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Abstract
Meta-learning has proven to be successful at few-
shot learning across the regression, classification
and reinforcement learning paradigms. Recent
approaches have adopted Bayesian interpretations
to improve gradient based meta-learners by quan-
tifying the uncertainty of the post-adaptation es-
timates. Most of these works almost completely
ignore the latent relationship between the covari-
ate distribution (p(x)) of a task and the corre-
sponding conditional distribution p(y|x). In this
paper, we identify the need to explicitly model
the meta-distribution over the task covariates in
a hierarchical Bayesian framework. We begin by
introducing a graphical model that explicitly lever-
ages very few samples drawn from p(x) to better
infer the posterior over the optimal parameters
of the conditional distribution (p(y|x)) for each
task. Based on this model we provide an infer-
ence strategy and a corresponding meta-algorithm
that explicitly accounts for the meta-distribution
over task covariates. Finally, we demonstrate the
significant gains of our proposed algorithm on a
synthetic regression dataset.

1. Introduction
Learning quickly or with very few samples has been a long-
term goal of the machine learning community. The field of
meta-learning has recently made significant strides towards
achieving that goal. Meta-learning (Nichol et al., 2018;
Ravi & Larochelle, 2016; Finn et al., 2017) comprises of
a set of algorithms designed to exploit prior experiences
from multiple tasks (drawn from a task distribution) for
improving sample-efficiency on a new but related task from
the same distribution. Given the increasing cost of getting
annotated samples on an ever-increasing variety of related
tasks, the practical scope of these algorithms is immense.

Most meta-learning methods can be classified into two
broad categories (i) gradient-based (Ravi & Beatson, 2018;
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Figure 1. Samples of tasks drawn from a meta-distribution catego-
rized based on its corresponding hypothesis class. The red crosses
indicate the labeled sampled points and the blue, green dashed
lines represent the true hypothesis for two different tasks from the
same class. We can clearly see that the hypothesis class is not inde-
pendent of the task specific input distribution p(x). For example,
the covariate distribution for sinusoidal tasks have a higher support
in the negative region (in R) where as the support is confined to a
much narrower positive region for linear tasks.

Denevi et al., 2019; Finn et al., 2017) approaches that meta-
learn parameters of optimization algorithms (like initial-
ization and learning rate) in a way that the meta-learner
(optimizer) is amenable to quickly adapt on a new task by
performing gradient descent on a very small number of la-
beled samples, and (ii) amortized-inference (Snell et al.,
2017; Lee et al., 2019; Bertinetto et al., 2018) based ap-
proaches that directly infer the optimal parameters of a new
task without performing any gradient based optimization.
In general, such algorithms learn to adapt the parameters of
a complex neural network using only a few samples from
an unseen task in a way that the adapted network general-
izes well (Wang et al., 2019). In this work, although we
focus on improving gradient-based methods, we believe that
our core idea can be adapted to the latter as well. Recent
works (Finn et al., 2018), (Ravi & Beatson, 2018), (Kim
et al., 2018) have used a Bayesian framework to learn a
suitable prior over the network parameters by leveraging the
inherent structure of the task distribution. By viewing the
parameters of a meta-learner through a Bayesian lens we
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can use the predictive posterior (Gal & Ghahramani, 2016)
to estimate the uncertainty of the adapted parameters for
each task (Ravi & Beatson, 2018).

In a Bayesian meta-learner (Kim et al., 2018; Finn et al.,
2018; Ravi & Beatson, 2018), the posterior over the adapted
network parameters for a new task is typically inferred using
a few samples from the task along with a meta-learned prior.
In this work, we hypothesize that the covariate distribution
of a task can also influence the posterior over the adapted
network parameters. To the best of our knowledge none of
the existing meta-learning algorithms like Bertinetto et al.
(2018); Rajeswaran et al. (2019); Ravi & Beatson (2018);
Finn et al. (2018) explicitly utilize the information present
in the covariates to improve the estimate of the adapted
parameters. This is done by modeling the latent factors of
the covariate distribution. We define a prior not only on
the network parameters (which determine the conditional
p(y|x)) but also on the covariate distribution p(x). Our
meta-learning objective involves maximizing the joint like-
lihood p(x, y) as opposed to just p(y|x) which leads to
meta-parameters sharing information about the covariates
across tasks, in addition to the optimal network parameters.
This way the latent factors of the covariate distribution p(x)
of a new task can be quickly inferred from very few covari-
ates. Finally, the inferred latent covariate factors are used to
infer the posterior over the adapted network parameters.

