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ABSTRACT

As the role of machine learning models continues to expand across diverse fields,
the demand for model interpretability grows. This is particularly crucial for deep
learning models, which are often referred to as black boxes, due to their highly
nonlinear nature. This paper proposes a novel method for generating and evalu-
ating concise explanations for the behavior of specific neurons in trained vision
models. Doing so signifies an important step towards better understanding the
decision making in neural networks. Our technique draws inspiration from a re-
cently published framework that utilized GPT-4 for interpretability of language
models. Here, we extend and expand the method to vision models, offering in-
terpretations based on both neuron activations and weights in the network. We
illustrate our approach using an AlexNet model and ViT trained on ImageNet,
generating clear, human-readable explanations. Our method outperforms the cur-
rent state-of-the-art in both quantitative and qualitative assessments, while also
demonstrating superior capacity in capturing polysemic neuron behavior. The
findings hold promise for enhancing transparency, trust and understanding in the
deployment of deep learning vision models across various domains. The relevant
code can be found in our GitHub repository.

1 INTRODUCTION

With the increasing prevalence of complex machine learning models in various domains of life, there
has been a rising demand for interpretability. Understanding why these models make the decisions
they do is crucial, not just from a research perspective, but also for ethical and societal reasons. Deep
learning models, especially, are often seen as black boxes due to their complex and highly nonlinear
nature. This challenge is particularly evident in the context of vision models, where the relationship
between inputs (image pixels) and outputs (class labels) is often not straightforward.

In this paper, we address this challenge by developing a method for generating and evaluating short
explanations for the behavior of individual neurons in trained vision models. To the best of our
knowledge, this is the first time a Large Language Model (LLM) has been used this way. Addition-
ally, by leveraging the power of LLMs, our method does not require training a specialized model,
and instead offers a method to assessing the quality of the explanations at scale.

Interpreting the computations performed by deep networks has been split up into three major sub-
areas: visualization, probing and explaining single neurons.

Visualization The most common visualization technique for interpretability, is finding the input
image that maximally activates a specific neuron (Erhan et al., 2009; Yosinski et al., 2015; Olah et al.,
2017). However, beyond that, visualization has been used to offer additional insights into feature
importance (Sundararajan et al., 2017; Zhou et al., 2015), and better understanding the self-attention
mechanism of transformers (Vig, 2019; Braşoveanu & Andonie, 2020).

Probing Another popular technique is using a secondary (often much smaller) classifier to es-
timate the type of information encoded in the hidden state of the main model. To that end, the
secondary model is trained to predict a class (i.e. Part-of-Speech, Named Entities, Semantic Roles,
Polarity, etc.), given the hidden states of a network layer from the main model. The efficacy of the
prediction indicates what information is encoded. This technique was first introduced by Alain &
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Figure 1: Left: The 25 highest activating images for an example neuron (neuron 489 of the second-
last hidden layer) from an AlexNet model trained on ImageNet. Right: The generated explanation
for this neuron, from the current SoTA method (Clip-Dissect) and the three methods proposed in
this paper (GPT (Weight-Label), GPT (Weight-CLIP), GPT (Caption-Activation))

Bengio (2017) and has since been used to identify the role of specific neurons (Bau et al., 2020;
Suau et al., 2020) and the level of complexity at different layers in transformer networks (Tenney
et al., 2019; Voita et al., 2019; Raganato & Tiedemann, 2018; Nostalgebraist).

Explaining Single Neurons Most relevant to this work is the line of research that aims to find
short explanations for individual neurons. Techniques employed to do so include manual inspection
(Miller & Neo), creating a custom dataset and training a specialized classifier (Bau et al., 2017), and
comparing the embedding similarities of images activating a specific neuron and text embeddings
using a trained Vision-Language Model (Oikarinen & Weng, 2023). Additionally, Hernandez et al.
(2022) trained a RNN to generate natural language descriptions of neurons in vision models, and
Bills et al. (2023) used GPT-4 to generate short explanations of neurons in GPT-2 based on the words
the neuron activated for. Notably, Bills et al. (2023) has also provided a way to quantitatively
assess the quality of explanations. Namely, they use a secondary GPT-4 model to simulate the
activations of a neuron given the explanation, and judge the quality of the explanations based on the
correlation scores (here, and in the remainder of the paper we denote 100 ∗ correlation coefficient as
the correlation score) it achieved relative to the actual activations.

Our method is rooted in the framework introduced by Bills et al. (2023). However, we explain
individual neurons in vision models, rather than language models, and do so via both the activations
and the weights of the network. The key contributions of the paper are:

1. We generate short, easy-to-understand explanations of neuron selectivity in a trained vision
model with two different techniques; firstly, using the weights of the model and secondly,
using the image-caption / neuron activation pairs.

2. We are the first to propose a reliable & scalable explanation scoring algorithm for neurons
in vision models.

3. We show that the proposed method works for other Vision models, including a ViT.
4. We show that our proposed methods are better in capturing polysemanticity, easier to un-

derstand, and quantitatively perform better than the current state-of-the-art.

The remainder of the paper is structured as follows: in Section 2 we highlight relevant related work
and in Section 3, we present in detail our methods. We benchmark our methods against the current
state-of-the-art in Section 4 and finally conclude in Section 5.
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2 RELATED WORK

Out of the three main interpretability techniques described in Section 1, “Explaining Single Neu-
rons” is most relevant to our work. As mentioned, interpretability can generally be sub-divided
based on the techniques used to elucidate neuron explanations. Manually inspecting neurons and
collecting specific datasets both introduce a large enough overhead for them to not be practical solu-
tions for practitioners. Thus, we will be focusing on similarity based explanations and open-ended
explanations.

2.1 SIMILARITY-BASED EXPLANATIONS

The recently published work by Oikarinen & Weng (2023) uses a trained Vision Language Model
(VLM) to generate similarity based explanations in three steps.

1. First, the VLM is used to separately embed a set of probing images (which can be unla-
beled) and a set of concept words. Subsequently, the concept-activation matrix is calculated
by taking the inner product of each of the text and image embeddings.

2. Second, given a specific neuron that we want to explain, the activation of this neuron for
each image in the probing set is recorded.

3. Lastly, the similarity between the activation vector from the second step and each column
of the matrix in the first step is determined. The concept for the column with the highest
similarity is used to describe the neuron.

This method has a good cost-quality trade-off. Whilst it is very cheap and fast to run, it has two
shortcomings. Firstly, the one-term explanations it generates (i.e. “terrier”, “feather”, “nursery”) are
not very nuance and thus might miss subtleties of the neuron encoding. Secondly, there is a body
of research documenting the prevalence of polysemantic neurons in deep learning models (Elhage
et al., 2022; Olah et al., 2020). Naturally, it is hard to describe a neuron that looks for a multitude of
potentially very different objects, with a single term.

2.2 OPEN ENDED EXPLANATIONS

The most important work in this area is the recently published paper “Language models can explain
neurons in language models” by Bills et al. (2023). In their work, the authors used GPT-4 to generate
human understandable explanations for individual neurons in GPT-2 (a large language model) based
on how strongly they activate for various input words. Beyond simply generating explanations,
they used a separate GPT-4 model to simulate the neuron activity for a test sentence based on the
generate explanation; assessing the quality thereof by calculating the correlation between the real
and the simulated activations. Though this is not the first work that is able to generate human
understandable explanations for individual neurons, see Hernandez et al. (2022), to the best of our
knowledge, it is the only work that does not require training a specialized model, generates high
quality text, and most importantly, offers a method of assessing the quality of the explanations at
scale.

3 METHOD

Our paper proposes two separate methods for explaining singular neurons in a trained vision model.
First, we will describe the activations based method, and subsequently the weight based method.
Both methods consist of an explanation generation component and a explanation assessment com-
ponent.

