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Abstract
Stochastic restoration algorithms allow to explore
the space of solutions that correspond to the de-
graded input. In this paper we reveal additional
fundamental advantages of stochastic methods
over deterministic ones, which further motivate
their use. First, we prove that any restoration
algorithm that attains perfect perceptual quality
and whose outputs are consistent with the input
must be a posterior sampler, and is thus required
to be stochastic. Second, we illustrate that while
deterministic restoration algorithms may attain
high perceptual quality, this can be achieved only
by filling up the space of all possible source im-
ages using an extremely sensitive mapping, which
makes them highly vulnerable to adversarial at-
tacks. Indeed, we show that enforcing determinis-
tic models to be robust to such attacks profoundly
hinders their perceptual quality, while robustify-
ing stochastic models hardly influences their per-
ceptual quality, and improves their output variabil-
ity. These findings provide a motivation to foster
progress in stochastic restoration methods, paving
the way to better recovery algorithms.

1. Introduction
Image restoration has a central role in imaging sciences, en-
abling much of the imaging revolution we see today. Mod-
ern restoration methods allow to squeeze out ever fantastic
quality from ever smaller sensors (e.g. on mobile devices),
which are prone to severe noise, blur, limited resolution,
and color degradations. Traditionally, most image restora-
tion algorithms were deterministic: providing one restored
image for a given degraded input. Stochastic restoration
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algorithms, which started to receive notable attention in re-
cent years (Lugmayr et al., 2021; 2022; Bahat & Michaeli,
2020; Ohayon et al., 2021; Kawar et al., 2022; 2021b;a;
Saharia et al., 2021; Kadkhodaie & Simoncelli, 2021; Song
& Ermon, 2019), instead sample from a distribution condi-
tioned on the degraded input. Yet, beyond their core ability
to explore the space of possible solutions, the advantages of
stochastic methods over deterministic ones are still unclear.
For instance, a fundamental mystery is whether stochastic
restoration algorithms are theoretically superior to deter-
ministic ones in terms of the achievable perceptual quality,
the robustness to adversarial attacks, and the faithfulness of
the results to the measurements (a property we refer to as
consistency).

In this paper we provide novel justifications for using
stochastic restoration methods. First, we show that any esti-
mator that generates consistent restorations and attains per-
fect perceptual quality must be sampling from the posterior
distribution. An immediate, yet significant, consequence
is that if a deterministic restoration algorithm is consistent
then it cannot attain perfect perceptual quality1. Somewhat
strangely, despite this theoretical limitation, deterministic
restoration algorithms are known to be able to attain high
perceptual quality, or at least produce images with high pre-
cision (Wang et al., 2018; Blau & Michaeli, 2018; Ledig
et al., 2017; Yu et al., 2018b;b; Zhao et al., 2021; Yi et al.,
2020). While this may seem as a contradiction, we argue
that it is not. We show empirically that, in order to cope with
the lack of output diversity, such deterministic estimators
adopt an erratic2 output behavior in an attempt to “fill up”
the space of all possible natural images, so as to minimize
the distance between the distribution of their outputs and the
distribution of natural images. As a result, such estimators
are highly sensitive to small changes in their input. Indeed,

1Unless the posterior assigns nonzero probability to only one
reconstruction for every input, in which case the inverse problem
is non-ambiguous and it is possible to restore images with zero
error.

2By erratic we mean that the restoration algorithm is not robust
to an input adversarial attack: a small, unnoticeable change in the
input degraded image may lead to an unreasonably large change in
the output estimated image. I.e., the value of Equation (5) is too
high.
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Figure 1. Output samples from several consistent restoration algorithms that solve the image inpainting task on the CelebA data set. The
erratic stochastic and deterministic algorithms are trained solely with a GAN loss. As can be seen, the erratic stochastic estimator barely
produces output variability per input, which reveals a tendency of mode collapse of CGANs (Goodfellow et al., 2014; Isola et al., 2017;
Mathieu et al., 2016; Yang et al., 2019; Ohayon et al., 2021). The robust algorithms are trained to also defend against adversarial attacks
by adding Equation (7) to the GAN objective. Robustifying the deterministic algorithm deteriorates its perceptual quality, while doing
so for the stochastic algorithm preserves this quality and significantly improves its output variability. Refer to Table 1 for quantitative
evaluation.

it has been experimentally observed that a visually unno-
ticeable input perturbation leads to unreasonable changes
in the output in this kind of estimators (Choi et al., 2019;
2021; Antun et al., 2020; Yan et al., 2022; Raj et al., 2020;
Gandikota et al., 2022; Yu et al., 2022; Choi et al., 2020;
Yue et al., 2021). Furthermore, we illustrate that making
deterministic methods more robust to adversarial attacks
causes the quality of their outputs to deteriorate (see Fig-
ure 1). Hence, our findings provide a novel explanation
for the increased vulnerability of high perceptual quality
deterministic estimators to adversarial attacks.

Since robustness for deterministic estimators comes at the
expense of perceptual quality, it is appealing to resort to
stochastic estimators. Such estimators can produce many
restorations for any given input, so that they seemingly do
not need to be highly sensitive to their inputs. Indeed, we
show that as opposed to deterministic methods, robustifying
stochastic algorithms hardly impairs their perceptual quality.
Interestingly, some stochastic methods do exhibit a rela-
tively high sensitivity to their inputs, but this is indicative
of mode-collapse (they effectively behave like determinis-
tic methods). As we illustrate in Figure 1, in such cases
robustification improves the output diversity without ham-
pering perceptual quality. All at all, unlike deterministic
algorithms, stochastic methods allow to attain consistent,

high perceptual quality restorations, while remaining robust
to adversarial attacks.

The contributions of this paper are the following: 1) We
prove that a posterior sampler is the only consistent restora-
tion algorithm that attains perfect perceptual quality; 2)
While deterministic restoration algorithms could still be
consistent and attain very high perceptual quality, we re-
veal that they behave erratically in order to do so, i.e., we
empirically show that for deterministic estimators, high
perceptual quality comes with the cost of vulnerability to
input adversarial attacks; 3) We develop a novel notion of
robustness for stochastic estimators; and 4) We show that
robustifying deterministic algorithms deteriorates their per-
ceptual quality, while doing so for stochastic algorithms
only improves their output diversity. Hence, we empirically
confirm that stochastic restoration algorithms can be robust
and attain high perceptual quality at the same time. We thus
suggest robustness as an effective regularization for promot-
ing meaningful diversity in stochastic restoration methods.
Please refer to Figure 2 for a flow chart that clarifies the
main conclusions of this paper.
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Figure 2. The main conclusions of this paper, summarized in a flow chart. We only consider perfectly consistent restoration algorithms. A
deterministic restoration algorithm has, by definition, no output variability. Such an algorithm attains low perceptual quality if it is robust,
and may attain high perceptual quality otherwise. A stochastic restoration algorithm may always attain high perceptual quality, whether it
is robust or not. In the case where the stochastic algorithm is a neural network trained as a GAN, robustifying such an algorithm improves
(increases) its output variation per input. Without robustification, such an algorithm often attains low output variability, and essentially
behaves as a non-robust (erratic), deterministic algorithm.

