Under review as a conference paper at ICLR 2025

INSTRUCTION-FOLLOWING LLMS FOR TIME SERIES
PREDICTION: A TWO-STAGE MULTIMODAL AP-
PROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Text-Informed Time Series Prediction (TITSP), an innovative
multimodal framework that integrates textual knowledge with temporal dynamics
using Large Language Models (LLMs). TITSP employs a two-stage process that
bridges numerical data with rich contextual information for enhanced forecasting
accuracy and interpretability. In the first stage, we present AutoPrompter, which
captures temporal dependencies from time series data and aligns them with se-
mantically meaningful text embeddings. In the second stage, these aligned embed-
dings are refined by incorporating task-specific textual instructions through LLM.
We evaluate TITSP on several multimodal time series prediction tasks, demon-
strating substantial improvements over state-of-the-art baselines. Quantitative re-
sults reveal significant gains in predictive performance, while qualitative analyses
show that textual context enhances interpretability and actionable insights. Our
findings indicate that integrating multimodal inputs not only improves prediction
accuracy but also fosters more intuitive, user-centered forecasting.

1 INTRODUCTION

Time series prediction is critical in fields such as finance, healthcare, and climate science, where
timely and accurate forecasts drive informed decision-making. Traditional time series forecasting
pipelines typically involve three key stages: data preprocessing, model selection, and performance

evaluation.
PV A/i
= = =

Data Preprocessing

and Feature Engineer > Modelling > Bvaluation

8 Expert Analysis
m and Adjustment

Figure 1: The ideal complete process of Time-series Prediction

However, methods like ARIMA (Shumway et al.,[2017), while foundational, often struggle to cap-
ture the complex non-linear patterns and long-range dependencies present in real-world datasets.
With the rise of deep learning, models such as Long Short-Term Memory (LSTM) networks (Siami-
Namini et al., 2019) and Convolutional Neural Networks (CNNs) (Wang et al.l |2019) have shown
significant improvements in modeling these complexities. However, they remain constrained by
their reliance on numerical data alone, which limits their ability to integrate external contextual in-
formation—such as expert insights or macroeconomic events—that could enhance forecast accuracy
and interpretability. This shortcoming becomes especially problematic in chaotic or highly volatile
systems, such as financial markets or patient health monitoring.

Under review as a conference paper at ICLR 2025

Recent advancements in Transformer-based architectures Ilbert et al.; Zhou et al.|(2021)); /Wen et al.
(2022) and Large Language Models (LLMs) (Gruver et al., 2024; Jin et al., 2023) have enhanced
the ability to capture long-range dependencies in time series data. Yet, these models also face
limitations when applied in isolation, often missing out on crucial domain-specific insights provided
through other modalities, such as text. In practical scenarios, domain experts may wish to provide
instructions or insights that can guide the forecasting process, but existing models do not easily
accommodate such interactions.

To address these challenges, we propose Text-Informed Time Series Prediction (TITSP), a novel
two-stage framework that combines the strengths of deep learning models for time series prediction
with the contextual richness of domain-specific textual inputs. TITSP first captures temporal depen-
dencies using numerical time series data and then refines these predictions by incorporating task-
specific textual instructions through a Large Language Model. This integration allows the model
to generate more accurate, context-aware, and interpretable predictions. Our extensive experiments
demonstrate that TITSP significantly outperforms state-of-the-art models, particularly in scenarios
where expert input is essential.

Comparision Of Prediction on Exchange Rate Dataset

1.57
1.56 <
v~ 7
155 VoG 7 \\
o - Y N7 \
% 1.54{ = Previous Sequence £y
1s3] == Ground Truth _ -
. . PR ~
== Ours with order "logarithmic decay" *\\ So
1521 == jtransformer ~C \\\
1.51 Time-LLM with order "logarithmic decay" \~~_‘
© v © d Qv » ® > > Q
o o o o S N 5 & & &
& Sid & & & & & & S &
L 3 » o ~ o ~ " ~ L
Time

Figure 2: Interactive Prediction of GBP/USD Exchange Rate during the 2008 Financial Crisis com-
pared with other methods.

Figure [2] demonstrates the effectiveness of TITSP in predicting the GBP/USD exchange rate during
the 2008 financial crisis. It highlights how expert textual inputs can enhance predictions in volatile
environments. Additionally, Appendix[J]provides details on why a finance expert might offer insights
into the logarithmic decay observed on October 11, 2008.

The remainder of the paper is structured as follows. In Section 2], we discuss related work, covering
existing approaches in time series prediction and multimodal learning. Section [3] formalizes the
problem statement and the key challenges we aim to address. In Section[4] we describe our proposed
methodology, providing a detailed explanation of the architecture and the rationale behind its design.
Section [5] presents the experimental results, showcasing the effectiveness of our approach through
evaluations on multiple benchmark datasets.

The code to reproduce the results of this paper is included in the supplementary material and will be
made publicly available upon acceptance.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING APPROACHES

Time series forecasting began with classical models like ARIMA (Box et al.l 2015)), which are
effective for linear patterns but struggle with non-linearities common in real-world data (Chatfield,
2000). Feature extraction methods like tsfresh (Christ et al., [2018]) and machine learning algorithms
such as Random Forests (Breiman) [2001) and Support Vector Machines (Vapnikl |1998) improved
predictive accuracy by capturing non-linear dependencies.

The adoption of deep learning models, particularly RNNs (Rumelhart et al.,[1986)), LSTMs (Hochre-
iter & Schmidhuber, [1997)), and Transformers (Vaswani et al., [2017), has further advanced the field
by automatically learning complex temporal patterns (Wen et al.l 2017). Following the sucess of

Under review as a conference paper at ICLR 2025

transformer, works including TimeXer (Wang et al.| [2024), itransformer [2023), PatchTST
and Informer (Zhou et al] [2021)) are designed to address time-series prediction
problems. Despite these advancements, most approaches rely solely on time series data. Our work
diverges by integrating time series with textual context via Large Language Models (LLMs),
offering a richer, more contextual understanding of the data.

2.2 MULTIMODAL LEARNING IN TIME SERIES PREDICTION

Integrating time series data with unstructured text has become a key strategy for enhancing forecast-
ing accuracy through multimodal approaches that leverage diverse data types for richer context.

Advances in Model Architectures and Joint Prediction Zhang et al.|(2024) introduced the Dual-
Adapter model to optimize time series representation by balancing textual and temporal information.
Building on this, [Ciu et al | (2024b) proposed UniTime, a unified model leveraging NLP for enhanced
time series forecasting across domains, while [Liu et al| (2024a) explored LLMs for dynamical sys-
tems, showcasing their adaptability. Surveys such as (Liang et al.| 2024} [Deldari et al.} [2022)) offer
taxonomies of multimodal learning, identifying gaps in self-supervised methods for multimodal and
temporal data. The Multi-Modal Forecaster by jointly predicts time series and
text, highlighting the potential of cohesive multimodal frameworks. Similarly, [Cheng et al.| (2024))
introduced a prompt-based multimodal framework focused on classification. Recent advancements,
such as (Jia et al] 2024) and (Jin et al 2023)), further integrate time series and text using LLMs,
enhancing predictions through textual cues.

