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Abstract
Pre-trained vision transformers have revolution-
ized few-shot image classification, and it has been
recently demonstrated that the previous common
practice of meta-learning in synergy with these
pre-trained transformers still holds significance.
In this work, we design a new framework cen-
tered exclusively on attention mechanisms, called
MetaFormer, which extends the vision transform-
ers beyond patch token interactions to encompass
relationships between samples and tasks simulta-
neously for further advancing their downstream
task performance. Leveraging the intrinsical prop-
erty of ViTs in handling local patch relationships,
we propose Masked Sample Attention (MSA) to
efficiently embed the sample relationships into the
network, where an adaptive mask is attached for
enhancing task-specific feature consistency and
providing flexibility in switching between few-
shot learning setups. To encapsulate task relation-
ships while filtering out background noise, Patch-
grained Task Attention (PTA) is designed to main-
tain a dynamic knowledge pool consolidating di-
verse patterns from historical tasks. MetaFormer
demonstrates coherence and compatibility with
off-the-shelf pre-trained vision transformers and
shows significant improvements in both induc-
tive and transductive few-shot learning scenarios,
outperforming state-of-the-art methods by up to
8.77% and 6.25% on 12 in-domain and 10 cross-
domain datasets, respectively.

1. Introduction
There has been a sustained focus on few-shot learn-
ing (Vinyals et al., 2016b; Snell et al., 2017), a paradigm
where only a few labeled samples (a.k.a. support samples)
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are provided to predict unlabelled samples (a.k.a. query sam-
ples). The overarching objective is to emulate human-level
intelligence capable of swiftly assimilating new concepts.
Meta-learning (Thrun & Pratt, 2012) has been a de-facto
approach in dealing with few-shot learning, via leveraging
the knowledge learned from previous tasks (Finn et al.,
2017; Raghu et al., 2019). State-of-the-art meta-learning
practices have evolved from modelling the relationships
between samples (Vinyals et al., 2016b; Snell et al., 2017;
Oreshkin et al., 2018; Hou et al., 2019; Ye et al., 2020; Chen
et al., 2021a) to exploring fine-grained relationships among
the building blocks of samples (Zhang et al., 2020a; Doer-
sch et al., 2020; Kang et al., 2021; Afrasiyabi et al., 2022)
and, more recently, to conditional meta-learning where the
transferable knowledge shared among only closely related
tasks improves generalization (Rusu et al., 2018; Yao et al.,
2019; Requeima et al., 2019; Bateni et al., 2020; Zhou et al.,
2021a; Jiang et al., 2022).

The majority of the aforementioned research advancements
have predominantly unfolded within the realm of Convolu-
tional Neural Networks (CNNs) (He et al., 2016; Zagoruyko
& Komodakis, 2016). However, recent strides in pre-trained
Vision Transformers (ViTs) (Caron et al., 2021; Touvron
et al., 2021; Zhou et al., 2022a) have notably surpassed
CNNs across a diverse array of vision tasks (Dosovitskiy
et al., 2020; Liu et al., 2021; Zhu et al., 2020; Ranftl et al.,
2021; Strudel et al., 2021). Consequently, one anticipates
that the various levels of relationships delineated earlier can
collaborate with ViTs to propel the performance of few-
shot learning to new heights. While we acknowledge the
preliminary efforts (Hiller et al., 2022; Hu et al., 2022),
demonstrating that meta-learning can effectively synergize
with pre-trained ViTs to further enhance their few-shot learn-
ing performance, it is noteworthy that, to the best of our
knowledge, there has been no exploration into employing
self-attention as the exclusive building block to model the
aforementioned three levels of relationships.

In this work, we pose the question of whether it is plausible
to construct a high-performing transformer that simultane-
ously encapsulates the three distinct relationships. We argue
that such a design holds the potential to surmount two inher-
ent limitations in prior CNN-based meta-learning models.
First, constructing the correspondence between building
blocks, such as optimal matching (Zhang et al., 2020a), in
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CNNs remains computationally costly. In contrast, ViTs,
leveraging patches as tokens, intrinsically and efficiently es-
tablish the relationship between patches as building blocks.
Second, the relationships between tasks in existing CNN-
based models hinge on task embeddings (Rusu et al., 2018;
Achille et al., 2019; Yao et al., 2019), often derived from
image-level embeddings. This approach introduces irrele-
vant noise such as background and compromises local struc-
tures. Henceforth, tasks with similar embeddings modulate
their parameters (e.g., through a FiLM layer (Perez et al.,
2018; Requeima et al., 2019; Triantafillou et al., 2021)) to
stay close, while the high dimensionality of deep neural net-
works renders such modulation less effective to push away
dissimilar tasks that inherently need to be distinctly sepa-
rated. Conversely, ViTs present an alternative approach by
modeling task relationships explicitly through self-attention.

Motivated by these observations, we propose a few-shot
learning architecture centered exclusively on attention mech-
anisms. Our framework, named MetaFormer (derived from
Meta-tuned Transformer), extends the ViT by augmenting
the self-attention mechanism beyond patch token interac-
tions to encompass relationships between samples and tasks.
In the context of an N -way K-shot task with n patches per
sample, and N support and M query samples, the compu-
tation of similarities between all samples incurs a potential
time complexity of O((n(N + M)K)2). This computa-
tional complexity is considerable, particularly in light of
the often substantial value of M and the large number of
patches (n). To address this challenge, we propose Masked
Sample Attention (MSA), which implements sample rela-
tionships separately after each attention layer of the original
ViT in a decoupled manner. Simultaneously, it involves
an adaptive mask to not only enforce consistency in task-
specific discriminative features across all samples within a
task but also facilitate the switch between few-shot learning
setups. For addressing task relationships at the building
block level, we propose the Patch-grained Task Attention
(PTA). PTA learns a probe vector for each task summarizing
discriminative patch-level patterns and maintains a dynamic
knowledge pool consolidating diverse patterns from histori-
cal tasks. Subsequently, PTA conditions on attention-based
mechanisms for knowledge retrieval and aggregation.

The contributions of this integrated transformer are outlined
as follows. (1) Coherence and compatibility: we provide
a coherent few-shot learning framework that exclusively
leverages attention mechanisms, thus ensuring compatibil-
ity with off-the-shelf ViT-backed pre-trained transformers
(including CLIP) and enhancing their few-shot learning per-
formances. (2) Flexibility: the adaptive mask surprisingly
supports both inductive and transductive few-shot learning
protocols. (3) Practical efficacy: we conduct our experi-
ments on 12 in-domain and 10 cross-domain few-shot gener-
alization datasets, on which MetaFormer outperforms both

inductive and transductive state-of-the-art methods with im-
provements of up to 8.77% and 6.25%.

2. Related work
Meta-Learning in Few-Shot Classification. Meta-learning
serves as a fundamental framework for few-shot learning
with the aim of distilling and transferring prior knowledge
for quickly adapting to new unseen tasks. Most related
to our work are metric-based and feedforward-adaptation
meta-learning methods. Metric-based methods (Vinyals
et al., 2016b; Snell et al., 2017; Sung et al., 2018; Oreshkin
et al., 2018; Lee et al., 2019; Chen et al., 2021a; Ma et al.,
2021c; Simon et al., 2020; Lai et al., 2022) seek to em-
bed samples into global universal feature representations
and aim at improving distance metrics for better measuring
sample similarity in the embedding space. Recent works
establish fine-grained local feature matching by leveraging
Earth Mover’s Distance (Zhang et al., 2020a), spatial proto-
types (Doersch et al., 2020) or set-to-set metrics (Afrasiyabi
et al., 2022). However, fixed embedding is not very robust
and sufficient to accommodate tasks with significant shifts
due to cluttered backgrounds and intricate scenes. Sev-
eral feedforward approaches are proposed to perform task
adaptation. One line of work generates task-conditioned
classifiers (Rusu et al., 2018; Xu et al., 2020), convolution
kernels (Ma et al., 2021b; Zhmoginov et al., 2022), or batch
normalization parameters (Requeima et al., 2019; Bateni
et al., 2020). Another line directly adapts the feature em-
bedding to new tasks utilizing within-support (Ye et al.,
2020) and support-query (Hou et al., 2019; Kang et al.,
2021) sample relationships. Our approach follows the sec-
ond vein and the main difference is that we embed intra-task
interactions into the network at various scales to fully lever-
age coarse-to-fine multi-scale information for learning a
richer task-specific feature embedding. To handle tasks with
different distributions, a handful of works built upon the
gradient-based methods try to extract the underlying task
structure for customizing initialization (Yao et al., 2019;
2020; Zhou et al., 2021a; Jiang et al., 2022). However, these
algorithms rely on time-consuming clustering and the dis-
criminative task representations are difficult to learn (Jiang
et al., 2022). Recent works (Wang et al., 2022a; Douillard
et al., 2022; Wang et al., 2022b; Smith et al., 2023) pro-
pose inter-task attention to prevent catastrophic forgetting
in the continual learning setting. Unlike them retaining a
single vector (Wang et al., 2022a), our method maintains
a knowledge pool to organize structured meta-knowledge
(i.e., key feature patterns), which is then tailored for reuse
in the current task through attention-based aggregation.