2. Problem setting and preliminaries
We consider a natural image x ∈ Rnx as a realization of
a multivariate random variable X with probability density
function pX . A degraded version y ∈ Rny is also a re-
alization of a random vector Y which is related to X via
some conditional distribution pY |X . In this paper we as-
sume that the degradation is deterministic, i.e., y = D(x),
which implies that pY |X(y|x) = δ(y − D(x)), where
D : Rnx → Rny is a non-invertible function. Problems
such as image colorization, inpainting, demosaicing, single-
image super-resolution, JPEG-deblocking, and more all fol-
low this assumed structure. Here we focus on ill-posed
inverse problems in which X cannot be retrieved from Y
with zero error, i.e., pX|Y (·|y) is not a delta function for
almost every y.

Given a particular input Y = y, an image restoration al-
gorithm produces an estimate X̂ according to some distri-
bution pX̂|Y (·|y) such that the estimate X̂ is statistically
independent of X given Y . For deterministic algorithms,
pX̂|Y (·|y) is a delta function for every y, while for stochastic
algorithms it is a non-degenerate distribution.

2.1. Perceptual quality

Conceptually, the perceptual quality of a restoration algo-
rithm is a quantification of its ability to produce images that
appear natural. While there are several notions of perceptual
quality, we measure it as the deviation of the restorations
from natural image statistics (Blau & Michaeli, 2018). For-
mally, we quantify the perceptual quality of an estimator X̂
using the perceptual index (lower is better),

d(pX , pX̂), (1)

where d(p, q) is a divergence between distributions (e.g.,
Kullback-Leibler, Wasserstein). i.e., an estimator attains
perfect perceptual quality if pX̂ = pX . As discussed in (Saj-
jadi et al., 2018; Kynkäänniemi et al., 2019), one can mea-
sure the deviation between pX̂ and pX via precision (the
probability that a random sample from pX̂ falls within the
support of pX ) and recall (the probability that a random
sample from pX falls within the support of pX̂ ). Such an
approach to measure statistical deviation is useful since it
provides a meaning to the difference between pX̂ and pX ,
if exists. That is, low precision means that a sample of X̂
may seem unnatural, while low recall implies that part of
the support of pX (possible natural images) can never be
the output of X̂ . Note that pX̂ = pX if and only if both
the precision and recall are perfect (Sajjadi et al., 2018).
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Importantly, the reader should not confuse high precision
with high perceptual quality. A restoration algorithm might
produce images that appear natural (with high precision),
but this does not mean that the algorithm attains sufficient
perceptual quality, since its recall might be compromised.

2.2. Consistency

Another important quality measure of a restoration algo-
rithm is its ability to produce results that are consistent with
the low quality input. Such an ability is important to con-
sider since only perfectly consistent restorations could poten-
tially be the high quality source image. In our deterministic
degradation scenario, a restoration x̂ is consistent if it satis-
fies D(x̂) = y (which in turn equals D(x)), which can be
equivalently written as pY |X(·|x) = pY |X̂(·|x). We regard
an algorithm as perfectly consistent (or consistent, in short)
if it satisfies this property for every x. Note that a restoration
algorithm that is not perfectly consistent could still be con-
sidered as such for any practical use. For instance, (Lugmayr
et al., 2022; 2021) consider super-resolution (SR) methods
as consistent if they satisfy PSNR(D(X̂), D(X)) ≥ 45dB.

While being an important property for restoration algo-
rithms, apparently only recent publications provide a report
of consistency (Lugmayr et al., 2022; Jo et al., 2021; Lug-
mayr et al., 2020; 2021; Bahat & Michaeli, 2020; Kim et al.,
2015), while many previous ones do not (Wang et al., 2018;
Chen et al., 2018; Ledig et al., 2017; Shi et al., 2016; Dong
et al., 2015). Moreover, works that do report consistency
typically deal only with stochastic image restoration. It
therefore seems that consistency has been overlooked, or
taken for granted by deterministic restoration algorithms.

3. Can deterministic estimators be consistent
and achieve high perceptual quality?

While deterministic algorithms are being extensively used
to produce high perceptual quality restorations (e.g., (Wang
et al., 2018; Ledig et al., 2017; Yu et al., 2018b;b; Zhao et al.,
2021; Yi et al., 2020; Galteri et al., 2017)), the following
important result must be taken into account.

Theorem 3.1. For a deterministic degradation, y = D(x),
an estimator X̂ is perfectly consistent (pY |X = pY |X̂ ) and
achieves perfect perceptual quality (pX̂ = pX ) if and only
if it is the posterior sampler pX̂|Y = pX|Y .

The proof of the theorem makes simple use of Bayes’ rule
(see Appendix A). But despite its simplicity, this result has
several important implications. (i) Since pX|Y (·|y) is not
a delta function for almost every y (the degradation is not
invertible), an immediate corollary is that a consistent de-
terministic algorithm can never attain perfect perceptual
quality. (ii) It is a known fact that there are cases in which
the posterior sampler does not attain the lowest possible

MSE (or any other distortion measure) among the estimators
that achieve perfect perceptual quality (Blau & Michaeli,
2018; Freirich et al., 2021). But from Theorem 3.1 we see
that the posterior sampler is the only perfect perceptual
quality estimator that is also perfectly consistent. Thus, for
perfect perceptual quality estimators, aiming for low dis-
tortion might come on the expense of inconsistency. (iii)
Finally, we can conclude from Theorem 3.1 that if perfect
consistency is enforced, then one can train a restoration algo-
rithm to become a posterior sampler by solely encouraging
high perceptual quality (e.g. with a GAN loss), without any
additional loss.

4. Erratic behavior of deterministic estimators
Earlier work (Choi et al., 2019; 2021) has already identified
the tendency of deterministic GAN-based restoration meth-
ods to be vulnerable to adversarial attacks. In this section
we shed light on this phenomenon. The authors of both of
these works hypothesize that, since GANs usually produce
perceptually appealing and sharp textures, small input per-
turbations tend to be severely intensified in the output image.
While such a claim is valid, it does not tell the full story. We
argue that this phenomenon is indeed a result of attempting
to attain high perceptual quality, but more specifically, doing
so with a deterministic estimator. To attain high perceptual
quality, such an estimator must adopt an erratic output be-
havior in order to fill up the space of possible source signals,
and consequently be highly sensitive to small input perturba-
tions (i.e., vulnerable to adversarial attacks). In other words,
the problem is not related to the use of GANs, but rather to
the lack of randomness. Using any non-GAN-based deter-
ministic method with high perceptual quality would yield
the same issue; and a GAN-based stochastic method with
high perceptual quality can avoid this phenomenon. Refer
to Appendix B for further discussion.