Existing Gaps and Novel Contributions. While recent works have advanced the integration of
time series and text, a key gap remains in instruction-based time series forecasting. Our method
addresses this by introducing a novel framework for text instruction-based forecasting, leveraging
the interplay between textual instructions and time series data for richer, interactive predictions.
Additionally, we present a tailored methodology to benchmark such tasks, enabling applications in
“what-if” scenarios and dynamic, user-interactive forecasting.

2.3 CONTRIBUTIONS OF OUR WORK.

Building on recent advancements in multimodal time series forecasting, our work makes the follow-
ing key contributions:

* Data Generation Workflow: We propose a novel data generation workflow that enables
the evaluation of instruction-based time series forecasting. This workflow facilitates the
testing of model applicability in scenarios that require adherence to specific instructions, a
previously underexplored area.

* Innovative Two-Stage Approach: We introduce a two-stage model that effectively inte-
grates both temporal data and textual instructions. This design captures contextual infor-
mation while adhering to instruction-based predictions, leading to enhanced performance.

* Comprehensive Ablation Studies: We conduct ablation studies to validate each step of the
proposed approach, demonstrating the importance and rationale behind each component.

¢ Comparative Evaluation: We benchmark our method against state-of-the-art models for
multimodal time series and text forecasting, showing competitive or superior performance

across key metrics (both in terms of a new metrics called compliance rate and in terms of
MSE).

These contributions address a significant gap in instruction-based forecasting, offering a structured
and interpretable solution.

3 PROBLEM DEFINITION

Let X = {x1,@9,...,x7} denote a multivariate time series, where x; € R¢ represents the d-
dimensional vector at time step t € {1,2,...,T}. Traditional time series forecasting aims to predict
future values X = {&1+1,&T42,...,Z7+H}, where H is the forecasting horizon, using only the
historical observations X.

Under review as a conference paper at ICLR 2025

In real-world applications, textual information often provides critical context or specific instructions
that can influence the expected trajectory of the time series. Let S = s1, s2, ..., s, be a sequence of
n tokens representing a textual description or instruction, where s; € V and V is a fixed vocabulary.
This text can convey information about future events, conditions, or hypothetical scenarios that
could affect the future behavior of the time series.

Our objective is to design a multimodal framework that integrates both the time series X and the text
S to produce a more informed forecast X(8) = {aﬁgpsll, aﬁgpslw ceey :f:gpsl 1 1> conditioned on both

the historical data and the information in S. Formally, the forecasting function is defined as:

X® = f(X,8;0) €))

where f(-,-;0) is a function parameterized by 6, capturing the relationships between the time series
and the text. The goal is to learn the parameters 6 to minimize the forecasting error:

* . < (S) true
0 argmeln[, (X , X) 2)

where L is a loss function that measures the discrepancy between the forecasted values X () and

true __ true true true
the true future values X" = {x' |, o7, ..., TP 4)

4 PROPOSED METHODOLOGY

4.1 DATA GENERATION

To train and evaluate our multimodal forecasting model, we generate a synthetic dataset that inte-
grates time series data with textual instructions. The goal is to modify forecasted time series values
based on text descriptions, simulating real-world scenarios where instructions influence future pre-
dictions.

The data generation process consists of the following steps:

* Base Time Series Creation: We generate multivariate time series X = {@x1, ®2,..., @7}
using standard generators (e.g., sine waves, real-world data including financial, electricity
data among others). The full description of all the base time series used for the generation
is provided in Appendix

 Textual Instruction Integration: For each time series, we generate corresponding textual

instructions S, such as “increase,” “decrease,” or “stabilize,”, ..., which provide guidance
on how to modify future values.
. . o (S (S
« Forecast Modification Based on Text: Forecasted values X(8) = a:(T JZD e 7:ac(TJZ I

are adjusted based on the instructions.

As example, for the instruction “’trend up”’, the forecast is modified by applying a linear increment
to the last observed value z7:

&) =wr+Axh, where he{l,2,... H} 3)

In this expression, A is a constant controlling the upward trend. In the data generation, A evolves
with time while being positive to add complexity to the generative model, as seen in Figure [3]
where some non-linear transformations may be observed for linear growth. Further details on the
instructions and their corresponding mathematical modifications are provided in Appendix [6]

To demonstrate the realism of the synthetic dataset, we present several example scenarios where
textual instructions are used to modify the base time series. Each scenario shows the base time
series and its modified forecasted values, highlighting how the text influences the trajectory of future
predictions. Figure 3|shows three different scenarios: ”Linear Growth”, ” Exponential Downward”,
and ”Logarithmic Decay”. These examples illustrate the diversity of the dataset and how textual
instructions are effectively incorporated into the time series predictions. More figures are listed in

Appendix

Under review as a conference paper at ICLR 2025

Linear Growth Exponential Decay logarithmic growth
0.5{ — linear growth 0.2 M 1.21 — logarithmic growth
No Instruction J M No Instruction

0.4 0.0 LA P 1.0

0.3 —02 Rt ¥ 08

0.2 A -0.4 0.6

0.1 -0.6 0.4

0.0 -0.8 0.2
—0.1 -10 0of 7 VL., ;
B I B 4

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 3: Comparison of different orders for the data generation: (a) Linear Growth, (b) Exponential
Decay, and (c) logarithm growth. The vertical line indicates the start of the forecast.

4.2 PROPOSED ARCHITECTURE

Our proposed framework employs a two-stage approach to integrate time series data and textual
information for predictive tasks. This multimodal architecture leverages both unsupervised and
supervised learning paradigms to align time series data with corresponding semantic information
derived from textual context, improving interpretability and predictive performance (see Figure [
for an architectural overview).

Codebook of Pre-trained LLM [instruction] T Prompt- =
lL[nearCompressIonA Ihemd Is going Formamng i "
Compressed Semanic Space Vector quantization loss P LLI\llBackbone
Cross—Athenﬁon P Projected LT‘i' 9 = Efr:gb: ?ding Fmbedding saget l » Hadamard Product Cmis_AMonﬁ
1D convolution 1D deconvolution { LE:NI:GTJI,II:QS - \ — Ié‘:nm?:gs
Fused Eribeddlng
l LLM Bactbone i

Patching 4

1D deconvolution !