For simplicity, we motivate the need to model covari-
ates via a synthetic example in Fig. 1. The meta-
distribution consists of tasks with optimal hypothesis h ∈
H=

⋃
{Hs,Hl,Ht,Hq} that can be classified into four hy-

pothesis classes: sinusoidal (Hs), linear (Hl), tanh (Ht)
and quadratic (Hq). We note that the support of the input
distribution is vastly different for each of the four hypothesis
classes. Thus, intuitively we can see that inferring proper-
ties of the covariate distribution of a task can be helpful in
adjusting the posterior over the network parameters. For
example, for a given task if we only observe negative co-
variates in the range [−10,−5] we can adapt the posterior
to have a higher measure forHs (sinusoidal hypothesis).

We can generalize the above intuition to real-world meta-
learning problems as well, especially for high-dimensional
data like images. Particularly, in the limited availability
of labeled data, semi-supervised methods (Chapelle et al.,
2009) tend to leverage unlabeled data (and hence covariate
distribution) to attain generalizable models (Berthelot et al.,
2019) On similar lines, modeling the meta-distribution over
the covariates can help inferring the task-specific covari-
ate distribution which can then better inform task-specific
features for image classification. In few-shot classification,
images for different tasks can lie on different manifolds
(Saul & Roweis, 2003) of varying complexities. Informa-
tion about the covariates (by modeling the unlabeled data)

can help us better estimate the required complexity of the
discriminative features for a given task. For example, dis-
tinguishing species of plants can be considered harder than
classifying mammals since the features of plant images may
be cluttered on a low-dimensional manifold as opposed to
the possibly well separated features in the case of mammals.
Thus the former may require having complex (non-linear)
decision boundaries as opposed to simpler linear classifiers
in the case of the latter.

The main contributions of our work are as follows: (1) we
identify the need to model the latent structure present in
the covariate distributions (p(x)) for a sequence of tasks
(2) to the best of our knowledge we are the first to propose
a Bayesian framework which exploits this latent informa-
tion to better infer the posterior over the adapted network
parameters (that define p(y|x)) (3) we propose a gradient
based model-agnostic meta-learning algorithm that is an
instantiation of our probabilistic theory and demonstrate its
benefits on synthetic regression datasets.

2. Related Work
Our methodology is complementary to most existing works
in the probabilistic meta-learning literature. We borrow the
basic hierarchical Bayes framework from Ravi & Beatson
(2018); Finn et al. (2018) and extend it to model Bayesian
variables that generate the covariate distribution for a task.
This enables our method to be model-agnostic while having
the ability to benefit from the latent relationship between the
task covariates and the optimal parameters as mentioned in
Sec. 1. In the non-Bayesian setting, the M-MAML algorithm
proposed by Vuorio et al. (2019) is mildly similar to our
approach in the sense that they learn task specific initial-
izations instead of a single one as originally introduced by
Finn et al. (2017). M-MAML uses the labeled samples to
infer an initialization for a given task and hence one can
view the covariate distribution as being used indirectly. But
they fail to explicitly model the mutual information between
the covariates and adapted parameters. On the other hand,
our approach is more direct since it first infers the posterior
over the latent factors of the covariate distribution via a
maximum likelihood objective and then uses the inferred
posterior to improve the adaptation of network parameters.
Additionally, our framework is capable of modeling the un-
certainty of the adaptation which can prove to be be critical
in the few shot scenario.

3. Methodology
We begin by introducing some notations for the meta-
learning setup used in the rest of the paper followed by
the proposed probabilistic framework which explicitly ex-
ploits (i) the structure of the covariate distributions across
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tasks (ii) the relation between the covariate distribution and
optimal hypothesis for a given task. We then derive the
Maximum Likelihood Estimation (MLE) objectives for the
observed variables in our model and show how the MLE
derivations can inform a novel meta-learning objective. Fi-
nally, we discuss a specific meta-learning algorithm that can
efficiently optimize the proposed objective. We do this via
an instantiation of the generic approach obtained by making
certain simplifying assumptions in the original framework.