Let us demonstrate this phenomenon in more detail through
a toy experiment. Suppose that X = (X(1), X(2)) is uni-
formly distributed on a disk with radius 1.0 centered at
(0, 0), and let Y = X(1). Our goal is to estimate X based
on Y (i.e., we need to estimate only X(2), as X(1) is known).
In Figure 3 (the two leftmost columns in the top row) we
present two consistent deterministic restoration algorithms
of the form X̂α = (Y,

√
1− Y 2 sin(αY )). These estima-

tors provide a mental demonstration of the anticipated be-
havior of robust and non-robust deterministic restoration
algorithms that strive for high perceptual quality. For an
estimator of this form, notice that α controls the tradeoff
between its perceptual quality and robustness: increasing
α improves its perceptual quality but hinders its robust-
ness. For instance, X̂Erratic (with α = 50) represents an er-
ratic (non-robust) estimator with high perceptual quality. It
“zigzags” and fills the support of pX , which intuitively leads
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Figure 3. An illustration on a toy restoration problem of the tradeoff between robustness and perceptual quality for deterministic restoration
algorithms, as well as as a demonstration that such a tradeoff does not exist for stochastic algorithms. Each column corresponds to a
different estimator, with the estimator’s name indicated in the title of the column. Top row: the support of the data distribution (gray
disc), and the support of the output distribution of each estimator (a continuous colored line of 10,000 random samples from the output
distribution of each estimator). Bottom row: 100 random samples from the data distribution (gray dots), and 100 random samples from the
output distribution of each estimator (colored stars). The precision and recall (Kynkäänniemi et al., 2019) of each estimator are computed
between 1000 random output samples from the output distribution of the estimator and 1000 random samples from the data distribution.
Refer to Section 4 for more details.

to a smaller distance between pX̂ and pX . X̂Robust (with
α = 1) represents a robust estimator with low perceptual
quality. Its output mildly changes when perturbing its input,
so it fills a smaller region from the support of pX . To nu-
merically confirm that an increased erratic behavior results
in higher perceptual quality, we approximate the precision
and recall (Kynkäänniemi et al., 2019) of these estimators,
showing that such practical statistical distance measures can
be fooled by highly erratic deterministic algorithms. For an
analytical confirmation, refer to Appendix C.

4.1. Perceptual quality approximation

In real world problems pX and pX̂ are typically unknown,
and their statistical discrepancy is commonly approximated
by using finite sized sets of independently drawn sam-
ples from both distributions (e.g., (Heusel et al., 2017;
Kynkäänniemi et al., 2019; Sajjadi et al., 2018)). In some
scenarios it would be difficult or even impossible for such a
statistical distance approximation algorithm to distinguish
between the output distribution of a highly erratic deter-
ministic algorithm and the distribution of the source data.
To illustrate this, we randomly and independently sample
1000 points from the outputs of X̂Robust and X̂Erratic and
approximate their perceptual quality via precision and re-
call (Kynkäänniemi et al., 2019) (with k = 5) and without

using feature projection. In the bottom row of Figure 3
we present 100 random output samples of each algorithm
(colored stars), 100 random samples from pX (gray dots),
as well as the precision and recall results. As expected, all
the algorithms attain almost perfect precision. For the er-
ratic estimator X̂Erratic, a human observer might be fooled to
believe that its samples are actually drawn from pX . Indeed,
it attains almost perfect recall as well, and consequently
almost perfect perceptual quality according to these metrics.
However, the robust algorithm X̂Robust attains a much lower
recall, and one can easily distinguish between the distribu-
tion of its output samples and the samples from the data
distribution. This illustrates what one might expect when
robustifying a deterministic estimator: its perceptual quality
would be limited by a lower recall.

These toy restoration algorithms are hand-crafted to visu-
ally demonstrate our hypothesis, so let us confirm that this
behavior occurs for practical estimators as well.

4.2. Deterministic GAN estimators

We trained a neural network X̂ErraticGAN = Gθ(Y ) as a
GAN (Goodfellow et al., 2014) to solve the aforementioned
toy problem (we omit the use of θ from now on). We evalu-
ated the precision and recall in the same fashion as before,
and present the results in Figure 3. As shown, X̂ErraticGAN
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is indeed erratic, which aligns with our argument that this
would be the behavior of a deterministic algorithm when
attempting to attain high perceptual quality. I.e., X̂ErraticGAN
becomes highly sensitive to small input perturbations.

Let us observe the effect of robustifying such an estimator.
The sensitivity of a deterministic algorithm G(Y ) at Y = y
can be measured by

rG,ϵ(y) = max
δ:∥δ∥2≤ϵ

∥G(y)−G(y + δ)∥22. (2)

That is, rG,ϵ(y) is the extent to which a small input pertur-
bation of y leads to a change in the output. From here, we
can measure the robustness of a deterministic estimator by
averaging rG,ϵ(y) for all y’s, leading to

RG,ϵ = E [rG,ϵ(Y )] . (3)

In Figure 3 we present an additional GAN based algorithm
X̂RobustGAN, which was trained with RG,ϵ as a regularizer
(refer to Appendix E.1 for full training details of these es-
timators). As expected, X̂RobustGAN is a much more stable
algorithm, but has a lower perceptual quality (lower recall).
As hypothesized, X̂ErraticGAN attains a higher recall than
X̂RobustGAN, which can also be confirmed visually as it re-
sults in a more erratic behavior and passes through more
regions in Supp(pX). We therefore confirm again that the
robustness of a deterministic estimator should hinder its
perceptual quality (and more specifically, its recall). These
experiments demonstrate again that robustness of determin-
istic estimators comes at the cost of lower perceptual quality.

5. Robustness of stochastic estimators
Deep-learning based recovery algorithms are known to be
sensitive to miniature and visually unnoticeable input per-
turbations, e.g. in single-image super-resolution (Choi et al.,
2019; 2021; 2020; Yue et al., 2021), deblurring (Gandikota
et al., 2022), rain removal (Yu et al., 2022), and denois-
ing (Yan et al., 2022). Studying the stability of image
restoration methods is important and sometimes critical (e.g.
in medical imaging for diagnosis), as only robust algorithms
are able to provide trustworthy estimations. Interestingly,
to the best of our knowledge, all the existing publications
that discuss robustness in image restoration only consider
deterministic solutions.

To discuss the robustness of an arbitrary (not necessarily
deterministic) estimator, we first need to generalize the no-
tion of robustness to the stochastic case. We extend Equa-
tion (3) by thinking of robustness as the maximal deviation
in pX̂|Y (·|y) that can occur due to a small change in y.
Formally, we define the sensitivity of a possibly stochastic
estimator X̂ at Y = y by

rX̂,ϵ(y) = max
δ:∥δ∥2≤ϵ

W 2
2 (pX̂|Y (·|y), pX̂|Y (·|y + δ)), (4)

where W2 is the Wasserstein-2 distance between distribu-
tions. As before, we define the overall robustness of X̂
by

RX̂,ϵ = E
[
rX̂,ϵ(Y )

]
. (5)

To see why Equation (5) serves as a natural extension
of Equation (3), we show that both of these definitions are
equivalent when X̂ is a deterministic estimator. Indeed, if
X̂ = G(Y ) for some deterministic function G, pX̂|Y (·|y)
is a delta function for any y, so the W2 distance in rX̂(y)
measures the deviation between two Dirac measures and
therefore becomes a simple L2 norm between two vectors,
i.e., W2(pX̂|Y (·|y), pX̂|Y (·|y+ δ)) = ∥G(y)−G(y+ δ)∥2.

