
Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly

Yee Sien Lee1, Nghia Vuong1, Nicholas Adrian1,2, and Quang-Cuong Pham1

Abstract— This paper explores the idea of combining Deep
Learning-based Visual Servoing and dynamic sequences of
force-based Manipulation Primitives for robotic assembly tasks.
Most current peg-in-hole algorithms assume the initial peg pose
is already aligned within a minute deviation range before a
tight-clearance insertion is attempted. With the integration of
tactile and visual information, highly-accurate peg alignment
before insertion can be achieved autonomously. In the alignment
phase, the peg mounted on the end-effector can be aligned
automatically from an initial pose with large displacement
errors to an estimated insertion pose with errors lower than
1.5 mm in translation and 1.5° in rotation, all in one-shot
Deep Learning-Based Visual Servoing estimation. A dynamic
sequence of Manipulation Primitives will then be automatically
generated via Reinforcement Learning to finish the last stage
of insertion.

I. INTRODUCTION

Robots have drastically increased industrial productivity
by assisting humans to undertake high-volume and repetitive
tasks such as lifting, assembly, and picking and placing of
manufacturing parts. Specifically, robotic assembly has be-
come progressively more common in the modern workspace,
with increasingly complex and autonomous assembly tasks
having been conducted in recent years [1]. However, robotic
peg-in-hole assemblies require extremely high success rate
and generalization to different contexts which are well be-
yond today’s industrial robots’ autonomous capability [2],
[3]. Manual designing and fine-tuning are still required to
achieve such tasks. Therefore, to achieve autonomous dexter-
ous robotic peg-in-hole assembly, Vuong et al. proposed the
idea of automatically discovering the dynamic sequence of
Manipulation Primitives (MPs) via Reinforcement Learning
(RL) [4].

The research from [4] utilized a force torque sensor to
gauge the external force exerted on the end-effector. Besides
maintaining a high accuracy, their method also showed
promising generalization capability across different geome-
tries. Nonetheless, the absence of a visual device limited the
effectiveness of assembly as the peg had to be readily aligned
within a small deviation range before insertion.

This study aims to improve the solely force-based solution
of [4] in terms of practicality in real-world settings by
implementing Deep Learning-based Visual Servoing (DLVS)
in the alignment phase. In this project, the DLVS work by
Yu et al. [5] was chosen to complement the solely force-
based solution. With DLVS capability, the hole pose can be
estimated automatically in the alignment phase.

1School of Mechanical and Aerospace Engineering, NTU, Singapore
2HP-NTU Digital Manufacturing Corporate Lab, Singapore

Fig. 1: Robotic assembly setup. A square peg was used in
this study.

The scope of this study includes: (1) achieving high-
accuracy (< 1.5 mm in translation and < 1.5° in rotation)
autonomous estimation of hole pose in the alignment phase,
and (2) enhancing the generalization capabilities across
workspace with the newly integrated DLVS feature.

II. RELATED WORK

A. Studies Achieving Alignment and Insertion

A study focusing on fast robust peg-in-hole insertion with
continuous visual servoing was conducted in [6]. In the
alignment phase, the peg was aligned to the hole based on
heatmaps generated from a Deep Neural Network (DNN).
After alignment, peg insertion was attempted via compliance
using force-feedback. This approach was able to achieve high
accuracy (peg-hole clearance of 0.015 mm). However, there
were two downsides: (1) DNN in alignment phase could
only align position, but not orientation; (2) In the insertion
phase, a simple compliant force insertion which was unable
to account for large rotational errors was applied.

[7] focused on achieving peg-in-hole assembly using
multi-view images and DLVS trained on synthetic data.
There were two steps in the alignment phase: (1) DLVS
quickly moved the peg closer to the hole; (2) spiral search
then precisely aligned the peg to the hole. The process would
then proceed to the insertion phase where impedance control
was used to perform the insertion. The clearance of the hole
in this experiment was 0.4 mm. However, this approach could
not align orientation errors as well due to the limitations of
the DNN. Another downside was the long execution time.
The approach needed more than 40 seconds to complete peg
insertion from the start of the search phase.



B. Alignment Phase: Deep Learning-based Visual Servoing

Deep learning-based visual servoing (DLVS) estimates the
camera pose repeatedly while the robot is moving towards
the target pose to achieve high final accuracy [5].

Bateux et al. explored an efficient method of generating
dataset to train robust neural network for DLVS which
considers changing lighting conditions and the addition of
random occlusions [8]. The network achieves sub-millimeter
accuracy but can only estimate a camera pose with respect to
a fixed reference pose. The neural network has to be retrained
every time a new reference pose is introduced, which is
impractical in real-life usages. Thus, the authors proposed
in the same paper another neural network which accepts a
pair of images taken at random poses as input. Nevertheless,
this extension could only achieve centimeter accuracy.