Vision Transformers for Few-Shot Learning. Large-scale
pre-trained vision transformers (Dosovitskiy et al., 2020;
Liu et al., 2021; Tu et al., 2022), utilizing the data-driven
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prior and self-attention mechanism to encode long-range
dependency in the data, generalize better than CNNs (Zhang
et al., 2022). Combined with self-supervised pre-training
techniques, recent works have shown the potential of few-
shot vision transformers via designing self-distillation train-
ing to mitigate the overfitting issue (He et al., 2022b; Dong
et al., 2022; Lin et al., 2023). For example, HcT (He et al.,
2022b) utilize the DINO-based (Caron et al., 2021) teacher-
student framework to distill the global class token and train
three cascaded transformers with two pooling layers in be-
tween. To further supervise the patch tokens, SUN (Dong
et al., 2022) adopts the patch-level pseudo labels generated
by the teacher network and SMKD (Lin et al., 2023) in-
troduces the patch reconstruction loss in Masked Image
Modeling (MIM) (He et al., 2022a; Bao et al., 2022; Zhou
et al., 2022a). Beyond self-supervised ViTs, the initial in-
vestigations conducted by Hu et al. (Hu et al., 2022) and
Hiller et al. (Hiller et al., 2022) underscore the advanta-
geous impact of integrating meta-learning techniques to
further augment the few-shot learning capabilities of ViTs.
FewTURE (Hiller et al., 2022), specifically, uses a support-
aware patch importance mask learned in the inner loop to
address supervision collapse. However, its utility is mostly
confined to the top classifier, restricting the network’s ability
to refine features for tasks with significant distribution shifts.
We also ground our proposed method on pre-trained vision
transformers and introduce a novel meta-learning approach
that embeds sample and task relationships into ViTs, en-
abling the learning of more discriminative features for each
specific task. Our contribution is orthogonal to SKMD and
we empirically show that MetaFormer can further improve
the joint performance.

3. MetaFormer for Few-shot Classification
We present our approach in this section. The overall archi-
tecture of our MetaFormer is illustrated in Figure 1. We
start by briefly introducing the meta-tuning practice and the
self-attention of vision transformer in Section 3.1 and then
elaborate on our proposed Masked Sample Attention (MSA)
and Patch-grained Task Attention (PTA) in Section 3.2 and
Section 3.3, respectively. Finally, using MSA and PTA as
core building blocks, we present a new vision transformer
with holistic attention for meta-learning in Section 3.4.

3.1. Preliminaries

Meta-tuning Practice. Meta-learning aims to learn a model
capable of adapting quickly to recognize new classes with
only a few labeled examples. Following recent literature (Hu
et al., 2022; Hiller et al., 2022), we initially pre-train a
model on the base training dataset and then meta-tune the
MetaFormer in the episodic training manner (Vinyals et al.,
2016b). In a classical N -way K-shot setting, each episode

randomly selects N classes to form the support set S =
{(xc

i , y
c
i )}

N×K
i=1 containing K samples in each class and the

query set Q =
{(

xt
j , y

t
j

)}M

j=1
with M samples.

Self-attention in ViTs. Given a N -way K-shot task
with NK + M images x ∈ RHeight×Width×3 as input,
ViTs (Dosovitskiy et al., 2020) first divide individual im-
ages into n non-overlapping patches and then map them into
d-dimension tokens through a linear projection layer. After
that, a trainable class token is prepended as the final input
token sequence X ∈ R(NK+M)×L×d (L = n+1), taken by
several Multi-head Self-Attention (MHSA) layers and MLP
layers for feature extraction. Consider a MHSA layer with
H heads, and query, key, and value embeddings of the input
X are given as Q = WQX, K = WKX, V = WV X,
respectively. The output of MHSA is given as:

MHSA (Q,K,V) = Concat (h1, . . . ,hH)WO

where hi = σ (Ai)Vi = σ

(
QiK

⊤
i√

dk

)
Vi

(1)

where WO is the output projection matrix, dk = d/H
denotes the head dimension, and σ(·) signifies the softmax
activation function. The matrix Ai ∈ RL×L serves as the
attention matrix, measuring the pairwise token affinities
across different patch locations. Following the MHSA as
defined in (1), each token representing a building block
within the image gains awareness of its relational context
with all other tokens.

3.2. Masked Sample Attention

For computational efficiency, the very few existing methods
capture sample relationships by attaching one or several
extra attention layers on top of the fixed feature extractor
(Ye et al., 2020; Doersch et al., 2020; Hiller et al., 2022).
However, it is demonstrated that different layers of the back-
bone yield different semantic levels of feature embedding
and thus different types of knowledge (Raghu et al., 2021).
Motivated by this, we propose to leverage coarse-to-fine
multi-scale information across layers to capture discrimina-
tive sample interactions at the patch token level.

A straightforward and intuitive approach is to perform self-
attention over both patch and sample dimensions simultane-
ously. Given the task input X, the core computation of one
MHSA layer primarily revolves around calculating the at-
tention matrix AJ ∈ R(NK+M)L×(NK+M)L in (1). There-
fore, the complexity of the joint space-sample attention is
O((NK + M)2L2). Such joint space-sample interaction
empowers the vision transformer to capture sample relation-
ships for task-specific embedding, but it comes at a high
computational cost and incurs heavy memory footprints.

Inspired by the divided space-time attention in video trans-
formers (Bertasius et al., 2021), we introduce a more ef-
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Figure 1. Overview – (a) The architecture of the MetaFormer with holistic attention, which extracts feature representations of support
and query samples with only one feedforward while following the inductive protocol; (b) Three modules build holistic attention integrated
with intra- and inter-task interaction in a sequential mode; (c) Schematic illustration of the proposed Masked Sample Attention (MSA)
with sample causal attention mask to exploit the within-support and support-query relations for task-specific embeddings. (d) Schematic
illustration of the proposed Patch-grained Task Attention (PTA) where foreground region is further concentrated by previous relevant
semantic knowledge with the task-specific probe vector.

ficient architecture designed to decouple patch attention
and sample attention, illustrated in Figure 1(b). In the
case of decoupled patch-sample attention, within each layer,
our approach initially computes patch-only attention as (1)
to obtain features isolating backgrounds and emphasizing
underlying objects. Subsequently, we reshape the token
sequence to RL×(NK+M)×d that is fed to MHSA with
sample attention matrix AS ∈ R(NK+M)×(NK+M), in-
corporating sample interactions across all patches at the
same patch location to capture the similarities and variances
among samples, which is essential for the feature extrac-
tion in a given task to discern task-specific discriminative
regions. As such, the computation complexity is reduced to
O(L(NK +M)2 + (NK +M)L2). See Figure 5 in Ap-
pendix J for an illustration. Though this decoupling shares
the spirit with video transformers (Ho et al., 2019; Bertasius
et al., 2021), it is crucial to highlight that our consideration
of the sample-to-sample relationship in few-shot learning
presents a unique challenge distinct from the frame-to-frame
relationship in videos, i.e., query samples have to be differ-
entiated from support ones. This challenge motivates the
following introduction of sample causal masks.

As shown in Figure 1(c), we introduce our Masked Sample
Attention (MSA) with label infusion and the designed causal
masking mechanism to further enforce consistency in the at-
tended features across samples within a task. We first get the
embedded support category information Wcy ∈ R1×d via
the linear projection matrix Wc, which is infused to support
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(a) Inductive Sample Causal Mask (b) Autoregressive Sample Causal Mask

Activated Sample Interaction Masked Sample Interaction

Figure 2. Sample Causal Attenntion Mask. An example with
N = 4 and K = 1. (a) Inductive sample causal mask for within-
support and support-query sample correspondence learning. (b)
Autoregressive sample causal mask for extra query-query sample
correspondence learning.

tokens through the elementwise addition. For the obtained
sample attention AS , we maintain the sample causal mask
H ∈ R(NK+M)×(NK+M) to restrict the sample interaction
patterns as:

ÂS = AS ⊙H (2)

where ⊙ is the element-wise product.

Through the constraint, support samples can attend them-
selves to strengthen intra- and inter-class discriminative
clues, which query samples utilize for task-specific feature
consistency learning. Note that this mask mechanism also
makes our method comply with the inductive protocols.
In the autoregressive scenario, we also extend our MSA
with the autoregressive causally-masked sample attention
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to embed the query-query interactions into the vision trans-
former. Figure 2(b) shows an example mask with N = 4
and K = 1. Query samples attend to support samples
and earlier predicted queries in an autoregressive fashion,
which thus serves to implicitly expand the support set for
subsequent query predictions.

3.3. Patch-grained Task Attention

In this section, we introduce details of the proposed Patch-
grained Task Attention (PTA), as illustrated in Figure 1(d).
PTA aims to transfer previous task knowledge for regular-
izing the adaptation in new tasks. To this end, PTA learns
a task-specific probe vector summarizing discriminative
patch-level patterns and maintains a knowledge pool consol-
idated during meta-training to organize learned knowledge.
When a new task comes, it leverages attention-based mecha-
nisms to tap into and aggregate relevant knowledge from the
knowledge pool. We elaborate on four key components as
follows: task probe vector aggregation, knowledge retrieval,
pool consolidation, and knowledge fusion.

Task Probe Vector Aggregation. Given a task consisting of
support and query sets, we first gather the task information
with learnable task probe vectors g ∈ RT×d, which are com-
puted along with support patch tokens XC ∈ RNK×L×d to
aggregate the key parts of samples and the whole task rep-
resentations. Specifically, we perform the task aggregation
using attention as:

g′ = Aggregation = MHSA (Qg,KXC ,VXC ) (3)

where Qg is query embedding of task probe vectors; KXC

and VXC are key and value embeddings of support patch
tokens, respectively. This allows task probe vectors to fo-
cus on relevant task-specific feature patterns and ignore
irrelevant semantics of each sample.