Notations We are given a sequence of n tasks {Ti}ni=1 with
each task Ti having m labeled samples given by the dataset
Di = {x(i)

j ,y
(i)
j }mj=1 where x

(i)
j ∈ X ⊂ Rk and y

(i)
j ∈

Y ⊂ R. Following the definitions introduced by Finn
et al. (2018) we split the dataset Di := {DSi ,D

Q
i } into

support (DSi ) and query (DQi ) sets respectively with |DSi | =
m′, |DQi | = m−m′. Each sample in Di is drawn from the
joint distribution pi(x, y) over X × Y with the marginals
given by pi(x) and pi(y).

Figure 2. A graphical model representing our hierarchical Bayes
framework with task-agnostic meta-parameters θ and task-specific
latent variables zxi , zyi which influence the marginal pi(x) and
conditional pi(y|x) distributions respectively. The dotted lines
denote the variational approximations introduced over the true
posteriors.

The probabilistic model we consider in our work is summa-
rized in Fig. 2. Without making any assumptions on the na-
ture of pi(x, y), we assume the existence of meta-parameters
θ that govern the common structure shared across the set
of joint distributions {pi(x, y)}ni=1. Within each task the
generative model for the input x(i) involves a random vari-
able zxi which we shall refer to as the latent factors of the
covariate distribution. Also, each task has an additional
latent variable zyi which plays a role in the generative model
for the response variable y(i) given the input x(i). In most
settings, a naive assumption of independence is made over
the latent factors zxi and zyi . On the other hand, we refrain
from making such assumptions and instead exploit the in-

formation present in the covariates {x(i)
j }mj=1 to better infer

the posterior over the latent variable zyi which influences
the conditional pi(y|x).

3.1. Formal Derivations

In this section, we derive a lower bound for the likelihood
of the observed data {DSi }ni=1 using hierarchical variational
inference. This gives us the meta-learning objective that can
be optimized using standard gradient-based approaches.

log p({DSi }ni=1) = log

∫
θ

p({DSi }ni=1|θ)p(θ) dθ (1)

≥ Eq(θ;β)

[
n∑
i=1

log p(DS
i |θ)

]
− KL(q(θ;β)||p(θ))

In the above equation, the distribution q(θ;β) is a varia-
tional approximation (with parameters β) for the true poste-
rior over the meta-parameter θ. For the derivations hence-
forth we shall drop the notations i and S when understood
from context. The log-likelihood of the dataset Di given
by p(Di|θ), can be written as an integral over the factors
p(Di|zxi , z

y
i ), p(z

y
i |zxi , θ) and p(zxi |θ).

p(Di|θ) =
∫
zxi

∫
zyi

p(D|zxi , z
y
i )p(z

y
i |z

x
i , θ)p(z

x
i |θ) dzyi dz

x
i

To lower bound the log of the above objective we introduce
two variational approximations (i) q(zxi ;κi) with parameters
κi for the true posterior p(zxi |{x

(i)
j }m

′

j=1) and (ii) q(zyi ;λi)
with parameters λi for the true posterior p(zyi |zxi ,DSi ).

log p(Di|θ)≥Eq(zxi ;κi)

[
log

∫
p(Di|zxi , z

y
i )p(z

y
i |z

x
i , θ)dz

y
i

]
− KL(q(zxi ;κi)||p(zxi |θ)) (2)

Since zxi is the latent factor in the generative model for x(i)

and zyi is the corresponding latent variable for y(i), we arrive
at the independence: y(i)

j ⊥ zxi |z
y
i ,x

(i)
j and x

(i)
j ⊥ zyi |zxi .

Based on this, we finally arrive at the following Evidence
Lower Bound (ELBO) for log p(Di|θ) which we shall refer
to as LDi

(κi, λi, θ).