Unless specified otherwise, we will use an AlexNet classifier trained on ImageNet and gpt-3.5-
turbo-0613 for all experiments. However, it is worth pointing out that given the results from Olah
et al. (2020); Chughtai et al. (2023), and our experiments on Vision Transformers, our method is
very likely to generalize to other vision models.
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3.1 ACTIVATION-BASED EXPLANATIONS

Out of the two proposed methods, generating explanations based on neuron activations, is most
similar to the work proposed by Bills et al. (2023). Since GPT-2 is a text based method, it is
relatively easy to extract token-activation pairs of a specific neuron, and based on that to find and
test explanations. However, since the GPT family of models does not yet support multi-modal inputs,
and open source Vision-Language Models (VLMs) are not as capable as the GPT models, we need
to use another model as the intermediary. To be more specific, we find captions for all images in
the ImageNet (Russakovsky et al., 2014) validation set using BLIP (Li et al., 2022), and track the
activation intensity specific neurons have for each image. Based on these Caption-Activation pairs
we can generate and assess explanations. A diagram explaining the method can be seen in Figure 2
(the corresponding pseudocode for Figure 2 can be found in Appendix A.1).

Figure 2: Overview of the proposed Caption-Activation method. An LLM is used to generate a
human-readable explanation of an individual neuron’s behavior, given a set of captions and acti-
vations. Then, an independent second LLM is used to generate the neuron’s simulated (predicted)
activations, given the generated explanation and a set of captions. The correlation between the simu-
lated and actual activations are then calculated. Snowflake symbols indicate that models are frozen.

3.1.1 GENERATING EXPLANATIONS

To generate open-ended natural language explanations for the activities of a specific neuron, we
utilize the well-documented ability of GPT to be an effective few-shot predictor. By showing it a
number of few-shot examples, which entail a number Caption-Activation pairs for a neuron that isn’t
the neuron to be labeled, and then task GPT, based on the Caption-Activation pairs of the neuron
that is to be labeled, to generate a short explanation. Details for determining the optimal number of
few-shot examples and the size of the subset of Caption-Activation pairs shown to the model can be
found in Appendix B.1.2.

Following Bills et al. (2023), we simplify the task at hand for GPT by expressing the activations as
integers in the range [0, 10]. The full prompt used can be found in Appendix D.1.

3.1.2 ASSESSING EXPLANATIONS

Accurately determining how fitting these explanations are is more important than generating expla-
nations for specific neurons. To do so, we prompt a GPT-3.5 model using image captions and its
corresponding explanation to determine how strongly the neuron will activate for each caption. To
simplify the task for GPT, we provide some few-shot examples, scale all activations in the range
[0, 10] and round them to be integers, similar to Bills et al. (2023). It is worth pointing out that
we are using gpt-3.5-turbo-0613 and thus are limited to a 4K context window. This means that at
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any one time, we are only able to show GPT a subset of the available Caption-Activation pairs. We
conduct some hyperparameter tuning in Appendix B.1.1 to determine the optimal number of few-
shot examples and the size of the Caption-Activation subset. The full prompt for assessing neuron
explanations can be found in Appendix D.2.

Finally, using the simulated activations, we determine the correlation to the true activations and use
this as a measurement of success for the explanation. Since we will be introducing correlation scores
with other targets than the neuron activations later on in this paper, from now on, we will refer to
this one as Correlation Score (Caption-Activation).

One big challenge with using a subset of the images and few-shot examples is the variance in the
correlation scores achieved by different runs. To fight this, we iteratively re-assess the same expla-
nations until the 90% Confidence Interval (CI) of the average is < ±5 (see Algorithm 1).

Algorithm 1 Explanation Scoring

Require: Neuron explanation.
Scores = []
while len(Scores) < 3 or CI(Scores) ≤ 5 do

Scores append Score(Simulate(Neuron explanation))
end while

where CI(x) = T0.95,sample size−1 · sample std√
sample size

(T being the t-score corresponding to the critical

value for a two-tailed test). Score(x) determines the correlation of the simulated activations and
the actual activations, and Simulate(x), simulates the neuron activations based on the neuron
explanation using GPT.

The main purpose of the algorithm is to save cost, since the alternative would be to run it for a
constant (high) number of iterations and then take the average. Using the algorithm, we can stop as
soon as it is sensible to do so (i.e. once the 90% CI of the average is < ±5.

3.2 WEIGHT-BASED EXPLANATIONS

Besides proposing an activation based explanation for neurons, we introduce a separate technique
that utilizes the weights of the trained network. As will become evident, the last hidden layer, and
all other layers have to be treated differently, thus we will first explain how the assessment and
generation work for the last hidden layer, and subsequently, generalize this to the whole network.

Since we do not have access to the input-activation pairs when only using the weights to generate
and assess explanations, we will extract the Weight-Label pairs (where the Labels are the ImageNet
classes). This has the advantage of not relying on an image captioning model and not requiring us to
pass a number of images through the network. However, just because a specific neuron is connected
to a specific output label with a high weight, does not necessarily mean that the object related to
the output class does indeed trigger high activations of the neuron. Furthermore, as we go deeper
into the net (counting from the output layer), the features present will likely become increasingly
abstract. Thus, it is not clear that the model, solely based on the class names and weights, is able
to generate meaningful explanations for specific neurons. Figure 3 shows a diagram of the method
(the corresponding pseudocode for Figure 3 can be found in Appendix A.2)..

3.2.1 GENERATING EXPLANATIONS

The key difference to the technique used in Section 3.1.1, is that we use Weight-Label pairs, rather
than Caption-Activations pairs. Other than that, we follow the same preprocessing as in Section
3.2.2, and the hyperparameters determined in Appendix B.2.2. The final prompt used can be found
in Appendix D.4.

3.2.2 ASSESSING EXPLANATIONS

Since the explanations are generated based on weights, we will assess them based on how well a
secondary GPT model can predict the weights associated with each output class given a neuron
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Figure 3: Overview of the proposed Weight-Label method. An LLM is used to generate a human-
readable explanation of an individual neuron’s behavior, given a set of labels and the magnitude
of the weights that connect the neuron to be explained to that label. Then, a second, independent,
LLM is used to simulate the neurons weights for another set of labels. The correlation between
the simulated and actual weights are then calculated. Snowflake symbols indicate that models are
frozen.

explanation. To simplify this task, we will set all negative weights to zero for now, scale the positive
ones in the range [0, 10], and convert them to integers.

Besides the above mentioned differences, we still utilize some few-shot examples, which each have
a subset of the 1000 Weight-Label pairs (the subsetting is required, since we are using a 4K context
window). The fine-tuning for these hyperparameters can be found in Appendix B.2.1, and the final
prompt used can be found in Appendix D.5.

Following our set-up in Section 3.1.2, we quantify the explanation quality using the correlation score
between the actual and predicted weights. Again, to make the results reliable, the same explanation
is re-assessed, until the 90% CI is < ±5 (using Algorithm 1).

3.2.3 GENERALIZING TO OTHER LAYERS

As already mentioned, the last hidden layer is somewhat of a special case, as it is directly connected
to the output layer, and with that, the class labels. Thus it is very easy to extract the Weight-Label
pairs. However, since this can’t be done for the remaining layers of the network, we propose three
different techniques. Namely:

Naively combining weights The easiest method to implement is to estimate the weight connecting
the, for example, second last hidden layer (or any other layer) to the output layer by taking the dot-
product of the weight matrices.

West = Wt ·Wt−1...Wtarget (1)

where West is the estimated weight matrix, Wt is the weight matrix connecting the t − 1 hidden
layer to the t (final) hidden layer.

Though this estimation is not perfect, as it disregards the activation function, and will make it harder
for the model to determine the level of abstraction of the current neuron, it is a fast and cheap
estimate that will serve well as a baseline. For the remainder of the paper we will refer to this
method as Weight-Label.