Reconstruction loss l

(a) Stage I: Fast Adaption by Reconstruction Prediction Resutt ~ ——> Prediction loss

Training # Frozen (b) Stage 11: Instruction-based Prediction Task

(a) Stage I: AutoPrompter (b) Stage II: Instruction prediction

Figure 4: Model architecture

Stage 1: AutoPrompter: Enhancing VQ-VAE for Unsupervised Alignment of Time Series and
Pre-trained Language Codebook

In the first stage, we propose a novel mechanism, AutoPrompter, which serves as a bridge, trans-
lating time series data into a compressed, semantically meaningful text embedding space. By in-
troducing cross-attention and a pre-trained language codebook to the classical VQ-VAE (Vector
Quantised-Variational AutoEncoder; (Van Den Oord et al.|[2017)), AutoPrompter quantizes the time
series space, allowing it to align effectively with text embeddings. This translation helps capture the
underlying semantic patterns within the time series data, facilitating meaningful connections with
textual information. The key components are as follows:

1. Time Series Embedding: The time series data, X, is processed through a Convolutional
Neural Network (CNN), producing a high-dimensional temporal embedding, z, that cap-
tures key temporal patterns.

2. Text Embedding with Pre-trained Codebook and Linear Compression: A pre-trained
language model, equipped with a fixed vector quantization codebook, provides discrete text
embeddings, zi. These embeddings are subsequently passed through a linear compression
layer to obtain a compressed semantic representation, Z_compressed- 11i$ compression re-
duces the dimensionality of the text embeddings, facilitating efficient alignment with the
time series embeddings while preserving essential semantic information.

3. Cross-Attention Alignment: A cross-attention mechanism aligns the time series embed-
ding z; with the compressed text embedding Zix(compressed- In this setup, z acts as the

Under review as a conference paper at ICLR 2025

query, and Zixt_compressed Serves as the key-value pair. This interaction facilitates the integra-
tion of temporal and semantic information, producing an aligned multimodal representa-
tiOIl, Zaligned-

4. Self-Supervised Learning: Our model is trained using self-supervised learning to align
time series embeddings with meaningful text embeddings while preserving key character-
istics of the original time series data. The training minimizes two key losses:

1. Reconstruction Loss (Lrccon) 2. Vector Quantization Loss (L.q)

* Vector Quantization Loss (L.q): The Vector Quantization Loss ensures that the en-
coder outputs are quantized by aligning them with the nearest vectors from a fixed,
pre-trained language codebook. This encourages the model to represent time series
data using a discrete set of embeddings from the codebook, facilitating alignment be-
tween the input data and text-based embeddings.

Unlike traditional VQ-VAE, where the codebook is updated during training, our model
employs a fixed codebook. However, because we apply a linear compression layer to
the text embeddings, we use two distinct terms to maintain effective alignment:

- Quantization Latent Loss (L, jaent) €nsures that the quantized embeddings (ob-
tained from the codebook) closely match the encoder’s output.

— Commitment Loss (L.ommit) encourages the encoder’s output to remain close to
the quantized embeddings. This ensures the model consistently uses the closest
embedding in the codebook, preventing the encoder from drifting too far from the
quantized space.

These losses are defined as:

ﬁvq,latent = Hzaligned - Sg(zencoder)H;

Lcommit = Hzencoder - Sg(zaligned)H;
ﬁvq = qujatent + Lcommil

where:

— Zencoder 1S the output of the encoder.
— Zyligned Tefers to the quantized embeddings obtained from the vector quantizer.

— sg(+) is the stop-gradient operator, which ensures gradients don’t flow back to the
quantizer during optimization.

By jointly minimizing these two components, we ensure that the encoder’s outputs
align well with the codebook, while keeping the representations compact and consis-
tent.

* Reconstruction Loss (Lc.on): The Reconstruction Loss measures how well the re-
constructed time series X, generated by the decoder, matches the original input x.
This loss ensures that essential information from the original time series is preserved:

Lrecon = ||x -)A(”l

» Total Loss: The final loss function is a weighted sum of the Vector Quantization Loss
and the Reconstruction Loss:

»Ctotal = »qu + Arecon * »Crecon

where Arecon 1 @ hyperparameter that balances the importance of the reconstruction
task relative to the vector quantization. We further investigate the sensitivity of this
parameter in Appendix

Stage 2: Supervised Multimodal Fusion for Prediction In this stage, we perform supervised time
series prediction, conditioned on textual information. This leverages the embeddings learned in
Stage 1, combined with a Large Language Model (LLM), to improve prediction accuracy.

1. Text Embedding Extraction: A pre-trained LLM extracts embeddings from textual inputs
(e.g., “orders” or instructions). These embeddings capture the semantic context of the text,
enriching the model’s understanding for time series prediction.

Under review as a conference paper at ICLR 2025

2. Multimodal Fusion: Time series embedding works as query to get text embeddings com-
bined using a cross-attention mechanism, which dynamically identifies relevant parts of
both data sources. And then the embeddings are compressed to half of original dimension
to further extract the essential information. This is followed by an adaptive Hadamard prod-
uct, where time series embeddings A, text embeddings B, and a learnable weight matrix
W interact element-wise to form the joint representation:

Cij = Aij - Wij - Bij

3. Supervised Training Objective: The fused representation is processed by the LLM, whose
output is passed into a CNN-based decoder (serving as the AutoPrompter decoder to trans-
late from word embeddings to time-series again). The model is trained to minimize the
mean absolute error (MAE) between predicted and actual values:

L&
Lvag = ~ Z lyi — Uil
i=1

Key Innovation: The core innovation of our framework is the semantic alignment of time series data
with textual context through self-supervised learning. This approach enhances both interpretability
and predictive accuracy by integrating multimodal data sources, making it particularly effective for
applications where numerical signals and natural language descriptions are interdependent.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

In this section, we present the experimental framework used to evaluate the performance of our
proposed models, AutoPrompter and TITSP. The experiments are designed to assess key aspects
such as unsupervised alignment, zero-shot generalization, and overall performance metrics.

For computational efficiency, we use Qwen2-1.5B (Yang et al., [2024) as our backbone language
model, although other language models could also be used.

* Stage 1: To enhance both performance and resource efficiency, we employ the pre-trained
codebook from Qwen, which is linearly compressed to 512 dimensions. This dimension-
ality was chosen based on empirical evidence, as illustrated in Figure [20]in the Appendix,
which demonstrates an optimal balance between these factors.

o Stage 2: The parameters from Stage 1 are kept fixed, and we perform end-to-end training
using our designed loss function.

5.2 AUTOPROMPTER: UNSUPERVISED ALIGNMENT EVALUATION

We evaluate the AutoPrompter using key metrics: reconstruction loss, zero-shot performance,
and latent space visualization. Our approach is compared against several baseline architectures to
highlight the contributions of the model’s components.

Baselines: The following baseline models are introduced for comparison:

* No Cross-Attention: This baseline excludes the cross-attention mechanism between time
series and text embeddings. Instead, it directly employs a traditional Vector Quantized
Variational Autoencoder (VQ-VAE) to map the time series embeddings to the nearest or
most similar embeddings in the fixed pre-trained language codebook.

* Reduced Codebook Size: Employs a smaller compressed codebook to evaluate its impact
on performance. The codebook is compressed into 50.