LDi
(κi, λi, θ) = Eq(zxi ;κi)

 m′∑
j=1

log p(x
(i)
j |z

x
i )

 (3)

−KL(q(zxi ;κi)||p(zxi |θ)) + Eq(zxi ;κi) L
′
Di
(zxi , λi, θ)

L′Di
(zxi , λi, θ) = Eq(zyi ;λi)

 m′∑
j=1

log p(y
(i)
j |x

(i)
j , zyi )


− KL(q(zyi ;λi)||p(z

y
i |z

x
i , θ)) (4)

Therefore, the ELBO on the likelihood of the dataset for ith

task is a function of the task-specific variational parameters
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κi, λi and the variational meta-parameter β. For each task,
the optimal variational parameters that approximate the true
posteriors are distinct. Hence, κi, λi need to be adapted for
each task individually. Given LDi

(κi, λi, θ) we can re-write
the lower bound in Eq. 1 as:

log p({D(S)
i }

n
i=1) ≥ L(β) (5)

= Eq(θ;β)

[
n∑
i=1

LDi
(κi, λi, θ)

]
− KL(q(θ;β)||p(θ))

3.2. Algorithm

The primary aim of any meta-learning algorithm is to opti-
mize for the meta-parameter θ given the datasets {Di}ni=1

from the corresponding sequence of tasks. This is generally
a two step process where step-I involves identifying the op-
timal task-specific parameters using θ and the support set
DSi . In step-II, based on the task-specific adapted param-
eters from step-I the meta-parameter θ is optimized over
the query set DQi . Within our framework, since both the
meta-parameter θ and the task-specific parameters zxi , z

y
i

are Bayesian random variables with variational parameters
given by β, λi, κi respectively, we instead define an algo-
rithm to optimize the ELBO in Eq. 5.

β∗ = argmin
β
−L(β) (6)

= argmin
β
−Eq(θ;β)

n∑
i=1

LDQ
i
(κ∗i , λ

∗
i , θ)

+ KL(q(θ;β)||p(θ))
κ∗i , λ

∗
i = arg min

κi,λi

−Eq(θ;β)LDS
i
(κi, λi, θ) (7)

In order to optimize the objectives in Eqs. 6, 7 we introduce
certain simplifying assumptions over each of the variational
approximations in Sec. 3.1. 1

Assumption 1. The variational approximation q(θ;β) fol-
lows a δ−distribution given by δβ and the prior p(θ) is
given by N (0, I). We note that the assumptions taken are
effective in arriving at a computationally feasible algorithm
and are

Assumption 2. The variational approximation q(zyi ;κi)
follows a normal distribution with mean, diagonal co-
variance matrix given by κ∗i = (γµ(DSi ;β), γ2σ(DSi ;β)).
The prior p(zxi |θ) is taken as N (0, I). On the other hand,
the distribution q(zxi ;λi) is given by a δ−distribution: δλi

.

Using Assms. 1, 2 the Eqs. 6, 7 can be re-written as a two

1We note that the assumptions we consider are merely to induce
a computationally feasible meta-learner and the theory involving a
meta-distribution over covariates (in Sec. 3.1) is barely undermined
by it.

layer log-likelihood objective with an l2 regularization term.

β∗ = argmin
β
−

n∑
i=1

LDQ
i
(κ∗i , λ

∗
i , β) +

1

2
‖β‖22 (8)

λ∗i = argmin
λi

−LDS
i
(κ∗i , λi, β) (9)

κ∗i = (κ∗i (µ), κ
∗
i (σ)) = (γµ(DSi ;β), γσ(DSi ;β)) (10)

To be concrete, the task-specific random variable zyi repre-
sents the parameters of the neural network for the ith task,
that takes as input x(i)

j and outputs a prediction ŷ
(i)
j . On the

other hand, as stated previously zxi represents the latent vari-
able for the covariate distribution pi(x). Furthermore, the
optimal variational parameters for the distribution q(zix;κi)
is given by κ∗i which consists of the mean γµ(DSi ;β) and
std. deviation γσ(DSi ;β) of a normal distribution. Here,
γµ(·, β), γσ(·, β) represent neural networks which take as
input the support set DSi and output κ∗i . It is important
to note that even though the parameters of γµ, γσ are task-
agnostic, the variational parameter κ∗i is still different for
each task and is determined using the covariates in DSi .

Having identified κ∗i we now describe the optimization algo-
rithm for λi in Eq. 9. Notice that to obtain λ∗i it is sufficient
to only minimize the objective −Eq(zxi ;κ∗)L

′
Di
(zxi , λi, β).