Using CLIP-Dissect labels as targets Alternatively, it is possible to use simpler (and more im-
portantly cheaper) methods to label all neurons of a specific layer with a simplistic explanations, and
then use these explanation as target-weight pairs. In our experiments, we will be using CLIP-Dissect
(Oikarinen & Weng, 2023), for this. This method will make it easier for GPT to determine the level
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of abstraction required for the explanation, but might introduce inaccuracies for both explanation
generation and assessment, as it relies on a secondary model. Furthermore, as we will show later,
these simplistic methods do not capture polysemanticity well. For the remainder of the paper, we
will refer to this method as Weight-CLIP.

Using GPT-explanations as targets Lastly, it is possible to label a whole layer using our method,
before moving on to the next layer. The next layer can simply use the Weight-Explanation pairs
to generate the next explanations. Though this method seems most promising, it has the obvious
short-coming of being by far most expensive. To label the full last hidden layer in AlexNet would
cost: # of Neurons∗# API calls per Neuron∗avg. prompt length∗API cost per 1K tokens = 4096∗
25 ∗ 2.5 ∗ 0.0015 = 389(USD). Due to the high cost, we did not test this method in this work but
offer the method as a proposal.

4 EXPERIMENTS

To test the quality of the proposed methods, we will first generate explanations for neurons in an
AlexNet model trained on ImageNet, via a plethora of different methods. These explanations will
be assessed both quantitatively (based on the weight correlation and activation correlation) and
qualitatively (by visualizing the subset of images in the ImageNet validation set that trigger the
highest activation in the neuron we are explaining). Subsequently, we will show the quantitative
results of our method when explaining neurons in a Vision Transformer. It is important to highlight
that we report all results generated without cherry-picking.

Below we benchmark our techniques on Neuron 489 of the second last hidden layer. This neuron
was randomly selected, and examples of other neurons can be found in Appendix C. Since the GPT-
based methods required some few-shot examples, we hand-label 3 other neurons from the layer in
question.

The techniques we will be benchmarking are:

• CLIP-Dissect: As our baseline, we use the CLIP-Dissect method proposed by Oikarinen
& Weng (2023), using their official code base 1.

• GPT (Caption-Activation): Lastly, we use the BLIP generated image Captions and neuron
activation magnitude pairs as features, as described in Section 3.1. The Correlation Score
(Caption-Activation) simulates the activations of a neuron given the explanation.

• GPT (Weight-Label): As described in Section 3.2.3, this version of our method uses the
Weight-output class pairs as features for generating the explanations and, the Correlation
Score (Weight-Label), uses them for the simulation and subsequent assessment. For layers
beyond the first hidden layer, the weight matrix from the current layer to the output layer is
estimated via equation 1.

• GPT (Weight-CLIP): As described in Section 3.2.3, this version of our method uses the
Weight CLIP-Dissect pairs as features. To that end, we used the CLIP-Dissect method
to label all neurons in the network, and then simply extracted the weight CLIP-Dissect
pairs, similarly to how the Weight-Label pairs are extracted from the last hidden layer.
The Correlation Score (Weight-CLIP) aims to predict the Weight-CLIP pairs given a short
neuron explanation.

Additional experiments using other LLMs than GPT-3.5 can be found in Appendix C.2.

4.1 QUANTITATIVE ANALYSIS

Table 1 shows the average Correlation Scores achieved by the various methods. Each method was
used to generate 10 different explanations, and the highest scoring one is reported. The reason
for doing so is that when actually using the methods to label a network, one has access to this
information and presumably tries to find the best fitting explanation (rather than the average). As

1https://github.com/Trustworthy-ML-Lab/CLIP-dissect
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Method Correlation Score
Caption-Activation Weight-Label Weight-CLIP

CLIP-Dissect 0.0% 3.28% 1.43%
GPT (Caption-Activation) 15.43% 31.20% 6.51%
GPT (Weight-Label) 16.11% 51.58% 8.27%
GPT (Weight-CLIP) 5.47% 9.38% 22.05%

Table 1: The correlation scores achieved by various methods as assessed with three different targets
each.

Figure 4: 24 of the highest activating images for three neurons from an alexnet model, side-by-
side with the generated explanations, and the Correlation Scores (Weight-Label) these explanations
achieved.

expected, the methods that use a specific feature pair tend to do best when assessed on that feature
pair i.e. GPT (Weight-CLIP) does better than the other methods on the Correlation Score (Weight-
CLIP). Overall, however, GPT (Weight-Label) clearly does best, with the best performance in two
out of three metrics, and a decent performance on the last one. This is a somewhat surprising result
as the Weight-Label pairs offer by no means definitive insight into which aspect of the image the
neuron is activating for (i.e. a neuron might very well be activating for images containing planes, but
only because these images tend to have the sky as the background). However, given the results from
the table, it is clear that these implicit descriptions are good enough to generate a strong explanation.

It is worth pointing out that for the Correlation Score (Weight-Label) and (Weight-CLIP), we are
only considering the positive weights (as mentioned in Section 3.2.2). All other weights have been
zero-ed. The case with negative weights is analyzed in Appendix C.3.1.

4.2 ADDITIONAL QUALITATIVE RESULTS

In addition to the qualitative results shown in Figure 11, we show 20 of the highest activating im-
ages for the three remaining neurons we explained in AlexNet, side-by-side, with the generated
explanations as well as the Correlation Score (Weight-Label) (See Figure 4.

8



Under review as a conference paper at ICLR 2024

4.3 EXPLAINING A VIT

Following Oikarinen & Weng (2023), we conducted additional experiments of our method an the
last hidden layer of a ViT-B-16 (trained on ImageNet). We used the Weight-Label approach since
it worked best for our main experiments. To provide some additional insights, we also report the
Accuracy (Acc), Mean Squared Error (MSE) and Mean Absolute Error (MAE), in addition to the
achieved correlation scores (Corr) (all of which are calculated for the simulated weights vs the true
weights). The neurons were selected randomly, and we report all results without any cherry picking.

Neuron Scores
Corr. Acc. MSE MAE

50 18.66% 8% 13.34 3.22
75 19.10% 30% 12.98 2.66
122 50.47% 28% 5.96 1.84
150 23.11% 34% 11.18 2.34
457 26.78% 24% 7.20 2.12
489 22.08% 44% 6.62 1.70
746 30.89% 38% 5.04 1.52

Avg. 27.30% 29.43% 8.90 2.2

Table 2: The performance of our method on a number of randomly-selected neurons from the last
hidden layer of a Vision Transformer.

As can be seen in Table 2, the proposed method does a good join explaining a number of neurons
from the last hidden layer of a vision transformer. This is a good indication that the method will
generalize to other models and architectures.

5 CONCLUSION

Our experiments show that our proposed method of explaining the behavior of specific neurons in
vision models performs well both quantitatively and qualitatively. This is demonstrated by the higher
correlation scores in comparison to current state-of-the-art methods and the qualitative analysis of
the explanations. To the best of our knowledge, this is the first time that a Large Language Model
has been used to create human readable explanations of specific neurons in a vision model.

While we focused on AlexNet and ViT in this work, this methodology could be extended to other
vision models. A larger language model could potentially provide more nuanced and accurate ex-
planations, as indicated by the experiments in Bills et al. (2023).

However, the proposed methods are not without limitations. The biggest drawbacks are that some
explanations are vague, using the GPT-3.5 API is costly (especially when labeling a complete net-
work) and contrary to CLIP-Dissect, the method requires some hand-labeled examples (though, as
we have shown in our experiments, only 2 per layer).

