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Abstract

The effectiveness of stochastic gradient descent (SGD) is significantly influenced
by stochastic gradient noise (SGN). Following the central limit theorem, stochastic
gradient noise (SGN) was initially described as Gaussian, but recently, Simsekli
et al. demonstrated that SαS Lévy better characterizes the stochastic gradient
noise. Here, we revisit the noise model of SGD and provide robust, comprehensive
empirical evidence that SGN is heavy-tailed and is better represented by the SαS
distribution. Furthermore, we argue that different deep neural network (DNN)
parameters preserve distinct SGN properties throughout training. We develop a
novel framework based on Lévy-driven stochastic differential equation (SDE),
where one-dimensional Lévy processes describe each DNN parameter. This leads
to a more accurate characterization of the dynamics of SGD around local minima.

1 Introduction

The tremendous success of deep learning [3, 16, 23] can be partly attributed to implicit properties of
the optimization tools, in particular, the popular SGD [37, 4] scheme. Despite its simplicity, i.e., being
a noisy first-order optimization method, SGD empirically outperforms gradient descent (GD) and
second-order methods. By evading sharp basins and settling in wide minima, the stochastic gradient
noise of SGD can improve the generalization of the model [52, 41]. The DNN architecture and data
distribution impact the formation and amplitude of SGD noise, which results from stochasticity in the
mini-batch sampling operation. Therefore, understanding the properties of SGD is of high priority.

Analyzing the behavior of SGD optimization for non-convex cost functions is ongoing research
[6, 49, 9, 34, 14, 24, 42, 52, 47]. Studies mainly examine the distribution and nature of the noise,
with its ability to escape local minima and generalize better [17, 13, 44, 12, 49, 21].

SGD is based on an iterative update rule, where the k-th step of the iterative update is formulated as:

wk = wk−1 −
η

B

∑
ℓ∈Ωk

∇U (ℓ)(wk−1) = wk−1 − ηk∇U(wk−1) + ηkζk, (1)

where w denotes the weights (parameters) of the DNN, ∇U(w) is the gradient of the objective
function, B is the batch size, Ωk ⊂ {1, .., D}, is the randomly selected mini-batch. Thus |Ωk| = B,
D is the number of data points in the dataset, ζk is the SGD noise, which is formulated as ζk =
∇U(wk) − 1

B

∑
ℓ∈Ωk

∇U (ℓ)(wk), i.e., the difference between the gradient produced by GD and
SGD, finally η depicts the learning rate, and ηk indicates the learning rate at step k.

By modeling SGD using a continuous-time SDE, we can examine the evolution of the dynamic
system in the continuous time domain [51, 30, 46, 6, 17, 38].
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Model Data Gauss SαS SαS Wins
Clip-base [B=32] Laion400M 0.0038± 3.83e−06 0.0028± 2.76e−06 96.60%
Clip-base [B=64] Laion400M 0.0034± 3.00e−06 0.0029± 2.44e−06 96.80%

Clip-base [B=256] Laion400M 0.0040± 2.64e−06 0.0036± 2.08e−06 96.88%
Clip-large [B=32] Laion400M 0.0033± 3.03e−06 0.0028± 2.41e−06 96.67%
EfficientNet-b2 ImageNet 0.0180± 0.0049 0.00092± 0.0001 99.74%
EfficientNet-b3 ImageNet 0.02410± 0.0058 0.00096± 0.0001 99.63%
EfficientNet-b4 ImageNet 0.03439± 0.0089 0.00213± 0.0006 99.68%

FlexVit ImageNet 0.03399± 0.0156 0.00211± 0.0003 99.62%
Vit base ImageNet 0.06495± 0.0264 0.00656± 0.00126 99.74%
Vit small ImageNet 0.02870± 0.0131 0.0030± 0.0009 99.56%

Table 1: Evaluating the fitting error of the empirical distribution of the SGN. We evaluate several
architectures and datasets. 10,000 parameters were sampled from each network. SαS Wins- indicates
the portion of parameters better fitted by SαS distribution.

Many previous works [51, 28, 45, 52] use an SDE and argue that the noise is Gaussian, i.e.,
ut ∼ N (0, λ(wk)), where λ(wk) is the noise covariance matrix and formulated as follows [51] :

λ(wk) =
1

B

[
1

D

D∑
d=1

∇U (d)(wk)∇U (d)(wk)
T −∇U(wk)∇U(wk)

T

]
.

Recently, [51] showed the importance of modeling the SGN as an anisotropic noise. Although SGN
is mostly considered to be Gaussian [39, 36, 48, 29, 51, 33], recently [40], demonstrated that the
SGN obeys SαS Lévy distribution due to its heavy-tailed nature.

In this study, we show empirically that the SGN of DNN parameters distributes differently. We
further demonstrate that SGN has heavy-tail properties, making SαS distribution more accurately
characterize it visually and numerically using multiple datasets. Based on the empirical evidence, we
propose a novel dynamical system in RN consisting of N one-dimensional SαS processes, a more
accurate and closer to a real-world scenario. Finally, we use our framework to approximate the mean
escape time and the likelihood of escaping the local minima via a particular parameter.

2 Related Work

Modeling SGD using differential equations is a deep-rooted method. Li et al. [26] used an SDE to
approximate SGD and focused on momentum and adaptive parameter tuning schemes to study the
dynamical properties of stochastic optimization. Mandt and Blei [27] employed a similar procedure
to derive an SDE approximation for the SGD to study the influence of the value of the learning
rate. Li et al. [25] showed that an SDE could approximate SGD in a first-order weak approximation.
The early works in the field have approximated SGD by Langevin dynamic with isotropic diffusion
coefficients [39, 36, 48]. Later, more accurate modeling suggested [29, 51, 33] using an anisotropic
noise covariance matrix. Lately, it has been argued [40] that SGN is better characterized by SαS
noise, presenting experimental and theoretical justifications. This model was allegedly refuted by
[46], claiming that the experiments performed by [40] are inaccurate since the noise calculation
was done across parameters and not across mini-batches. Lévy driven SDEs Euler approximation
literature is sparser than for the Brownian motion SDEs; however, it is still intensely investigated; for
more details about the convergence of Euler approximation for Lévy discretization, see [32, 35, 5].

3 Framework

We consider a DNN with L̄ layers and a total of N weights (parameters), the domain G is the local
environment of a minimum, G ⊆ RN is a bounded and relatively compact subspace, please see Sec. D
for more rigours and detailed definition of G. Our framework considers an N -dimensional dynamic
system, representing the update rule of SGD as a Lévy-driven stochastic differential equation. In
contrast to previous works [50, 40], our framework does not assume that SGN distributes the same
for every parameter l in the DNN. Thus, the SGN of each parameter is characterized by a different α.
The governing SDE that depicts the SGDs dynamic inside the domain G at time t is as follows:

Wt = w −
∫ t

0

∇U(wp) dp+

N∑
l=1

s
αl−1

αl
t ϵl(1

Tλl(t))
1
αl rlL

l
t, (2)
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where Wt is the process that depicts the evolution of DNN weights at time t. Ll
t ∈ R is a mean-zero

SαS Lévy processes with a stable parameter αl. λl(t) ∈ RN is the l-th row of the noise covariance
matrix, 1 ∈ RN is a vector of ones, and its purpose is to sum the l-th row of the noise covariance
matrix. rl ∈ RN is a unit vector and we demand |⟨ri, rj⟩| ≠ 1, for i ̸= j, we will use ri as a one-hot
vector. st represents the learning rate scheduler, and w are the initial weights, ϵ = η

α−1
α , and η is the

learning rate. Let us remind that alpha is the stability parameter of the SαS distribution and in this
work α ∈ (0.5, 2). The SDE construction is detailed in Sec. E.