In Eq. 4 the KL term acts as a regularizer in the optimiza-
tion objective for λi. Since the most common algorithm for
optimization is Stochastic Gradient Descent (SGD) many
meta-learning algorithms avoid the KL term by choosing
a regularization specific to SGD. In most works (Ravi &
Beatson, 2018; Finn et al., 2018; Kim et al., 2018), the KL
term is a function of only the meta-parameter θ (or β given
Assm. 1). Hence the regularization is induced by letting the
initialization for the optimization of λi (given by λ(0)i ) be
determined by β. In our framework, we realize that the KL
term is a function of both β and the latent variable zxi for
the task specific covariate distribution. Hence we model the
initialization λ(0)i using a neural-network whose parameters
are subsumed in β and thus without loss of expressivity
λ
(0)
i = fβ(z

x
i ) . Thus, the optimal parameters of the vari-

ational approximation (λ∗i ) would be given by performing
K steps of SGD on the MLE objective in Eq. 4 with the
initialization given by fβ(zxi ).

λ∗i = Eq(zxi ;κ∗i ) SGD2(lDi
(λi), λ

(0)
i = fβ(z

x
i ),K) (11)

lDi
(λi) = −

m′∑
j=1

log p(y
(i)
j |x

(i)
j , λi)

The expectation in Eq 11 is computed using monte-carlo
approximation. We find that sampling a single value of
zxi ∼ q(zxi ;κ∗i ) is sufficient to optimize for λi.

2SGD(l(λ), λ(0),K) is the parameter obtained by performing
K steps of SGD on the objective l(λ) with initialization λ(0).
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Algorithm 1 Meta-training Algorithm

Given: n datasets: {DSi ,D
Q
i }ni=1, learning rates: η0, η1,

number of update steps: K.
p(θ), p(zxi |θ)← N (0, I)
for i=1 to n do
κ∗i (µ), κ

∗
i (σ)← γµ(DSi ;β), γσ(DSi ;β)

λ
(0)
i = fβ(κ

∗
i (µ) + ε ◦ κ∗i (σ)); ε ∼ N (0, I)

for t=0 to K-1 do

λ
(t+1)
i ← λ

(t)
i − η0∇λ(t)

i

m′∑
j=1

log p(y
(i)
j |λ

(t)
i ,x

(i)
j )

end for
λ∗i ← λ

(K)
i

β ← β − η1∇β
[
n∑
i=1

LDQ
i
(κ∗i , λ

∗
i , β)− 1

2‖β‖
2
2

]
end for

Finally, we note that the meta-parameter β constitutes the
parameters of the network fβ which determines the initial-
ization λ

(0)
i as well as the parameters of γµ(·; ·), γσ(·; ·)

which output κ∗i . Thus, β is optimized to jointly maximize
the likelihood of the covariates of a sequence of tasks as
well as for learning to choose covariate dependent initializa-
tions suitable for few-shot adaptation. For the optimization
objective in Eq. 8, we use the standard re-parameterization
trick (2nd step of the outer for-loop in Algorithm 1) com-
monly used in Variational Auto-Encoders (VAEs). This is
done so as to be able to differentiate through the expectation
over q(zxi ;κ

∗
i ) in Eqs. 3, 11. The step-by-step procedure

for the meta-training and meta-testing phases are given by
Algorithm 1 and Algorithm 2 respectively.

Algorithm 2 Meta-testing Algorithm on test task T

Given: dataset DT = {x(T )
j ,y

(T )
j }mj=1, parameter: β∗,

learning rate η0, number of update steps: K.
κ∗T (µ), κ

∗
T (σ)← γµ(DT ;β∗), γσ(DT ;β∗)

λ
(0)
T = fβ∗(κ

∗
T (µ) + ε ◦ κ∗T (σ)); ε ∼ N (0, I)

for t=0 to K-1 do
λ
(t+1)
T ← λ

(t)
T − η0∇λ(t)

T

m∑
j=1

log p(y
(T )
j |λ

(t)
T ,x

(T )
j )

end for
λ∗T ← λ

(K)
T

4. Experiments and Results
In order to first litmus test our approach on a simpler task
we begin by evaluating it on a synthetic regression dataset
borrowed from Vuorio et al. (2019) and defer further experi-
mentation on more complicated real world datasets to future
work. Most meta-learning algorithms have been tested on
regression datasets where the covariate distribution is same
across all tasks. We thus describe how we suitably modify

the original dataset so that there exists a structure over the
set of covariate distributions across tasks. This enables us
to fairly evaluate our method against the baselines in the
proposed setting.