In conclusion, we have presented a method for explaining the behavior of specific neurons in vision
models using GPT-3.5. Our method is intuitive, scalable, and can be extended to various vision
models. While we acknowledge its limitations, we believe it represents a significant step forward
in the area of machine learning interpretability, particularly in understanding complex deep learning
models. By making these models more interpretable, we can foster greater trust and transparency,
which is crucial as these models become increasingly prevalent in various domains of life.
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A ARCHITECTURE

A.1 PSEUDOCODE FOR THE ACTIVATION-CAPTION METHOD

Algorithm 2 Pseudocode for the Activation-Caption method

Require: Two sets of images (X1 & X2).
Require: An Image Captioning model (Ωcaptioning)
Require: The model to be explained (Ωmain)
Require: A Large Language Model (LLM)

Extract the neuron activations of the model to be explained (Ωmain) from both image sets
(hΩmain(X1) & hΩmain(X1); denoted as H1 & H2 respectively)
Scale the activations to be integers in range 0 to 10.
Use the Image Captioning model (Ωcaptioning) to generate captions for the images in X1 and X2

(denoted as C1 and C2 respectively).
Create the Explanation Prompt by using the caption (C1) activation (H1

neuron idx) pairs. (denoted
as ExpPrompt)
Generate the neuron explanations E = DtestLLM (ExpPrompt)
Scores = []
while len(Scores) < 3 or CI(Scores) ≤ 5 do

Create the Assessment Prompt using the captions (C2). (denoted as AssPrompt)
Simulate the neuron activations H̃2

neuron idx using LLM (AssPrompt)
determine the correlation score between H2

neuron idx and H̃2
neuron idx

append the correlation score to Score
end while
The final Score for the explanation is the average of Scores.

The Pseudocode above corresponds to the diagram in Figure 2.

A.2 PSEUDOCODE FOR THE WEIGHT-LABEL METHOD

Algorithm 3 Pseudocode for the Activation-Caption method

Require: The Weights of a trained Deep Neural Network (W )
Require: The class names of the dataset for which the DNN was Trained (Y )
Require: A Large Language Model (LLM)

Extract the Weight-Label pairs from the set of weights W and the class names Y with one of the
methods described in Section 3.2.3
Scale the weights to be integers in range 0 to 10.
Split the Weight-Label pair list into two subsets, denoted as WL1 and WL2.
Use WL1 to create the Explanation Prompt (denoted as ExpPrompt).
Generate the neuron explanations E = DtestLLM (ExpPrompt)
Scores = []
while len(Scores) < 3 or CI(Scores) ≤ 5 do

Create the Assessment Prompt using the class names from (WL2). (denoted as AssPrompt)
Simulate the neuron weights corresponding to the class names in the AssPrompt using the

LLM.
determine the correlation score between the generated weights and the actual weights (taken

from WL2).
append the correlation score to Score

end while
The final Score for the explanation is the average of Scores.

The Pseudocode above corresponds to the diagram in Figure 3.
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B HYPERPARAMETER TUNING

B.1 HYPERPARAMETER TUNING FOR ACTIVATION BASED EXPLANATIONS

B.1.1 ASSESSING EXPLANATIONS

The hyperparameters we will tune are the “number of few-shot examples” ∈ [1, 2, 3] and the “num-
ber of Caption-Activation pairs” ∈ [10, 25, 50, 75]. It is worth noting that since we are limited to a
4K context window and the descriptions are longer than the class names, we are not able to include
as many examples pairs as we can with the weight based method.

Figure 5: The average Correlation Score (Activation) for each hyperparameter. Error bars are the
90% Confidence Intervals

All unique combinations of the hyperparameters are run 25 times each. Figure 5 shows the average
and 90% Confidence Interval of the achieved correlations scores. The average and CI are determined
by concatenating the scores achieved by all runs with, for example, 2 Few-Shot examples and the
different combinations of the number of Caption-Activation pairs. This means that the graph will
not necessarily show the single best performing option, but offer some insight into which options
perform best most consistently. It is worth pointing out that all runs where the prompt exceeded the
4K context window were discarded, which is why the error bars grow when the values get larger.

Overall, it seems that using 3 few-shot examples and 50 Caption-Activation pairs works best most
robustly. However, this combination often times results in too long a prompt, thus we will be using
2 few-shot examples and 50 caption-activation pairs.

Additionally, we test if the way we present and pick the Caption-Activation pairs for the few-shot
examples has an impact upon the performance. It is worth highlighting that this is only done for the
few-shot examples, as it would leak information when used for the actual target neuron. Here, we
will be comparing 5 different strategies:

• Baseline As a baseline, we simply randomly select the Caption-Activation subset.

• Random 50/50 The first advanced strategy we explore is randomly selecting 50% Caption-
Activation pairs where the activation is non-zero and 50% Caption-Activation pairs where
the activation is zero.

• Highest 50/50 Similarly to the option above, we randomly select 50% Caption-Activation
pairs where the activation is zero, and then fill the remaining 50% with the highest activat-
ing Caption-Activation pairs. The logic for doing so is to more clearly show the model the
range of activations ([0, 10]), it is supposed to simulate.

• Highest 75/25 Following the same strategy as above, here we fill 75% of the subset with
the highest activating Caption-Activation pairs, and the remaining 25% with zero activating
Caption-Activation pairs.
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Figure 6: The average Correlation Score (Activation) for each of Explanation Generation hyperpa-
rameters. Error bars show the 90% CI.

• Highest 90/10 Lastly, we further increase the ratio of the above method to 90% highest
activating and 10% zero activating.

Method Correlation Score (Activation)
Baseline 3.45±3.44

Random 50/50 3.44±3.93

Highest 50/50 4.21±3.27
Highest 75/25 0.81±3.41
Highest 90/10 -0.53±4.52

Table 3: The average and 90% CI for each of the methods over 50 runs.

As can be seen in Table 3, the Highest 50/50 has both the highest average performance and the
smallest confidence interval. Thus, going forward, we will be using this strategy for creating the
few-shot prompts when simulating neuron activity in the Caption-Activation set-up.

B.1.2 GENERATING EXPLANATIONS

The two hyperparameters we will tune in the assessing explanation prompt are the “number of few-
shot examples” ∈ [1, 2, 3] and the “number of Caption-Activation pairs” ∈ [10, 25, 50, 75]. Again,
the 4K context window is the limiting factor for both of these hyperparameters.

For each of the hyperparameter combinations 5 unique explanations were generated, and each of
the explanations assessed using Algorithm 1 until the 90% Confidence Interval was < ±5. Sub-
sequently, for each of the features, the scores achieved by all combinations with the other feature
were concatenated, and the average and 90% Confidence Interval is shown in Figure 6. Similarly
to the section above, we will not pick the single best performant combination, but rather the most
robustly well performing one. In this case, that is 2 few-shot examples and 75 caption-activation
pairs. Again, the error bars tend to grow with as the value increase, because we disregard all runs
where the prompt exceeded the 4K context window.

Before tuning the hyperparameters, it is worth pointing out that, similarly to Bills et al. (2023),
we first show the model all caption-activation pairs, and then all non-zero caption-activation pairs.
Additionally, since this made hand labeling the few-shot examples much easier, we sorted these
non-zero activation pairs in ascending order.

Again, we will experiment presenting the Caption-Activation pairs for the few-shot examples, and
in this case, also for the target neuron, in 3 different strategies:
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• Baseline (Random) Our baseline strategy is to randomly select Caption-Activation pairs.

• Random (highlight non-zero) Following Bills et al. (2023), for this strategy, we will ran-
domly select Caption-Activation pairs, and below the list of pairs, show the model all non-
zero Caption-Activation pairs.

• Top Lastly, we will test only showing the model the highest activating Caption-Activation
pairs.

Method Correlation Score (Activation)
Baseline (Random) 4.28±4.06
Random (highlight non-zero) 2.78±3.09
Top 7.88±2.66

Table 4: The average and 90% CI for each of the methods for 5 explanations each. The
explanations are scored until the 90% CI is < ±5 (See Algorithm 1

As can be seen in Table 4, the Top strategy performed best. Thus, going forward, unless specified
otherwise, this is the strategy we will be using to present Caption-Activation pairs when generating
explanations.