Practically, measuring the Wasserstein-2 distance between
distributions, and not to mention minimizing it, is a highly
difficult task. We therefore offer an alternative in the case
where the estimator is a neural network and the stochasticity
is acquired by using an input random seed (as done in all
GANs). Let X̂ = G(Y,Z) be a neural network, where Y is
the input and Z is some random seed that follows any type
of distribution. We propose to measure the sensitivity of X̂
at Y = y by considering its average sensitivity over random
draws of Z, i.e.,

r̃X̂,ϵ(y) = max
δ:∥δ∥2≤ϵ

E
[
∥G(y, Z)−G(y + δ, Z)∥22

]
. (6)

In words, Equation (6) measures the extent to which a small
input perturbation changes the output with the same random
seed, averaged over many seeds. Finally, we approximate
the overall robustness of X̂ via

R̃X̂,ϵ = E
[
r̃X̂,ϵ(Y )

]
. (7)

Observe that here as well we naturally extend the definition
of robustness for deterministic estimators. As we move
from a stochastic to a deterministic algorithm, the variance
of the seed Z drops to zero, and the two definitions coincide.
Moreover, this is a rational approximation method for the
stochastic case since Equation (7) upper bounds Equation (5)
(see proof in Appendix D). Hence, minimizing Equation (7)
forces Equation (5) to also minimize.

To illustrate that stochastic algorithms can simultaneously
be robust and attain high perceptual quality, we trained a
neural network G(Y, Z) to solve the toy problem presented
in Section 4, where Z ∼ N (0, I) is an input random seed
that allows the outputs to vary for each input Y . As be-
fore, we trained two consistent algorithms: X̂StoGAN and
X̂RobustStoGAN, where the former is trained solely with a
GAN loss, and the latter is also regularized to be robust us-
ing Equation (7) (see Appendix E.1 for full training details).
Following a similar procedure to Section 4.2, we randomly
sample 1000 outputs from each estimator (by sampling 1000
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random inputs and coupling each input with one random
seed) and evaluate precision and recall. Unsurprisingly,
both X̂StoGAN and X̂RobustStoGAN lead to precision and recall
scores above 0.95, which confirms our hypothesis that a con-
sistent stochastic algorithm can maintain high perceptual
quality even when it is robust to input adversarial attacks.

It is important to note that the whole discussion on robust
restoration algorithms with high perceptual quality is rel-
evant only when assuming that a minor perturbation in y
does not lead to a large change in the posterior distribution
pX|Y (·|y) when dealing with natural images. As discussed
in Section 4, a consistent deterministic estimator with high
perceptual quality attempts to become a posterior sampler by
behaving erratically, and thus we propose to use stochastic
estimators instead (such as a posterior sampler). See Ap-
pendix B for more details on this subject.

6. Experiments on natural images
6.1. Demonstrations with GANs

We train several types of GAN-based restoration algorithms
to solve the image inpainting and super resolution tasks
(see Appendix F for a discussion on our choice of using
GANs for the following demonstrations). In all the exper-
iments we use a U-Net architecture (Ronneberger et al.,
2015) as our estimator, which we denote by G(Y,Z). For
the stochastic algorithms Z ∼ N (0, I) is a random input
seed that allows their outputs to vary for each Y , while for
the deterministic ones we fix Z = 0. We use the same
architecture for the stochastic and deterministic algorithms
to ensure that it does not impair the evaluation. All the algo-
rithms are enforced to produce perfectly consistent restora-
tions. The optimization task in all of the experiments is
a weighted sum of two objectives: LGAN and LR. Here,
LGAN is a non-saturating generative adversarial training
loss (Goodfellow et al., 2014) combined with R1 critic reg-
ularization (Mescheder et al., 2018), where the critic is the
same ResNet architecture as in (Mescheder et al., 2018).
Optimizing such a loss would drive pX̂ to be as close as
possible to pX , and due to the consistency enforcement, a
posterior sampler is the only optimal solution for this task
(Theorem 3.1). Note that the critic’s objective is to distin-
guish between samples from pX̂ and pX without taking Y
into account. The term LR is a loss that drives the restora-
tion algorithm to be robust to input adversarial attacks. It is
equal to Equation (7), where Z is zero for the deterministic
algorithms. In practice, we perform 5 Adam (Kingma & Ba,
2014) optimization steps to approximate the attack δ∗ on
each input y, and for the stochastic algorithms we perform
the average in Equation (6) over 10 random seeds for each
y. The final training objective is

LGAN + λRLR, (8)

Table 1. Quantitative evaluation of the CelebA image inpainting
algorithms described in Section 6.1.1. Robstifying the determin-
istic restoration algorithm significantly deteriorates its recall and
FID performance. Doing so for the stochastic algorithm only
slightly hinders its performance (with the same AI-PSNR), while
also improving its output variability (high per-pixel std). Refer
to Section 6.1.2 for further analysis of these results.

Stochastic Deterministic

Metric Erratic Robust Erratic Robust

FID↓ 14.10 19.27 14.37 39.09
Precision↑ 0.670 0.634 0.670 0.533

Recall↑ 0.388 0.268 0.382 0.022
Per-pixel std↑ 0.007 0.105 0 0
Robustness↑ 6.884 26.19 3.544 23.69

AI-PSNR 34.47 32.95 34.18 32.98

where λR controls the level of the algorithm’s robustness.
Complementary training details are provided in the follow-
ing sections and in Appendix E.2.

6.1.1. EXPERIMENTAL SETUP

Inpainting: We perform several experiments on the image
inpainting task, in which some pixels of a high quality im-
age are masked and a restoration algorithm estimates their
values. We assume that the locations of the masked pixels
are fixed and known. In all of our experiments, we mask the
upper 3

4 part of the image, and leave the remaining bottom
pixels untouched. We use the CelebA data set (Liu et al.,
2015) for the experiments in this task. Consistency is en-
forced by replacing the bottom 1

4 part of the output with
that of the input, a typical way to enforce consistency in
image inpainting (Saharia et al., 2021; Yu et al., 2018a;b;
Yi et al., 2020; Zhao et al., 2021). We train several consis-
tent restoration algorithms by optimizing Equation (8): two
deterministic and two stochastic models, where one of each
is trained with λR = 0 and the other with λR = 500. We
refer to the algorithms trained with λR = 0 as erratic, and
to the others as robust. We choose ϵ in Equation (7) so that
PSNR(y + δ∗, y) ≥ 32.9dB for any y (so that δ∗ leads to a
barely noticeable change in y). We refer to this quantity as
the adversarial input PSNR (AI-PSNR).

Super resolution: We train the same types of algorithms as
before (erratic & robust, deterministic & stochastic), but this
time we solve the super resolution task. The degradation we
consider is a plain averaging with scaling factors of 4×, 8×,
and 16×. The training objective and the used architectures
remain the same. Consistency is enforced with CEM (Bahat
& Michaeli, 2020). Unlike in the inpainting task, this time
the dimensionality of the input is different than that of the
output. Since our estimator is a neural network with input
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and output of the same size, we feed to it an upsampled
version of the low-resolution image, using nearest-neighbor
interpolation. Moreover, we train the models on CelebA,
as well as on the 64× 64 version of ImageNet (Chrabaszcz
et al., 2017).