Remark Ll
t can be decomposed into a small jump part ξlt, and an independent part with large jumps

ψl
t, i.e. Ll = ξlt + ψl

t, more information on SαS process appears in A.3.

Let σG = inf{t ≥ 0 : Wt /∈ G} depict the first exit time from G. τ lk denotes the time of the k-th
largest jump of parameter l, which is driven by the process ψl , where we define τ0 = 0. The interval
between large jumps is denoted as: Sl

k = τ lk − τ lk−1 and is exponentially distributed with mean
βl(t)

−1, while τ lk is gamma distributed Gamma(k, βl(t)); where βl(t) is the intensity of the jump
and will be defined in Sec 3.2. We define the arrival time of the k-th jump of all parameters combined
as τ∗k , for k ≥ 1 we can write τ∗k ≜

∧
τ l
j>τ∗

k−1
τ lj , following that S∗

k = τ∗k − τ∗k−1. Jump heights are

notated as: J l
k = ψl

τk
−ψl

τk− . We will define αν as the average α over the entire DNN; this will help
us describe the global properties of our network.
Let us define a measure of horizontal distance from the domain boundary using d+l and d−l ; we
present a rigorous formulation of our assumptions in Sec. D. We define two additional processes to
better understand the dynamics inside the basin (between the large jumps).
The deterministic process denoted as Yt is affected by the drift alone, without any perturbations.
This process starts within the domain and does not escape it as time proceeds. The drift forces this
process towards the stable point W ∗ as t→ ∞, i.e., the local minimum of the basin; furthermore, the
process converges to the stable point exponentially fast and is defined for t > 0, and w ∈ G by:

Yt(w) = w −
∫ t

0

∇U(Ys) ds. (3)

The following Lemma shows how fast Yt converges to the local minima from any starting point w
inside the domain.
Lemma 3.1. ∀w ∈ G , Ũ = U(w) − U(W ∗), the process Yt converges to a minimizer W ∗

exponentially fast: ∥Yt −W ∗∥2 ≤ 2Ũ
µ e

−2µt. The complete proof appears in Appendix B.6.

The small jumps process Zt is composed of the deterministic process Yt and a stochastic process
with infinite small jumps denoted as ξt (see more details in A.3). Zt describes the system’s dynamic
in the intervals between the large jumps; hence we add an index k that represents the index of the
jump, for instance, Zt,k represent the time t between the jump k and k + 1. Due to strong Markov
property, ξlt+τ − ξlτ , t ≥ 0 is also a Lévy process with the same law as ξl. Hence, for t ≥ 0 and
k ≥ 0: ξlt,k = ξlt+τk−1

− ξlτk−1
. The full small jumps process for ∀t ∈ [0, Sk] is defined as:

Zt,k = w −
∫ t

0

∇U(Zs)ds+

N∑
l=1

s
αl−1

αl
t ϵl(1

Tλl(t))
1
αl rlξ

l
t,k. (4)

In the following proposition, we estimate the deviation in the l-th parameter between the SDE solution
driven by the process of the small jumps Zl

t,k, and the deterministic trajectory.

Proposition 3.2. Let Tϵ > 0 exponentially distributed with parameter βl and ρ ∈ (0, 1), ∀w ∈ G,
and θ̄l ≜ −ρ(1− αl) + 2− 2θl, s.t. θl ∈ (0, 2−αl

4 ), the following holds:

P

(
sup

t∈[0,Tϵ]

|Zl
t,k − Y l

t,k| ≥ cϵ̄θl

)
≤ Cθl ϵ̄

θ̄l . (5)

Where Cθl > 0 and c > 0 are constants, let us remind the reader that: ϵ̄l = s
αl−1

αl
t ϵl. Precisely,

proposition 3.2 describes the distance between the deterministic process Yt,k and the process of small
jumps Zt,k at time t that occurs in the interval after the jump k and before jump k + 1. It indicates
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that between large jumps, the processes are close to each other with high probability. The complete
proof appears in Appendix B.3.

Let us present additional notations: H() and ∇U are the Hessian and the gradient of the objective
function. To denote different mini-batches, we use subscript d. That is, Hd() and ∇Ud(W

∗) are the
Hessian and gradient of the d mini-batch. To represent different parameters, as before we will use
subscript l, for example, ∇ud,l, is the gradient of the l-th parameter after a forward pass over mini-
batch d. Furthermore, hl,j represents the l-th row and j-th column of H(W ∗), which is the Hessian
after a forward pass over the entire dataset D, i.e., the Hessian when performing standard gradient
descent. Next, we turn our attention to another property of the process of the small jumps Zl

t,k. This
will help us understand the noise covariance matrix. Using stochastic asymptotic expansion, we can
approximate Zl

t,k using the deterministic process and a first-order approximation of Zl
t,k.

Lemma 3.3. For a general scheduler st , ρ ∈ (0, 1), ∀wl, wj ∈ G, starting point after a big jump
at time τ∗k + p where p→ 0, and Alj(t) ≜ ϵ̄lw

je−hjjtµl
ξ(2t+

1
hll

(1− e−hllt)), for t ∈ [0, S∗
k) the

following fulfills:

E[Zl
t,kZ

j
t,k] = wlwje−(hll+hjj)t +Ajl(t) +Alj(t) +O(ϵ2). (6)

Where µi
ξ = 2t

[
ϵ̄−ρ(1−αl)−1

1−αl

]
, ϵ̄l = s

αl−1

αl
t ϵl. wj , wl are the weight value of parameters j and l

respectively at time t. Lemma 3.3 depicts the dynamics between two parameters in the intervals
between the large jumps; this helps us to express the covariance matrix of the noise accurately; the
complete derivation of this result appears in Appendix B.4.

3.1 Noise covariance matrix

The covariance of the noise matrix holds a vital role in modeling the training process; in this
subsection, we aim to achieve an expression of the noise covariance matrix based on the stochastic
processes we presented in the previous subsection. We can achieve the following approximation
using stochastic Taylor expansion near the basin W ∗.

Proposition 3.4. Let us define ũlj = 1
D

∑D
d=1 ∇ud,l∇ud,j , h̃l,m,p,j := 1

B

∑B
b=1 hb,l,mhb,p,j ,

hl,m,p,j := hl,mhp,j and h̄l,m,p,j := h̃l,m,p,j − hl,m,p,j , then for any t ∈ [0, S∗
k), the sum of

the l-th row of the covariance matrix:

1Tλkl (Wt) =
1

B

N∑
j=1

ũlj +
1

B

N∑
j,m,p=1

h̄l,m,p,j(w
mwpe−(hmm+hpp)t +Amp(t) +Apm(t)) +O(ϵ̄2),

(7)

where Amp(t) and Apm(t) are defined in lemma 3.3. We note that hl,m,p,j and h̃l,m,p,j represent
the interaction of two terms in the Hessian matrix when performing GD and SGD respectively, and
h̄l,m,p,j is the difference between them. The proof of the proposition appears in Appendix B.5. Note
that the influence of the batch size B on the noise mainly appears in Eq. 7. Suggesting that larger
values of B will smooth and decrease the absolute values in the covariance matrix, as expected.