Knowledge Retrieval. After gathering the task information,
we retrieve relevant knowledge using a simple weighted
summation strategy from the knowledge pool p ∈ RZ×d

with Z components (which will be introduced below). The
retrieval is formulated as:

r =
∑
z

γ (g′,pz)pz (4)

where γ is the score function based on cosine similarity be-
tween task probe vectors and pool components. r ∈ RT×d

is the retrieved historical knowledge that can be thought
of as key feature semantics (e.g., ears and eyes of the dog)
related to the current task samples.

Pool Consolidation. During meta-training, we maintain a
knowledge pool p updated by every sequentially coming
task. To consolidate the learned knowledge in the pool, we
select relevant components from the pool and integrate them

with new information brought by the current task as follows:

ps = ps + g′
j (5)

where s = argmax γ
(
g′
j ,p

)
representing the indices of

the component most similar to j-th task probe vector. This
method also allows us to control the pool size and the mem-
ory consumption.

Knowledge Fusion. To regularize the adaptation of new
tasks with historical knowledge, we deliver the union of
original task vectors g and retrieved knowledge r to enhance
the support patch token representations via the attention
mechanism as follows:

Fusion = MHSA
(
QXC ,K[g′;r],V[g′;r]

)
(6)

where QXC is query embedding of support patch tokens and
K[g;r] and V[g;r] are key and value embeddings of regular-
ized task-specific semantics, respectively. The intuition is to
leverage well-learned feature semantics in previous similar
tasks to strengthen discriminative regions in new tasks.

3.4. Meta-training and Inference with MetaFormer

Meta-training. Using MSA and PTA as basic building
blocks working in conjunction with original ViT modules,
we propose a new vision transformer fθ with holistic at-
tention, named MetaFormer, encapsulating three distinct
relationships between patch tokens, samples and tasks at
different semantic levels, to extract rich task-specific fea-
ture representations. For the inductive protocol (Vinyals
et al., 2016b), MetaFormer configures the sample causal
mask as the inductive variant, which, coupled with the in-
herent Layer Normalization in vision transformers, ensures
independent predictions for each query sample. Built upon
feature embeddings extracted by MetaFormer, we estimate
the class patch prototypes by averaging support patch to-
kens per class pk = 1

|Sk|
∑

x∈Sk fθ (x). Query samples are
predicted based on patch-wise cosine similarity with proto-
types (Lai et al., 2022; Hiller et al., 2022). The probability
of kth category is:

P (ŷt = k | xt) =
ed(fθ(xt),pk)/τ∑
c e

d(fθ(xt),pc)/τ
(7)

where d indicates the cosine distance and τ is scaling tem-
perature. The cross-entropy loss function with the few-shot
label yt is:

LCE = −
M∑
t=1

logP (ŷt = yt | xt) (8)

We also introduce the autoregressive setting from regres-
sion tasks (Nguyen & Grover, 2022; Bruinsma et al., 2023)
to classification scenarios, seamlessly switching with an

5



One Meta-tuned Transformer is What You Need for Few-shot Learning

autoregressive sample causal mask to allow interactions be-
tween subsequent query samples and those predicted earlier
in a single pass. The support prototypes are then enriched
by feeding previously predicted queries as the auxiliary
support set S̃ with predicted probability belonging to class
k. We employ P (ŷt = k | xt) as the sample weights to
compute auxiliary prototypes through a weighted average
p̂k = 1∑

x∈S̃k P (k|x)
∑

x∈S̃k P (k | x)fθ(x). New proto-
types are updated by the mean of pk and p̂k. Given mod-
eling dependencies between all M query samples requires
M prototype updates, we propose managing updates with
a sampling size of r queries at a time for faster and more
consistent prototype refinement.

Inference. MetaFormer extracts support and query feature
embeddings in a single feedforward pass during inference,
configuring the inductive and autoregressive sample causal
masks for inductive and autoregressive settings, respectively.
For autoregressive inference, we adopt an inference-time
augmentation similar to prior works (Bendou et al., 2022;
Zhu & Koniusz, 2023) while differing by shuffling the or-
der of the samples in a meta-testing task s times and then
computing the most confident logits as the final prediction.

4. Experiments
4.1. Standard Few-Shot Learning

Datasets. We train and evaluate our MetaFormer on the
four standard few-shot benchmarks: miniImageNet (Vinyals
et al., 2016b), tieredImageNet (Ren et al., 2018b), CIFAR-
FS (Bertinetto et al., 2019) and FC-100 (Oreshkin et al.,
2018). In all experiments, we follow the standard data usage
specifications same as Hiller et al. (2022), splitting data into
the meta-training set, meta-validation set, and meta-test set,
and classes in each set are mutually exclusive. The details
of each dataset are described in Appendix A.1.

Implementation Details. We train our method in two stages
following Hiller et al. (2022): self-supvervised pretraining
and meta-tuning. We first pre-train our vision transformer
backbone (Dosovitskiy et al., 2020; Liu et al., 2021) utiliz-
ing a self-supervised training objective (Zhou et al., 2022a).
Subsequently, we integrate our proposed MSA and PTA
into the vision transformer for meta-learning. We denote
our framework as MetaFormer-I in the inductive setting
and MetaFormer-A in the autoregressive setting. See Ap-
pendix A.2 for more training and evaluation details.

Comparison with the State-of-the-art. The compari-
son results with related or recent state-of-the-art (SOTA)
methods on miniImageNet and tieredImageNet is shown
in Table 1. Our method significantly outperforms previ-
ous SOTA meta-learning approaches. For instance, on
miniImageNet, MetaFormer-I exceeds FewTURE (Hiller
et al., 2022) by 7.76% and 5.51% in 1-shot and 5-shot

settings, respectively, showcasing the remarkable effective-
ness of our holistic attention mechanism in harnessing the
full potential of transformers for meta-learning. Addition-
ally, MetaFormer works synergistically with self-distillation
training methods (He et al., 2022b; Lin et al., 2023) to
enhance task-specific feature embedding and overall per-
formance. Results on CIFAR-FS and FC100, presented in
Table 2, further validate the superiority of MetaFormer-I.
As illustrated in Table 3, MetaFormer demonstrates com-
putational efficiency over FewTURE and SMKD, primarily
by eliminating the need for inference-time tuning and re-
ducing the large resolution requirements. It is noteworthy
that MetaFormer facilitates full sample interactions, as op-
posed to FewTURE, which focuses solely on contextual
relationships. Detailed evaluations of computational cost
are provided in Appendix H. Seamless transitioning from
the inductive setting with the autoregressive sample causal
mask, MetaFormer-A outperforms protoLP (Zhu & Koniusz,
2023) in the majority of cases by a clear margin and stands
out as the first pure transformer-backed method for transduc-
tive few-shot image classification. For more comprehensive
comparison results and discussions, refer to Appendix A.3.

4.2. Broader Study of Few-Shot Learning

Cross-Domain and Multi-Domain Few-shot Classifica-
tion. To further investigate the fast adaptation ability of
our method, we evaluate the MetaFormer in more challeng-
ing cross-domain (Chen et al., 2019; Oh et al., 2022) and
multi-domain (Triantafillou et al., 2020) scenarios, contain-
ing dual category and domain shifts. Details on bench-
marks and implementation are available in Appendix B
and Appendix C. We evaluate MetaFomer, meta-trained
on miniImageNet, on cross-domain few-shot classification
benchmarks in Table 4 (See more results and discussions
in Appendix B.3). MetaFormer demonstrates remarkable
task adaptability, surpassing previous in-domain SOTA
meta-learning methods FewTURE (Hiller et al., 2022) and
PMF (Hu et al., 2022) with a significant improvement of
up to 8.77% and 16.86%, highlighting its effectiveness
in bridging domain gaps. MetaFormer also improves the
transfer learning method SMKD (Lin et al., 2023) by up
to 2.57%. Furthermore, in Table 14 (Appendix C.3), we
assess MetaFormer on the large-scale and challenging Meta-
Dataset (Triantafillou et al., 2020), where it outperforms
PMF (Hu et al., 2022) in handling tasks with diverse dis-
tributions. We attribute such impressive improvement to
our proposed holistic attention mechanism, which not only
facilitates sample correspondence learning but also enables
knowledge reuse, thus aiding task adaptation to obtain more
discriminative feature representations for each task.

Compatibility with Other Backbones and Foundation
Models. Different from isotropic vision transformers, hier-
archical models (Liu et al., 2021) bring greater efficiency
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Table 1. Average classification accuracy (%) for 5-way 1-shot and 5-way 5-shot scenarios. Reported are the mean and 95% confidence
interval on the unseen test sets of miniImageNet (Vinyals et al., 2016a) and tieredImageNet (Ren et al., 2018a). * denotes results reported
by us. More comprehensive results are shown in the appendix.