Performance metrics: For the inpainting algorithms, we
report in Table 1 the perceptual quality performance ac-
cording to FID (Heusel et al., 2017), precision, and re-
call (Kynkäänniemi et al., 2019) (with k = 3), and present
several outputs produced by the algorithms in Figure 1. We
also demonstrate the quality and the extent of the output
variation of the stochastic models by showing four output
samples for each input. The perceptual quality metrics are
computed by considering the training set as the real samples,
and the algorithms’ outputs on the validation set as the fake
samples. Moreover, we report the robustness performance
of each algorithm according to

E [PSNR(G(Y, Z), G(Y + δ∗(Y ), Z)] , (9)

where the average is computed over the entire validation set
and δ∗(y) is the solution of Equation (6) for each y, and is
acquired in the same fashion as in the training stage. Lastly,
we report the per-pixel standard deviation of each algorithm
over 32 restored samples (for the same input), averaged
across all the output pixels and over the entire validation
set. This measures the average variation of the output pixels
for all the inputs in the validation data, i.e., a higher value
corresponds to a more diverse output space, per input, on
average. In Figure 4 we report these performance metrics
for the super resolution algorithms as well. Please refer
to Appendix E.2 for complementary training details.

6.1.2. ANALYSIS OF THE RESULTS

Inpainting: The erratic deterministic algorithm is competi-
tive with the stochastic methods in terms of FID (Table 1).
However, while both robust algorithms attain the same level
of robustness (and for the same AI-PSNR), the determinis-
tic one suffers from a significant deterioration in FID and
the stochastic one does not. This can be confirmed visu-
ally in Figure 1 as well. As the only difference between
the robust algorithms is the random noise injection (same
model, same loss, etc.), this result supports our hypothesis
that stochastic models can overcome the trade-off between
robustness and perceptual quality of deterministic mappings.

Another interesting outcome is that the erratic stochastic
algorithm produces virtually zero output diversity per input,
while the robust stochastic algorithm maintains meaningful
output variation. This can be confirmed by the naked eye
when observing the randomly sampled outputs in Figure 1
(the robust algorithm creates several types of hair, genders,
etc. for the same input), and by the higher per-pixel standard
deviation. These results yield several insights: 1) Since the

0.00

0.50

1.00

Pr
ec

is
io

n↑

CelebA ImageNet

0.00

0.50

1.00

R
ec

al
l↑

10.0

20.0

30.0

FI
D

↓

40

70

100

0.00

0.05

0.10

0.15

Pe
r-

pi
xe

ls
td

↑

4 8 16

Scaling factor

12.0

24.0

36.0

R
ob

us
tn

es
s↑

4 8 16

Scaling factor

Erratic sto.
Robust sto.

Erratic det.
Robust det.

Figure 4. Quantitative evaluation of the super resolution algorithms
described in Section 6.1.1. AI-PSNR is equal to 34dB for all al-
gorithms. The anticipated link between robustness and perceptual
quality is revealed again: The robust deterministic models achieve
the lowest perceptual quality for all scaling factors. As the scaling
factor (degradation severity) increases, we observe higher output
variability only for the robust stochastic models, and a larger per-
ceptual quality gap for the robust deterministic models.
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erratic stochastic algorithm barely produces output variation,
it effectively behaves like a deterministic estimator. This
shows that the instability of a stochastic model is indica-
tive of conditional mode-collapse (Goodfellow et al., 2014;
Isola et al., 2017; Mathieu et al., 2016; Yang et al., 2019).
2) Apparently, in order to attain high perceptual quality, it
is less challenging to learn an erratic output curvature rather
than to map a random input seed to meaningful, high quality
output variation. 3) Enforcing robustness on a stochastic
model promotes meaningful output variation and effectively
alleviates the conditional mode-collapse issue. These results
further support our link between the robustness and stochas-
ticity of a restoration algorithm, as anticipated. Indeed, we
observe that the robust deterministic model suffers from a
very low recall compared to the robust stochastic one.

Super resolution: The first observation we make from Fig-
ure 4 is that, as the scaling factor increases, the FID of all
algorithms deteriorate. This is supposedly a result of at-
tempting to solve a more difficult inverse problem: higher
scaling factors preserve less information (the problem is
“more” ill-posed). Yet, we see that for the same degradation
severity, the robust deterministic algorithm always attains
the worst FID performance. Moreover, its FID gap with
the other algorithms increases with the scaling factor, sug-
gesting that the tradeoff between robustness and perceptual
quality (for deterministic estimators) is more severe for a
higher scaling factor. Intuitively, a higher scaling factor is
expected to increase the size of the support of pX|Y (·|y)
for any y, so it covers a larger portion of the support of pX .
We therefore hypothesize that, for high scaling factors, a
consistent, robust deterministic estimator would “miss” a
larger portion in the support of pX , and would therefore
attain lower recall, just as the results show. Interestingly, we
see that the precision of all algorithms and across all scaling
factors remain roughly the same, showing that a restora-
tion algorithm can indeed output images that appear natural
but still attain low perceptual quality (due to low recall).
Lastly, we again see that the erratic stochastic model barely
produces output variability, while the robust one does.

6.2. Robustness of SRFlow

Previous work (Choi et al., 2019; 2021) hypothesize that
restoration algorithms with high perceptual quality are more
vulnerable to adversarial attacks. This hypothesis stems
from the low robustness levels of ESRGAN (Wang et al.,
2018), a GAN-based, deterministic, high perceptual quality
algorithm. However, such a hypothesis is limited as it is
based on the evaluation of a single high perceptual quality
restoration algorithm. Here we provide additional support
for our claim that such an hypothesis is incomplete: it is
valid only for deterministic estimators, while stochastic ones
can be robust and still attain high perceptual quality.

In Appendix G we evaluate the robustness of SRFlow (Lug-
mayr et al., 2020), a stochastic super-resolution algorithm
that produces highly consistent outputs and comparable per-
ceptual quality to ESRGAN (Wang et al., 2018). As reported
in Figure 8, SRFlow exhibits substantially higher robustness
than ESRGAN, and comparable robustness to distortion-
optimized models. These findings further demonstrate the
potential of high perceptual quality stochastic estimators to
attain superior robustness compared to deterministic estima-
tors with comparable perceptual quality performance.

7. Summary
In this work we ask whether stochastic estimators are better
than deterministic ones, and our short answer is yes. Indeed,
we proved that a posterior sampler is the only restoration
algorithm with perfect consistency and perceptual quality,
which shows that a consistent deterministic algorithm can
never attain perfect perceptual quality. While a determinis-
tic estimator can still attain high perceptual quality, it must
adopt an erratic output behavior in order to do so, which
makes it vulnerable to adversarial attacks. Hence, our work
provides a novel explanation for the existence of adversar-
ial attacks in high perceptual quality deterministic restora-
tion algorithms. We expand the notion of robustness for
stochastic algorithms, and then show that such algorithms
can significantly alleviate the tradeoff between robustness
and perceptual quality that exists in deterministic algorithms.
Interestingly, we find that robustness can be used to promote
meaningful output variability in stochastic models, which
aligns well with the theory and hypothesis developed in
this paper. Our conclusion: Robust, stochastic restoration
algorithms do provide better recovery.
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A. Proof of Theorem 3.1
Theorem 3.1. For a deterministic degradation, y = D(x), an estimator X̂ is perfectly consistent (pY |X = pY |X̂ ) and
achieves perfect perceptual quality (pX̂ = pX ) if and only if it is the posterior sampler pX̂|Y = pX|Y .