3.2 Jump Intensity

Let us denote βl(t) as the jump intensity of the compound Poisson process Ψl. βl(t) simultaneously
responsible for scaling the jump frequency and size. Jumps are distributed according to the law
βl(t)

−1νη , and the jump intensity is formulated as:

βl(t) = νΨl
(R) =

∫
R/[−O,O]

νl(dy) =
2

αi
s
ρ(αl−1)
t ϵραl

l , (8)

where the integration boundary is O ≜ ϵ−ρs
−ρ

αl−1

αl
t , which is time-dependent, due to the learning

rate scheduler, which decreases the size and frequency of the large jumps, thus the jump intensity is
not stationary. Hence, changing the learning rate during training enables us to increase and decrease
the frequency and amplitude of the jumps. The entire DNN jump intensity as βS(t) ≜

∑N
l=1 βl(t).
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The probability of escaping the local minima in the first jump, in a single parameter perspective,

is expressed by: P (stϵ(1Tλl(t))
1
αl J l

1 /∈ [d−l , d
+
l ]) =

ml(t)Φls
αl−1
t

βl(t)
, where ml(t) =

(1Tλl(t))
1
αl ϵ

αl
l

αl
,

and Φl = (−d−l )−αl + (d+l )
−αl .

4 Theorems

Our work assumes that the training process can exit from the domain only at times that coincide with
large jumps; please see Sec. A.6 for the mathematical evidence. Using the information described
above, we analyze the escaping time for the exponential and multi-step schedulers; expanding our
framework for more LRdecay schemes is straightforward. Let us define a constant that will be used
for the remainder of the paper: Al,ν ≜ (1− m̄ν β̄

−1
ν Φν)(1− β̄lβ̄

−1
S ), for the next theorem we denote:

Cl,ν,p ≜ 2+(γ−1)(αl−1+ρ(αl−αν))
1+(γ−1)(αl−1) , where Cl,ν,p depends on αl, γ, and on the difference αl − αν .

The following theorem describes the approximated mean escape time for the exponential scheduler:
Theorem 4.1. Given Cl,ν,p and Al,ν , let st be an exponential scheduler st = tγ−1, the mean
transition time from the domain G:

E[σG ] ≤
N∑
l=0

A−1
l,ν

βl(m̄lΦl)
1−Cl,ν,p

βS(1 + (γ − 1)(αl − 1))
Γ (Cl,ν,p) .

Where Γ is the gamma function, m̄l =
λ̄
αl
l ϵ

αl
l

αl
and β̄l =

2ϵ
ραl
l

αl
is the time independent jump intensity.

See Appendix B.1 for the full proof.

It can be observed from Thm. 4.1 that as γ decreases, i.e., faster learning rate decay, the mean
transition time increases. Interestingly, when αl → 2 (nearly Gaussian) and γ → 0, the mean escape
time goes to infinity, which means the training process is trapped inside the basin.
Corollary 4.2. Using Thm. 4.1, if the cooling rate is negligible, i.e γ → 1, the mean transition time:

E[σG ] ≤
N∑
l=0

A−1
l,ν

1

βS1T λ̄lϵαl(1−ρ)Φl
. (9)

Col. 4.2 clearly shows that the mean escape time is not affected by the basin height but the basin
width which is represented by Φl. Further, since local minima in DNNs are mostly asymmetric, in 1d
perspective, we can note that the distant edge (max(−d−i , d

+
i )) of the domain G does not affect on

the mean escape time. Furthermore, one can note that the escape time dependency on the learning
rate is polynomial.

The framework presented in this work enables us to understand in which direction ri the training
process is more probable to exit the basin G, i.e., which parameter is more liable to help the process
escape; this is a crucial feature for understanding the training process. The following theorems will
be presented for the exponential scheduler but can be expanded for any scheduler.

Theorem 4.3. Let st be an exponential scheduler st = tγ−1, Cl ≜
(γ−1)(αl−1+ρ(2αl−αν−αl))+2

(γ−1)(αl−1)+1 ,
for δ ∈ (0, δ0), the probability of the training process to exit the basin through the l-th parameter is
as follows:

P (Wσ ∈ Ω+
i (δ)) ≤

N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi
β2
l (m̄lΦl)

−Cl

βS((γ − 1)(αl − 1) + 1)
Γ (Cl) . (10)

Let us focus on the term that describes the i-th parameter: P (Wσ ∈ Ω+
i (δ)) ≤

m̄i

β̄i
(d+i )

−αi
∑N

l=0 C̃l,

where C̃l encapsulate all the terms that do not depend on i. When considering SGN as Lévy noise,
we can see that the training process needs only polynomial time to escape a basin. The following
result helps us to assess the escaping ratio of two parameters.
Corollary 4.4. The ratio of probabilities for exiting the local minima from two different DNN
parameters is:

P (Wσ ∈ Ω+
l (δ))

P (Wσ ∈ Ω+
j (δ))

≤
1Tλαl

l

1Tλ
αj

j

η(αl−αj)(1−ρ) (d
+
l )

−αl

(d+j )
−αj

. (11)
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Figure 1: The mean escape time of SGD on Breastw (left), Cardio (middle), and Satellite (right)
datasets. The plots show the fitting based on two methods: ours and [46] using a batch size of 32.
The dots represent the mean escape time. A dot is an average of over 100 random seeds and several
learning rates. Our theory better explains the empirical results for all three datasets examined.
Let us remind the reader that (d+i ) is a function of the horizontal distance from the domain’s edge.
Therefore, the first conclusion is that the higher (d+l ) is, the lower the probability of exiting from the
l-th direction. However, the dominant term is η(αl−αj)(1−ρ), combining both factors, parameters with
lower α will have more chance of being in the escape path. It can also be seen from the definition of
βl that parameters with lower α jump earlier and contribute more significant jump intensities. We
can conclude by writing:

P (Wσ ∈ Ω+
l (δ))

P (Wσ ∈ Ω+
j (δ))

∝ η∆l,j , (12)

where ∆l,j = αl − αj .

5 Experiments

This section presents the core experimental results supporting our analysis; additional experiments
can be found in the Appendix. All the experiments were conducted using SGD without momentum
and weight decay.

Stochastic gradient noise distribution We empirically show that SGN is better characterized using
the SαS Lévy distribution. Our evaluation follows [46], calculating the noise of each parameter sepa-
rately using multiple mini-batches; as opposed to [40] that calculated the noise of multiple parameters
on one mini-batch and averages over all parameters and batches to characterize the distribution of
SGN. In [46], the authors estimate SGN on a DNN with randomly initialized weights; we, on the
other hand, estimate the properties of SGN based on a pre-trained DNN. We use several datasets and
architectures to empirically evaluate the properties of the SGN. Our quantitative results presented
in Table 1 depict the fitting error of the empirical distribution of SGN with three distributions: (1)
Gaussian [46], (2) SαS with constant α [40], and (3) SαS with multiple αi values (ours). Our results
show strong evidence that SGN is best explained by SαS distribution. In the Appendix, we provide
additional experiments demonstrating that distinct parameters hold different noise distributions.

Mean escape time To corroborate Theorem 4.1, we train a three-layer network with Relu activation
on "BreastW," "Satellite," and "Cardio" datasets [10]. We first train the model using SGD and a
batch size of 256 until reaching a local minimum (see discussion Appendix A.4). After reaching the
critical point, we decrease the mini-batch size to 32, and try to escape the critical minimum, Fig 1
shows the escape time using different learning rates. The number of iterations measures the escape
time, averaged over 100 seeds. We fit empirical results to two theories, ours and [46], with the same
amount of free parameters. The results in Fig 1 show the mean escape time using a batch size of 32;
we observe that our theory better explains the empirical results on all three datasets.