Method Setting Backbone # Params miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

FEAT (Ye et al., 2020) Inductive ResNet-12 14.1 M 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16

DeepEMD (Zhang et al., 2020a) Inductive ResNet-12 12.4 M 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

RENet (Kang et al., 2021) Inductive ResNet-12 12.6 M 67.60±0.44 82.58±0.30 71.61±0.51 85.28±0.35

COSOC (Luo et al., 2021) Inductive ResNet-12 12.4 M 69.28±0.49 85.16±0.42 73.57±0.43 87.57±0.10

LEO (Rusu et al., 2018) Inductive WRN-28-10 36.8 M 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

MetaQDA (Zhang et al., 2021c) Inductive WRN-28-10 36.5 M 67.83±0.64 84.28±0.69 74.33±0.65 89.56±0.79

SUN (Dong et al., 2022) Inductive ViT 12.5 M 67.80±0.45 83.25±0.30 72.99±0.50 86.74±0.33

FewTURE (Hiller et al., 2022) Inductive ViT-Small 22 M 68.02±0.88 84.51±0.53 72.96±0.92 86.43±0.67

PMF∗ (Hu et al., 2022) Inductive ViT-Small 21 M 71.01±0.81 86.03±0.53 76.61±0.89 89.66±0.54

MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 75.78±0.71 90.02±0.44 79.05±0.81 90.40±0.53

HCTransformers (He et al., 2022b) Inductive 3×ViT-Small 63 M 74.74±0.17 89.19±0.13 79.67±0.20 91.72±0.11

SMKD (Lin et al., 2023) Inductive ViT-Small 21 M 74.28±0.18 88.89±0.09 78.83±0.20 91.21±0.11

SMKD + MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 76.54±0.73 90.76±0.41 80.57±0.82 92.42±0.49

EASY (Bendou et al., 2022) Transductive 3×ResNet-12 37.2 M 84.04±0.23 89.14±0.11 84.29±0.24 89.76±0.14

protoLP (Zhu & Koniusz, 2023) Transductive WRN-28-10 36.5 M 84.32±0.21 90.02±0.12 89.65±0.22 93.21±0.13

MetaFormer-A (Ours) Transductive ViT-Small 24.5 M 84.78±0.79 91.39±0.42 88.38±0.78 93.37±0.45

Table 2. Average classification accuracy (%) for 5-way 1-shot and 5-way 5-shot scenarios. Reported are the mean and 95% confidence
interval on the unseen test sets of CIFAR-FS (Bertinetto et al., 2019) and FC100 (Oreshkin et al., 2018). * denotes results reported by us.
More comprehensive results are shown in the appendix.

Method Setting Backbone # Params CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot

MetaOpt (Lee et al., 2019) Inductive ResNet-12 12.4 M 72.00±0.70 84.20±0.50 41.10±0.60 55.50±0.60

RFS (Tian et al., 2020) Inductive ResNet-12 12.4 M 73.90±0.80 86.90±0.50 44.60±0.70 60.90±0.60

BML (Zhou et al., 2021b) Inductive ResNet-12 12.4 M 73.45±0.47 88.04±0.33 45.00±0.41 63.03±0.41

TPMN (Wu et al., 2021) Inductive ResNet-12 12.4 M 75.50±0.90 87.20±0.60 46.93±0.71 63.26±0.74

PSST (Chen et al., 2021b) Inductive WRN-28-10 36.5 M 77.02±0.38 88.45±0.35 - -
Meta-QDA (Zhang et al., 2021c) Inductive WRN-28-10 36.5 M 75.83±0.88 88.79±0.75 - -
SUN (Dong et al., 2022) Inductive ViT 12.5M 78.37±0.46 88.84±0.32 - -
FewTURE (Hiller et al., 2022) Inductive ViT-Small 22 M 76.10±0.88 86.14±0.64 46.20±0.79 63.14±0.73

PMF∗ (Hu et al., 2022) Inductive ViT-Small 21 M 76.70±0.90 87.61±0.60 45.79±0.73 63.64±0.72

MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 80.16±0.76 90.57±0.55 51.14±0.71 68.33±0.74

HCTransformers (He et al., 2022b) Inductive 3×ViT-Small 63 M 78.89±0.18 90.50±0.09 48.27±0.15 66.42±0.16

SMKD (Lin et al., 2023) Inductive ViT-Small 21M 80.08±0.18 90.91±0.13 50.38±0.16 68.50±0.16

SMKD + MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 81.49±0.74 91.91±0.54 52.18±0.78 71.29±0.73

EASY (Bendou et al., 2022) Transductive 3×ResNet-12 37.2 M 87.16±0.21 90.47±0.15 54.13±0.24 66.86±0.19

protoLP (Zhu & Koniusz, 2023) Transductive WRN-28-10 36.5 M 87.69±0.23 90.82±0.15 − −
MetaFormer-A (Ours) Transductive ViT-Small 24.5 M 88.34±0.76 92.21±0.59 58.04±0.99 70.80±0.76

Table 3. Inference efficiency comparison with existing methods on
the mini-ImageNet.

Method GLOPs Inference time [ms]
1-shot 5-shot

FewTURE 5.01 77.35±0.47 111.22±1.27

SMKD 12.58 137.58±0.66 171.37±0.78

MetaFormer-I 4.88 67.65±0.78 105.72±1.06

and capture multi-scale information. Our evaluation of the
MetaFormer on Swin-Transformer (Liu et al., 2021) (see
Table15 in Appendix E) reveals consistent improvements
and underscores its broad applicability. Pre-trained vision
foundation models demonstrate impressive zero-shot image
classification performance (Radford et al., 2021). Recent

works have shown that CLIP’s performance on downstream
tasks can be further enhanced by utilizing few-shot data
and techniques (Zhang et al., 2021b; Zhou et al., 2022b;
Zhu et al., 2023). These approaches have shown promising
improvements over frozen models like Zero-shot CLIP. To
further investigate the adaptation ability of our proposed
method, we adapt our method to CLIP model with ViT-B/16
for advancing its performance in downstream tasks. Imple-
mentation details are available in Appendix D. As shown
in Table 5, CLIP pre-trained on large-scale web-crawled
image-text pairs struggles with downstream datasets ex-
hibiting a large domain gap, such as the medical dataset of
ISIC. Adapting CLIP with few labeled samples is pivotal to
guarantee better performance, though naively increasing the
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Table 4. Broader study of cross-domain few-shot learning. Average classification accuracy (%) for 5-way 1-shot scenario when
meta-learning on miniImageNet (Vinyals et al., 2016a) but meta-testing on cross-domain few-shot benchmarks.

Method CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX

PMF (Hu et al., 2022) 40.12±0.74 33.91±0.64 60.84±0.88 43.78±0.77 72.62±0.86 64.24±0.80 31.00±0.58 22.40±0.44

FewTURE (Hiller et al., 2022) 48.21±0.83 33.97±0.63 58.74±0.91 43.31±0.76 68.22±0.88 61.77±0.81 28.67±0.56 22.60±0.44

MetaFormer-I (Ours) 56.98±0.93 37.32±0.66 61.90±0.89 49.30±0.82 74.48±0.82 68.23±0.79 33.22±0.57 23.02±0.42

SMKD (Lin et al., 2023) 54.64±0.84 34.30±0.64 62.75±0.92 45.57±0.81 75.99±0.82 68.58±0.77 33.92±0.62 22.59±0.41

SMKD+MetaFormer-I (Ours) 57.21±0.88 35.38±0.64 62.89±0.85 46.13±0.80 76.06±0.79 70.04±0.82 34.69±0.62 22.65±0.40

protoLP (Zhu & Koniusz, 2023) 69.94±1.23 35.50±0.93 67.44±1.31 44.26±1.15 87.13±1.10 77.89±1.20 33.00±0.78 21.70±0.44

MetaFormer-A (Ours) 67.39±0.98 35.68±0.74 70.78±1.05 50.51±0.98 87.36±0.84 79.44±0.87 36.38±0.72 22.91±0.41

number of parameters to adapt even incurs overfitting. Our
method significantly enhances Zero-shot CLIP on EuroSAT
by 42.76% and ISIC by 43.81%, and its adaptation ability
also surpasses Tip-Adapter by a large margin.

Table 5. Classification results with foundation model for 1-shot
EuroSAT and ISIC. Reported are the mean and 95% confidence
interval on the test set. ViT-B/16 with the patch size 16 × 16 is
adopted for the vision branch in all methods.

Method EuroSAT ISIC

Zero-shot CLIP 48.73±0.98 21.07±0.76

Tip-Adapter 69.85±0.75 28.70±0.97

Tip-Adapter-F 72.01±0.97 32.27±1.11

Tip-Adapter-F with more layers 51.95±0.86 16.17±0.78

Tip-Adapter-F+MetaFormer-I (Ours) 88.83±0.78 45.96±1.44

4.3. Ablation study

Component Analysis. In this section, we investigate the
individual contributions of key components in MetaFormer.
The impact on performance, along with the associated in-
crease in the number of additional learnable parameters, are
detailed in Table 6, demonstrating that both components
bolster performance with only a modest increase in com-
putational overhead. We address the potential concern that
observed performance gains could be attributed solely to an
increase in parameters in Appendix H.3 Table 19, where we
present a detailed parameter comparison to underscore that
the remarkable enhancements stem from the components’
inherent design. The effectiveness of the proposed adaptive
sample causal masks is further evaluated in Appendix F Ta-
ble 16, revealing that a lack of effective constraints between
support and query samples (see Appendix H.3 Figure 4 for
details of the ablated masks of within-support and support-
query) results in suboptimal performance. We demonstrate
in Appendix G Table 17 that PTA exhibits superior design
and performance.

Table 6. Component ablation studies and the number of additional
learnable parameters on miniImageNet.

MSA PTA Add. Params. miniImageNet
1-shot 5-shot

✓ ✓ +3.57M 75.78± 0.71 90.02± 0.44

✓ ✗ +2.01M 74.64± 0.76 87.53± 0.47
✗ ✓ +1.56M 73.63± 0.75 87.76± 0.52

Decoupled Mechanism. The self-attention in traditional
ViTs allows each patch token to interact with all other patch
locations, especially in deeper layers. Thus, each patch to-
ken processes and stores non-local information, which is
the key for vision transformers to handle potential spatial
misalignment between different images. These intuitions
are supported by the results we have obtained in Table 7.
We here resize the image resolution to 192× 192 due to the
higher memory footprint of the joint attention. The results
demonstrate our decoupled approximation achieves com-
parable performance while offering a significant reduction
in computational costs. This finding supports our hypothe-
sis that the decoupled attention mechanism can effectively
leverage cross-sample information, even in the presence of
misalignment between images. We conclude that our decou-
pled patch-sample attention achieves a trade-off between
accuracy and efficiency for capturing task-specific sample
interactions.