Proof. First, note that D(X̂) = D(X) if and only if pY |X̂ = pY |X . Assume that pX̂|Y = pX|Y . Then,

pX̂(x) =

∫
y

pX̂|Y (x|y)pY (y)dy =

∫
y

pX|Y (x|y)pY (y)dy = pX(x),

and

pY |X̂(y|x) =
pX̂|Y (x|y)pY (y)

pX̂(x)
=

pX|Y (x|y)pY (y)
pX(x)

= pY |X(y|x).

In the other direction, assume that pX̂ = pX and pY |X̂ = pY |X . Then,

pX̂|Y (x|y) =
pY |X̂(y|x)pX̂(x)

pY (y)
=

pY |X(y|x)pX(x)

pY (y)
= pX|Y (x|y),

concluding the proof.

B. Further discussion on deterministic estimators
In this section we expand on the topics discussed in Section 4 and Section 5.

B.1. A tradeoff between precision and recall for continuous, consistent deterministic estimators
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Figure 5. Mental illustration of a tradeoff between precision and recall for consistent, high perceptual quality, continuous deterministic
estimators. In the top row we show the support of the data distribution and of the distribution of each estimator’s outputs. In the bottom
row we show 100 random samples from these distributions. X̂1 avoids the forbidden region (the middle empty ellipse which is not part of
Supp(pX)), and therefore attains almost perfect precision with impaired recall. X̂2 passes through the forbidden region in order to attain
higher recall, but as a result compromises on precision since it generates outputs that are not in the data distribution.

Let X = (X(1), X(2)) be a two dimensional random variable supported on the set of all points between two concentric
ellipses, as shown in Figure 5. The task is to estimate X given Y = X(1) with perfect consistency. Notice that, different
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from the example in Section 4, now there is a “hole” in the support of pX . In Figure 5 we present two hypothetical estimators
that are consistent and continuous (these estimators are handcrafted for the purpose of this demonstration). Observe that due
to the hole in pX , a continuous, deterministic estimator, regardless of how erratic it is, can never approach having perfect
perceptual quality (unlike the two examples in Appendix C and Section 4). Such an estimator would always have to pass
through the central empty ellipse region, which is not part of Supp(pX), in order to produce outputs from both sides of
Supp(pX). Interestingly, this example reveals a tradeoff between precision and recall for such continuous deterministic
estimators. To demonstrate this, let us assume that the data distribution is uniform over its support (the set of points
between the two concentric ellipses). We randomly sample 1000 points from each distribution, and compute precision
and recall as in Section 4.1. As the results show (Figure 5), X̂1, the estimator that does not pass through the forbidden
region, compromises on recall in order to attain higher precision. X̂2 decides to pass through the forbidden region in order
to generate samples from the left side of the ellipse, which results in lower precision and higher recall.

Notice that the situation described above has nothing to do with robustness, and occurs even for erratic, non-robust
deterministic estimators. Moreover, this tradeoff does not exist for stochastic estimators (Theorem 3.1).

B.2. A note on the MMSE and MAP estimators

In Section 5 we note that the discussion on robust estimators with high perceptual quality is only relevant when assuming
that a posterior sampler is robust, i.e., when a small change in y does not lead to an unreasonable change in the distribution
pX|Y (·|y). In such a case, we expect that both the MMSE estimator E[X|Y ] and the Maximum A Posteriori (MAP) estimator
maxx pX|Y (x|Y ) would also be robust, since the mean and the maximum of pX|Y (·|y) cannot significantly deviate when a
small perturbation is added to y.

C. Concrete mathematical example

Figure 6. An illustration of Supp(pX̂) (zigzag line) and the mapping Kf (X
(1), X(2)) (arrow lines), where X̂ = (X(1), Gf (X

(1))) is
the estimator from Appendix C and the mapping Kf (X

(1), X(2)) maps each point (X(1), X(2)) onto the zigzag in a horizontal fashion,
as illustrated in the figure.

We provide a concrete toy example which shows that the perceptual index (according to the W2 distance) of a consistent
deterministic estimator can be arbitrarily minimized by making the estimator more erratic. Let X = (X(1), X(2)) be a two
dimensional random variable, where X(1), X(2) ∼ U(0, 1), and X(1), X(2) are statistically independent. Let Y = X(1),
and X̂ = (Y,Gf (Y )) be a consistent, deterministic estimator, where Gf (y) =

1
π arccos (cos (2πfy)) and f ∈ N. Our goal

is to show that

W2(pX , pX̂) −→
f→∞

0. (10)

We prove this by considering the Monge formulation of the W2 distance, i.e.,

W 2
2 (pX , pX̂) = inf

T
E[∥X − T (X)∥22] s.t. T (X) ∼ pX̂ , (11)
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which is true since pX is absolutely continuous. Let

Kf (x1, x2) =
1

2f

(
⌊2fx1⌋+

{
1− x2 mod(⌊2fx1⌋, 2) = 1

x2 mod(⌊2fx1⌋, 2) = 0

)
, (12)

T0(X) = (Kf (X
(1), X(2)), X(2)). (13)

One can show that T0(X) ∼ pX̂ (see Figure 6 for intuition), so T0 satisfies the constraint in Equation (11) and therefore

W 2
2 (pX , pX̂) ≤ E[∥X − T0(X)∥22]. (14)

Moreover, ∀x1, x2 ∈ [0, 1] we have

lim
f→∞

(x1 −
1

2f
(⌊2fx1⌋ − x2))

2 = 0, (15)

lim
f→∞

(x1 −
1

2f
(⌊2fx1⌋ − 1 + x2))

2 = 0, (16)

so

lim
f→∞

(x1 −Kf (x1, x2))
2 = 0. (17)

Since both X(1),Kf (X
(1), X(2)) ∼ U [0, 1], we have that P((X(1) − Kf (X

(1), X(2)))2 ≤ 4) = 1. Hence, from the
dominated convergence theorem (DCT) we have

W 2
2 (pX , pX̂) ≤ lim

f→∞
E[∥X − T0(X)∥22] = lim

f→∞

∫
[0,1]2

(x1 −Kf (x1, x2))
2pX(x1, x2)dx1dx2 (18)

=

∫
[0,1]2

lim
f→∞

(x1 −Kf (x1, x2))
2pX(x1, x2)dx1dx2 = 0. (19)

We have shown that the perceptual index of the estimator X̂ can be arbitrarily minimized (by taking larger values of f ).