6 Conclusions and Limirations

This work corroborates that the SαS better characterized SGN qualitatively and quantitatively.
Furthermore, we show that distinct parameters are better characterized by different distribution
parameters, αi. Based on the mentioned experiments, we constructed a framework in RN consisting
of N one-dimensional Lévy processes with αi-stable components. This framework enables us to
characterize better the nature of DNN training with SGD, such as the escaping properties from
different local minima, a learning rate scheduler, and other parameters’ effects in the DNN.

The presented framework is valid once the training process is near a local minimum; our work does
not address the dynamics and noise characteristics of SGD at an early training stage. Furthermore,
the evolution of α in time is still unclear and demands future research.
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Appendix

A Additional details and results

Here we provide additional information required to reproduce our results and for the completeness of
our exposition.

A.1 Notations

Symbol Description

t Train iteration

SαS Symmetric α stable

U Potential/ loss function

Wt The process that depicts DNN weights time evolution.

Yt The deterministic process.

Zt The small jumps process

Ll
t Mean-zero SαS Lévy processes in 1d- represent the SGN of the l-th

parameter

ψt Large jump part of Lt

ξt Small jump part of Lt

η Learning rate

B Batch size

Ω Batch sample (|Ω| = B)

D Number of samples in training datasets

st LR scheduler at time t

γ Cooling rate

α Stability parameter of SαS dist.

λ Noise covariance matrix

τ lk The time of the k-th large jump of parameter l

Sl
k The difference between the (k − 1)-th large jump and k-th large jump

of parameter l

βl The jump intensity of the compound Poisson process ξl
J Large jumps height

A.2 Technical details

We trained several CNNs on the CINIC dataset [7] and the BERT base model on CoLA [43] dataset.
All models are trained until reaching convergence. Using the pre-trained weights, we sample 100
random parameters; for each parameter, we estimate the noise by computing the gradients of all of
the mini-batches in the dataset without updating the weights. Then, we fitted the empiric stochastic
gradient noise to multiple distributions; Sum of square error (SSE) is used to evaluate the quality
of our fit. We trained four ResNet variants Resnet18/34/50, those models were trained using SGD
optimizer, learning rate of 0.01, and a batch size of 128 (A.4). We used a multistep learning rate
scheduler on epochs 200 and 400 to accelerate the convergence. We examine the SGD noise of BERT
model, which was fine-tuned on CoLA [43] dataset using Adam optimizer with a learning rate of
2e-05 and batch size of 32 for 20 epochs. This is the standard Bert fine-tuning procedure. The results
are shown in Tab. F.1. Visual examples for the heavy-tailed nature of SGN can be seen in Fig. 5, and
additional results are presented in Sec. F.3. These results corroborates our claim of the heavy-tailed
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nature of SGN, even for different DNN architectures (CNN and Transformer based models) and input
domains (text and images).

A.3 SαS background

A Lévy process is random with independent and stationary increments, continuous in probability, and
possesses right-continuous paths with left limits. Except for special cases, its probability density does
not generally have a closed-form formula. Hence the process is characterized by the Lévy–Hincin
formula. In this paper, the noise is assumed to be best fitted by symmetric α stable Lévy distribution,
also known as Lévy flights (LF), and mainly parameterized using a stability parameter α, hence the
characteristic function:

E[eiwLl
t ] = exp{−t

∫
R/{0}

[eiwy − 1− iwyI{|y| ≤ 1}] dy

|y|1+αl
}, (13)

where I{B} denotes the indicator function of a set with the corresponding generating triplet (0, νl, 0)
and the Lévy measure νl(dy) = |y|−1−αl , y ̸= 0, αl ∈ (0, 2).In this work we assume αl ∈ (0.5, 2).
Unlike Brownian motion which almost surely holds continuous path, Lévy motion might obtain large
discontinuous jumps. Using Lévy- Itô-decomposition of Ll can be decomposed into a small jump
part ξlt, and an independent part with large jumps ψl

t, i.e., Li = ξlt + ψi
t.

The process ξlt has an infinite Lévy measure with support:{y|0 < ∥y∥ ≤ ϵ−ρ
l },∀ρ ∈ (0, 1), and

makes infinitely many jumps on any time interval. The absolute value of ξlt jumps is bounded by ϵ−ρ.
ψi
t is a compound Poisson process with finite Lévy measure, and is responsible on the big jumps,

more details about ψi
t in Sec. 3.2

A.4 Selecting minimum point

In order to find local minimum, we measure the loss of the entire data, i.e. loss when running GD; if
the loss does not change more then ϵ for more then 100 iterations, we exit the training process and
select the checkpoint as a minimum point. Since we do not know the domain boundary of the current
minimum, we measure the number of iterations until the training process passes a predefined loss
delta (∆L) from the current local minimum.

A.5 Assumption on the Potential near critical points

We assume that the potential U(Wt) is µ-strongly convex and can be approximated by a second order
Taylor approximation near critical points that will be noted as W ∗:

U(W ) = U(W ∗) +∇U(W ∗)(W −W ∗) +
1

2
(W −W ∗)TH(W ∗)(W −W ∗) (14)

This does not mean that U(W ) fulfills any of the assumptions above in general.

A.6 Exiting the potential using large jumps

We assume that the process is able to exit only when large jump occurs, this assumption is based on
a few realizations; first, the deterministic process Yt initialized in any point w ∈ Gδ, will converge
to the local minima of the domain by the positive invariance of the process, see assumptions in
Appendix D. Second, Yt converges to the minimum much faster than the average temporal gap
between the large jumps; third, using lemma 3.1, we conclude that the small jumps are less likely
to help the process escape from the local minimum. Next, we will show evidence for the second
realization mentioned above, the relaxation time T l

R is the time for the deterministic process Y l
t ,

starting from any arbitrary w ∈ G, to reach an ϵ̄ζl -neighbourhood of the attractor. For some C1 > 0,
the relaxation time is

T l
R = max

{∫ −ϵ̄ζl

d−
l

dy

−U ′(y)l
,

∫ d+
l

ϵ̄ζl

dy

U ′(y)l

}
≤ C1|lnϵ̄l|. (15)

Now, let us calculate the expectation of S∗
k = τ∗k − τ∗k−1, i.e. the interval between the large jumps:

E[Sl
k] = E[τ lk − τ lk−1] = β−1

l =
αl

2
ϵ̄l

−ραl . (16)
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Since ϵ̄ ∈ (0, 1), usually even ϵ̄≪ 1, it is easy to notice that E[Sl
k] ≫ TR; thus we can approximate

that the process Wt is near the neighborhood of the basin, right before the large jumps. This means
that it is highly improbable that two large jumps will occur before the training process returns to a
neighborhood of the local minima.

B Proofs

B.1 Proof of Theorem 4.1

The first equality is true under the assumption that the process can exit the basin only when large
jumps occur.