Table 7. Comparison results of joint and decoupled sample-patch
attention mechanisms on miniImageNet.

Method mini 1-shot

Joint Sample-Patch Attention 73.35± 0.75
Decoupled Sample-Patch Attention 73.21± 0.76

Distance Metrics. We extend our analysis by incorporating
a comparative study with the regularized Mahalanobis dis-
tance (Bateni et al., 2022) as a representative of Euclidean-
based metrics, alongside our initial approach using cosine
similarity. In Table 8, we observe that temperature scal-
ing plays a pivotal role in modulating the interaction with
the softmax, and scaled cosine similarity performs at par
with the Euclidean distance, which aligns with the effects
of metric scaling (Oreshkin et al., 2018). Furthermore, our
analysis shows the resilience of cosine similarity against the
intervention of noisy patch information for computing local
pairwise distances.

Class Embeddings. Unlike previous meta-learning meth-
ods using class embeddings for better modeling the task-
specific distribution (Rusu et al., 2018; Xu et al., 2020;
Zhmoginov et al., 2022), our approach incorporates sam-
ple label information into the feature extraction process to
capture nuanced distinctions between classes. The results
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Table 8. Comparison results of different metrics on miniImageNet.
Temp.: Temperature Scaling, Patch.: Patch-wise distance.

Method Temp. Patch. mini 1-shot

Cosine Distance

✗ ✗ 64.22± 0.83
✓ ✗ 74.14± 0.73
✓ ✓ 75.78± 0.71

Mahalanobis Distance
✗ ✗ 72.93± 0.74
✓ ✗ 73.09± 0.75
✓ ✓ 71.97± 0.76

in Table 9 underscore that introducing class embeddings
via either concatenation or summation facilitates differenti-
ation between classes and further strengthens task-specific
discriminative clues with the guidance of a sample causal
mask.

Table 9. Different label infusion methods with ViT-Small on
miniImageNet.

Method Backbone mini 1-shot

w/o. label ViT-Small 73.70
concatenation ViT-Small 74.59
summation ViT-Small 74.64

Inference-time Augmentation Strategies. In transduc-
tive few-shot classification tasks, our model MetaFormer-A
incorporates an inference-time augmentation strategy by
reshuffling the sample order, while prior state-of-the-art
methods involve evaluating multiple random crops per sam-
ple and subsequently averaging the features for the final
prediction (Bendou et al., 2022; Qi et al., 2021; Zhu &
Koniusz, 2023). We evaluate the impact of different aug-
mentation strategies in Table 10. The results showcase the
unique and synergistic role of reshuffling in enhancing the
autoregressive and sequential nature of our MetaFormer-A.

Table 10. Comparison of different inference-time augmentation
strategies. We report 1-shot accuracy on CIFAR-FS. Crop.: Ran-
dom Cropping

Method Backbone Crop. Reshuffling 1-shot

protoLP WRN-28-10 ✓ ✗ 87.69± 0.23
protoLP WRN-28-10 ✓ ✓ 87.69± 0.23
MetaFormer-A ViT-Small ✗ ✗ 85.76± 0.77
MetaFormer-A ViT-Small ✗ ✓ 88.34± 0.76

4.4. Qualitative Analysis

Figure 3 presents visualizations of our holistic attention
mechanism, with columns depicting the attention maps of
three distinct attention modules. The results reveal that
the sample correspondence learning guided by spatial and
sample attention modules suppresses irrelevant regions by
exploiting pattern relations within and across samples, lead-
ing to the extraction of more discriminative, task-specific
features. Furthermore, the task attention module adeptly
transfers semantic knowledge from previous tasks to new

ones, with a particular focus on the critical components of
foreground objects. When integrated with intra- and inter-
task attention, holistic attention yields a more precise and
comprehensive response map, predominantly concentrated
on the foreground region.

Patch Attention Sample Attention Task Attention Holistic Attention

Malamute

Boxer

Golden Retriever

Input Images

Figure 3. Response visualization for MetaFormer with holistic at-
tention.

5. Conclusions
This paper proposes MetaFormer, a novel Vit-backed meta-
learning approach for few-shot classification. MetaFormer
capitalizes on the transformer architecture to orchestrate
holistic attention, integrating two lightweight modules to
capture intra-task and inter-task interactions. Through
Masked Sample Attention (MSA), MetaFormer promotes
sample consistency for adapting task-specific discrimina-
tive feature representations. Meanwhile, Patch-grained Task
Attention (PTA) leverages a dynamic knowledge pool to
infuse relevant historical knowledge into current task adap-
tation. Configuring different adaptive masks, MetaFormer
supports both inductive and transductive few-shot learning
protocols. Extensive experiments demonstrate the superior-
ity of MetaFormer across standard in-domain, cross-domain,
and multi-domain benchmarks.

Impact Statement
Broader Impact. Our proposed meta-learning method in-
tegrates seamlessly with recent state-of-the-art pre-trained
vision transformers and foundation models, significantly en-
hancing their few-shot classification capabilities, and hence
has the potential to advance the field of machine learning.
The deployment of such advanced machine learning models
in real-world scenarios must be governed by careful con-
sideration of privacy, fairness, and transparency to ensure
responsible use.

Limitations. The current study primarily focuses on few-
shot image classification, leaving the exploration of our
method’s applicability to detection and segmentation tasks
for future work.
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One Meta-tuned Transformer is What You Need for Few-shot Learning
-Supplementary Material-

A. Setup for In-Domain Few-Shot Evaluation
A.1. Datasets Used for Benchmarks

For standard few-shot image classification evaluation with only class shift, we train and evaluate our MetaFormer presented
in the main paper on the following few-shot benchmarks: miniImageNet. (Vinyals et al., 2016b) is a subset of the ImageNet-
1K, consisting of 100 classes and 600 images in each category. The classes are divided into 64, 16, and 20 for training,
validation, and test, respectively. tieredImageNet. (Ren et al., 2018b) is another larger and more challenging subset of
ImageNet-1K. It contains 34 higher-level nodes near the root of ImageNet, which are 608 classes in total. The dataset
is split into 20, 6, and 8 higher-level nodes and corresponding 351, 97, and 160 classes as the training, validation, and
testing set, respectively. CIFAR-FS (Bertinetto et al., 2019) contains 100 classes and 600 images from the CIFAR100
dataset (Krizhevsky & Hinton, 2009). The classes are split into 64 for training, 16 for validation, and 20 for testing.
FC100 (Oreshkin et al., 2018) is built from the CIFAR100 (Krizhevsky & Hinton, 2009) employing a splitting strategy
analogous to that of the tieredImageNet dataset to enhance difficulty, giving rise to 60 training, 20 validation, and 20 test
classes.

A.2. Additional Implementation Details

Pretraining. For MetaFormer, we adhere to the strategy delineated by Hiller et al. (2022) for pretraining our vision trans-
former backbones on the meta-training split of each dataset, maintaining most of the training hyperparameter configurations
reported in their study. Concretely, we employ default two global crops and ten local crops with respective crop scales of
(0.4, 1.0) and (0.05, 0.4). We use the image resolution of 224 × 224 and the output is projected to 8192 dimensions. A
patch size of 16 and window size of 7 are used for aligning standard settings in ViT-small (Dosovitskiy et al., 2020; Touvron
et al., 2021) and Swin-tiny (Liu et al., 2021), respectively. A batch size of 512 and a cosine-decaying learning rate schedule
are used. For SMKD-MetaFormer, we follow Lin et al. (2023) to train the vision transformer backbones with the image
resolution of 480× 480.

Meta-tuning. We integrate our proposed MSA and PTA into the original vision transformer in every other layer, starting
from the 6th layer, to construct holistic attention for meta-learning. Here, MSA and PTA are randomly initialized. The
number of task probe vectors T is configured to one for ViT and eight for Swin, and the pool size is set to Z = 50.
As training progresses, we consolidate via Eqn. (5) for a new task which is sufficiently similar to previous components,
where we evaluate the similarity via cosine similarity and set a similarity threshold of 0.5; otherwise, we directly add the
task-specific g′ to the pool if there is available capacity. During meta-tuning, we follow most of the training techniques
used in FewTURE (Hiller et al., 2022). We employ the SGD optimizer, utilizing a cosine-decaying learning rate initiated at
2 × 10−4, a momentum value of 0.9, and a weight decay of 5 × 10−4 across all datasets. The input image size is set to
224× 224 for MetaFormer and 360× 360 for SMKD-MetaFormer. Typically, training is conducted for a maximum of 200
epochs. To mitigate the risk of overfitting, we adopt the early stopping strategy coupled with freezing parameters of the first
three layers. For a fair comparison with the state-of-the-art transductive methods (Lazarou et al., 2021; Zhu & Koniusz,
2023), we adopt the same feature pre-processing as Hu et al. (2021) for MetaFormer-A. We set the sampling size r = 15
and shuffle the order of samples s = 30 times for autoregressive inference. All additional hyperparameters are selected on
600 randomly sampled episodes from the respective validation sets to ascertain the optimal parameter configuration. For the
evaluation of few-shot learning, we conduct a random sampling of 600 episodes from the test set to evaluate our model.