Zero-shot Performance: Table [I| summarizes the performance of AutoPrompter and also its zero-
shot generalization performance when training on ETTh1 and testing on various datasets. The Re-
construction loss will demonstrate how well the information of time-series is represented using

Under review as a conference paper at ICLR 2025

Dataset AutoPromp AutoPrompter (Zero-shot) | No Cross-Attention | No Cross-Attention (zero-shot) | Reduced Codebook
ETThl 0.018 0.018 0.104 0.104 1.025
National Illness 0.029 0.031 0.138 0.173 1.141
Traffic 0.027 0.056 0.273 0.475 2.131
Exchange Rate 0.005 0.015 0.820 1.090 1.053
Weather 0.007 0.008 0.540 0.950 1.101
ETTml 0.019 0.030 0.147 0.102 1.512
ETTh2 0.011 0.015 0.129 0.145 1.357
Electricity 0.035 0.058 0.255 0.410 2.092
ETTm2 0.019 0.026 0.122 0.192 0.947
Lorenz Time 0.010 0.011 0.132 0.212 0.133

Table 1: Zero-shot reconstruction loss comparison across different architectures. The best-
performing value for each dataset is in bold, and the second-best is in italics.

compressed language codebook. The results clearly demonstrate that the AutoPrompter achieves
superior performance across all datasets.

Latent Space Visualization (t-SNE): To examine the alignment of time series and text embeddings,
we visualize the latent space using t-SNE. Figure 5] shows that AutoPrompter with the compressed
codebook results in well-clustered embeddings. In comparison, a trainable randomly initialized
codebook produces scattered, unstructured embeddings after training.

Figure 5: t-SNE Visualization: with pre-trained Codebook (Right) vs. with trainable Randomly
initialized Codebook (Left)

Conclusion: The evaluation results demonstrate that the AutoPrompter significantly outperforms
the baseline models in zero-shot tasks. The t-SNE visualization emphasizes the importance of the
codebook in generating semantically structured embeddings, while the codebook size analysis sug-
gests that an optimal size enhances performance, underscoring the critical role of the codebook in
our framework.

5.3 OVERALL PERFORMANCE EVALUATION OF TITSP

To provide a thorough assessment of the TITSP model’s performance, we focus on three critical
metrics: Order Compliance Rate, Zero-shot Ability, and the performance of TITSP for long
sequence for the instruction.

* Order Compliance Rate: To provide a thorough assessment of the TITSP model’s perfor-
mance, we introduce the Compliance Rate metric to quantitatively evaluate how well the
model adheres to specified actions guiding time series predictions. This metric reflects the
proportion of time steps where the model’s predictions align with the expected trends or
patterns dictated by the actions.

The Compliance Rate R is defined as: R = 221 Cy, where C} is an indicator variable
such that C'y = 1 if the prediction at time step ¢ adheres to the prescribed action, and C; = 0
otherwise. Here, T} represents the total number of time steps considered.

A higher compliance rate indicates better adherence to specified actions, showcasing the
model’s ability to incorporate desired behaviors into its predictions. For detailed definitions
and calculations, refer to Appendix [E} In this study, we compare our method with Time-
LLM (1n et al}[2023), which uses natural language as input with well-designed prompts

Under review as a conference paper at ICLR 2025

to aid predictions. Additionally, we introduce two other baselines that use only LLMs
with a prompt concatenating both instructions and time series, as well as UniTime (Liu
et al.| [2024b) and GPT4MTS(J1a et al.| [2024). We adapt GPTAMTS to QwendMTS with
the same language model we use so that we can fairly compare. Further insights into the
Time-LLM prompt are provided in Appendix[A] We also provide the detail implementation
of QwendMTS and UniTime(Qwen) in Appendix m Pure LLM results are also provided
with Llama-3.1-8B-Instruct (Dubey et al| [2024), the desinged prompts are provided in
Appendix@r We did not compare with Chronos (Ansari et al.} 2024) and UniTS (Gao et al.,
2024) as they only input time-series.

Instruction TITSP Time-LLM | QwendMTS | UniTime (Qwen) | Llama-3.1-8B
Metric CR | MSE | CR | MSE | CR | MSE | CR MSE CR | MSE
Linear Growth and Linear Decay | 0.83 | 1.15 | 0.38 | 345 | 0.69 | 1.90 | 0.54 2.73 0.32 4.95
Linear Growth and Linear Decay | 0.79 | 1.17 | 0.49 | 2.85 | 0.79 | 1.34 | 0.57 2.28 0.41 2.80
Linear Trend Up 090 | 1.03 | 0.63 | 1.71 | 0.76 | 1.08 | 0.63 1.65 0.91 1.15
Linear Trend Down 087 | 0.88 | 0.64 | 155 | 0.71 | 1.36 | 0.51 1.59 0.85 | 0.92
Exponential Growth 0.89 | 1.33 | 0.58 | 259 | 0.63 | 2.07 | 0.60 2.38 0.58 2.35
Exponential Decay 0.84 | 1.25 | 0.56 | 2.26 | 0.67 | 2.10 | 0.69 2.05 0.46 2.39
Keep Stable 098 | 035 [0.76 | 0.76 | 093 | 048 | 0.83 0.62 0.95 0.33
Decrease Amplitude 090 | 091 | 085 | 1.04 | 090 | 0.84 | 0.79 1.09 0.52 1.89
Increase Amplitude 094 | 094 | 079 | 1.20 | 0.89 | 0.96 | 0.81 1.03 0.75 1.35
Logarithmic Growth 077 | 1.65 | 049 | 2.31 | 0.79 | 1.55 | 0.60 1.73 0.55 1.94
Logarithmic Decay 0.83 | 1.68 | 048 | 2.19 | 0.81 | 1.69 | 0.67 2.04 0.63 2.60

Table 2: Comparison of Compliance Rate (CR) and MSE for TITSP, Time-LLM, Qwen4MTS,
UniTime, and Llama-3.1-8B across various instructed actions with highlighted best (in bold) and
second-best (underline) results.

exponential growth

| — TiTse

— Time-LLM

keep stable

Ny
W

instruction: exponential

arowth instruction: keep stable instruction: linear trend up

Figure 6: comparision of Time-LLM and TITSP. Our method succeed in learning the dependency
of prediction and instruction, (red: Time-LLM, blue: TITSP)

» Zero-shot Ability: The TITSP model demonstrates strong zero-shot generalization, ef-
fectively adapting to variations of action instructions without retraining. Across a range
of similar expressions, it achieves high compliance rates, showcasing its robust ability to
understand and follow instructions with minimal performance degradation. The detailed
performance for selected instructions is presented in Table[3]in Appendix, where the model
maintains near-perfect compliance, indicating superior adaptability across different con-
texts.

To further highlight the TITSP model’s zero-shot generalization ability, we present time
series predictions for various instructions. These examples in Figure [7] demonstrate the
model’s capacity to adapt to new, unseen patterns, reinforcing its robustness in generalizing
across different instructions.

Under review as a conference paper at ICLR 2025

Training Instruction Test Instruction Compliance Rate | MSE
Linear Upward 0.81 1.27
Linear Trend Up Linear Goes Up 0.89 0.93
Linear Growth 0.80 1.13
Linear Growth and Decay | Linear Up and Down 0.71 1.93
Linear Decay and Growth | Linear Down and Up 0.73 1.51
Exponential Growth Exponential Upward 0.71 1.93
Exponential Goes Up 0.82 1.53

Table 3: Zero-shot performance of TITSP on selected test instructions.