E[σG ] =
∞∑
k=1

E[τ∗k ]I{σG = τ∗k}] (17)

=

∞∑
k=1

E[τ∗k I{
N∑
l=0

stϵ(1
Tλl(t))

1
αl J l

1I{τ l1 = τ∗1 } ∈ G,
N∑
l=0

stϵ(1
Tλl(t))

1
αl J l

2I{τ l2 = τ∗2 } ∈ G

, ..,

N∑
l=0

stϵ(1
Tλl(t))

1
αl J l

kI{τ lk = τ∗k} /∈ G}]

=

∞∑
k=1

E[τ∗k I{J∗
1 ∈ G, J∗

2 ∈ G, .., J∗
k /∈ G}] ≤

∞∑
k=1

E[τ∗k (1− I{J∗
k /∈ G})k−1

I{J∗
k /∈ G}]

=

∞∑
k=1

N∑
l=1

E[τ lk(1− I{J l
k /∈ G})k−1

I{J l
k /∈ G}I{τ lk = τ∗k}]

≤
∞∑
k=1

N∑
l=1

k∑
w=1

E[τ lw(1− I{s
αl−1

αl
t ϵ(1Tλl(t))

1
αl J l

w /∈ G})w−1(1− I{s
αν−1
αν

t ϵ1Tλν(t)J
m
w /∈ G})k−w

I{s
αl−1

αl
t ϵ1Tλi(t)J

l
w /∈ G}I{τ lw = τ∗k}] .

I{τ lw = τ∗k} incorporates the probability that the k-th jump occurred by the l-th parameter, and the
chance that within a total of k jumps the parameter l, will respect the w-th jump:

I{τ lw = τ∗k} =
βl(t)

βS(t)

(
k − 1

w − 1

)(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

(18)

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

We will estimate the average probability of the DNN to escape the basin i.e. the general expression:
[1− sαν−1

t mν(t)
βν(t)

Φν ]
k−w, by using αν as the average α value of the network.

∞∑
k=1

N∑
l=0

k∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

βl(t)t (19)

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αl−1
t ml(t)

βl(t)
Φldt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

k∑
w=1

[βl(t)t− sαl−1
t ml(t)Φlt]

w−1

(w − 1)!

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1 [(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−w

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl
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[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]


=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t)1−

1−
s
αν−1
t mν (t)

βν (t)
Φν

(
1− βl(t)

βS(t)

)
dt

=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t) s

αν−1
t mν (t)

βν (t)
Φν+

βl(t)
βS(t)

−
s
αν−1
t mν (t)Φν

βν (t)
βl(t)
βS(t)


dt

≤
N∑
l=0

∫ ∞

0

βl(t)

βS(t)
te−βl(t)tsαl−1

t ml(t)Φl[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1

e−(s
αl−1
t ml(t)Φlt−βl(t)t)dt

≤
N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

0

βl
βS
ts

αl−1+ρ(αl−αν)
t m̄lΦle

−s
αl−1
t m̄lΦltdt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1 ∫ ∞

0

βl
βS
t1+(γ−1)(αl−1+ρ(αl−αν))m̄lΦle

−t1+(γ−1)ρ(αl−1)m̄lΦldt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
βlm̄lΦl

βS(1 + (γ − 1)ρ(αl − 1))[
(m̄lΦl)

− 2+(γ−1)(αl−1+ρ(αl−αν ))

1+(γ−1)ρ(αl−1) Γ

(
2 + (γ − 1)(αl − 1 + ρ(αl − αν))

1 + (γ − 1)ρ(αl − 1)

)]
dt

=

N∑
l=0

A−1
l,ν

βlm̄lΦl

βS(1 + (γ − 1)ρ(αl − 1))
(m̄lΦl)

−Cl,ν,pΓ (Cl,ν,p) dt .

Where Al,ν ≜
[(

1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]
,Cl,ν,p ≜ 2+(γ−1)(αl−1+ρ(αl−αν))

1+(γ−1)ρ(αl−1) . Further to ease the

calculation assumed that the time dependency: βl(t)
βS(t) =

β̄l

β̄S
sρ(αl−αν). If the cooling rate is negligible,

i.e. γ → 1, the mean transition time:

E[σG ] ≤
N∑
l=0

A−1
l,ν

1

βS(1Tλl)
1
αl ϵαl(1−ρ)Φl

. (20)

B.2 Proof of Theorem 4.3

P (Wσ ∈ Ω+
i (δ)) =

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k ∈ Ω+
i ) (21)

=

∞∑
k=1

k−1∏
j=1

P (J∗
j ∈ G)P (J∗

k > d+i )
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=

∞∑
k=1

(1− P (J∗
k /∈ G))k−1P (J∗

k ≥ d+i )

≤
∞∑
k=1

N∑
l=1

k−1∑
w=1

(1− P (s
αl−1

αl
t ϵ(1Tλl(t))

1
αl J l

w /∈ G))w−1(1− P (s
αν−1
αν

t ϵ1Tλν(t)J
v
w /∈ G))k−wP (J l

w ≥ d+i )P (τ
l
w = τ∗k )

=

∞∑
k=1

N∑
l=1

k−1∑
w=1

∫ ∞

0

βl(t)

βS(t)

(k − 1)!

(w − 1)!(k − w)!

(
βl(t)

βS(t)

)w−1(
1− βl(t)

βS(t)

)k−w

βl(t)

e−βl(t)t
(βl(t)t)

w−1

(w − 1)!
[1− sαl−1

t ml(t)

βl(t)
Φl]

w−1[1− sαν−1
t mν(t)

βν(t)
Φν ]

k−w s
αi−1
t mi(t)

βi(t)
(d+i )

−αi

=

∞∑
k=1

N∑
l=1

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

k−1∑
w=1

[1− sαl−1
t ml(t)

βl(t)
Φl]

w−1 (k − 1)!

(w − 1)!(k − w)!

(βl(t)t)
w−1

(w − 1)!(
(1− sαν−1

t mν(t)

βν(t)
Φν)

(
1− βl(t)

βS(t)

))k−w (
βl(t)

βS(t)

)w−1

dt

=

∞∑
k=1

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]k−1

Lk−1

 βl(t)
βS(t) (s

αl−1
t ml(t)Φlt− βl(t)t)[(

1− sαν−1
t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]
 dt

=

N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e

−
βl(t)
βS(t)

(s
αl−1
t ml(t)Φlt−βl(t)t) s

αν−1
t mν (t)Φν

βν (t)
+

βl(t)
βS(t)

−
s
αν−1
t mν (t)Φν

βν (t)
βl(t)
βS(t)


dt

≤
N∑
l=0

∫ ∞

0

βl(t)

βS(t)
βl(t)e

−βl(t)t
sαi−1
t mi(t)

βi(t)
(d+i )

−αi

[(
1− sαν−1

t mν(t)

βν(t)
Φν

)(
1− βl(t)

βS(t)

)]−1

e−(s
αl−1
t ml(t)Φlt−βl(t)t)dt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
m̄iΦi

β̄i
(d+i )

−αi
β2
l

βS

∫ ∞

0

t(γ−1)(αi−1+ρ(2αl−αν−αi))+1e−t(γ−1)ρ(αl−1)+1m̄lΦldt

=

N∑
l=0

[(
1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]−1
m̄iΦi

β̄i
(d+i )

−αi
β2
l (m̄lΦl)

− (γ−1)(αi−1+ρ(2αl−αν−αi))+2

(γ−1)ρ(αl−1)+1

βS((γ − 1)ρ(αl − 1) + 1)

Γ

(
(γ − 1)(αi − 1 + ρ(2αl − αν − αi)) + 2

(γ − 1)ρ(αl − 1) + 1

)
.

