignment is the key mechanism underlying LSLM 541

speech understanding. 542

5.3 Intervention Experiments: Probing the 543

Causal Role of Token-level Alignment 544

As demonstrated in the previous section, our analy- 545

ses revealed a strong correlation between the token- 546

level alignment score (APS) and the modality gap 547

in model performance (GAP ). However, correla- 548

tion does not necessarily imply causation. To fur- 549

ther investigate whether the token-level alignment 550

mechanism causally affects the speech understand- 551

ing ability of LSLMs, we conducted a series of 552

targeted intervention experiments. 553

Specifically, we focused on the sd-qa subset 554

of VoiceBench and selected both Qwen2.5-7B and 555

Llama3.1-8B models, each under LoRA and full- 556

parameter fine-tuning settings. For each sample, 557
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Figure 7: Relationship between the proposed Alignment Path Score and modality performance gap (GAP ).

Table 1: Performance (%, ↑) on the sd-qa subset under different token-level intervention strategies. “Bottom3”:
Only the three least-aligned tokens are modified; “All”: The entire alignment path is modified. For each row, results
that outperform the corresponding Original are typeset in bold.

Model Strategy Original Angle projection Length normalization

Bottom3 All Bottom3 All

Qwen2.5-7B
Full 33.45 38.52 38.70 37.25 32.73

LoRA 38.88 40.51 38.88 38.16 31.10

Llama3.1-8B
Full 36.53 32.91 34.00 31.65 30.74

LoRA 45.75 49.19 47.74 42.86 39.96

we first used the APS path to identify the three558

speech tokens with the lowest alignment scores559

(bottom3) as well as all tokens along the alignment560

path (All). We then applied two types of interven-561

tions: (1) Angle projection, where the selected562

speech token embeddings were projected to have563

the same direction as their corresponding text to-564

ken embeddings; and (2) Length normalization,565

where the norm of the speech token embeddings566

was scaled to match that of the corresponding text567

tokens. We evaluated the downstream QA accuracy568

before and after intervention.569

As shown in Table 1, Angle Projection yields im-570

provements or maintains performance in 6 out of 8571

intervention settings, demonstrating that increasing572

the angular similarity of token-level text and speech573

representations can enhance downstream outcomes.574

For LoRA fine-tuned models, applying angle pro-575

jection to either the Bottom3 or All alignment-path576

tokens consistently improves results. Notably, inter-577

vening on only the Bottom3 tokens leads to more ro-578

bust gains, with Llama3.1-8B improving by 7.52%579

and Qwen2.5-7B by 4.19%. In contrast, length580

normalization provides improvement in only one581

case, with performance declining in the remaining582

settings, indicating an overall detrimental effect on583

LSLM’s speech sequence modeling.584

Further case analysis reveals that angular or585

length-based interventions on speech tokens can586

correct instances where the model previously failed587

to generate accurate responses for speech input 588

while succeeding for the corresponding text input. 589

These corrections fall into two primary categories: 590

(1) resolving semantic misunderstandings arising 591

from misinterpretation of spoken content, and (2) 592

rectifying factual errors despite correct semantic 593

parsing. Representative examples illustrating both 594

types of correction are provided in Appendix A.3, 595

underscoring the potential of token-level interven- 596

tions to enhance both linguistic comprehension and 597

factual consistency for spoken queries. 598

6 Conclusion 599

This work systematically investigates the modality 600

gap in LSLMs, defined as the performance dis- 601

parity between speech and text inputs within the 602

same trained model. To uncover the mechanisms 603

behind this gap, we analyze speech-text alignment 604

at both sequence and token levels. Sequence-level 605

analysis tracks representation similarity across lay- 606

ers and training, establishing its linear relationship 607

with the modality gap. At the token level, we re- 608

veal word-frame alignment structures and propose 609

the Alignment Path Score, which shows a stronger 610

correlation with the proposed modality gap. Tar- 611

geted intervention experiments further demonstrate 612

that improving token-level alignment can enhance 613

speech inference accuracy. This study deepens un- 614

derstanding of how large language models process 615

and comprehend spoken language. 616
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Limitations617