— TITSP(zer
.| — No Instruction

—— TITSP(zero-shot)
—— No Instruction

/NW\AV\V\/JNN\WV\

—— TITSP(zero-shot)
_| = No Instruction

)

instruction: linear goes up
and linear goes down

instruction: inear decay instruction:ogarithmic
- downward

Figure 7: Samples of Zero-shot about TITSP, which illustrate that TITSP has strong zero-shot ability,
which is also an advantage of LLMs.

* Keyword Extraction Capability: The TITSP model exhibits remarkable performance in
extracting relevant keywords from long sequences. The attention mechanism effectively
identifies critical components in the input data, enhancing the model’s ability to discern
patterns and relationships in the time series. For visual insights, refer to the attention matrix
provided in Appendix [G|

Conclusion: The results underscore the efficacy of the TITSP model, particularly in its order com-
pliance, zero-shot learning ability, and adeptness at keyword extraction. These strengths position
TITSP as a powerful tool for time series prediction, capable of seamlessly integrating and adhering
to textual instructions while maintaining high accuracy and interpretability.

To conclude this experimental section, we address the ongoing debate regarding the relevance of
large language models (LLMs) in time-series prediction. While some researchers question their
importance (Tan et al., 2024), others highlight their potential in sequence modeling (Liu et al.,
2024a). Our work contributes to this discussion by systematically replacing LLMs with traditional
architectures, such as transformers and multilayer perceptrons (MLPs), and evaluating the resulting
performance as seen in Appendix [D] Additionally, we conduct extensive ablation studies, detailed
in Appendix D] to assess the significance of specific model components..

6 CONCLUDING REMARKS

In this paper, we introduced Text-Informed Time Series Prediction (TITSP), a novel framework that
enhances time series forecasting by integrating domain-specific textual information. Extensive ex-
periments across diverse datasets demonstrate that TITSP significantly outperforms traditional and
existing multimodal approaches, improving both predictive accuracy and interpretability. Notably,
TITSP exhibits robust zero-shot generalization, enabling effective deployment across various do-
mains without extensive retraining. Our findings underscore the potential of multimodal methodolo-
gies to transform time series modeling, offering more accurate and versatile solutions for real-world
applications. By bridging numerical data and contextual textual information, TITSP promises sub-
stantial impacts in fields requiring precise forecasting and decision-making.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
Chris Chatfield. Time-series forecasting. Statistics in Medicine, 19(2):205-207, 2000.

Mingyue Cheng, Yiheng Chen, Qi Liu, Zhiding Liu, and Yucong Luo. Advancing time series clas-
sification with multimodal language modeling. arXiv preprint arXiv:2403.12371, 2024.

Michael Christ, Mark Ploesch, and Uwe Romer. Time series feature extraction based on scalable
hypothesis tests. In Proceedings of the 21st International Conference on Data Mining, pp. 945—
950. IEEE, 2018.

Shohreh Deldari, Hao Xue, Aaqib Saeed, Jiayuan He, Daniel V Smith, and Flora D Salim. Beyond
just vision: A review on self-supervised representation learning on multimodal and temporal data.
arXiv preprint arXiv:2206.02353, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. Units: Building a unified time series model. arXiv preprint arXiv:2403.00131,
2024.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Pal-
panas, and Ievgen Redko. Samformer: Unlocking the potential of transformers in time series
forecasting with sharpness-aware minimization and channel-wise attention. In Forty-first Inter-
national Conference on Machine Learning.

Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based large
language model for multimodal time-series forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 23343-23351, 2024.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-1lm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Kai Kim, Howard Tsai, Rajat Sen, Abhimanyu Das, Zihao Zhou, Abhishek Tanpure, Mathew Luo,
and Rose Yu. Multi-modal forecaster: Jointly predicting time series and textual data. arXiv
preprint arXiv:2411.06735, 2024. URL https://arxiv.org/abs/2411.06735. Li-
cense: CC BY 4.0.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
machine learning: Principles, challenges, and open questions. ACM Computing Surveys, 56(10):
1-42, 2024.

Toni JB Liu, Nicolas Boullé¢, Raphaél Sarfati, and Christopher J Earls. Llms learn governing

principles of dynamical systems, revealing an in-context neural scaling law. arXiv preprint
arXiv:2402.00795, 2024a.

11

https://arxiv.org/abs/2411.06735

Under review as a conference paper at ICLR 2025

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
Unitime: A language-empowered unified model for cross-domain time series forecasting. In
Proceedings of the ACM on Web Conference 2024, pp. 4095-4106, 2024b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533-536, 1986.

Robert H Shumway, David S Stoffer, Robert H Shumway, and David S Stoffer. Arima models. Time
series analysis and its applications: with R examples, pp. 75-163, 2017.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of Istm and bilstm
in forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp.
3285-3292. IEEE, 2019.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

The New York Times. Whiplash ends a roller coaster week, 2008. URL https://www.
nytimes.com/2008/10/11/business/llmarkets.htmll

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Vladimir N Vapnik. Statistical Learning Theory. Wiley, 1998.

Ashish Vaswani, Noam Shard, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, Andrew Ku, N. Killar, Y. Cheng, et al. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Kang Wang, Kenli Li, Ligian Zhou, Yikun Hu, Zhongyao Cheng, Jing Liu, and Cen Chen. Multiple
convolutional neural networks for multivariate time series prediction. Neurocomputing, 360:107—
119, 2019.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. arXiv preprint arXiv:2402.19072, 2024.

Liang Wen, Qian Wang, and Qiang Yang. Multi-task learning for time series forecasting: A survey.
arXiv preprint arXiv:1712.07450, 2017.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziging Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Weiqi Zhang, Jiexia Ye, Ziyue Li, Jia Li, and Fugee Tsung. Dualtime: A dual-adapter multimodal
language model for time series representation. arXiv preprint arXiv:2406.06620, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

12

https://www.nytimes.com/2008/10/11/business/11markets.html
https://www.nytimes.com/2008/10/11/business/11markets.html

Under review as a conference paper at ICLR 2025

Roadmap. This appendix provides additional experiments and details omitted from the main pa-
per for conciseness. It is organized as follows:

Section[A} Explores the main disadvantage of Time LLM in handling textual context, mo-
tivating the present work.

Section [Bf Complements the main paper’s experiments with additional visualizations of
TITSP’s performance and evidence of its zero-shot capability.

Section [C} Details the data generation process, emphasizing base time series and transfor-
mations to incorporate context and text.

Section[D}l Conducts extensive ablation studies to validate the rationale of each architectural
element.

Section [E} Provides a formal definition of the compliance rate with descriptive examples.
Section[F} Presents evidence on Stage 1 and its reconstruction ability.