Notating: Cl ≜
(γ−1)(αi−1+ρ(2αl−αν−αi))+2

(γ−1)ρ(αl−1)+1 ,Al,ν ≜
[(

1− m̄ν

β̄ν
Φν

)(
1− β̄l

β̄S

)]
N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi
β2
l (m̄lΦl)

−Cl

βS((γ − 1)ρ(αl − 1) + 1)
Γ (Cl) (22)

When γ → 1:
N∑
l=0

A−1
l,ν

m̄iΦi

β̄i
(d+i )

−αi
β2
l

βS(m̄lΦl)2
. (23)
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B.3 Proof of Proposition 3.2

∀k ∈ N, let Sk ≥ 0, w ∈ G, CE < 1 , the following event can be defined:

Ei
t,k =

{
sup

t∈[0,Sk]

|ϵξit,k| < CE

}
. (24)

There exist ϵ̄0, s.t ∀ϵ̄ ≤ ϵ̄0, the following is true:{
sup

t∈[0,Sk]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

}
=

{
sup

t∈[0,Sk]

|ϵ̄Xi
t,k(w) +Ri

t,k(w)| ≥ cϵ̄θ

}
(25)

⊆

{
sup

t∈[0,Sk]

|ϵ̄Xi
t,k(w)| ≥

c

2
ϵ̄θ

}
∪
{
|Ri

t,k(w)| ≥
c

2
ϵ̄θ
}

⊆

{
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
∪
{{

|Ri
t,k(w)| ≥

c

2
ϵ̄θ
}
∩Ei

t,k

}
∪
{{

|Ri
t,k(w)| ≥

c

2
ϵ̄θ
}
∩Ec

t,ki

}
⊆

{
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
∪

{
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥
c

2CZ

√
CR

ϵ̄0.5θ

}
∪

{
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥ CE

}

⊆

{
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

}
.

Using Kolmogorov’s inequality, for Cθ > 0:

P

(
sup

t∈[0,Sk]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
≤ P

(
sup

t∈[0,Sk]

|ϵ̄ξit,k| ≥
c

2CZ
ϵ̄θ

)
(26)

≤ 4C2
Z

c2ϵ̄2θ
E[ϵ̄ξit,k]2 =

8C2
Z

c2
ϵ̄2−2θ

[
ϵ̄−ρ(1−αl) − 1

1− αl

]
T ≤ 8C2

Z

c2

[
ϵ̄−ρ(1−αl)+2−2θ

1− αl

]
T

= C̄θ ϵ̄
−ρ(1−αl)+2−2θT .

Final step:

P

(
sup

t∈[0,T ]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
=

∫ ∞

0

P

(
sup

t∈[0,τ ]

|Zi
t,k(w)− Y i

t,k(w)| ≥ cϵ̄θ

)
βie

−βiτdτ

(27)

= C̄θ ϵ̄
−ρ(1−αl)+2−2θ

∫ ∞

0

τ1−ρ(1−αl)+2−2θβie
−βiτdτ

= C̄θ ϵ̄
−ρ(1−αl)+2−2θ Γ(2− ρ(1− αl) + 2− 2θ)

β
2−ρ(1−αl)+2−2θ
i

= Cθ ϵ̄
−ρ(1−αl)+2−2θ

.

B.4 Proof of Lemma 3.3

In this subsection we will show the full derivation of the approximation of Zl
t,k using stochastic

asymptotic expansion, the representation of Zt in powers of ϵ̄ = s
α−1
α

t ϵ:

Zi
t,k = Y i

t,k + ϵ̄Xi
t,k +Ri

t,k . (28)

Where Ri
t,k is the error term, we will not discuss this term, for more details see [18]. Xi

t,k is the first
approximation of Zi

t,k in powers of ϵ̄ and Y i
t,k is the deterministic process. As we show in 4, the

relaxation time is much smaller than the interval between the large jumps, hence it’s effect on Zt is
negligible, thus we will assume: Zt,k ≈ ϵ̄Xt,k. Xi

t,k satisfying the following stochastic differential
equation:

Xi
t,k =

∫ t

0

H(Yp(w))iiZ
i
p,kdp+ ξip,k . (29)
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The solution to this equation:

Xi
t,k =

∫ t

0

e−
∫ t
p
H(Yu(w))iidudξip,k . (30)

Using integration by parts:

Xi
t,k = ξit,k −

∫ t

0

ξip,kH(Yp(w))ii)e
−

∫ t
p
H(Yu(w))ii)dudp (31)

E[X l
t,k] =

∗ µl
ξt−

∫ t

0

µl
ξtH(Yp(w)))lle

−
∫ t
p
H(Yu(w))ll)dudp (32)

= µl
ξt−

∫ t

0

µl
ξphlle

−
∫ t
p
hlldudp

= µl
ξt−

∫ t

0

µl
ξphlle

−hll(t−p)dp

= µl
ξt− [µl

ξhll[(−
(hllp+ 1)

h2ll
)e−hll(t−p)]t0

= µl
ξt− [µl

ξhll[(−
(hllt+ 1)

h2ll
) + (

1

h2ll
)e−hll(t)]

= µl
ξt+ µl

ξ

(hllt+ 1)

hll
− µl

ξ

1

hll
e−hllt

= µl
ξ(2t+

1

hll
− 1

hll
e−hllt) .

* using Fubini.
Where µl

ξ ≜ µl
ξ(t) is the first moment of ξlt,k:

µl
ξ(t) ≜ E[ξlt,k] = 2t

∫ ϵ̄−ρ

1

dy

yαl
= 2t[

1

1− αl
y1−αl ]ϵ̄

−ρ

1 = 2t

[
ϵ̄−ρ(1−αl) − 1

1− αl

]
. (33)

We will keep the previous assumptions [19, 18] on the geometry of the potential, that near the
basin:U(w) = hll

w2

2 + o(w2). Hence we can estimate the expected value of a product of the two
processes:

E[Zi
t,kZ

j
t,k] = E[Y i

t Y
j
t + ϵ̄jY

i
t X

j
t,k + ϵ̄iY

j
t X

i
t,k + ϵ̄j ϵ̄iX

j
t,kX

i
t,k] (34)

≈∗ E[Y i
t Y

j
t ] + ϵ̄jY

i
t E[Xj

t,k] + ϵ̄iY
j
t E[Xi

t,k]

= Y i
t Y

j
t + ϵ̄jY

i
t E[Xj

t,k] + ϵ̄iY
j
t E[Xi

t,k]

= Y i
t Y

j
t + ϵ̄jY

i
t µ

j
ξ(2t+

1

hjj
− 1

hjj
e−hjjt) + ϵ̄iY

j
t µ

l
ξ(2t+

1

hii
− 1

hii
e−hiit)

≈ wiwje
−(hii+hjj)t + ϵ̄jwie

−hiit2t

[
ϵ̄−ρ(1−αj) − 1

1− αj

]
(2t+

1

hjj
− 1

hjj
e−hjjt)

+ ϵ̄iwje
−hjjt2t

[
ϵ̄−ρ(1−αi) − 1

1− αi

]
(2t+

1

hii
− 1

hii
e−hiit) .

*Neglecting terms with order ϵ̄2.