D. Proof that Equation (7) upper bounds Equation (5)
Our goal is to show that

RX̂,ϵ ≤ R̃X̂,ϵ. (20)

Let X̂ = G(Y,Z) for some random variables Y,Z, and let

δ∗ = argmax
δ:∥δ∥2≤ϵ

W 2
2 (pX̂|Y (·|y), pX̂|Y (·|y + δ)). (21)

Then, for any y

rX̂,ϵ(y) = W 2
2 (pX̂|Y (·|y), pX̂|Y (·|y + δ∗)). (22)

Note that the W2 distance between pX̂|Y (·|y) and pX̂|Y (·|y + δ∗) is essentially the distance between the distributions of
the random variables G(y, Z) and G(y + δ∗, Z). Since the MSE between two random variables upper bounds their W 2

2

distance, we have

rX̂,ϵ(y) ≤ E[∥G(y, Z)−G(y + δ∗, Z)∥22]. (23)

By the definition of r̃X̂,ϵ we have

E[∥G(y, Z)−G(y + δ∗, Z)∥22] ≤ r̃X̂,ϵ(y), (24)

so rX̂,ϵ(y) ≤ r̃X̂,ϵ(y), and since this is true for any y, we conclude that

RX̂,ϵ = E
[
rX̂,ϵ(Y )

]
≤ E

[
r̃X̂,ϵ(Y )

]
= R̃X̂,ϵ. (25)
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E. Complementary training details
E.1. Toy GAN experiments

The sizes of the training and validation sets are 100,000 and 10,000, respectively, both of which are random, independent
samples from the toy distribution described in Section 4. In all experiments the estimator’s and critic’s architecture is
the simple fully connected network described in Table 2. Notice that the estimator outputs only one value (the estimate
of X(2)) as the value of X(1) is known. The output and the input are being concatenated to result in an output of size 2,
which is the final estimate. For the stochastic estimators X̂StoGAN and X̂ErraticStoGAN one of the inputs is Y and the other is
Z ∼ U [0, 1]. For the deterministic estimators we simply fix Z = 0, like we do in the experiments on natural images. The
loss we use is the exact same one we use for natural images, but with a gradient penalty coefficient of 10.0, and λR = 0.1
for the robust estimators (both the deterministic and the stochastic). During training, we alternate between one training step
for the estimator and one step for the critic, where each is trained for a total of 20, 000 steps. To optimize the parameters
of the networks we use the Adam optimizer with (β1, β2) = (0, 0.9) and a learning rate of 10−4. ϵ in the computation
of Equation (7) is set to 10−3 in all experiments. For the stochastic estimator, we perform the average in Equation (6) over
50 realizations of Z. Finding the adversarial attack on each input in done by using the Adam optimizer for 4 steps, with
(β1, β2) = (0.9, 0.999) and a learning rate of 10−4. In Table 3 we report the robustness values of all toy GAN estimators.

Table 2. The architecture of both the estimator and critic in all toy GAN experiments.
Layer Output size Filter

Fully Connected 512 2 → 512
ReLU 512 -

Fully Connected 512 512 → 512
ReLU 512 -

Fully Connected 512 512 → 512
ReLU 512 -

Fully Connected 512 512 → 512
ReLU 512 -

Fully Connected 512 512 → 1

Table 3. Robustness of the toy GAN estimators from Section 4.2 and Section 5.

Estimator Robustness:
√

R̃X̂,ϵ(·10−3) (higher is better) ϵ(·10−3)

X̂ErraticGAN 3.62 1
X̂RobustGAN 0.77 1
X̂StoErraticGAN 0.13 1
X̂StoRobustGAN 0.51 1

E.2. Experiments on natural images

E.2.1. NEURAL NETWORK ARCHITECTURES

In all the experiments the estimator is a U-Net architecture (Ronneberger et al., 2015) (receiving Y and Z as inputs), and the
critic is a ResNet model (He et al., 2015) with a similar structure to the one described in (Mescheder et al., 2018). Full
details of the architectures are disclosed in Figure 7 and Table 4. While the chosen GAN architecture for the deterministic
and stochastic estimators could have been further improved, we chose the structure described herein, as it provides good
quality outcomes and is relatively easy to train. We believe that, while improving the GAN training and architecture may
boost performance, it would not change the interplay we exposed between deterministic and stochastic restoration methods.

E.2.2. OPTIMIZATION SETTINGS

We alternate between optimizing the estimator and the critic (one step for each model at a time), performing a total of 1.2M
steps for each model. At the estimator’s optimization step we also perform an “inner” optimization procedure that finds
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Figure 7. Description of the U-Net architecture (Ronneberger et al., 2015), adopted as the estimator in all the experiments on natural
images. We use Z = (Z1, Z2, Z3, Z4), where for the deterministic estimators Zi = 0, and for the stochastic ones Zi are statistically
independent random vectors, each following a normal distribution with zero mean and identity covariance matrix. Each Zi is reshaped
to match the spatial size of the input to Down Block i. Cat corresponds to concatenation on the channels dimension. BN2D is a two
dimensional batch normalization layer (Ioffe & Szegedy, 2015). We use a ReLU activation after each BN2D layer in each DoubleConv
block. There is no activation in the last Conv2D layer of the network. The only hyperparameter of the network is s. For the experiments
on CelebA we use s = 24 (for both the inpainting and super resolution tasks), and for the experiments on ImageNet we use s = 32.
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Table 4. Full description of the critic’s architecture used in all the experiments on natural images. We use pre-activation ResNet blocks
and Leaky ReLU activations with a slope of 0.2 everywhere (except for the last layer, where there is no activation). The output of each
ResNet block is multiplied by 0.1. The only hyperparameter of the network is f , and the spatial extent of the input image is always
64× 64 in our experiments. f = 16 in all the CelebA experiments, and f = 32 in all ImageNet experiments. This architecture follows a
similar structure to the one described in (Mescheder et al., 2018).

Layer Output size Filter

Conv2D f × 64× 64 3 → f

ResNet Block f × 64× 64 f → f → f
ResNet Block 2f × 64× 64 f → f → 2f

Average Pooling 2D 2f × 32× 32 -

ResNet Block 2f × 32× 32 2f → 2f → 2f
ResNet Block 4f × 32× 32 2f → 2f → 4f

Average Pooling 2D 4f × 16× 16 -

ResNet Block 4f × 16× 16 4f → 4f → 4f
ResNet Block 8f × 16× 16 4f → 4f → 8f

Average Pooling 2D 8f × 8× 8 -

ResNet Block 8f × 8× 8 8f → 8f → 8f
ResNet Block 16f × 8× 8 8f → 8f → 16f

Average Pooling 2D 16f × 4× 4 -

ResNet Block 16f × 4× 4 16f → 16f → 16f
ResNet Block 16f × 4× 4 16f → 16f → 16f

Average Pooling 2D 16f × 2× 2 -

ResNet Block 16f × 2× 2 16f → 16f → 16f
ResNet Block 16f × 2× 2 16f → 16f → 16f

Fully Connected 1 16f · 2 · 2 → 1

the adversarial attack of each input, as described in Appendix E.2.3. The robustness loss (Equation (7)) is included in the
estimator’s objective once in every three optimization steps, i.e., we always perform two estimator training steps solely with
a GAN loss, and the robustness loss is added at the third step when training a robust model. For the optimization of the
estimator’ and critic’s parameters, we always use the Adam optimizer with (β1, β2) = (0.5, 0.99) and a learning rate of
10−4. For both models we also perform a multi-step learning rate scheduling with a decay of γ = 0.6, scheduled at the steps
400k, 500k, 600k, 700k and 750k. The R1 gradient penalty coefficient of the critic is set to 1.

E.2.3. COMPUTATION OF THE ROBUSTNESS LOSS (EQUATION (7))

Note that measuring the robustness of an estimator with Equation (7) involves a maximization procedure for each y
(Equation (6)). We approximate this maximization with 5 optimization steps using the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 1 and (β1, β2) = (0.9, 0.999). The optimizer’s parameters are re-initialized at the beginning
of each training step (so its inner parameters are not transferred from step to step). The same procedure with the same
hyper-parameters is done both for training and validation.