B.2 HYPERPARAMETER TUNING FOR WEIGHT BASED EXPLANATIONS

B.2.1 ASSESSING EXPLANATIONS

To determine the best choice of hyperparameters for assessing weight-based neuron explanations, we
run all combinations of “the number of few-shot examples” ∈ [1, 2, 3, 4, 5, 6, 7], “the number of few-
shot Weight-Label pairs” ∈ [25, 50, 75, 100, 150, 200, 250] and “the number of predicted classes”
∈ [25, 50, 75, 100, 150, 200, 250] 50 times each. Subsequently, for each value in each feature, we
concatenate the results and plot the average value, with the 90% Confidence Interval as error bars,
in Figure 7. All input combinations where the prompt exceeded 4K tokens were disregarded, which
is why the Confidence Interval for the values towards the right tend to be higher.

Figure 7: The average correlation scores of a number of combinations of the three hyperparameters
for Assessing Explanations.

The combination with the best trade-off of prompt length and robust performance seems to be: 2
Few-Shot examples, with 50 Weight-Label pairs each, and predicting 50 Weight-Label pairs for the
neuron currently being assessed. It is worth pointing out that this might not be the overall most
performant option, but because of the size of the error bars, we are trying to use the most robustly
well performing option. Unless specified otherwise, this is the combination we will use for all
Weight based explanations throughout the paper.

The obvious next point of improvement is to select specific Weight-Label pairs to be shown in the
few-shot examples. It is worth pointing out that the strategy explained below is not applied to the
Weight-Label pairs that are to be predicted, as this would lead to information leakage.
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Here, we examine the impact of assessing varying proportions of zero weight and non-zero weight
classes to our few-shot examples. The intent is to mitigate potential performance degradation re-
sulting from the sparsity of high positive weights, a condition exacerbated by restricting model
prediction to 50 out of 1000 weights at a time. The five strategies tested are:

1. Baseline This strategy utilizes a simple random selection method for populating the
Weight-Label pairs in the few-shot examples.

2. Highest 50/50 This method populates the few-shot examples’ Weight-Label pairs with
a 50:50 ratio, comprising of the highest weights for the specific neuron and a randomly
sampled assortment of zero weights.

3. Random 50/50 Here we populate the Weight-Label pairs for the few-shot examples with
50% randomly sampled non-zero weights and 50% randomly samples zero weights.

4. Random 75/25 Same as the previous, but with a 75/25 ratio.

5. Random 90/10 Same as the previous, but with a 90/10 ratio.

Similarly to the experiments above, we run each of the options 50 times and report the average and
the 90% Confidence Interval in Table 5. As can be seen in the table, populating the class-weight
pairs with 75% randomly selected positive weights and 25% randomly selected zero-weights leads
to the best average performance and a good Confidence Interval.

Method Mean Correlation Score
Baseline 26.03±4.53

Highest 50/50 25.74±4.01

Random 50/50 30.21±4.52
Random 75/25 30.74±4.19
Random 90/10 29.72±4.93

Table 5: The average and 90% CI for each of the methods over 50 runs.

Finally, we investigate the correlation (if any) of the correlation scores achieved by the neurons used
as few-shot examples, and the correlation score achieved by the neuron currently being assessed.

Figure 8: A scatter plot with a best fit line showing the relation between the avg. correlation score
of the few-shot examples used, and the correlation score achieved by the neuron currently being
assessed.

Figure 8 shows the scatter plot and corresponding best-fit line for a neuron. Interestingly enough,
there is no positive correlation, but rather a slight negative one. However, numerically, the 0.14
correlation has a p-value of 0.32 and thus is not statistically significant.
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Thus our strategy for assessing neurons is to use two few-shot examples with 50 Weight-Label pairs
each (the class weight pairs consist of 75% positive weights and 25% zero weights, which are both
randomly sampled), and predict 50 Weight-Label pairs, for the neuron currently being assessed, with
each pass.

B.2.2 GENERATING EXPLANATIONS

To find the best combination of hyperparameters for generating explanations, we run all combina-
tions of: “the number of few-shot examples” ∈ [1, 2, 3, 4, 5, 6] and “the number of Weight-Label
pairs for the few-shot examples and actual prediction” ∈ [25, 50, 100, 200], 3 times each using Al-
gorithm 1. All prompts that exceed the context window length of 4K tokens are excluded (which is
why the error bar tends to grow when using more few-shot examples or more Weight-Label pairs).

Figure 9: The average correlation scores of a number of combinations of the two hyperparameters
for Generating Explanations. The error bars represent the 90% Confidence interval.

Interestingly enough, as can be seen in Figure 9, the average score achieved seems to be pretty
independent of the number of few-shot examples used, whilst negatively correlating the number of
Weight-Label pairs. This is likely because we show the model the top-n Weight-Label pairs, and
thus, when the number grows too large, it will be harder to focus only on the important ones.Thus,
going forward, unless specified otherwise, we will be using two few-shot examples with 25 weight-
class pairs each for all explanation generated by the weight based method.

Figure 10: he scatter plot and best-fit-line for the avg. score of the few-shot examples (X) and the
score achieved by the generated explanation (y).

Next, we will be testing if there is any correlation between the average score achieved by the few-
shot examples and the score achieved by the neuron currently being explained. As can be seen Figure
10, this time there is indeed a positive correlation. Intuitively this makes sense, as the quality of the
few-shot examples provided to the model should have an influence on the quality of the description
generated. However, when testing numerically, the correlation of 0.11 only has a p-value of 0.42
and is thus not statistically significant.
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C ADDITIONAL EXPERIMENTS

C.1 QUALITATIVE ANALYSIS OF THE METHODS

Since generating the quantitative scores is part of our method, and thus not necessarily a perfectly
objective measurement of success, we will also offer a qualitative analysis of the explanations in this
section. To that end, we extracted the 25 images with the highest activation of Neuron 489 of the
second last layer (the same neuron as above), from the ImageNet validation set. The images can be
found in Figure 11.

Figure 11: The 25 images of the ImageNet validation set that lead to the highest activation of Neuron
489 in the second last layer.

Before diving into the actual analysis, it is worth pointing out that the neuron clearly seems to be
polysemantic, reacting to a plethora of objects that range from birds to fish and baseballs. Also,
simply showing the images that lead to the highest activation does by all means not give a clear
picture of the performance; it does, however, offer an additional data-point to Table 1.

The generated explanations corresponding to the result in Table 1 are:

• CLIP-Dissect: Mating (For the simulations, this is changed to: “the main thing this neuron
does is find mating.”

• GPT (Weight-Label): the main thing this neuron does is find insects and other small
creatures found in nature.

• GPT (Weight-CLIP): the main thing this neuron does is find natural habitats and various
types of animals found in those habitats.

• GPT (Caption-Activation) the main thing this neuron does is find birds and insects. It
also looks for bodies of water and sports equipment.

There are a number of things worth pointing out. We will first comment on the explanations of the
individual methods, and how well they fit the images in Figure 11, and subsequently compare them
where relevant.

CLIP-Dissect The explanation generated by the CLIP-Dissect method is very short (thus we aug-
mented it when evaluating it via our simulation) and seems to fit two of the 25 images pretty well
(Number 1 and 3), especially considering the low cost of the method. However, this highlights well
the shortcoming of the method. Namely, it generates one word (or one term) explanations for neu-
rons that often times are polysemantic, and thus the explanation might only capture a fraction of
what the neuron is looking for.
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GPT (Weight-Label) With the impressive scores this explanation achieved in Table 1, it was
expectable that the explanation is somewhat vague, as it has to cover a vast number of terms with
a very short text. However, it does seem to capture most of the images in Figure 11 well, with the
notable exceptions of the baseballs, boat, suitcase, bottles, food, eraser and electrical tool. Thus
it does not seem to have fully captured the polysemanticity of the neuron. However, it is worth
pointing out that the top 25 images are not necessarily representative of all, and the number of
images explained is in line with the results of Table 1.