B.5 Proof of Proposition 3.4

SGD’s covariance:

Σt =
1

D

[
1

B

Q∑
i=1

∇U(Wt)i∇U(Wt)
T
i −∇U(Wt)∇U(Wt)

T

]
. (35)
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We can approximate the loss landscape near the basin using Taylor expansion:

U(Wt) = U(W ∗) +∇U(W ∗)(W −W ∗) +
1

2
(Wt −W ∗)T∇2U(W ∗)(Wt −W ∗) . (36)

Examining SGD’s gradient on the b-th data point, using the approximation in 36:

∇U(Wt)i ≈ ∇Ud(W
∗) +∇2Ud(W

∗)(Wt −W ∗) . (37)

The exact gradient (of GD) is:

∇U(Wt) ≈ ∇2U(W ∗)(Wt −W ∗) . (38)

As a result of empirical evidence in [31] on the minimum of the covariance curve of SGD, we will
drop the first order from the approximation of ∇Ud(W )∇Ud(W )T . Hence Eq. 35 can be written as:

λ(Wt) =
1

B

[
1

D

D∑
d=1

∇Ud(W
∗)∇Ud(W

∗)T +Hd(W
∗)WtW

T
t Hd(W

∗)−H(W ∗)WtW
T
t H(W ∗)

]
(39)

D∑
d=1

Hd(W
∗)WtW

T
t Hd(W

∗) =
1

D

N∑
k=1

N∑
p=1

D∑
d=1

hd,i,kw̃k,phd,p,j

Where w̃ij = wiwj

λi,j(t) =
1

B

[
N∑

k=1

N∑
p=1

(
1

D

D∑
d=1

hd,i,khd,p,j − hi,khp,j)w̃k,p +
1

D

D∑
d=1

∇ud,i∇ud,j

]
(40)

=
1

B

[
N∑

k=1

N∑
p=1

(
1

D

D∑
d=1

hd,i,khd,p,j − hi,khp,j)w̃k,p + ũd,i,j

]

ũi,j ≜ 1
D

∑D
d=1 ∇ud,i∇ud,j , the gradient of all samples in the dataset. Let us denote: h̄i,k,p,j ≜

1
D

∑D
d=1 hd,i,khd,p,j − hi,khp,j+

λi,j(t) =
1

B

[
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,jWt,kWt,p

]
(41)

=
1

B

[
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,jZt,kZt,p

]

=
1

B
ũij +

N∑
k=1

N∑
p=1

h̄i,k,p,j E[Zt,kZt,p]

λi,j(t) =
1

BD
ũij+

1

B
[

N∑
k=1

N∑
p=1

h̄i,k,p,j(wkwpe
−(hkk+hpp)t + ϵ̄pwke

−hkktµp
ξ(2t+

1

hpp
(1− e−hppt))

+ ϵ̄kwpe
−hpptµk

ξ (2t+
1

hkk
(1− e−hkkt)))] +O(ϵ̄2) (42)

B.6 Proof of Lemma 3.1

We will denote W ∗ as the optimal point in the basin, using the differential form, it is known that:

dYt
dt

= −∇U(Yt) . (43)
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Let us denote:ζ(t) = U(Yt)− U(W ∗), directly from that notation:

dζ(t) = ⟨∇U(Yt), dYt⟩ = −∥∇U(Yt)∥2 . (44)

Since U(Yt) is µ−strongly convex near the basin W ∗:

U(Yt)− U(W ∗) ≤ 1

2µ
∥∇U(Yt)∥2 (45)

− 2µζ(t) ≥ dζ(t) .

Using Gronwall’s lemma [11]::

U(Yt)− U(W ∗) ≤ (U(w)− U(W ∗))e−2µt . (46)

Directly from strong convex propriety U(Yt)− U(W ∗) ≥ µ
2 ∥Yt −W ∗∥2 , we can achieve:

∥Yt −W ∗∥2 ≤ 2(U(w)− U(W ∗))

µ
e−2µt =

2ζ(t)

µ
e−2µt . (47)

C Extras

Lemma C.1. ∀T ∈ [Sj , Sj+1], ∀j ∈ N,and ∀w ∈ [d−i , d
+
i ] there exist a finite CZ s.t:

sup
T

|Xi
t(w)| ≤ CI

z sup
T

|ξit| . (48)

Using stochastic asymptotic expansion:

|Xi
t(w)| ≤ sup

t∈[0,T ]

|ξt,l|

(
1 + sup

t∈[0,T ]

∫ t

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp

)
. (49)

For some δ > 0, the inequality :mi
1 ≤ sup|w|≤δH(Yp(w)) ≤ inf |w|≤δH(Yp(w)) ≤ mi

2.
Let us denote:

C1 = max
w∈G

∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp . (50)

For arbitrary T̂ ≤ t:∫ t

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp = (51)∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp+

∫ t

T̂

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp

The estimate for the first term:∫ T̂

0

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp = e−

∫ t
T̂
H(Yu(w))iidu

∫ T̂

0

H(Yp(w))iie
−

∫ T̂
p

H(Yu(w))iidudp

(52)

≤ e−mi
1(t−T̂ )C1 ≤ C1 .

The second sum:∫ t

T̂

H(Yp(w))iie
−

∫ t
p
H(Yu(w))iidudp ≤

∫ t

T̂

mi
2e

−mi
1(t−p)dp ≤ mi

2

mi
1

. (53)

And: Cl
Z = C1 +

ml
2

ml
1

.
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D Framework properties and notations

Let us first make few assumptions on the geometry of G and notations:

1. Near the basin W ∗, ∇U : Ḡ → Rd.

2. U is µ−strongly convex .

3. The boundary of our domain is denoted as ∂G, which is a C1 manifold, so that the vector
field of the outer normals on the boundary exists. This means that ∇U “points into G”,
hence:

⟨∇U(w), n(w)⟩ < − 1

C
, (54)

for any w ∈ ∂G

4. Zero is an attractor of the domain (i.e. ∇U(0) = 0, and for every starting value w ∈ G,the
deterministic solution vanishes asymptotically:

limt→∞Yt(w) → 0 . (55)

5. Let us define the inner part of G as Gδ = {y ∈ G : dict(w, ∂G) ≥ δ} ,

where C > 1.
Let us define δ0 > 0 as the point which if ∥w∥ < δ0 then w ∈ G and ∀δ ∈ (0, δ). The following is
valid:

• From the exponential stability of 0, ∥Yt∥ < Ce−
1
C t ∥w∥.

• For ∥w∥ < δ0, and giw,+ = w + tri, giw,− = w − tri, we shall define the distance to the
boundary as:

d+i (w) ≜ inf{t > 0 : giw,+(t) ∈ ∂G} . (56)

• We will define δ-tubes as Ω+
i (δ) ≜ {w ∈ Rd : ∥⟨w, ri⟩ri∥ < δ, ⟨w, ri⟩ > 0} ∩ Gc and

Ω−
i (δ) ≜ {w ∈ Rd : ∥⟨w, ri⟩ri∥ < δ, ⟨w, ri⟩ < 0} ∩ Gc.

• Gδ with the dynamic process Yt and the initial point w ∈ Gδ is a Positively invariant set [1] .