A.3. Results

We present a more comprehensive few-shot evaluation in Table 11 and Table 12, comparing various methods on the four
benchmark datasets. Based on ViT-Small, our MetaFormer consistently outperforms established meta-learning methods
PMF (Hu et al., 2022) and FewTURE (Hiller et al., 2022) across all evaluations. Notably, this remarkable performance is
achieved without the need for inference-time fine-tuning, underscoring its robustness and effectiveness. We find that our
MetaFormer effectively synergizes with transfer learning method SMKD (Lin et al., 2023) to further enhance its performance.
When compared to the transductive protoLP (Zhu & Koniusz, 2023), MetaFormer exhibits superior performance in most
scenarios with a smaller number of parameters.
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Table 11. More comprehensive results on miniImageNet and tieredImageNet for 5-way 1-shot and 5-way 5-shot scenarios. Reported
are the mean and 95% confidence interval of average classification accuracy (%) on the unseen meta-test set. * denotes results reported by
us.

Method Setting Backbone # Params miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MatchNet (Vinyals et al., 2016b) Inductive ResNet-12 12.4 M 61.24±0.29 73.93±0.23 71.01±0.33 83.12±0.24

ProtoNet (Snell et al., 2017) Inductive ResNet-12 12.4 M 62.29±0.33 79.46±0.48 68.25±0.23 84.01±0.56

FEAT (Ye et al., 2020) Inductive ResNet-12 14.1 M 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16

DeepEMD (Zhang et al., 2020a) Inductive ResNet-12 12.4 M 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

IEPT (Zhang et al., 2020b) Inductive ResNet-12 12.4 M 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34

MELR (Fei et al., 2020) Inductive ResNet-12 14.1 M 67.40±0.43 83.40±0.28 72.14±0.51 87.01±0.35

FRN (Wertheimer et al., 2021) Inductive ResNet-12 12.4 M 66.45±0.19 82.83±0.13 72.06±0.22 86.89±0.14

CG (Zhao et al., 2021) Inductive ResNet-12 12.4 M 67.02±0.20 82.32±0.14 71.66±0.23 85.50±0.15

DMF (Xu et al., 2021) Inductive ResNet-12 12.4 M 67.76±0.46 82.71±0.31 71.89±0.52 85.96±0.35

BML (Zhou et al., 2021b) Inductive ResNet-12 12.4 M 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34

CNL (Zhao et al., 2021) Inductive ResNet-12 12.4 M 67.96±0.98 83.36±0.51 73.42±0.95 87.72±0.75

Meta-NVG (Zhang et al., 2021a) Inductive ResNet-12 12.4 M 67.14±0.80 83.82±0.51 74.58±0.88 86.73±0.61

RENet (Kang et al., 2021) Inductive ResNet-12 12.6 M 67.60±0.44 82.58±0.30 71.61±0.51 85.28±0.35

PAL (Ma et al., 2021a) Inductive ResNet-12 12.4 M 69.37±0.64 84.40±0.44 72.25±0.72 86.95±0.47

COSOC (Luo et al., 2021) Inductive ResNet-12 12.4 M 69.28±0.49 85.16±0.42 73.57±0.43 87.57±0.10

Meta DeepBDC (Xie et al., 2022) Inductive ResNet-12 12.4 M 67.34±0.43 84.46±0.28 72.34±0.49 87.31±0.32

LEO (Rusu et al., 2018) Inductive WRN-28-10 36.8 M 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

MetaFun (Xu et al., 2020) Inductive WRN-28-10 37.7 M 62.12±0.30 78.20±0.16 67.72±0.14 83.28±0.12

CC+rot (Gidaris et al., 2019) Inductive WRN-28-10 36.5 M 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36

FEAT (Ye et al., 2020) Inductive WRN-28-10 38.1 M 65.10±0.20 81.11±0.14 70.41±0.23 84.38±0.16

MetaQDA (Zhang et al., 2021c) Inductive WRN-28-10 36.5 M 67.83±0.64 84.28±0.69 74.33±0.65 89.56±0.79

OM (Qi et al., 2021) Inductive WRN-28-10 36.5 M 66.78±0.30 85.29±0.41 71.54±0.29 87.79±0.46

SUN (Dong et al., 2022) Inductive ViT 12.5 M 67.80±0.45 83.25±0.30 72.99±0.50 86.74±0.33

FewTURE (Hiller et al., 2022) Inductive ViT-Small 22 M 68.02±0.88 84.51±0.53 72.96±0.92 86.43±0.67

FewTURE (Hiller et al., 2022) Inductive Swin-Tiny 29 M 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55

PMF∗ (Hu et al., 2022) Inductive ViT-Small 21 M 71.01±0.81 86.03±0.53 76.61±0.89 89.66±0.54

MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 75.78±0.71 90.02±0.44 79.05±0.81 90.40±0.53

HCTransformers (He et al., 2022b) Inductive 3×ViT-Small 63 M 74.74±0.17 89.19±0.13 79.67±0.20 91.72±0.11

SMKD (Lin et al., 2023) Inductive ViT-Small 21 M 74.28±0.18 88.89±0.09 78.83±0.20 91.21±0.11

SMKD + MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 76.54±0.73 90.76±0.41 80.57±0.82 92.42±0.49

PT+MAP (Hu et al., 2021) Transductive WRN-28-10 36.5 M 82.92±0.26 88.82±0.13 − −
iLPC (Lazarou et al., 2021) Transductive WRN-28-10 36.5 M 83.05±0.79 88.82±0.42 88.50±0.75 92.46±0.42

EASY (Bendou et al., 2022) Transductive 3×ResNet-12 37.2 M 84.04±0.23 89.14±0.11 84.29±0.24 89.76±0.14

protoLP (Zhu & Koniusz, 2023) Transductive WRN-28-10 36.5 M 84.32±0.21 90.02±0.12 89.65±0.22 93.21±0.13

MetaFormer-A (Ours) Transductive ViT-Small 24.5 M 84.78±0.79 91.39±0.42 88.38±0.78 93.37±0.45

B. Setup for Cross-Domain Few-Shot Evaluation
B.1. Datasets Used for Benchmarks

We use miniImageNet as the source dataset for meta-training and perform the cross-domain few-shot evaluation on eight
datasets with varying domain similarity, following Oh et al. (2022). The datasets can be separated into two groups:
BSCD-FSL benchmark (Guo et al., 2020) and nonBSCD-FSL. For BSCD-FSL benchmark (CropDisease, EuroSAT, ISIC,
ChestX), we follow Guo et al. (2020) for the dataset split. And for nonBSCD-FSL benchmark (CUB, Car, Plantaem Places),
we follow Tseng et al. (2020) for the splitting procedure. We refer to Oh et al. (2022) for a more detailed description of each
dataset.

B.2. Implementation Details

In our cross-domain experiments, we meta-train our MetaFormer-I and MetaFormer-A on the miniImageNet dataset as in
Section 4.1 in the main paper and then freeze all parameters during evaluation on cross-domain benchmarks. For a fair
comparison, we adhere to the standard meta-testing procedure to assess the performance of baseline models trained on
miniImageNet, including FewTURE (Hiller et al., 2022), PMF (Hu et al., 2022), SMKD (Lin et al., 2023) and protoLP (Zhu
& Koniusz, 2023).
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Table 12. More comprehensive results on CIFAR-FS and FC100 for 5-way 1-shot and 5-way 5-shot scenarios. Reported are the
mean and 95% confidence interval of average classification accuracy (%) on the unseen meta-test set. * denotes results reported by us.

Method Setting Backbone # Params CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot

ProtoNet (Snell et al., 2017) Inductive ResNet-12 12.4 M - - 41.54±0.76 57.08±0.76

MetaOpt (Lee et al., 2019) Inductive ResNet-12 12.4 M 72.00±0.70 84.20±0.50 41.10±0.60 55.50±0.60

MABAS (Kim et al., 2020) Inductive ResNet-12 12.4 M 73.51±0.92 85.65±0.65 42.31±0.75 58.16±0.78

RFS (Tian et al., 2020) Inductive ResNet-12 12.4 M 73.90±0.80 86.90±0.50 44.60±0.70 60.90±0.60

BML (Zhou et al., 2021b) Inductive ResNet-12 12.4 M 73.45±0.47 88.04±0.33 45.00±0.41 63.03±0.41

CG (Gao et al., 2021) Inductive ResNet-12 12.4 M 73.00±0.70 85.80±0.50 - -
Meta-NVG (Zhang et al., 2021a) Inductive ResNet-12 12.4 M 74.63±0.91 86.45±0.59 46.40±0.81 61.33±0.71

RENet (Kang et al., 2021) Inductive ResNet-12 12.6 M 74.51±0.46 86.60±0.32 - -
TPMN (Wu et al., 2021) Inductive ResNet-12 12.4 M 75.50±0.90 87.20±0.60 46.93±0.71 63.26±0.74

MixFSL (Afrasiyabi et al., 2021) Inductive ResNet-12 12.4 M - - 44.89±0.63 60.70±0.60

CC+rot (Gidaris et al., 2019) Inductive WRN-28-10 73.62±0.31 86.05±0.22 - -
PSST (Chen et al., 2021b) Inductive WRN-28-10 36.5 M 77.02±0.38 88.45±0.35 - -
Meta-QDA (Zhang et al., 2021c) Inductive WRN-28-10 36.5 M 75.83±0.88 88.79±0.75 - -
SUN (Dong et al., 2022) Inductive ViT 12.5M 78.37±0.46 88.84±0.32 - -
FewTURE (Hiller et al., 2022) Inductive ViT-Small 22 M 76.10±0.88 86.14±0.64 46.20±0.79 63.14±0.73