GPT (Weight-CLIP) This method has a similar explanation to the one generated by GPT (Weight-
Label), but interestingly, performed considerably worse in Table 1. Nonetheless, it seems to fit about
the same number of images as GPT (Weight-Label), but, based on the description, seems to do so
mostly because of the backgrounds.

GPT (Caption-Activation) Before talking about the actual description, it is worth pointing out
that, as described in Section 3.1.1, this explanation is based on the captions of the images in the
ImageNet validation set that had the highest activation for the specific neuron; thus the explanation
is certainly expected to fit the pictures best, as it is in-sample. As expected, the explanation fits
almost all pictures exceedingly well, with the only exceptions being the suitcase, bottles, food,
eraser and electrical tool.

Overall, the methods tend to cover varying numbers of concepts of the clearly polysemantic neuron.

C.2 ALTERNATIVE LLMS

Recently, with the growing popularity of Large Language Models, an impressive open source online
community has been trying to keep up, and even though the OpenAI models are still considered
state-of-the-art, the recently release LLAMA-2 Touvron et al. (2023) family of models achieves
strong results on popular benchmarks, and have the big advantage of being run locally. To test
whether these models can be used as a cheaper alternative for labeling single neurons, we repeat the
experiments from Section 4. Unfortunately, the model (we use a quantized LLAMA-2-70B) fails
to keep the required structure when assessing the neurons (i.e. repeating each token and generating
the relevant score). Since we used the same prompt as we did for our original experiments, there
is a chance that adjusting the prompt can solve this issue. Furthermore, it is possible to restrict the
output space of the model to the subset that is relevant, or to simulate one token at a time. However,
we will leave these two approaches to future work.

It is also worth pointing out that even though Bills et al. (2023) clearly showed that GPT-4 performs
better than GPT-3, we used GPT-3 in this paper because of the vastly cheaper cost.

C.3 POSITIVE & NEGATIVE WEIGHTS

C.3.1 NEGATIVE WEIGHTS

As mentioned both in Section 4 and Section 3.2.2, thus far we have restricted the GPT (Weight-
Label) and GPT (Weight-CLIP) methods to only positive weights, zero-ing the negative ones. It
is worth noting that this was not necessary for GPT (Caption-Activation) as AlexNet uses ReLU
activation functions, and thus all values were positive anyway. In this section we will explore to
what extent and how we can incorporate the negative weights. This is important since in neural
networks the negative passes can be as influential as the positive ones by inhibiting the network to
predict a certain class.

To first determine to what extent our method can be used to reliably explain the negative weights
of a specific neuron, we will flip all weights, zero-ing the previously positive ones and use the GPT
(Weight-Label) method to try to explain the negative aspect of the neuron.

Using the same set-up as in Section 4.1, we get the following explanation: “the main thing this neu-
ron does is find objects related to clothing and accessories, including formal wear, swimwear,
and headwear. It also seems to have a focus on items found in specific places, such as libraries
and toyshops. Additionally, it has a strong activation for certain dog breeds.”. To assess the
quality of this explanation, we will determine the Correlation Score (Weight-Label) and list the 25
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classes associated with the lowest weights. For negative weights, getting the neuron activations
doesn’t make much sense, as most of them are zero.

The explanation achieved a Correlation Score (Weight-Label) of 31.36% which is smaller than that
of the positive weights (51.58%), but still relatively high.

To better highlight the fit of the explanation, we will list the 25 classes in two different columns.
One for these that we deem to fit the explanation well, and one for the others.

Good Fit Poor Fit
Weight Class Weight Class
-0.071 German short-haired pointer -0.064 siamang
-0.063 standard poodle -0.055 gorilla
-0.060 cuirass -0.054 chiffonier
-0.059 breastplate -0.054 fire screen
-0.059 nack brace -0.054 gibbon
-0.059 Newfoundland dog -0.052 entertainment center
-0.057 bearskin -0.052 oboe
-0.055 bathing trunks -0.050 steel drum
-0.054 academic gown
-0.052 hoopskirt
-0.051 English foxhound
-0.051 wig
-0.050 suit of clothes
-0.050 sarong
-0.050 pajama
-0.049 fur coat

Table 6: The top 25 lowest weights and their associated classes for Neuron 489 of the second last
hidden layer, hand-sorted into whether the explanation fits well or not.

Table 6 shows the 25 lowest Weight-Label pairs of Neuron 489 of the second last hidden layer. They
were hand sorted into whether the explanation fits them well or not. Again, it is worth highlighting
that solely looking at the top 25 classes (out of 1000) does not necessarily give a complete picture.
The explanation seems to fit the majority of the classes well, though it notably could have been more
specific in describing metal based / armor clothing items. However, since only very few classes out
of the 1000 correspond to such a specific label, describing them as clothing items might simply be
more economical. It is interesting to see that the three main groups of classes it seems to have not
included in the explanation are primates (i.e. siamang, gorilla, gibbon), furniture (i.e. chiffonier, fire
screen, entertainment center) and cylindrical metal objects (i.e. oboe, steel drum). Again, this clear
multitude of distinct classes is evidence for the neurons polysemantic nature, and thus for the need
for open-ended text explanations (rather than single-term explanations).

C.3.2 POSITIVE & NEGATIVE WEIGHTS COMBINED

In our last experiment, we will combine the positive explanation generated by GPT (Weight-Label)
and the negative explanation generated above by hand. Subsequently, we will scale the positive
weights in range [0, 10] and the negative weights in range [−10, 0], rounding both to integers.

The final explanation used is: “the main thing this neuron does is find insects and other small
creatures found in nature. It reacts negatively to objects related to clothing and accessories,
including formal wear, swimwear, and headwear. It also seems to have a negative focus on
items found in specific places, such as libraries and toyshops. Additionally, it has a strong
negative activation for certain dog breeds.”. We tried to keep the manual adjustments made when
combining the two explanations to a minimum, and highlighted those adjustments in gray above.

We repeatedly simulated the positive and negative weights of each class given the explanation, with
GPT until the 90% Confidence Interval was < ±5. This lead to a final correlation score of 49.63%.
Considering that the positive prompt was able to explain the positive weights with a score of 51.58%
and the negative one was able to explain the negative weights with a score of 31.36%, and more
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importantly, predicting both positive and negative weights at the same time seems intuitively much
harder than doing so one-by-one, this score is certainly impressive. Again, we followed the same
set-up as in Section 4, where we assess the model 10 times, and pick the best one.

As a closing thought on the experiments we want to highlight that that different types of Correlation
Scores in Table 1, as well as Section C.3.1 and Section C.3.2 are not directly comparable, as they use
different targets. For example, intuitively, it seems easier to summarize 1, 000 Weight-Label pairs
than 10, 000 Caption-Activation pairs (this is the size of the subset we took from them ImageNet
validation set). However, since the GPT (Weight-Label) explanation performed best for both the
Caption-Activation and Weight-Label Correlation Scores, this is the method we recommend using.

C.4 SECOND-LAST HIDDEN LAYER

C.4.1 NEURON 150

Method Correlation Score
Weight-Label Weight-CLIP Caption-Activation

CLIP-Dissect -2.11% 2.86% -5.00%
GPT (Weight-Label) 33.27% -3.07% 11.12%
GPT (Weight-CLIP) -2.17% 11.54% -0.49%
GPT (Caption-Activation) 14.32% 0.34% 13.59%

Table 7: The correlation scores achieved by various methods as assessed with three different targets
each.