While this study offers a systematic empirical anal-618

ysis of the modality gap and alignment mechanisms619

in large speech language models, several limita-620

tions should be acknowledged. Our findings are621

based on experiments with specific model archi-622

tectures and alignment frameworks, so their gen-623

eralizability to other speech encoders, alignment624

paradigms, or larger-scale models remains to be fur-625

ther validated. Moreover, the evaluation primarily626

focuses on English single-turn dialogue tasks with627

synthetic speech, potentially limiting the applica-628

bility of our conclusions to more diverse languages,629

conversational settings, or real-world noisy speech630

inputs. Finally, the proposed intervention strategies631

are applied post hoc during inference rather than632

integrated into model training; as such, we view633

them as analytical tools to deepen understanding of634

modality alignment, and future work may explore635

how these insights can inform the development of636

more robust and generalizable training strategies.637
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A Appendix 800

A.1 Detailed Comparison of Model 801

Performance with Speech and Text Inputs 802

across Training Strategies 803

Table 2 presents the evaluation results of our mod- 804

els under different training paradigms and check- 805

points. For each model and training strategy, we re- 806

port the performance on both speech input and text 807

input across multiple benchmark subsets, as well 808

as their respective overall scores. Additionally, we 809

provide the GAP metric, defined as the difference 810

between the overall text input and speech input per- 811

formance. This comprehensive comparison allows 812

us to assess the alignment and robustness of vari- 813

ous models and training approaches with respect to 814

both input modalities. 815

A.2 Analysis of Alignment Path Monotonicity 816

and Consistency 817

This section details the measurement of alignment 818

path statistics, as introduced in Section 5.1. We re- 819

port these statistics across different training stages, 820

model scales, and training strategies. As shown in 821

Figure 8, we consider three metrics: (1) alignment 822

path monotonicity based on the cosine similarity 823

matrix, which reflects the degree of order in the 824

alignment between text tokens and speech frames; 825

(2) alignment path monotonicity based on the Eu- 826

clidean distance matrix, defined in a similar man- 827

ner but using Euclidean distances for alignment 828

construction; and (3) token-level alignment path 829

consistency, defined as the proportion of tokens 830

whose aligned speech frame indices are identical 831

under both similarity measures. 832
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Model Strategy Param Steps Speech Input (%, ↑) Text Input (%, ↑)
GAP (↓)

AdvBench IfEval OBQA MMSU sd-qa Overall AdvBench IfEval OBQA MMSU sd-qa Overall

Qwen2.5-1.5B

Full 1.5B

2,000 77.50 15.55 25.27 26.25 31.83 35.28 96.73 20.16 61.10 42.06 44.44 52.90 17.62
4,000 95.77 14.01 44.40 29.99 31.10 43.06 98.85 20.64 69.01 44.99 38.89 54.48 11.42
6,000 94.04 12.39 45.93 32.60 29.84 42.96 97.69 18.97 69.45 45.02 39.47 54.12 11.16
8,000 95.77 13.67 43.52 31.36 30.02 42.87 98.65 18.44 68.13 45.25 34.45 52.99 10.12

10,000 98.46 13.36 49.45 33.12 33.45 45.57 99.04 18.64 69.89 46.39 40.60 54.91 9.34

LoRA 9M

2,000 32.17 11.40 25.71 26.61 23.33 23.84 88.08 32.16 73.85 52.60 39.96 57.33 33.48
4,000 59.35 13.67 30.99 26.28 27.85 31.63 84.42 24.27 74.51 74.51 39.42 54.93 23.30
6,000 80.00 14.22 36.04 27.00 29.48 37.35 88.08 21.90 74.07 51.89 37.97 54.78 17.43
8,000 83.08 13.81 36.48 27.94 30.20 38.30 88.46 21.82 74.95 51.76 38.70 55.14 16.83

10,000 84.42 13.46 40.00 30.32 30.38 39.72 88.08 21.56 75.38 51.43 40.14 55.32 15.60

Qwen2.5-7B

Full 7B

2,000 92.31 14.85 43.30 31.10 36.17 43.54 98.27 23.17 80.00 60.44 44.12 61.20 17.66
4,000 96.54 16.14 54.29 33.96 33.82 46.95 99.62 23.29 78.68 58.36 41.23 60.23 13.29
6,000 94.23 18.60 57.80 36.92 36.35 48.78 99.23 26.55 79.56 59.17 45.03 61.91 13.13
8,000 97.31 16.58 58.68 35.88 32.19 48.13 99.04 23.80 75.16 58.65 41.77 59.69 11.56