FewTURE (Hiller et al., 2022) Inductive Swin-Tiny 29 M 77.76±0.81 88.90±0.59 47.68±0.78 63.81±0.75

PMF∗ (Hu et al., 2022) Inductive ViT-Small 21 M 76.70±0.90 87.61±0.60 45.79±0.73 63.64±0.72

MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 80.16±0.76 90.57±0.55 51.14±0.71 68.33±0.74

HCTransformers (He et al., 2022b) Inductive 3×ViT-Small 63 M 78.89±0.18 90.50±0.09 48.27±0.15 66.42±0.16

SMKD (Lin et al., 2023) Inductive ViT-Small 21M 80.08±0.18 90.91±0.13 50.38±0.16 68.50±0.16

SMKD + MetaFormer-I (Ours) Inductive ViT-Small 24.5 M 81.49±0.74 91.91±0.54 52.18±0.78 71.29±0.73

PT+MAP (Hu et al., 2021) Transductive WRN-28-10 36.5 M 87.69±0.23 90.68±0.15 − −
iLPC (Lazarou et al., 2021) Transductive WRN-28-10 36.5 M 86.51±0.75 90.60±0.48 −±− −±−

EASY (Bendou et al., 2022) Transductive 3×ResNet-12 37.2 M 87.16±0.21 90.47±0.15 54.13±0.24 66.86±0.19

protoLP (Zhu & Koniusz, 2023) Transductive WRN-28-10 36.5 M 87.69±0.23 90.82±0.15 − −
MetaFormer-A (Ours) Transductive ViT-Small 24.5 M 88.34±0.76 92.21±0.59 58.04±0.99 70.80±0.76

B.3. Results.

In Table 13, we present a comparative evaluation of MetaFormer against other previous state-of-the-art methods in the
5-way 5-shot cross-domain scenario. MetaFormer exhibits superior performance across various domains, surpassing its
meta-learning counterparts in both inductive and transductive settings by significant margins of up to 8.20% and 22.60%,
respectively. Notably, MetaFormer outperforms PMF (Hu et al., 2022) in most cases by a clear margin, achieving this
without test-time full fine-tuning. Our results also show that MetaFormer improves the transfer learning method SMKD (Lin
et al., 2023) by up to 3.70%. These findings underscore the robustness and effectiveness of MetaFormer in task adaptation.

Table 13. Broader study of cross-domain few-shot learning. Average classification accuracy (%) for 5-way 5-shot scenario when
meta-learning on miniImageNet (Vinyals et al., 2016a) but meta-testing on cross-domain few-shot benchmarks. † means test-time
finetuning is employed.

Method CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX

PMF† (Hu et al., 2022) 63.42±0.74 49.23±0.75 77.52±0.69 63.89±0.71 89.17±0.55 84.02±0.55 44.76±0.56 25.84±0.43

FewTURE† (Hiller et al., 2022) 67.70±0.77 46.54±0.73 74.70±0.69 61.72±0.71 86.41±0.56 77.88±0.57 38.53±0.54 25.54±0.43

MetaFormer-I (Ours) 75.90±0.77 48.62±0.79 78.42±0.65 65.40±0.74 89.72±0.58 85.01±0.51 45.90±0.57 26.47±0.45

SMKD (Lin et al., 2023) 77.17±0.69 50.72±0.71 80.52±0.64 63.98±0.72 92.11±0.45 85.28±0.54 47.58±0.62 25.75±0.43

SMKD+MetaFormer-I (Ours) 80.87±0.68 52.68±0.74 80.96±0.67 65.60±0.72 92.91±0.45 86.60±0.50 49.80±0.60 26.25±0.45

protoLP (Zhu & Koniusz, 2023) 76.95±1.10 44.49±0.93 74.81±1.11 54.67±1.07 82.96±1.57 65.99±1.86 37.74±0.83 23.18±0.45

MetaFormer-A (Ours) 82.92±0.68 52.92±0.81 83.18±0.62 67.11±0.74 94.66±0.44 88.59±0.48 49.55±0.62 25.86±0.45

C. Setup for Multi-Domain Few-Shot Evaluation
C.1. Datasets used for Benchmarks

Meta-Dataset (Triantafillou et al., 2020) is a more challenging and realistic large-scale benchmark consisting of ten image
datasets including ImageNet-1k, Omniglot, Aircraft, CUB, Textures, QuickDraw, Fungi, VGG Flower, Traffic Signs, and
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MSCOCO, each with specified train, val and test splits. We follow Hu et al. (2022) to utilize the train and val splits of
the initial eight datasets (in-domain) for meta-training and validation, while employing the test splits of all datasets for
meta-testing. We refer to Triantafillou et al. (2020) for an in-depth exploration of Meta-Dataset.

C.2. Implementation Details

We meta-train both PMF (Hu et al., 2022) and our MetaFormer build upon the same pre-trained vision transformer (Caron
et al., 2021) in a 5-way 1-shot setting, adhering to most of the unchanged training hyperparameters reported in PMF. The
meta-tuning phase includes a 10-epoch warm-up, followed by a total of 100 epochs of training. We use the SGD optimizer
with a momentum of 0.9 and a cosine-decaying learning rate scheduler is employed, initialized at 5× 10−4.

C.3. Results.

We evaluate the effectiveness of MetaFormer on the large-scale and challenging Meta-Dataset in multi-domain scenarios.
Table 14 presents the test accuracy measured on each dataset meta-test set. MetaFormer achieves comparable or superior
performance compared to previous state-of-the-art meta-learning method, PMF (Hu et al., 2022), in adapting to most
domains. The superior overall performance of MetaFormer, especially in settings with scarce samples (e.g., one sample
per category), underscores the efficacy of our proposed approach for fast adaptation in each domain. Additionally, the
computational efficiency of MetaFormer-I facilitates quicker deployment, making our method particularly suitable for
real-world applications in resource-constrained scenarios.

Table 14. Broader study of multi-domain few-shot learning. Average classification accuracy (%) for 5-way 1-shot scenario.

Model FT In-domain Out-of-domain AvgINet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO

PMF (Hu et al., 2022) Y 56.35 94.22 88.00 84.63 52.90 75.18 84.13 75.20 55.02 49.69 71.53
MetaFormer-I (Ours) - 63.41 94.57 87.93 89.17 51.33 75.10 81.97 85.06 57.33 53.64 73.95
MetaFormer-I (Ours) Y 64.25 94.64 87.93 89.11 56.52 75.10 81.97 85.31 62.86 53.82 75.15
MetaFormer-A (Ours) - 66.03 96.47 89.75 91.95 52.20 79.17 84.44 88.88 58.89 58.12 76.59

D. MetaFormer on Large-Scale Foundation Models
We evaluate different methods on 1-shot EuroSAT (Helber et al., 2019) and ISIC (Tschandl et al., 2018) datasets. For both
training and testing phases, we employ the episodic approach as described in Vinyals et al. (2016b). Note that we strictly
follow the TiP-Adapter-F (Zhang et al., 2021b) pipeline to sample support set from the train set and query set from the test
set to build the task for evaluation since there are no new classes in the test set. For instance, in the EuroSAT dataset with 10
classes, we construct the 10-way 1-shot task, where the support and query sets are drawn from the train and test split of the
EuroSAT dataset, respectively. We also integrate the cache model from TiP-Adapter as the auxiliary classifier head. We only
fine-tune introduced MSA and keep frozen the visual encoder and textual encoder of CLIP. We train our method for 20
epochs on both datasets and we employ the SGD optimizer with a cosine-decaying learning rate initiated at 2× 10−4, a
momentum value of 0.9, and a weight decay of 5× 10−4. We test using the pre-trained word embeddings of a single prompt,
“a photo of a [CLASS].” for all methods.

E. MetaFormer on Hierarchical Transformers.
We extend MetaFormer to integrate with Swin (Liu et al., 2021), which employs shifted local window for performing
self-attention within each window and merges patch embeddings to build hierarchical structures, thereby aggregating
multi-scale information. As shown in Table 15, the experiments are conducted on the same pre-trained Swin-Tiny model
and the results consistently demonstrate that MetaFormer outperforms FewTURE in both settings. These results highlight
the versatility and general applicability of our method.

F. Abaltion of Other Design Strategies
In Table 16, we explore various design choices for our approach. The variability of feature semantics across different
layers in the backbone leads us to investigate which layer optimally facilitates sample interaction. The results are shown
in Table 16a, indicating that starting to build intra-task interaction from stage 6 is moderate. Notably, the integration of
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Table 15. Comparison results with the Swin-Transformer backbone on miniImagenet.
Method Backbone 1-shot 5-shot

FewTURE (Hiller et al., 2022) Swin-Tiny 72.40±0.78 86.38±0.49

MetaFormer-I (Ours) Swin-Tiny 74.17±0.73 89.17±0.45

Table 16. Comparison results of different architecture design strategies.

(a) Different MSA locations in ViT-Samll.

Location mini-1s (%)

[5, 7, 9] 74.36
[6, 8, 10] 74.64
[11] 72.34

(b) Different MSA variants with ViT-Small.

Method mini-1s (%)

within-support 73.30
support-query 73.28
global features 71.49

(c) The number of probe vectors with ViT-
Small.

Number mini-1s (%)

1 75.78
4 75.28
8 75.44

(d) The number of probe vectors with Swin-
Tiny.

Number mini-1s (%)

1 73.89
4 74.01
8 74.17

(e) Different consolidation strategies with
ViT-Samll.

Method mini-1s (%)

with averaging 75.77
without averaging 75.57
max pooling 75.63

(f) The size of knowledge pool with ViT-
Samll.