Another thing to note is that computing Equation (6) for each y requires averaging over samples of Z. For the stochastic
estimators we sample 10 instances of Z to compute this average, and for the deterministic estimators averaging is not
required since Z = 0.

Lastly, in the inpainting task we use ϵ = 2.5, and in the super resolution task we use ϵ = 0.553, 0.276, 0.138 for the scaling
factors ×4,×8,×16, respectively. These values of ϵ ensure the same bound on the adversarial input PSNR across all scaling
factors. To ensure that the attack δ holds ∥δ∥2 ≤ ϵ, we project δ on the ϵ ball after each update step of the attack.
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E.2.4. DATA SETS

CelebA: We pre-process each source image by first resizing it to 102x102 via bilinear-interpolation and then cropping the
center 64x64 pixels, so the source images we use are of size 64x64. We use 80% of the original CelebA training data to train
all the algorithms (the images in the resulting subset are being chosen at random), and the remaining 20% is added to the
original CelebA validation data. We do so to have enough images for perceptual quality evaluation using metrics such as
FID (Heusel et al., 2017).

ImageNet: We use the 64× 64 version of the ImageNet data set (Chrabaszcz et al., 2017) with no pre-processing, and with
the original training and validation sets splits.

E.2.5. COMPUTATION OF PERCEPTUAL QUALITY METRICS

We compute FID (Heusel et al., 2017), precision and recall (Kynkäänniemi et al., 2019) (with k = 3) using the PyTorch
package (Kastryulin et al., 2019), and with the default feature extraction network of that package (InceptionV3 (Szegedy
et al., 2015)). We randomly choose 50,000 real and fake samples to perform the evaluation (the real samples are the high
quality training images, and the fake samples are the outputs of the algorithm on the validation inputs). For the stochastic
algorithms each fake sample corresponds to a different input, i.e., we sample 50,000 random seeds and each seed is combined
with a different input to provide one output, effectively sampling one instance from pX̂|Y (·|y) for each y.

F. What is the rationale of utilizing GANs to compare stochastic and deterministic restoration
models?

Among image restoration methods, GAN-based (Wang et al., 2018; Ledig et al., 2017; Bahat & Michaeli, 2020; Ohayon
et al., 2021), flow-based (Lugmayr et al., 2020; Jo et al., 2021), diffusion-based (Song & Ermon, 2019; Kadkhodaie &
Simoncelli, 2021; Kawar et al., 2021a;b; 2022), and VAE-based (Gatopoulos et al., 2020; Liu et al., 2021a;b) techniques are
currently the most widely adopted and effective in terms of achieving high levels of perceptual quality. However, in order to
provide sufficient evidence for our hypothesis in this paper, which posits that stochastic models can achieve high levels of
perceptual quality with higher levels of robustness compared to deterministic models, it is essential to conduct a fair and
unbiased comparison. For example, a stochastic flow-based method that achieves high levels of perceptual quality may
exhibit greater robustness compared to a deterministic GAN-based technique with similar levels of perceptual quality (as
demonstrated in Appendix G). However, this does not necessarily imply that the superior performance of the flow-based
method is solely attributed to its stochasticity. Rather, it shows that a restoration algorithm with high levels of perceptual
quality can also exhibit robustness, which refutes the hypothesis proposed in (Choi et al., 2019). Hence, to conduct a fair
evaluation, it is crucial to isolate the impact of stochasticity on the model’s performance. This can be achieved by using
GANs, as they naturally allow to perform a comparison “on the same grounds” (same data sets, same loss, same architecture,
same AI-PSNR, same hyper-parameters, etc.) by manipulating the input random seed from a degenerate distribution (to
obtain a deterministic model) to a non-degenerate distribution (to obtain a stochastic model). Such an effective way to isolate
the impact of output stochasticiy on the model’s performance is currently much less trivial with flow-based, diffusion-based,
and VAE-based methods. We therefore leave the analysis of these methods for future work.

G. Robustness of SRFlow: results
We assess the robustness of SRFlow (Lugmayr et al., 2020) by adapting the I-FGSM (Choi et al., 2019; Kurakin et al., 2017)
method to be applicable to any differentiable estimation procedure that utilizes a random seed as input. This adaptation
enables a fair comparison of stochastic methods with the I-FGSM attacks performed on other methods (Choi et al., 2019).

To find the input attack ỹ on the SRFlow model (denoted by SRF(Y,Z)), we compute the loss E[∥SRF(y, Z)−SRF(ỹ, Z)∥2]
for each Y = y, averaging over 10 realizations of Z (the random seed of SRFlow), and then continue to perform 50 I-FGSM
update steps in the same fashion as described in (Choi et al., 2019), Sec. 3.1. To ensure a fair comparison with other models,
we adhere to the official public implementation of the I-FGSM procedure described in (Choi et al., 2019), and use the
same initialization for the attack. Additionally, we utilize the official code and pre-trained model checkpoints of SRFlow as
provided by the authors. Lastly, as in (Choi et al., 2019), we perform the evaluation on the Set5 (Bevilacqua et al., 2012),
Set14 (Zeyde et al., 2010), and BSD100 (Martin et al., 2001) data sets.

The robustness evaluation of SRFlow is presented in Figure 8. For ease of comparison, we also include the robustness
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levels of ESRGAN (Wang et al., 2018) and EDSR (Chen et al., 2018) as reported in (Choi et al., 2019) (refer to (Choi
et al., 2019) for the analysis of additional distortion-based models). Our results show that the robustness levels of SRFlow
are significantly higher than those of ESRGAN across all values of α, the hyper-parameter controlling the severity of the
I-FGSM attack. This confirms that even an “off the shelf” stochastic restoration algorithm with high perceptual quality can
exhibit much higher robustness than a deterministic algorithm with comparable output perceptual quality. Furthermore,
the results show that SRFlow exhibits comparable level of robustness to EDSR and most of the distortion-based models
evaluated in (Choi et al., 2019). I.e., despite achieving high perceptual quality, SRFlow maintains a robustness level that is
comparable to models that attain much lower levels of perceptual quality. All and all, this experiment further supports our
claim that the link between high perceptual quality and low robustness (Choi et al., 2019) is valid only for deterministic
mappings.
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(a) Set5 adversarial output PSNR.
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(b) Set5 adversarial input PSNR.
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(c) Set14 adversarial output PSNR.
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(d) Set14 adversarial input PSNR.
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(e) BSD100 adversarial output PSNR.
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(f) BSD100 adversarial input PSNR.

Figure 8. Comparison of adversarial output PSNR (robustness) and adversarial input PSNR (AI-PSNR) on Set5 (Bevilacqua et al., 2012),
Set14 (Zeyde et al., 2010), and BSD100 (Martin et al., 2001), using the I-FGSM attack (Choi et al., 2019; Kurakin et al., 2017) with
several values of α. The evaluated methods are SRFlow (Lugmayr et al., 2020), EDSR (Chen et al., 2018), and ESRGAN (Wang et al.,
2018). The results of EDSR and ESRGAN are copied from (Choi et al., 2019), whereas SRFlow is evaluated as described in Appendix G.
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