Yu et al. proposed a new neural network based on Siamese
architecture that can output the relative pose between any
pair of images taken at arbitrary poses with sub-millimeter
accuracy [5]. The network is also effective under varying
lighting conditions and with the inclusion of random oc-
clusions, and can even generalize to objects with similar
physical appearances. During actual insertion experiments,
the model achieved sub-millimeter accuracy in camera pose
estimation in one shot from initial deviations of: (-5, 5) mm
for x and y, (0, 10) mm for z, (-5, 5) deg for roll and pitch,
(-10, 10) deg for yaw.

C. Insertion Phase: Force-based Manipulation Primitives in
Robotic Assembly

[3] proposed a robot manipulation technique that
achieved faster cylindrical peg-in-hole insertions than human.
Nonetheless, the author had to design manually the sequence
of MPs, therefore the method did not have generalization
capabilities to different contexts. Moreover, the sequence
of MPs generated was fixed before execution. Thus, the
approach suggested could not adjust to unpredictable cir-
cumstances in real-time execution. Some other works where
a rigid sequence of MPs were manually defined include [2],
[9], and [10].

In another study, Vuong et al. utilized RL to automatically
discover the dynamic sequences of MPs [4]. The dynamically
generated MPs could generalize across a wide range of
assembly tasks and are more robust against environmental
uncertainties during execution. Nonetheless, the method pro-
posed was solely force-based. The lack of a visual sensor
limited the effectiveness of robotic assembly tasks in real life
due to the need for pre-defined peg pre-insertion alignment.

III. METHODOLOGY
A. Task Description

The peg-in-hole insertion task was split into two phases,
namely (1) alignment phase and (2) insertion phase.

In the alignment phase, the expected outcome was the
improved alignment between the peg and hole through the
DLVS algorithm from [5]. The peg was then manipulated
to move down until contact with the hole block. After
rotating the resulting peg pose by 180° against x-axis and

translating it down along z-axis by the hole depth, the
estimated hole pose was recorded (Fig. 2). Before proceeding
to the insertion phase, to check whether the alignment phase
had achieved complete insertion, the peg was manipulated
to move in x, y, z - axes under two criteria, maximum
movement duration and threshold of the force sensed. In
unsuccessful attempts, the process subsequently proceeded
to the insertion phase.

In the insertion phase, a dynamic sequence of MPs based
on the RL policy trained in [4] were generated for final
insertion. After each MP step, the policy would inspect the
insertion status by finding the distance between the latest
achieved pose and the estimated goal pose. If the x and y
errors between the two poses were less than 5 mm and the z
errors were smaller than 4 mm simultaneously, the insertion
would be deemed successful.

Fig. 2: Hole pose (green) estimation deduced from after-
contact peg pose (blue) in alignment phase.

B. Deep Learning-based Visual Servoing Neural Network

The neural network developed in [5] was designed to
estimate the relative transformation between any two random
camera poses. In training, the neural network took a pair
of samples as input each time. Each sample in the pair
comprised: (1) an image taken at a random pose and (2) the
transformation matrix of the pose. The output of the network
was the relative pose between the input pair of camera poses
in the form of translation (x, y, z) and quaternions (a, b, c, d).

Dataset Generation. Firstly, the peg was guided manually
to the insertion pose. The peg was then lifted vertically
for 12 cm so that a full view of the target hole could be
captured. This end-effector pose was then recorded as the
default pose Td (Fig. 3). Samples were generated at random
poses revolving around Td. The origins of the new arbitrary
end-effector poses were randomly sampled within a vertical
cylinder of 10 mm radius and 20 mm height (Cylr=10,h=20),
with the origin of Td at the the bottom center of the cylinder
(Fig. 3). The rotation was randomly sampled within the range
of −10° to 10° for roll and pitch, and −20° to 20° for
yaw. At each random pose, an image was captured and the
transformation matrix Tde of the pose was recorded. Tde is
the transformation matrix which transforms the end-effector’s
coordinate frame to the default pose’s coordinate frame. This



image and Tde formed a complete sample which would later
be input to the neural network as part of an input pair.
The two input images in a pair were identified as IA and
IB . Before training, the true label which was the relative
transformation TBA could be calculated as follows:

TBA = [T−1
dB ][TdA] (1)

Fig. 3: The red coordinate frame defines the default pose,
Td. The origin of the new random end-effector pose, TOe
can be anywhere in the red cylinder.