Size mini-1s (%)

10 75.50
50 75.78
100 75.74

multi-scale semantic information accounts for an improvement of 2.3%. Figure 4 shows the two alternative sample causal
masks for our MetaFormer-I, where we encode the sample relationship separately. As shown in Table 16b, the ablated masks
of within-support and support-query manifest sub-optimal performance, further validating that MSA with the inductive mask
works not because of the introduction of extra parameters. This also underscores the complementary benefits of employing
both interactions in our design on enhanced task-specific representations. Additionally, we observe that relying solely on
global image features incurs a significant loss of critical information necessary for capturing discriminative relationships
among samples. The results in Table 16c and Table 16d demonstrate that our model is not very sensitive to the number of
task probe vectors. Also, as shown in Table 16e and Table 16f, the performance difference between various consolidation
strategies is relatively marginal due to the nature of the cosine similarity-based score function employed during knowledge
retrieval, and a sufficiently diverse but compact knowledge pool leads to improvements in performance. An excessively
large pool risks performance degradation due to less effective consolidation.

Su
pp

or
t

Q
ue

ry

Su
pp

or
t

Q
ue

ry

(a) Within-Support Sample Causal Mask (b) Support-Query Sample Causal Mask

Activated Sample Interaction Masked Sample Interaction

Figure 4. The alternative sample casual masks for MetaFormer-I.
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G. Comparison with Other Inter-task Attention Methods
In Table 17, we compare our Patch-grained Task Attention (PTA) with other inter-task attention designs. Compared with
IT-att presented in Wang et al. (2022a), we note that problem settings and underlying motivations of these modules are
distinct. PTA is rooted in the domain of few-shot learning, where the paramount concern is facilitating knowledge transfer
between tasks. Conversely, IT-att (Wang et al., 2022a) is grounded in continual learning, where the primary focus lies in
mitigating catastrophic forgetting. While both PTA and IT-att seemingly adopt a learnable embedding for each task, their
approaches to knowledge representation and utilization diverge significantly. PTA maintains a knowledge pool and captures
task-specific information at the patch level. On the other hand, IT-att keeps a record of a single key and a single bias to
store all past knowledge, relying on importance-based regularization to enforce task proximity and combat forgetting. Our
analysis reveals that the use of a global task vector leads to a performance decrease of 0.97%. PTA demonstrates a 1.3%
improvement over IT-att, which can be attributed to greater flexibility and expressiveness, aligning more closely with the
objective of knowledge transfer in few-shot learning.

Table 17. Comparison results of different inter-task attention architecture design strategies. We report 5-shot accuracy on miniImageNet
for different choices.

Method BackBone Acc. (%)

IT-att (Wang et al., 2022a) ViT-Small 88.70±0.50

Global task vector ViT-Small 89.05±0.48

PTA ViT-Small 90.02±0.44

H. Computational Analysis
H.1. Inference Time Comparison

We have conducted a detailed comparative analysis of the computational efficiency between our MetaFormer and other
state-of-the-art inductive methods for 5-way 1-shot and 5-way 5-shot scenarios on the miniImageNet, as presented in Table 3.
The evaluation of inference latency is conducted on an NVIDIA RTX A6000 GPU. For FewTURE, we set the optimal
inner loop steps to 15 for 5-way 1-shot and to 20 for 5-way 5-shot. Our analysis reveals that MetaFomer achieves superior
computational efficiency compared to the methods evaluated. Note that previous works (Bendou et al., 2022; Qi et al., 2021;
Zhu & Koniusz, 2023) utilize an inference-time augmentation technique, which involves performing inference 30 times
for each randomly cropped augmented sample and then averaging the features for the final prediction. To ensure a fair
comparison of inference-time latency with these state-of-the-art methods, we pre-extract features for both protoLP (Zhu
& Koniusz, 2023) and MetaFormer and calculate the inference time in the 5-way 5-shot scenario. The results exhibit the
superior computational efficiency of MetaFormer-A, with an inference time of 34.44 ms compared to protoLP’s 40.61 ms,
which is hindered by its reliance on time-consuming label propagation.

H.2. Training time Comparison

We further compare the training clock times between our MetaFormer-I and FewTURE on miniImageNet in the 5-way 1-shot
configuration. The results, presented in Table 18, indicate that our approach incurs a slightly higher training time. Since
MetaFormer-I enhances adaptability to diverse tasks without the need for compute-intensive inference-time fine-tuning, this
capability potentially leads to long-term savings in computational resources.

Table 18. Training time comparison on miniImageNet.

Method Training Clock Time

FewTURE 6.0 hours (200 epochs)
MetaFormer-I 8.7 hours (200 epochs)

H.3. The Number of Parameters Comparison

In Table 19, we present a selection of representative and state-of-the-art methods, detailing their number of backbone
parameters and the total number of parameters. Simply increasing more parameters by changing the backbone architecture

20



One Meta-tuned Transformer is What You Need for Few-shot Learning

does not necessarily lead to better performance. We observe that FewTURE (Hiller et al., 2022) and HCTransformers (He
et al., 2022b), despite possessing a larger number of parameters, markedly lag behind the proposed MetaFormer. We
also conduct a comparative analysis with an ablated version, achieved by naively augmenting the number of layers in
ViT-Small to make it comparable with the proposed MetaFormer. The results presented substantiate that merely increasing
parameters cannot fully address the challenges inherent in few-shot learning. In fact, such augmentation may even elevate
the risk of overfitting. It’s crucial to demonstrate that our enhancements are not merely due to an increased parameter
count. MetaFormer is cost-effective, achieving remarkable performance gains over the previous meta-learning SOTA
FewTURE (Hiller et al., 2022) with only a modest increment in parameter count. Also, note that the conversion from
inductive to autoregressive version leads to no extra parameters, further emphasizing its efficiency.

Table 19. Comparsion of state-of-the-art methods with the number of parameters.

Method Backbone ≈ # Params # Total Params miniImageNet
1-shot 5-shot

FEAT (Ye et al., 2020) ResNet-12 12.4 M 14.1 M 66.78±0.20 82.05±0.14

FEAT (Ye et al., 2020) WRN-28-10 36.5 M 38.1 M 65.10±0.20 81.11±0.14

FewTURE (Hiller et al., 2022) ViT-Small 21 M 22 M 68.02±0.88 84.51±0.53

FewTURE (Hiller et al., 2022) Swin-Tiny 28 M 29 M 72.40±0.78 86.38±0.49

HCTransformers (He et al., 2022b) 3×ViT-Small 63 M 63 M 74.74±0.17 89.19±0.13

SMKD (Lin et al., 2023) ViT-Small 21 M 21 M 74.28±0.18 88.89±0.09

ViT with more layers ViT-Small 21 M 25.2 M 69.75±0.71 84.12±0.56

MetaFormer-I (Ours) ViT-Small 21 M 24.5 M 75.78±0.71 90.02±0.44

MetaFormer-A (Ours) ViT-Small 21 M 24.5 M 84.78±0.79 91.39±0.42

I. Comparison with CNN-based Meta-Learning Methods
In this section, we give more in-depth discussions concerning prior research in the realm of meta-learning that incorporates
vision transformers as their foundation architectures. We posit that the challenge of architectural inconsistency partially
accounts for the limited research in the realm of meta-learning grounded on ViT. In the Table 20, we adapt FiLM, a technique
commonly employed in CNN-based meta-learning for task adaptation through conditioned batch normalization (Requeima
et al., 2019; Oreshkin et al., 2018), into layer normalization layers of ViT for task conditioning. As shown in the table, our
experiments reveal a performance drop when ViT was applied with FiLM. Another key challenge is the increased parameter
requirement of ViT. FewTURE (Hiller et al., 2022), as expounded in the Related Work section, is the pioneering work
that tailors to ViT via inner-loop token importance reweighting, and addresses the second challenge via self-supervised
pre-training on the meta-training dataset. Our approach, empowering sample-to-sample and task-to-task interaction, further
improves the accuracy substantially.

Table 20. Comparison results with different meta-learning approaches for Vision Transformer on the miniImagenet.
Method BackBone 5-way 1-shot

Vanilla ViT ViT-Small 69.03±0.71

ViT+FiLM ViT-Small 58.75±0.73

MetaFormer-I ViT-Small 75.78±0.71

MetaFormer-A ViT-Small 84.78±0.79

J. Illustration of Decoupled Patch-Sample Attention
Figure 5 compares the complexity between the joint patch-sample attention and our decoupled patch-sample attention.

K. Additional Analysis of Task Probe Vector
As shown in Figure 6, we analyze the task probe vectors on miniImageNet across different tasks sampled from meta-train
and meta-test sets. The visualization effectively underscores the efficacy of the learned task probe vectors in capturing
task relationships. For example, we observe a higher similarity in task features among tasks involving car tires, dogs, and
long-legged animals. This demonstrates MetaFormer’s capability in discerning and utilizing task dynamics.
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Figure 5. Complexity comparison with joint patch-sample attention approaches. For a N -way K-shot task with M queries, our
method decouples the patch-sample attention by first performing self-attention between L patches within each image to aggregate spatial
information and then computing sample interactions across all patches at the same patch location to capture the similarities and variances
among samples.
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Figure 6. Interpretation of task probe vector. Each task is randomly selected from miniImageNet. (a) We show the similarity heatmap
between task probe vectors, where deeper color means higher similarity. (b) We show the visualization of the corresponding tasks.
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L. More Qualitative Results
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Figure 7. More visualization of our holistic attention mechanism. Three attention modules collaboratively focusing on task-specific
foreground regions.

23