We compare our algorithm with the popular gradient based
meta-learning approach MAML introduced by Finn et al.
(2017). Additionally, we also chose as baselines Amortized
MAML (Ravi & Beatson, 2018) and M-MAML (Vuorio et al.,
2019) which are exemplars of the Bayesian and task-specific
initialization type approaches respectively. These methods
either model the task-parameters as Bayesian random vari-
ables (former) or adapt the parameters of the optimizer
based on the input dataset (latter) and hence warrant a close
comparison with our proposed methodology.

Model sine sine-quad-linear five

MAML 0.05 1.27 1.69
Amortized MAML 0.07 1.39 1.13

M-MAML 0.04 0.59 0.93
Ours 0.008 0.39 0.89

Table 1. Comparison of post adaptation test performance (MSE

loss) on three regression datasets when the true hypothesis class
depends on the covariate distribution.

Model sine sine-quad-linear five

MAML 0.04 1.15 1.73
Amortized MAML 0.07 1.41 1.08

M-MAML 0.03 0.51 0.88
Ours 0.04 0.51 0.84

Table 2. Comparison of post adaptation test performance (MSE

loss) on three regression datasets when the true hypothesis class is
independent of the covariate distribution.

Dataset The covariate distribution for each task T is given
by a normal N (µT , σT ) whose parameters are sampled
from a discrete distribution over P pairs {(µp, σp)}Pp=1.
The pairs p1, . . . pP are fixed in the beginning once they are
sampled from a pair of independent uniform priors, pi ∼
(U(−10, 10), U(0, 10)). The parameters of the discrete
distribution are sampled from a Dirichlet prior (Dir(αp =
1)). Following (Vuorio et al., 2019), the optimal hypothesis
for each task is sampled from one of many modalities or
hypothesis classes. The hypothesis classes considered are
: sine, linear, quad, transformed-L1 and tanh. For each
task, having chosen a hypothesis class, the parameters of
the optimal hypothesis (like slope of a linear functions) is
chosen based on uniform distributions over the following 3:

3Taken as is from (Vuorio et al., 2019). Re-iterated for the sake
of completion.
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1. sine: f(x) = A · (sin(w · x) + b), with A ∈
[0.1, 5.0], w ∈ [0.5, 2.0] and b ∈ [0, 2π].

2. quad: f(x) = A · (x − c)2 + b with A ∈
[−0.15,−0.02] ∪ [0.02, 0.15], c ∈ [−3.0, 3.0] and
b ∈ [−3.0, 3.0].

3. linear: f(x) = A · x+ b, A ∈ [−3, 3], b ∈ [−3, 3].
4. transformed-L1: f(x) = A · |x − c| + b, with A ∈

[−0.15,−0.02] ∪ [0.02, 0.15], c ∈ [−3.0, 3.0] and b ∈
[−3.0, 3.0].

5. tanh: f(x) = A · tanh(x − c) + b with A ∈
[−3.0, 3.0], c ∈ [−3.0, 3.0], b ∈ [−3.0, 3.0].

For each of the true hypothesis classes above the final value
of y(i)

j is generated by adding an independent error term ε
sampled from a normal distribution with mean 0 and stan-
dard deviation of 0.3 i.e y

(i)
j = f(x

(i)
j ) + ε.

We consider two cases, first where there exists a relation
between the parameters (mean, variance) of the covariate
distribution and the optimal hypothesis class chosen for
a task and second when the optimal hypothesis class is
chosen independent of the mean, variance of the covariate
distribution. We highlight the results in each case separately.

Case-I: With a specific relation This setting conforms to
the case when zy 6⊥⊥zx|θ in Fig. 2. We experiment with three
different meta-distributions which are of different complex-
ities owing to the variety (number) of hypothesis classes
each of them span. The datasets are listed as follows:

1. sine: true hypothesis for each class is given by a sinu-
soidal function with parameters sampled from distribu-
tions mentioned previously. The range for each of the
parameters is split into P = 3 disjoint sets, each one
corresponding to a specific covariate distribution.

2. sine-quad-linear: each of the three hypothesis classes
are mapped to a specific covariate distribution. Thus,
once the parameters of the covariate distribution are
sampled based on the discrete prior, the corresponding
hypothesis class is also chosen and a task is sampled
from it.