As the robotic arm’s shadows could affect the network’s
performance, the samples were generated with the hole being
placed at different positions and orientations to ensure the
shadows did not always appear at the same position. The hole
was placed at 5 points on the base, where 4 points would
form the vertices of a 5-cm square and 1 point would be at
the center of the square. At each point, the hole block was
rotated clockwise at 0°, 30°, 60°, 90°. At each orientation,
200 samples were collected. This would amount to 4000
samples (5 points × 4 orientations × 200 samples).

C. Dynamic Sequences of Manipulation Primitives

Dynamic sequences of MPs could be discovered automat-
ically through RL [4]. The RL policies were trained entirely
in Mujoco simulation and transferred directly to physical
execution.

Manipulation Primitives in the Insertion Phase. The
MPs were defined as the appropriate motions of the end-
effector in a task space. The motions were controlled by
three types of instructions: (1) velocity command, (2) force
command, and (3) stopping condition. The MPs were cat-
egorized into two families: free-space MPs and in-contact
MPs. Free-space MPs were executed when the peg was not
in contact with the hole block while in-contact MPs were
executed when the peg was touching the hole block.

Using Reinforcement Learning to automatically gener-
ate dynamic sequences of Manipulation Primitives. The
learning of dynamic sequences of MPs was regarded as a
discounted episodic RL problem which could be addressed
by a Markov Decision Process (MDP) [11]. An MDP is a
function of state vector set S, action set A, state-transition
probability P , reward R, and discount factor γ.

In this paper, an action a was one of the MPs. The state
vector s was defined as the position of the peg relative to
the estimated hole frame. After an MP had been executed
at time t− 1 and the stopping condition had been reached,
the new state at time t was measured. The reward function
rewarded three terms: (1) MPs moving the peg closer to goal
pose, (2) MPs with short execution time, and (3) MPs that
had achieved SUCCESS stopping condition.

With an initial pose deviation of (-1.5, 1.5) mm and (-1.5,
1.5)°, this RL policy could achieve 94% success rate out of
50 insertion attempts with only one episode run. Thus, the
peg’s pose displacement errors needed to be within this range
at the end of the alignment phase.

IV. EXPERIMENTS AND RESULTS

The performance of the model was first evaluated on
the test set. After that, the model was tested on actual
insertion tasks. To prove the usefulness of the pre-insertion
alignment, two baseline experiments were conducted. Lastly,
the model was appraised for its generalization capability over
workspace.

A. Experimental setup

All experiments were conducted with a plastic square peg
and a square hole which has 19.98-mm sides and 20-mm
depth. The clearance between the mating parts was 0.26 mm.

The robot used in this project was the 7-DOF Franka
Emika Panda cobot. An in-hand camera was mounted on
the end-effector (Fig. 1). The camera was short-range with
a field of view of 70° and a resolution of 640 × 480.

An additional force torque sensor, Gamma IP60 was used
to measure the external force exerting on the peg as the force
estimation in libfranka was too imprecise for the execution
of force-based MPs.

B. Training and model evaluation

Both samples in each input pair to the network had to be
taken at random poses which were generated with respect
to the same Td. In total, there were 2002 × 20 = 800000
pairs of samples taken from 20 sets (4 orientations at each
of the 5 points). 80% of the samples were used for training
and the rest were used as the test set. A model was trained
for 10 epochs. The learning rate was 10−4 at the beginning
and halved after the 4th, 6th, 8th epoch. The batch size of
the training set was 256. The entire training was run on 4
GTX-1080Ti’s.

TABLE I: Test set errors (eϕ : roll error, eθ : pitch error,
eψ : yaw error).

ex / mm ey / mm ez / mm eϕ / ° eθ / ° eψ / °

0.2441 0.2875 0.2044 0.1792 0.1856 0.2148

The performance of the model on the test set is recorded
in Table I. Since the RL policy used in the insertion phase
could accept errors up to 1.5 mm in translation and 1.5°



in rotation, the test errors were low enough to proceed to
physical execution.

C. Actual insertion task

The peg was manually guided to the goal pose at the
beginning. 50 random poses within the sampling range
defined by the Cylr=5,h=10 were generated around the goal
pose. At each attempt, IA and one of the 50 images taken at
the arbitrary poses, IB were input to the model. T̂BA between
the two poses was estimated through DLVS. The peg would
move to T̂0A at the end of the alignment phase.

In the insertion phase, the true hole pose was not given
explicitly to the RL policy. The estimated hole pose deduced
from T̂0A in the alignment phase was input to the policy. The
peg was subsequently guided into the hole by a sequence of
force-based MPs generated within one episode. The success
rate and time taken are shown in Fig. 4.