10,000 98.85 15.84 58.02 35.56 33.45 48.34 100.0 24.39 71.87 56.25 43.58 59.22 10.87

LoRA 20M

2,000 67.12 14.16 27.91 26.28 35.44 34.18 99.04 62.30 87.47 69.06 57.50 75.08 40.89
4,000 92.12 16.92 42.64 30.03 35.62 43.47 99.23 55.38 88.13 68.41 47.56 71.74 28.28
6,000 94.81 22.10 48.13 34.16 37.07 47.25 99.04 50.79 87.25 67.86 48.10 70.61 23.35
8,000 95.19 22.63 49.45 35.56 38.52 48.27 99.04 49.71 88.13 67.79 48.28 70.59 22.32

10,000 96.92 25.42 56.26 37.67 38.88 51.03 99.04 48.19 87.69 67.24 47.92 70.02 18.99

Llama3.2-3B

Full 3B

2,000 75.38 12.14 23.30 25.08 27.12 32.61 98.27 26.13 63.52 45.22 42.68 55.16 22.56
4,000 95.96 12.06 23.52 25.02 31.46 37.60 98.46 21.90 63.96 43.82 40.69 53.76 16.16
6,000 99.04 12.97 27.47 25.47 34.90 39.97 99.23 22.43 61.32 42.55 42.68 53.64 13.67
8,000 93.85 13.72 24.84 24.98 29.84 37.44 98.65 24.17 62.20 42.88 42.86 54.15 16.71

10,000 98.65 11.60 22.64 24.98 32.73 38.12 99.23 23.88 59.12 40.53 42.13 52.98 14.86

LoRA 12M

2,000 11.15 14.66 21.32 25.54 19.89 18.51 97.50 63.37 75.60 56.64 65.46 71.71 53.20
4,000 58.08 12.18 22.42 23.19 35.62 30.30 98.46 62.64 76.92 55.50 59.13 70.53 40.23
6,000 74.42 12.97 20.88 24.79 38.70 34.35 98.08 59.32 75.60 54.52 52.98 68.10 33.75
8,000 84.42 13.52 19.12 25.37 38.52 36.19 98.08 55.39 77.14 54.39 50.27 67.05 30.86

10,000 79.66 13.28 22.64 24.53 40.33 36.09 97.69 53.25 76.92 54.26 51.54 66.73 30.64

Llama3.1-8B

Full 8B

2,000 93.27 13.67 30.77 25.80 34.90 39.68 99.62 19.55 68.13 44.37 43.94 55.12 15.44
4,000 99.23 14.23 31.43 27.03 36.89 41.76 99.62 18.11 67.91 41.09 43.04 53.95 12.19
6,000 97.50 13.42 38.68 28.43 37.61 43.13 99.04 18.71 64.62 43.33 42.13 53.57 10.44
8,000 98.85 12.70 33.63 27.26 37.97 42.08 99.81 17.03 58.90 39.66 43.58 51.79 9.71

10,000 99.23 13.94 44.18 28.59 36.53 44.49 99.42 17.91 67.03 42.39 41.05 53.56 9.07

LoRA 20M

2,000 85.96 16.60 27.69 27.62 43.76 40.33 90.38 67.68 81.10 64.09 54.61 71.57 31.25
4,000 94.23 17.43 36.04 30.68 43.94 44.47 99.42 63.58 81.54 64.57 54.61 72.75 28.28
6,000 93.46 19.16 41.10 31.10 45.57 46.08 99.42 61.10 81.10 64.18 54.79 72.12 26.04
8,000 97.12 19.36 43.74 32.37 43.58 47.23 99.42 62.75 81.10 64.02 54.61 72.38 25.15

10,000 96.92 21.12 49.01 32.69 45.75 49.10 99.42 59.16 81.10 64.31 53.16 71.43 22.33

Table 2: Comparison of Alignment Experiment Results: Speech and Text Input Performance Across Steps