3. five: similar to the previous case with the distinction
that all five hypothesis classes are considered in this
dataset i.e P = 5.

Table 1 highlights the Mean Squared Errors (MSE) achieved
by our method and the baselines on the three regression
datasets described above. We can see that when there exists
a relation between the true hypothesis class and the covari-
ate distribution our approach performs significantly better
than other state-of-the-art approaches for regression. Inter-
estingly, improvements are also observed for the five dataset
which was specifically introduced by Vuorio et al. (2019)
for evaluating M-MAML. The Bayesian model Amortized
MAML performs poorly since unlike our approach it fails
to acknowledge the latent relationship between the covari-

ate distribution and the posterior over the five hypothesis
classes.

Case-II: Independent This setting conforms to the case
when zy ⊥⊥ zx|θ in Fig. 2. In Table 2 we demonstrate
that the performance of our approach is no worse (if not
better) than other methods which assume the independence
by default. Once again we experiment with the same three
types of meta-distribution mentioned in the previous case.

Implementation The conditional p(y|x) is modeled us-
ing a three-layered neural network with hidden sizes
100, 100, 100. The networks γµ(·;β), γσ(·;β) which take
as input the sequence of labeled samples in a dataset DSi
are modeled using a common Recurrent Neural Network
RNN backbone with output of dimension 28. This can be
referred to as the task-embedding (Vuorio et al., 2019). The
mapping of task-embedding to λ(0)i , given by fβ(·) is mod-
eled similar to M-MAML as well as the modulation over
λ
(0)
i which gives us the final initialization of the network

parameters 4. Following prior work (Finn & Levine, 2017),
a bias-transformation of size 20 was appended to the inputs.
The total number of training tasks used were 10, 000 with
m′ = m−m′ = 5 samples for the support and query sets
for each task. Adam optimizer with an initial learning rate
of 0.001 was used to train the meta-learner. Additionally,
all KL terms were re-weighted with a weight of 0.01.

5. Conclusion
Cognizant of the fact that the generalization performance of
few-shot algorithms depends on a varying number of factors
ranging from sample size, hypothesis class complexity to
the optimization algorithm, input distribution; in this work
we focus our efforts on improving meta-learning algorithms
by using the covariate distribution to infer the adapted pa-
rameters via a principled Bayesian approach. We begin by
deriving ELBO bounds for the hierarchical Bayes formula-
tion and follow it up with a meta-learning algorithm to infer
the posterior over the network parameters. Finally, we show
some preliminary results on a synthetic regression dataset
designed to test the usefulness of our method.

Motivated by the empirical gains observed, we plan to ex-
tend our work to more challenging few-shot image classifi-
cation benchmarks like mini-imagenet (Ravi & Larochelle,
2016) and FC100 (Oreshkin et al., 2018). We also acknowl-
edge that the proposed framework warrants a more rigorous
theoretical analysis to understand exactly how inferring the
covariate distribution can impact regret bounds (Khodak
et al., 2019b;a) in the online few-shot setting or even gener-
alization error bounds in the classical one.

4The code for our implementation was in part borrowed from
https://github.com/vuoristo/MMAML-Regression

https://github.com/vuoristo/MMAML-Regression
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Oreshkin, B., López, P. R., and Lacoste, A. Tadam: Task de-
pendent adaptive metric for improved few-shot learning.
In Advances in Neural Information Processing Systems,
pp. 721–731, 2018.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Advances in
Neural Information Processing Systems, pp. 113–124,
2019.

Ravi, S. and Beatson, A. Amortized bayesian meta-learning.
2018.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. 2016.

Saul, L. K. and Roweis, S. T. Think globally, fit locally: un-
supervised learning of low dimensional manifolds. Jour-
nal of machine learning research, 4(Jun):119–155, 2003.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in neural information
processing systems, pp. 4077–4087, 2017.

Vuorio, R., Sun, S.-H., Hu, H., and Lim, J. J. Multimodal
model-agnostic meta-learning via task-aware modulation.
In Advances in Neural Information Processing Systems,
pp. 1–12, 2019.

Wang, Y., Yao, Q., Kwok, J., and Ni, L. M. Generalizing
from a few examples: A survey on few-shot learning. In
arXiv: 1904.05046. 2019.