D. Comparing our method to baseline methods

Two baseline experiments were conducted to prove the
usefulness of the proposed approach: (1) aligned peg with
the same DLVS algorithm followed by pure compliance
insertion and (2) attempted insertion with RL-generated MPs
without alignment from the same sampling range defined by
Cylr=5,h=10. As shown in Fig. 4a, both baseline methods’
insertion success rates were much lower than that of our
method whereas the time taken per attempt for alignment
and insertion were much longer.

(a) Insertion success rates. (b) Average time per attempt.

Fig. 4: (a) Insertion success rates and (b) Average time
taken per attempt for alignment and insertion of our method
compared to the two baseline methods out of 50 attempts.
In (b), there was no alignment phase in baseline (2).

E. Generalization over workspace

Iterative estimations with the same DLVS algorithm man-
aged to align the peg to be within acceptable deviation
threshold from initial pose differences that were larger than
the sampling range Cylr=5,h=10. Two test cases (1 easy, 1
hard) were executed. In both cases, all pose errors converged
to within 1.5 mm and 1.5° after a number of iterations
(Fig. 5).

V. CONCLUSIONS

The addition of DLVS has improved the practicality of
the force-based peg insertion solution proposed by Vuong et
al. [4]. With visual capabilities at the alignment phase, the

(a) Easy test case. Initial pose errors: (x, y, z) = (10, 10, 10) mm,
(roll, pitch, yaw) = (10, 10, 20)°. Converged to acceptable error
thresholds after 4 iterations.

(b) Hard test case. Initial pose errors: (x, y, z) = (25, 25, 25) mm,
(roll, pitch, yaw) = (25, 25, 50)°. Converged to acceptable error
thresholds after 6 iterations.

Fig. 5: Initial pose differences that were larger than the
sampling range Cylr=5,h=10 converged to within 1.5 mm
and 1.5° in both easy and hard test cases.

peg’s starting pose error thresholds in both translation and
orientation were increased. Even initial pose differences that
were larger than the normal sampling range could be handled
if iterative visual servoing was applied.

Furthermore, the true hole pose is no longer required in
this new approach. The estimated hole pose can be deduced
from DLVS and input to the RL policy. This improvement is
significant as in real-world robotic assembly tasks, the pose
of the part to be mated is normally unknown.

In future work, the DLVS model’s generalization capabil-
ity to different shapes can be evaluated without retraining.
Optimal numbers of visual servoing iterations can also be
found for different magnitudes of initial pose errors to boost
the proposed approach’s usability in real-life assembly tasks.



REFERENCES

[1] F. Suarez, X. Zhou, and Q. C. Pham, “Can robots assemble an ikea
chair?” Science Robotics, vol. 3, p. eaat6385, 04 2018.

[2] F. Suárez-Ruiz and Q.-C. Pham, “A framework for fine robotic
assembly,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 421–426.

[3] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for
robot manipulation: Skill formalism, meta learning and adaptive con-
trol,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 5844–5850.

[4] N. Vuong, H. Pham, and Q.-C. Pham, “Learning sequences of manip-
ulation primitives for robotic assembly,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 4086–
4092.

[5] C. Yu, Z. Cai, H. Pham, and Q.-C. Pham, “Siamese convolutional
neural network for sub-millimeter-accurate camera pose estimation
and visual servoing,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 935–941.

[6] R. L. Haugaard, J. Langaa, C. Sloth, and A. G. Buch, “Fast
robust peg-in-hole insertion with continuous visual servoing,” 2020.
[Online]. Available: https://arxiv.org/abs/2011.06399

[7] J. C. Triyonoputro, W. Wan, and K. Harada, “Quickly inserting pegs
into uncertain holes using multi-view images and deep network trained
on synthetic data,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 5792–5799.

[8] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Training deep neural networks for visual servoing,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 3307–3314.

[9] U. Thomas, B. Finkemeyer, T. Kroger, and F. Wahl, “Error-tolerant
execution of complex robot tasks based on skill primitives,” in 2003
IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 3, 2003, pp. 3069–3075 vol.3.

[10] B. Finkemeyer, T. Kröger, and F. Wahl, “Executing assembly tasks
specified by manipulation primitive nets,” Advanced Robotics, vol. 19,
pp. 591–611, 01 2005.

[11] M. Otterlo and M. Wiering, “Reinforcement learning and markov
decision processes,” Reinforcement Learning: State of the Art, pp. 3–
42, 01 2012.