Empirical results reveal the following trends:833

(1) Both alignment path monotonicity metrics ex-834

hibit an overall increasing tendency as training pro-835

gresses, suggesting that the model incrementally ac-836

quires more structured and monotonic alignments.837

(2) The monotonicity measured via cosine similar-838

ity remains consistently higher than that based on839

Euclidean distance, indicating that cosine similarity840

may be more effective in capturing ordered rela-841

tionships in high-dimensional spaces. (3) Token-842

level alignment path consistency also demonstrates843

a general upward trend during training, implying844

that the alignment paths derived from the two simi-845

larity measures become increasingly similar. These846

observations are consistent across different model847

scales and training strategies, underscoring the ro-848

bustness and effectiveness of the learned alignment849

mechanism.850

A.3 Case Analysis of Intervention851

Experiments852

As shown in Table 3, Table 4, Table 5, and Table 6,853

we present representative cases from our interven-854

tion experiments in Section 5.3. In these tables,855

angle denotes interventions where the speech rep-856

resentation is projected towards the aligned text 857

representation direction , while length refers to ad- 858

justing the representation norm to match that of 859

the text. The bot3 setting applies the intervention 860

only to the three tokens along the alignment path 861

with the lowest confidence, whereas all applies the 862

intervention to all tokens along the alignment path. 863

We identify two main categories of cases to il- 864

lustrate the effects of these interventions: 865

1. Semantic Misunderstanding from Spoken 866

Input. In the first category, the model fundamen- 867

tally misunderstands the meaning or entity refer- 868

enced in the spoken input. For example, in Case 869

1 (Table 3), the model misinterprets “Brittany” as 870

“Britain,” leading to an irrelevant answer. Similarly, 871

in Case 2 (Table 4), the spoken input is incorrectly 872

recognized as a different entity, resulting in an er- 873

roneous response. After applying either angle or 874

length-based interventions to key tokens along the 875

alignment path, the model realigns its semantic 876

representation with the ground-truth text, recovers 877

the correct understanding, and generates accurate 878

answers. 879

2. Factual Errors with Correct Semantic Pars- 880

ing. In the second category, the model correctly 881
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Figure 8: Evolution of Alignment Path Monotonicity and Consistency. For each model (columns) and training
strategy (rows), we report the trajectory of three metrics: Cosine Path Monotonicity (blue), Euclidean Path
Monotonicity (yellow), and Alignment Path Consistency (orange) across checkpoints during training. Higher
monotonicity values indicate a stronger tendency toward monotonic alignments between text tokens and speech
frames. Higher consistency values reflect greater agreement between alignment paths derived from the two similarity
measures, suggesting stable and modality-agnostic alignment patterns.

parses the user’s intent and the core question from882

spoken input, but produces factually incorrect or883

incomplete answers. For instance, in Case 3 (Ta-884

ble 5) and Case 4 (Table 6), the model demonstrates885

a correct understanding of the question topic, yet886

the factual details in its output are incorrect. Our887

interventions—by modifying the representation di-888

rection or norm along the alignment path—are also889

effective in these cases, guiding the model to gener-890

ate factually correct responses consistent with the891

reference answers.892

These case studies demonstrate that fine-grained893

interventions on the alignment path—either in em-894

bedding direction or norm—consistently improve895

the model’s answer accuracy and robustness for896

spoken inputs. This effect is observed in both cases897

of semantic misinterpretation and factual knowl-898

edge errors, indicating that such interventions can899

enhance multi-modal alignment and enable more900

reliable knowledge retrieval from speech input.901
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Case 1

Question: What do they speak in Brittany?

Ref: Breton.
Text Input: In Brittany, the local language is Breton. It’s a Celtic language that’s still spoken by
some people in the region. (✓)
Speech Input: In Britain, the primary language spoken is English. However, there are also other
languages spoken, especially in areas with diverse populations, such as Welsh in Wales, Scottish
Gaelic in Scotland, and Irish in Northern Ireland. (✗)
Speech Input (Angle Bot3): Breton is a Celtic language that’s still spoken in parts of France,
particularly in the region of Brittany. It has a unique sound and rhythm that’s quite distinct from
other languages. (✓)
Speech Input (Length Bot3): in Scotland, they speak Scottish Gaelic. In Northern Ireland, they
speak Northern Irish, which is a dialect of Irish. In Wales, they speak Welsh. And in Cornwall,
they speak Cornish. Each place has its own unique language and cultural heritage. (✗)
Speech Input (Angle All): In Brittany, they primarily speak French. However, there are some
areas where you might also hear Breton, which is a Celtic language. But don’t worry, most people
there will be speaking French. (✓)
Speech Input (Length All): Cockney, which is a type of East London accent. It’s known for its
unique way of pronouncing certain letters and sounds, often making it quite distinct from other
accents in the United Kingdom. (✗)

Table 3: Case 1 from intervention experiments on the sd-qa dataset.