Sections[G|and [H} Explain how the model handles longer sequences and establish sensitiv-
ity to loss hyperparameters.

TABLE OF CONTENTS

A" Limitations of Time-LLM: Influence of Textual Prompts| 15
B O [Pert: FITTSP) 15
B.1 Visualization of Instruction-Based Time-Series Predictions| 15
[B2 Zero-Shot Samples of TTTSP| o . v v e 16
IB.3 Visualization of Normal Prompted Time-Series Prediction| 17
[C_Data Generation| 18
[D Ablation Study] 21
ID.1 Importanceof W/| 21
ID.2 Are LLMs Really Important in Time-Series Prediction?| 21
[E Compliance Rate Definition| 21
ETNOM@EON . - « - o v v v oot e e e e e 21
[E2 General Definitionl 22
[E.3 Compliance Conditions per Action| 22
[E.4 Calculating the Compliance Rate] 23
[E.5 Example Calculation| 24
E6 DISCUSSION . - « « « ¢ o v ot e e e e 24
[Reconstruction Ability of AutoPrompter] 24
[F.1 Zero-shot Ability| 24
[E.2 Visualization of Reconstruction Ability| 25
[F.3 Comparison with Other Baselines| 25
|[F.4 Performance with Different Compressed Codebook Sizes| 26

13

Under review as a conference paper at ICLR 2025

(G Dealing with Long Sequences

[H_Sensitivity of \recon|

(I Detailed Experimental Setup for the Proposed Method|

EI What Really Happened on October 10, 20087]

14

26

28

28

31

Under review as a conference paper at ICLR 2025

Table 4: Performance of Time-LLM under various textual modifications

Modification MSE | MAE

No change 0.383 | 0.402

Incorrect dataset description 0.386 | 0.404
Random mean, max, min values | 0.383 | 0.403
Opposite trend description 0.383 | 0.403

A LIMITATIONS OF TIME-LLM: INFLUENCE OF TEXTUAL PROMPTS

In this section, we investigate the limitations of Time-LLM by examining the impact of textual
prompts on its performance. We systematically alter the dataset descriptions to assess whether
changes in textual context, unrelated to the time series data, affect the model’s predictions. The
modifications tested include:

* Providing an incorrect dataset description.

* Assigning random mean, max, and min values between 0 and 1.

* Providing a description with an opposite trend.

To evaluate the model, we use a sequence length of 96 for both input and prediction on the ETThI
dataset. The results are summarized in Table

These results indicate that altering the textual descriptions had negligible effects on the performance
of Time-LLM. The MSE and MAE values remained largely unchanged, suggesting that the model’s
predictions are primarily driven by the time series data, with minimal influence from the textual
context. This observation underscores the limitations of using prompts in this particular setup and
motivates the need for further exploration to determine the conditions under which text can mean-
ingfully guide time-series predictions.

B OVERALL PERFORMANCE OF TITSP

This section presents the overall performance of the Text-Informed Time Series Prediction (TITSP)
model, including visualizations of instruction-based time-series predictions and zero-shot samples.

B.1 VISUALIZATION OF INSTRUCTION-BASED TIME-SERIES PREDICTIONS

In this subsection, we provide visualizations of the prediction results with and without instructions.
These visualizations demonstrate the model’s ability to adapt to various textual instructions, show-
casing its versatility and accuracy.

15

Under review as a conference paper at ICLR 2025

exponential deca

— TITSp
~0s{ — No Instruction
T E3 ED 7 W @ e T W

@ = E] 7 W s B w5 a0

Instruction: Decrease Ampli-
tude

increase amplitude

5| — TiTsp
—— No Instruction

3 E3 E] 7 W s U5 @0

Instruction: Increase Ampli-
tude

Instruction: Exponential De-
cay

keep stable

—— No Instruction

Instruction: Keep Stable

inear growth and linear deca

20] — TITSP
—— No Instruction

44 — TITSP
—— No Instruction

7 % % 7 To w5 me w5 ao

Instruction: Linear Decay and
Linear Growth

— TITSP
441 — No Instruction

. /|
o WNWH/W L 1 V'\‘ M{VW

3 3 EJ 7 T s T U5 @0

Instruction: Linear Trend Up

3 B3 ED 7 W s wme w5 o

Instruction: Linear Growth
and Linear Decay

logarithmic decay

— TITSp
-10{ — No Instruction

T B3 ED 7 W e T W

Instruction: Logarithmic De-
cay

exponential growth

290 — TITSP
Instruction: Exponential
Growth

. Y

— TITsP
—— No Instruction

Instruction: Keep Stable

linear trend down

— TITsP
35 —— No Instruction

Instruction: Linear Trend
Down
— TITSP e ‘

WM\M\/\/L

Instruction:
Growth

Logarithmic

Figure 8: Samples of prediction results with and without instructions

B.2 ZERO-SHOT SAMPLES OF TITSP

In this subsection, we present zero-shot samples of the TITSP model. These samples demonstrate
the model’s ability to generalize to new, unseen instructions without additional training, highlighting

its robustness and adaptability.

16

Under review as a conference paper at ICLR 2025

exponential goes down

exponential upward

—— TITSP(zero-shot)
—— No Instruction

—— TITSP(zero-shot)
—— No Instruction

3 E3 EJ 7 T s w0 T @

Zero-Shot: Exponential Goes
Down

—— TITSP(zero-shot)
—— No Instruction

Zero-Shot: Linear Decay

3 = E] 7 W s @ U5 o

Zero-Shot: Exponential Up-
ward

inear goes down and linear goes up.

linear decay

—— TITSP(zero-shot)
—— No Instruction

Zero-Shot: Linear Decay

linear goes up and linear goes down

—— TITSP(zero-shot)
—— No Instruction

5 = ED 7 W s B s ao

Zero-Shot: Linear Goes
Down and Linear Goes Up

car upward

46— TITSP(zero-shot)
—— No Instruction

46| — TITSP(zero-shot)
— No Instruction

Zero-Shot: Linear Upward

logarithmic upward

so| — TITSP(zero-shot)
—— No Instruction

Zero-Shot: Logarithmic Up-

ward

Zero-Shot: Linear Upward

7| — TITsP(zero-shot)
— No Instruction

3 = Eg 7 T s w0 1w

Zero-Shot: Raise Amplitude

—— TITSP(zero-shot)
.| — Nolnstruction

Zero-Shot: Linear Goes Up
and Linear Goes Down

logarithmic downward

—— TITSP(zero-shot)
| — No Instruction

Zero-Shot:
Downward

Logarithmic

reduce amplitude

—— TITSP(zero-shot)
—— No Instruction

3 E3 E] 7 W s U5 @0

Zero-Shot:
tude

Reduce Ampli-

Figure 9: Samples of zero-shot prediction results

These visualizations and zero-shot samples provide a comprehensive overview of the TITSP model’s
capabilities, demonstrating its effectiveness in integrating textual instructions with time-series data.

B.3 VISUALIZATION OF NORMAL PROMPTED TIME-SERIES PREDICTION

In this subsection, we present the full results of the TITSP model using only dataset descriptions and

task descriptions.