• CLIP-Dissect: The main thing this neuron does is find cheyenne.
• GPT (Weight-Label): The main thing this neuron does is find birds and other animals.

It also detects different types of clothing and accessories like gowns, abayas, and pickel-
haubes.

• GPT (Weight-CLIP): The main thing this neuron does is find objects related to interior
design and home decor, such as furniture, bedroom items, and kitchen appliances.

• GPT (Caption-Activation): The main thing this neuron does is find birds and dogs. It also
looks for various insects, animals in nature, and objects in household settings.

C.5 LAST HIDDEN LAYER

When finding explanations for the last hidden layer, we can simply extract the Weight-Class pairs
from the network weights and thus don’t rely on the speical techniques introduces in Section 3.2.3.
This means that GPT (Weight-Label) and GPT (Weight-CLIP) as well as Correlation Score (Weight-
Label) and Correlation Score (Weight-CLIP) are, respectively, identical. Thus, for the below sec-
tions, we will denote the techniques as GPT (Weight-Label) and Correlation Score (Weight-Label).

C.6 NEURON 489

Method Correlation Score
Weight-Label Caption-Activation

CLIP-Dissect 6.24% 5.63%
GPT (Weight-Label) 24.65% 10.63%
GPT (Caption-Activation) 17.76% 38.04%

Table 8: The correlation scores achieved by various methods as assessed with three different targets
each.

• CLIP-Dissect: The main thing this neuron does is find juvenile.
• GPT (Weight-Label): The main thing this neuron does is find small animals, birds, and

natural elements such as plants and landscapes.
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• GPT (Caption-Activation): animals in nature, particularly monkeys and birds.

C.6.1 NEURON 150

Method Correlation Score
Weight-Label Caption-Activation

CLIP-Dissect -5.09% 1.34%
GPT (Weight-Label) 23.67% 7.87%
GPT (Caption-Activation) 18.60% 13.42%

Table 9: The correlation scores achieved by various methods as assessed with three different targets
each.

• CLIP-Dissect: The main thing this neuron does is find bowl.
• GPT (Weight-Label): The main thing this neuron does is find various modes of trans-

portation, as well as objects commonly found in public areas such as street signs and trash
cans.

• GPT (Caption-Activation): vehicles and transportation-related objects, such as cars,
boats, and trains. It also identifies various items found in a kitchen or dining setting, like
bowls and kitchen appliances. Additionally, it recognizes certain animals, such as zebras,
giraffes, and clown fish.

D PROMPTS

In this section we will present the prompts used for the three different methods. We tried to keep the
prompts as similar as possible to the ones used in Bills et al. (2023), but had to slightly adjust them
for the weigh and clip based methods.

Below, we will firs present the Caption-Activation prompts for explanation assessment (Section D.2
and explanation generation (Section D.1, then move on the presenting the Weight-Label prompts
for explanation assessment (Section D.5) and explanation generation (Section D.4), and finally
present the Weight-CLIP prompts for explanation assessment (Section D.5) and explanation gen-
eration (Section D.6).
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D.1 PROMPTS FOR ACTIVATION BASED EXPLANATIONS

Similarly to the prompt for assessing the explanations, the final prompt used for generating them
consists of the system prompt (highlighted in olive), the few-shot questions (highlighted in blue),
the few-shot replies (highlighted in purple) and the target neuron prompt (highlighted in teal). As
pointed out in Appendix B.1.2, the Caption-Activation pairs for both the few-shot examples and the
target neuron are subsampled by choosing the ones with the highest activation and ordering them in
ascending order when presented to GPT.

We’re studying neurons in a neural network. Each neuron looks for some particular thing in an image. Look at the descriptions of images
the neuron activates for and summarize in a single sentence what the neuron is looking for. Don’t list examples of words.

The activation format is description<tab>activation. Activation values range from 0 to 10. A neuron finding what it’s looking for is
represented by a non-zero activation value. The higher the activation value, the stronger the match.

Neuron 2
Activations:
<start>
a cat walking through a field of leaves<tab>3
a basket of apples and oranges with a sign<tab>3
a yellow umbrella with a wooden pole and a yellow cloth<tab>3
[...]
a colorful wheel with a black rim<tab>6
a dog laying in the grass with a tennis ball<tab>9
two dogs sitting on a bench with the words usa written on it<tab>10
<end>
Explanation of neuron 2 behavior: the main thing this neuron does is find
objects and animals on grass. It also looks for british food and beaches.

Neuron 1
Activations:
<start>
a dog running with a frisbee in its mouth<tab>5
a bug on the ground with sand in the background<tab>5
a tractor plow in the snow near a tree<tab>5
[...]
a spider with a red eye on its back<tab>9
a woman holding a snake on her shoulder<tab>9
a toy axamant in a tube in a tank<tab>10
<end>
Explanation of neuron 1 behavior: the main thing this neuron does is find
trucks and food. It also finds insects.

Neuron 489
Activations:
<start> a piano keyboard with four keys and a case<tab>4
a golf ball on a green field with a man in the background<tab>4
a fish in a tank with gravel and water<tab>4
[...]
a bird standing on the ground in the grass<tab>8
a bunch of fruit hanging from a rack<tab>10
a snail crawling on a rock with a blurry background<tab>10
<end>
Explanation of neuron 489 behavior: the main thing this neuron does is find

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.
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D.2 PROMPTS FOR ACTIVATION BASED ASSESSMENT

The final prompt used is composed of the system prompt (highlighted in olive), the few-shot ques-
tions (highlighted in blue), the few-shot replies (highlighted in purple) and the target neuron prompt
(highlighted in teal). As mentioned in Appendix B.1.1, the specific Caption-Activation pairs for
the few-shot examples are selected with the Highest 50/50 strategy (which means that out of the 50
Caption-Activation pairs used for each few-shot example, we randomly select 25 Caption-Activation
pairs where the activation is zero, and the 25 Caption-Activation pairs with the highest activations.

We’re studying neurons in a neural network. Each neuron looks for some particular thing in an image. Look at an explanation of what the
neuron does, and try to predict how it will fire for each image description.
The activation format is description<tab>activation, activations go from 0 to 10, unk indicates an unknown activation. Most activations

will be 0.

Neuron 1
Explanation of neuron 1 behavior: the main thing this neuron does is find trucks and food. It also finds insects.
Activations:
<start>
a man in a wet suit and snorg diving<tab>unk
a woman standing on a walkway with a boat in the background<tab>unk
a bird sitting on a log in the woods<tab>unk
[...]
two women with punk hair and piercings<tab>unk
a black dog with a long hair sitting on a step<tab>unk
<end>
<start> a man in a wet suit and snorg diving<tab>2
a woman standing on a walkway with a boat in the background<tab>0
a bird sitting on a log in the woods<tab>t0
[...]
two women with punk hair and piercings<tab>0
a black dog with a long hair sitting on a step<tab>0
<end>

Neuron 2
[...]

Neuron 489
Explanation of neuron 489 behavior: the main thing this neuron does is find insects, birds, mushrooms and unusual structures in natural

settings.
Activations:
<start>
a bathroom sink with a mirror and a towel rack<tab>unk
a tool kit sitting on top of a table<tab>unk
a field with a hay bale and a tree<tab>unk
[...]
a group of women in black shirts and pink aprons<tab>unk
a laptop computer sitting on a table<tab>unk
a dog sitting in the grass with a leash<tab>unk
<end>

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.
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D.3 PROMPTS FOR WEIGHT-LABEL BASED EXPLANATION ASSESSMENT

To keep consistency, we will color-code the below prompt with the same colors as the prompts
above, namely: the system prompt in olive, the few-shot questions in blue, the few-shot replies in
purple and the target neuron prompt in teal.

The Weight-Label pairs for the few-shot examples are selected based on the Random 75/25 strategy,
where we randomly select 25% zero-weight pairs and 75% non-zero-weight pairs.