E Constructing the SDE

Let us first define our SGD iterative update rule:

wk = wk−1 − η̄k∇U(wk) + η̄kζk . (57)

ζk ∈ RN , wk ∈ RN ,∇U(wk) ∈ RN . Let us remind that λk ∈ RNxN approximates the noise
covariance matrix :

λk =
1

D

[
1

B

Q∑
i=1

∇U(wk)i∇U(wk)
T
i −∇U(wk)∇U(wk)

T

]
. (58)

The SGN is assumed to be modeled by a Levy-stable random variable, ζlk ∼ SαS(1Tλkl ), note
that 1Tλkl is a scalar, and it represents the sum of interactions of parameter’s l with the rest of the
parameters in the DNN. Let us start with the following SDE:

Wt =

∫ t

0

∇U(Wp) dp+

∫ t

0

N∑
l=1

η
αl−1

αl ((1Tλl)
1
αl )

1
αl (Wt)rldL

l
t . (59)

We aim to use the Euler-Maruyama method and Levy process properties to achieve Eq. 57. Let us
define the time discretization constant as ηk > 0 , we split (0, t) to M splits: 0 = τ0 < τ1 < ... <
τk < .. < τM−1 = t,where τi − τi−1 = η thus for τi ∈ (0, t) using Euler-Maruyama method:

wτk = wτk−1
−∇U(wτk , τk)(τk−τk−1)+

N∑
l=1

η
αl−1

α ((1Tλl)
1
αl )

1
αl (Wτk)rl(L

l
τk
−Ll

τk−1
) . (60)
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.

Model Data Gauss SαS Const α SαS
ResNet18 CINIC10 0.138± 0.040 0.156± 0.072 0.066 ± 0.026
ResNet34 CINIC10 0.157± 0.077 0.233± 0.115 0.114 ± 0.073
ResNet50 CINIC10 0.141± 0.072 0.147± 0.088 0.096 ± 0.061

Bert [B = 8] Cola 0.214± 0.064 0.197± 0.087 0.071 ± 0.032
Bert [B = 32] Cola 0.032± 0.027 0.036± 0.019 0.017 ± 0.013

Table 2: The fitting error between SGN and SαS/Gaussian distribution. Averaged over 10, 000
randomly sampled parameters. Top three tows, three different CNNs trained on the CINIC10 data
with a batch size of 400. Bottom two rows, BERT [8] base model trained on the Cola dataset with
different batch sizes B. Sum of Squares Error (SSE) is used to evaluate the fitting error of each
distribution. "Gauss" represents the Gaussian distribution. Our results demonstrate that SαS better
depicts SGN.

Model Data Gauss SαS SαS Wins
EfficientNet-b2 ImageNet 0.01083± 0.0032 0.00101± 0.0002 99.58%
EfficientNet-b3 ImageNet 0.01385± 0.0034 0.00130± 0.0004 99.46%
EfficientNet-b4 ImageNet 0.02062± 0.0059 0.001936± 0.0006 99.56%

FlexVit ImageNet 0.02497± 0.0102 0.00391± 0.0018 99.13%
Vit base ImageNet 0.04576± 0.0191 0.00419± 0.0009 99.59%
Vit small ImageNet 0.0208± 0.0095 0.00210± 0.0004 99.30%

Table 3: Subset of ImageNet with 200k images. The batch size is 64, and 10,000 parameters were
sampled.

Using Levy stationary increments property: The difference Lm − Ln, for m > n distributes Lm −
Ln ∼ SαS((m− n)

1
α ), further for clarity we will mark wτk as wk.

wk = wk−1 + ηk∇U(wk) +

N∑
l=1

η
αl−1

αl ((1Tλl)
1
αl )

1
αl (Wk)rlS

l
k . (61)

Where Sl
k ∼ SαS(η

1
αl ). Using SαS characteristic function and the fact Lt is a real value process:

Sl
k = ζlkη

1
αl ((1Tλl)

1
αl )

− 1
αl , let us use this identity:

wk = wk−1 + ηk∇U(wk) +

N∑
l=1

η
αl−1

αl ((1Tλl)
1
αl )

1
αl (Wk)rlζ

l
kη

1
αl ((1Tλl)

1
αl )

− 1
αl . (62)

wk = wk−1 − ηk∇U(wk) +

N∑
l=1

ηkrlζ
l
k . (63)

Since we defined (for simplicity) rl as one hot vector we can deduce:

wk = wk−1 − ηk∇U(wk) + ηζk . (64)

For the convergence of the Euler-Maruyama discritization please see [20, 35, 2].

F Experimental Section

F.1 Additional results

F.2 LRdecay plot

In figure 2 we present the results of the learning rate decay experiment described in the main text.
Specifically, our result suggests that reducing the noise magnitude plays an important role in the
dynamics of learning rate decay.

F.3 Empirical evidence of the heavy tail nature of SGN

In figure 3 and 4 we present histograms demonstrating the heavy tail nature of SGN.

F.4 Additional escape time experiments

F.5 αi Variability

Figure 7 shows how different SGNs attribute different parameters in the same DNN.
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(a) (b)

(c) (d)

Figure 2: The stochastic gradient noise of a single parameter in ResNet110 [15]. (a) Before applying
learning rate decay, at epoch 279. (b) After applying learning rate decay, at epoch 281. (c) Without
learning rate decay, at epoch 280. (d) The training loss with and without learning rate decay applied
at epoch 280.

F.6 αi as a function of the layer in the DNN

Fig. 8 The caption explores the heavy-tail level of the SGN for each layer. The left figure depicts
ResNet18 [15] on CINIC10 [7] and CIFAR10 [22] , revealing that layers closer to the prediction
layer exhibit a higher SGN, suggesting their propensity to escape local minima. The right figure
shows Mobilenet on CIFAR100, with multiple layers displaying high αi values. These layers employ
a distinct activation function, HardSigmoid, which involves clipping and contributes to the heavier
tails observed.

F.7 Escape axis plot
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(a) (b)

(c) (d)

Figure 3: The stochastic gradient noise of a ResNet50 trained on CIFAR100 for four randomly
sampled parameters, please zoom in in order to see the long tail behavior.
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(a) (b)

(c) (d)

Figure 4: The stochastic gradient noise of a ResNet18 trained on CIFAR100 for four randomly
sampled parameters, please zoom in in order to see the long tail behavior.

Figure 5: Histograms of the stochastic gradient noise for a single parameter in ResNet34 for: (left)
layer number 1, (right) layer number 2. The plots qualitatively show that SGN is far from Normal
distribution and presents heavy tail nature.
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Figure 6: The mean escape time of SGD on Breastw (left), Cardio (middle), and Satellite (right)
datasets. The plots show the fitting base on two methods: ours and [46], on the upper row shows
escaping with batch size 32, while the bottom row with batch size 8. Each dot represents the mean
escape time for a sweep of learning rates. The dot is an average of over 100 random seeds for each
learning rate. One can observe that the empiric results are better explained by our theory for a batch
size of 32 in all three datasets examined. On the contrary, using batch size 8, our theory overshoot
when predicting escape time for the Satellite dataset, which is competitive on Cardio and better on
the BreastW dataset.

Figure 7: Each dot represents the distribution parameter αi of a single weight in the DNN. Values on
the x-axis represent five different DNNs, left to right: ResNet20/110/18/34/50 [15]; this plot confirms
that distinct weights in a DNN lead to different noise distributions during training.
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Figure 8: All plots shows the heavy-tail level of the SGN per layer, where low index are layers closer
to the input. The left image shows ResNet18 on both CINIC10 and CIFAR10 datasets; a clear pattern
is that layers closer to the prediction layer hold heavier SGN, which suggests that those layers are
more probable to escape local minima. The right image shows Mobilenet trained on CIFAR100;
unlike ResNet18, there are a few layers with high αi, interestingly those layers contain a unique
activation function HardSigmoid, which performs clipping, thus could explain the larger value of α.

Figure 9: Four different values of α1 and three values of ∆ are selected, and the y-axis shows the
probability of escaping from x1, which is the axis with lower α. For example, the top-left most dot
(blue) shows that when α1 = 0.55 and α2 = 1.05 the probability of the process to escape from axis
x1 is ∼ 82%.
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