We give here two examples of prompt that are used to show that they may differe from one dataset

to another.

* ”Dataset description: The Electricity Transformer Temperature (ETT) is a crucial indi-
cator in the electric power long-term deployment. This dataset consists of 2 years data
Jfrom two separated counties in China. To explore the granularity on the Long sequence

17

Under review as a conference paper at ICLR 2025

time-series forecasting (LSTF) problem, different subsets are created, ETThI, ETTh2 for
I-hour-level and ETTm] for 15-minutes-level. Each data point consists of the target value
oil temperature” and 6 power load features. The train/val/test is 12/4/4 months. Task
description: forecast the next 96 steps given the previous 96 steps information.”

e "Traffic is a collection of hourly data from California Department of Transportation, which
describes the road occupancy rates measured by different sensors on San Francisco Bay
area freeways. Task description: forecast the next 96 steps given the previous 96 steps
information.”

To ensure a fair comparison, we adapt GPT4TS and Time-LLM to QWEN2-1.5B (Yang et al.|[2024).
The input and output sequence length is set to 96. The results demonstrate that TITSP excels at
building the dependency between prompt words and time-series input, fully utilizing the capabilities
of large language models.

Models TITSP GPT4TS Time-LLM itransformer Rlinear PatchTST
Metric MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
ETThl 0.416 | 0.422 0.450 | 0.445 | 0.454 | 0.448 | 0.446 | 0.434 | 0.469 | 0.455
ETTh2 0.409 | 0.405 0.427 | 0430 | 0.432 | 0.434 | 0.422 | 0.420 | 0.441 | 0.437
ETTml 0.375 | 0.399 0.408 | 0.419 | 0.417 | 0.425 | 0.406 | 0.411 | 0.423 | 0.426
ETTm?2 0.365 | 0.389 0.395 | 0.414 | 0.402 | 0.418 | 0.390 | 0.406 | 0.404 | 0.418
Weather 0.342 | 0.382 0.382 | 0.405 | 0.383 | 0.407 | 0.375 | 0.399 | 0.387 | 0.407
Traffic 0.360 | 0.383 | 0.357 0.398 | 0.414 | 0.393 | 0.412 | 0.391 | 0.408 | 0.394 | 0.412
Electricity 0.381 | 0.351 0.402 | 0.415 | 0.392 | 0.409 | 0.396 | 0.409 | 0.389 | 0.408
Exchange rate 0.349 | 0.389 | 0.400 | 0.410 | 0.391 | 0.406 | 0.398 | 0.406 | 0.382 | 0.402
Ist count 11 5 0 0 0

Table 5: Comparison of models based on MSE and MAE metrics with highlighted best (red) and
second-best (green) results

These results highlight the superior performance of TITSP in building dependencies between prompt
words and time-series input, effectively utilizing the capabilities of large language models. The
table presents a comprehensive comparison of various models, with the best and second-best results
highlighted in red and green, respectively. This demonstrates the robustness and effectiveness of the
TITSP model in time-series prediction tasks.

C DATA GENERATION

In this section, we provide a detailed definition of the data generation process to ensure high-quality
datasets for evaluation. We generate data from various datasets, including ETTh1, ETTh2, ETTml,
ETTm?2, weather, traffic, electricity, exchange rate.

In this table:

* np.arange (x) generates a sequence of time steps.

* time represents the time variable in the time series.

* transition time is set to 0.5 for uniform experiments.

* A, B, and C are constants defining the amplitude and the slopes. In our case, we set A

~U(0,0.5), B and C ~ 1/(0.01,0.015).

The detailed equations for Linear Trend Up, Linear Trend Down, Linear Growth and Linear Decay,
and Linear Decay and Linear Growth are listed as follows:

Original slope m = linear regression(time, batch_y_i)
New slope m’ = —m +46, 4§ ~U(0.01,0.015) 4)
New sequence y’ = batch_y_i +m’ x time

18

Under review as a conference paper at ICLR 2025

Action Description Mathematic Func- | Generated Dataset
tion
Linear Trend Up Linear increase over | see Equation weather, ex-
time change_rate
Linear Trend Down Linear decrease over | see Equation weather, ex-
time change_rate
Exponential Growth | Exponential increase | prediction X exp(B x | weather, ex-
over time np.arange(x)) change _rate, electric-
ity
Exponential Decay Exponential decrease | prediction x| weather, ex-
over time exp(—B x | change_rate, electric-
np.arange(z)) ity
Logarithmic Growth | Logarithmic growth | prediction 4+ C X | weather, ex-
over time log(1+np.arange(z)) | change_rate, electric-
1ty
Logarithmic Decay Logarithmic decay | prediction — C X | weather, ex-
over time log(1+4np.arange(x)) | change_rate, electric-
ity
Keep Stable Constant value last input point All
Linear Growth and | Linear increase fol- | see Equation@ weather, ex-
Linear Decay lowed by decrease change_rate
Linear Decay and | Linear decrease fol- | see Equation weather, ex-
Linear Growth lowed by increase change _rate
Increase Amplitude Scale up predictions | prediction x (1 + A) | ETThI, ETTh2,
by a factor ETTml, ETTm2,
traffic
Decrease Amplitude | Scale down predic- | prediction x (1 — A) | ETThl, ETTh2,
tions by a factor ETTml, ETTm?2,
traffic

Table 6: Summary of actions, their descriptions, corresponding mathematical functions, and gener-

ated datasets.

Original slope m = linear regression(time, batch_y_i)

New slope m’ = —m — 6,

§ ~1(0.01,0.015)

New sequence y’ = batch_y_i +m’ x time

rrend — {mltlalslope x time(t),

initial slope x time(transition_time) — decline_slope x (¢ — transition_time),

rend — {mltlalslope X time(t),

—initial_slope x time(transition_time) + increase_slope x (¢ — transition_time),

For this part, we provide some examples of data generation:

C.0.1

LORENZ TIME SERIES

(&)

t < transition_time
t > transition_time

(6)

t < transition_time
t > transition_time

)

In addition to the generation of synthetic datasets for general time series tasks, we also generate
data based on the Lorenz system, which is commonly used to model chaotic dynamics. The Lorenz
system is governed by the following set of ordinary differential equations (ODEs):