We’re studying neurons in a computer vision neural network. Each neuron looks for some particular thing in an image, and based on that
influences the prediction probability for the available classes. Based on a short explanation of the neuron, you should try to predict the
weight associated with each class.The description need not be related to the objects themselves, but what might typically be found in the
same image as the object (i.e. fish & water).We present the classes as class-description<tab>unk, where it will be your task to predict
weight inplace of the unk tokens.A neuron finding what it’s looking for is represented by a high positive value. The higher the value the
stronger the match.

Neuron 0
Explanation of neuron 0: the main thing this neuron does is find cliffs, wild snakes (both sea and land) and african animals.
Activations:
<start>
cliff<tab>unk
grocery store<tab>unk
sturgeon<tab>unk
[...]
matchstick<tab>unk
hartebeest<tab>unk
volcano<tab>unk
<end>

<start>
cliff<tab>1
grocery store<tab>5
sturgeon<tab>2
[...]
matchstick<tab>2
hartebeest<tab>0
volcano<tab>5
<end>

Neuron 2
Explanation of neuron 2: the main thing this neuron does is find large buildings and bridges. It also looks for vehicles.
Activations:
<start> seawall<tab>unk
garbage truck<tab>unk
bassoon<tab>unk
[...]
academic gown<tab>unk
ocean liner<tab>unk
gorilla<tab>unk
<end>

<start>
seawall<tab>5
garbage truck<tab>5
bassoon<tab>0
[...]
academic gown<tab>2
ocean liner<tab>5
gorilla<tab>3
<end>

Neuron 489
Explanation of neuron 489: the main thing this neuron does is find insects and other small creatures found in nature.
Activations:
<start>
kite<tab>unk
jellyfish<tab>unk
screw<tab>unk
[...]
crash helmet<tab>unk
espresso<tab>unk
sawmill<tab>unk
<end>

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.
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D.4 PROMPTS FOR WEIGHT-LABEL BASED EXPLANATION GENERATING

In the example prompt below, we color coded: the system prompt in olive, the few-shot questions in
blue, the few-shot replies in purple and the target neuron prompt in teal.

We’re studying neurons in a computer vision neural network. Each neuron looks for some particular thing in an image. Look at the classes
that the neuron is positively contributing towards and summarize in a short text what the neuron is looking for (the key thing most of classes
have in common). Don’t list examples of classes. Keep in mind that these are images, so the information connecting them might not be
related to the object itself, but rather to what can be found in images of the object (i.e. fish & water).
The activation format is token<tab>weight. Activation values range from 0 to 10. A neuron finding what it’s looking for is represented

by a high positive value. The higher the value the stronger the match. You should not list objects, but rather try to find what they have in
common.

Neuron 0
Activations:
<start>
toucan<tab>6
water ouzel<tab>6
worm snake<tab>6
[...]
ostrich<tab>9
water snake<tab>9
cliff dwelling<tab>10
<end>

Explanation of Neuron 0 behavior: the main thing this neuron does is find
cliffs, wild snakes (both sea and land) and african animals.

Neuron 1
Activations:
<start>
threshing machine<tab>6
transverse flute<tab>6
Border collie<tab>7
[...]
punching bag<tab>9
axolotl<tab>10
dishwasher<tab>10
<end>

Explanation of Neuron 1 behavior: the main thing this neuron does is find
american farm related items.

Neuron 489
Activations:
<start>
quill pen<tab>7
ruler<tab>7
smoothing iron<tab>7
[...]
grasshopper<tab>9
snail<tab>9
lacewing fly<tab>10
<end>

Explanation of Neuron 489 behavior: the main thing this neuron does is find

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.

26



Under review as a conference paper at ICLR 2024

D.5 PROMPTS FOR WEIGHT-CLIP BASED EXPLANATION ASSESSMENT

To keep consistency, we will color-code the below prompt with the same col-
ors as the prompts above, namely: the system prompt in olive, the few-shot ques-
tions in blue, the few-shot replies in purple and the target neuron prompt in teal.
We’re studying neurons in a computer vision neural network. Each neuron looks for some particular thing in an image, and based on that
influences the prediction probability for the available classes. Based on a short explanation of the neuron, you should try to predict the
weight associated with each class.The description need not be related to the objects themselves, but what might typically be found in the
same image as the object (i.e. fish & water).We present the classes as class-description<tab>unk, where it will be your task to predict
weight inplace of the unk tokens.A neuron finding what it’s looking for is represented by a high positive value. The higher the value the
stronger the match.

Neuron 0
Explanation of neuron 0: the main thing this neuron does is find agriculture related animals, grains and items. It also looks for wild rare

animals and hunting dogs.
Activations:
<start>
elk<tab>unk
orioles<tab>unk
plaque<tab>unk
[...]
implements<tab>unk
dome<tab>unk
sculptures<tab>unk
<end>

<start>
elk<tab>0
orioles<tab>1
plaque<tab>2
[...]
implements<tab>1
dome<tab>0
sculptures<tab>1
<end>

Neuron 2
Explanation of neuron 2: the main thing this neuron does is find large dogs and cats.
Activations:
<start>
bottles<tab>unk
terrier<tab>unk
wildlife<tab>unk
[...]
monarch<tab>unk
terrier<tab>unk
pitcher<tab>unk
<end>

<start>
bottles<tab>1
terrier<tab>1
wildlife<tab>1
[...]
monarch<tab>2
terrier<tab>5
pitcher<tab>1
<end>

Neuron 489
Explanation of neuron 489: the main thing this neuron does is find natural habitats and various types of animals found in those habitats.
Activations:
<start>
carriage<tab>unk
regard<tab>unk
strawberry<tab>
[...]
blanca<tab>unk
dome<tab>unk
mask<tab>unk
<end>

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.
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D.6 PROMPTS FOR WEIGHT-CLIP BASED EXPLANATION GENERATING

To keep consistency, we will color-code the below prompt with the same col-
ors as the prompts above, namely: the system prompt in olive, the few-shot ques-
tions in blue, the few-shot replies in purple and the target neuron prompt in teal.
We’re studying neurons in a computer vision neural network. Each neuron looks for some particular thing in an image. Look at the classes
that the neuron is positively contributing towards and summarize in a short text what the neuron is looking for (the key thing most of classes
have in common). Don’t list examples of classes. Keep in mind that these are images, so the information connecting them might not be
related to the object itself, but rather to what can be found in images of the object (i.e. fish & water).
The activation format is token<tab>weight. Activation values range from 0 to 10. A neuron finding what it’s looking for is represented

by a high positive value. The higher the value the stronger the match. You should not list objects, but rather try to find what they have in
common.

Neuron 2
Activations:
<start>
mating<tab>7
mating<tab>7
mating<tab>7
organ<tab>7
parrot<tab>7
[...]
motif<tab>8
vendors<tab>8
watersports<tab>9
wheel<tab>9
font<tab>10
<end>

Explanation of Neuron 2 behavior: the main thing this neuron does is find
large dogs and cats.

Neuron 1
Activations:
<start>
beverages<tab>7
crane<tab>7
dogs<tab>7
fluffy<tab>7
golf<tab>7
[...]
pitcher<tab>8
slashdot<tab>8
parrot<tab>9
vessels<tab>9
tractors<tab>10
<end>

Explanation of Neuron 1 behavior: the main thing this neuron does is find
work vehicles, work dogs and rare wild birds.

Neuron 489
Activations:
<start>
bucket<tab>7
chestnut<tab>7
cobra<tab>7
dashboard<tab>7
fisheries<tab>7
[...]
towing<tab>8
wetland<tab>8
secure<tab>9
trout<tab>9
terrier<tab>10
<end>

Explanation of Neuron 489 behavior: the main thing this neuron does is find

where <tab> is the tab token, and “[...]” indicates that we truncated the prompt.
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