Case 2

Question: Who is Sean Hannity?

Ref: An American talk show host and conservative political commentator.

Text Input: Sean Hannity is an American conservative political commentator and radio host. He’s
best known for hosting his own show on Fox News, where he discusses politics, current events,
and social issues. He’s also a popular author and has written several books. (✓)
Speech Input: Shawn Hanity is an American actor and comedian. He’s best known for his roles in
television shows like Saturday Night Live and Brooklyn Nine-Nine. He’s also appeared in several
films and has been involved in various other projects. (✗)
Speech Input (Angle Bot3): Sean Hannity is a well-known American conservative political
commentator and television personality. He hosts a popular radio show and has his own talk
show on Fox News, where he often discusses current political issues and provides commentary on
various topics. (✓)
Speech Input (Length Bot3): Shan? He’s a British comedian and actor known for his work in
both stand-up and on television shows like The League of Gentlemen. (✗)
Speech Input (Angle All): Sean Hannity is a well-known American conservative political com-
mentator and television personality. He hosts a popular radio show and has his own talk show on
Fox News, where he often discusses current political issues and supports Republican candidates.
(✓)
Speech Input (Length All): Sean Hannity is a well-known American conservative political
commentator and television personality. He hosts a popular radio show and has his own talk
show on Fox News, where he often discusses current political issues and provides commentary on
various topics. Sean Hannity is also a best-selling author and has written several books. (✓)

Table 4: Case 2 from intervention experiments on the sd-qa dataset.
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Case 3

Question: What’s the biggest wasp?

Ref: Asian giant hornet.

Text Input: The largest wasp in the world is the Asian giant hornet. It can grow up to two and a
half inches long, which is quite big compared to other wasps. (✓)
Speech Input: The largest wasp is the tarantula hawk wasp, which can grow up to two and a
half inches long. These wasps are known for their impressive size and their ability to paralyze
tarantulas to use as food for their larvae. (✗)
Speech Input (Angle Bot3): The largest wasp species is the giant hornet, also known as the Asian
giant hornet. These impressive insects can have a wingspan of up to two inches and are found in
various parts of Asia. They are known for their aggressive behavior and can be quite dangerous.
(✓)
Speech Input (Length Bot3): It’s called the Great Barrier Reef, and it’s located off the coast of
Australia. It’s so big that it can even be seen from space! (✗)
Speech Input (Angle All): The largest wasp species is the golden paper wasp. They can build
some of the largest and most complex nests among all wasp species, often using chewed wood
fibers mixed with saliva to create a papery material. These nests can be quite impressive! (✗)
Speech Input (Length All): It’s called the Great Barrier Reef, and it’s located off the coast of
Australia. It’s so big that it can even be seen from space! (✗)

Table 5: Case 3 from intervention experiments on the sd-qa dataset.

Case 4

Question: Where does the story of American Horror Story: Murder House take place?

Ref: Los Angeles, California.

Text Input: The story of American Horror Story: Murder House takes place in Los Angeles,
California. (✓)
Speech Input: The story of American horror story murder house takes place in the fictional town
of Harmony, which is modeled after the real town of New Orleans. The house itself is located in
the French Quarter, known for its rich history and eerie atmosphere. (✗)
Speech Input (Angle Bot3): American Horror Story Murder House is set in a fictional address in
Los Angeles, California. The exact location isn’t specified, but it’s portrayed as being in the heart
of the city. (✓)
Speech Input (Length Bot3): American Horror Story Murder House is set in a fictional address
in Los Angeles, California. The exact location isn’t specified, but it’s portrayed as being in the
heart of the city. (✓)
Speech Input (Angle All): American Horror Story Murder House is set in New York City. (✗)
Speech Input (Length All): American Horror Story Murder House is set in New York City. The
story revolves around a haunted house in the heart of the city, where the main character, a young
woman named Wendy, moves in with her husband and their son. The house has a dark history, and
its past is gradually revealed throughout the series. (✗)

Table 6: Case 4 from intervention experiments on the sd-qa dataset.
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