19

Under review as a conference paper at ICLR 2025

—— Original Data = Original Data 15
54 — exponential upward ~— exponential downward
1 1.0
.
0 0.5
3
0.0
-1
2 —05
1 -2 -1.0
o -3 -1.54{ — Original Data
0 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Exponential Upward Exponential Downward Logarithmic Decay
2.0
—— Original Data 10 —— Original Data 3.5{ — Original Data
5] — increase ampiitude - —— keep_constant ~—— logarithmic growth
18 3.0
1.0 17 25
0.5 16
2.0
15
0.0
14 15
13 1.0
-10 1.2 05
o 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Increase Amplitude Keep Constant Logarithmic Growth
16
2.8
~—— Original Data ~—— Original Data
26 — linear growth 1.0 — decrease amplitude 1.4
24
22 05 12
2.0
1.0
1.8 0.0
16 0.8
14 05 — original Data
0.6 —— Linear Growth and Linear Decay
12
-10 0 25 50 75 100 125 150 175 200
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
. . Linear Growth and Linear
Linear Growth Decrease Amplitude
Decay
2.0
—— Original Data
1.00 —— original Data 18 ~—— Linear Decay and Linear Growth
~—— linear decay 15
0.75 16 10
0.50
14 0.5
0.25
0.00 12
-0.5
-0.25 1.0
-1.0
08 -1.51 — Original Data
-0.75 —— linear decay
0 25 50 75 100 125 150 175 200 2.0
[25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
: Linear Decay and Linear .
Linear Decay y Linear Decay

Growth

Figure 10: Examples of data generation

dx
dt
dy
dt
dz
dt

=o(y—x) ®)
=x(p—2)—y)

=zy — Bz (10)

where x, y, and z represent the state variables, and o, p, and § are system parameters. For the
generation of Lorenz time series data, we typically set the parameters as follows:

0

[]
)
Il
—

L]
=
T
[\]
wioo B2

20

Under review as a conference paper at ICLR 2025

To numerically solve this system, we use methods such as the fourth-order Runge-Kutta method,
initializing the system with a set of initial conditions (), 3o, 20). The time series for each of the
state variables (z(t), y(t), and z(t)) exhibits chaotic behavior, characterized by high sensitivity to
the initial conditions.

The generated Lorenz time series data provide a rich dataset for testing models on chaotic systems, as
it challenges the model’s ability to predict complex, non-linear temporal dependencies. The chaotic
nature of the Lorenz system makes it an excellent benchmark for evaluating time series forecasting
models.

D ABLATION STUDY

In this section, we conduct an ablation study to understand the importance of various components in
the TITSP model. Specifically, we investigate the significance of the weight matrix W and the role
of Large Language Models (LLMs) in time-series prediction.

D.1 IMPORTANCE OF W

To evaluate the importance of the weight matrix W, we directly use the following equation:
Cij = Aij - Bij
and compare the performance with the baseline model. The results are presented in Section[D.2]

D.2 ARE LLMS REALLY IMPORTANT IN TIME-SERIES PREDICTION?

In this part, we follow the settings of (Tan et al.|[2024) to replace LLMs with a Multi-Layer Percep-
tron (MLP) and compare the performance. The results are summarized in Table

Action TITSP TITSP (without V) TITSP (without LLM, with MLP) | Time-LLM (Jin et al.[2023] |
Metric Compli Rate | MSE | Compli Rate | MSE | Compli: Rate MSE Compli Rate MSE
Linear Trend Up 0.90 1.03 0.79 1.19 0.59 2.83 0.63 1.71
Linear Trend Down 0.87 0.88 0.80 0.89 0.60 2.23 0.64 1.55
Exponential Growth 0.89 1.33 0.81 1.57 0.52 3.19 0.58 2.59
Exponential Decay 0.84 1.25 0.79 1.42 0.44 3.25 0.56 2.26
Keep Stable 0.98 0.35 0.82 0.73 0.79 0.70 0.83 0.76
Decrease Amplitude 0.90 0.91 0.79 1.30 0.67 1.51 0.85 1.04
Increase Amplitude 0.94 0.94 0.68 2.05 0.59 2.02 0.79 1.20
Logarithmic Growth 0.77 1.65 0.69 1.69 0.53 2.58 0.49 2.31
Logarithmic Decay 0.83 1.68 0.71 1.74 0.54 2.36 0.48 2.19
Linear Growth and Linear Decay 1 0.83 1.15 0.63 1.89 0.54 3.09 0.38 3.45
Linear Growth and Linear Decay 2 0.79 1.17 0.65 1.97 0.64 228 0.49 2.85

Table 7: Comparison of Compliance Rate and MSE for TITSP (with various configurations) and
Time-LLM across various instructed actions.

In summary, both LLMs and the weight matrix W play important roles in the task of time-series
prediction. Specifically, W helps in dynamically building the complex dependency of input instruc-
tions and giving weights to the input embedding. LLMs play a crucial role in modeling complex
patterns, which are essential for accurate time-series prediction.

E COMPLIANCE RATE DEFINITION

In time-series prediction tasks that are guided by specific actions or directives (as outlined in Ta-
ble [6), it is essential to quantitatively evaluate how well the model adheres to these prescribed
behaviors. We introduce the Compliance Rate as a metric that measures the proportion of cases
where the model’s predictions align with the expected trends or patterns dictated by the actions.

E.1 NOTATION
We define the following terms:

* 4;: The model’s predicted value at time ¢ with the specified action.

21

Under review as a conference paper at ICLR 2025

* y;: The model’s predicted value at time ¢ without the specified action (i.e., the baseline
prediction).

e T': The total number of time steps in the time series.

* 1{-}: The indicator function, which equals 1 if the condition inside is true, and 0 otherwise.
* 0: A small positive threshold indicating the minimum acceptable rate of change (slope).

* e: A small threshold value representing acceptable fluctuation for the ”Keep Stable” action.

* tuansition: Lhe transition time point for actions involving a change in trend.

E.2 GENERAL DEFINITION

The compliance rate C' is computed as:

N
>~ 1{Compliance Condition for series i is satisfied}

_i=1
C= ~ an

where [V is the total number of time series (or segments) being evaluated.

E.3 COMPLIANCE CONDITIONS PER ACTION

The compliance conditions evaluate the overall trends of the model’s predictions using statistical
methods such as linear regression, which accounts for inherent fluctuations in the data.

1. Linear Trend Up:

* Model Fitting: Fit the following models to g;:
(a) Linear Model: 3, = mt + ¢
(b) Exponential Model: j; = ae’
(c) Logarithmic Model: 3, = aln(t) + c

+ Goodness-of-Fit: Compute R? for each model.

 Compliance Condition: The linear model has the highest R? and the slope m satis-
fies:
m >0 (12)

2. Linear Trend Down: Similar to Linear Trend Up, but the compliance condition is m <
—4.
3. Exponential Growth:

* Model Fitting: Fit the following models to ¥,:
(a) Exponential Model: §j; = ae®
(b) Linear Model: §; = mt + ¢
(c) Logarithmic Model: §; = aln(t) + ¢

* Goodness-of-Fit: Compute R? for each model.

» Compliance Condition: The exponential model has the highest R? and the rate pa-
rameter b satisfies:
b>4 (13)

4. Exponential Decay: Similar to Exponential Growth, but the compliance condition is b <
—4.
5. Logarithmic Growth:

* Model Fitting: Fit the following models to ¢;:
(a) Logarithmic Model: §; = aln(t) + ¢
(b) Linear Model: ¢, = mt + ¢
(c) Exponential Model: 3; = ae
» Goodness-of-Fit: Compute R? for each model.

bt

22

Under review as a conference paper at ICLR 2025

+ Compliance Condition: The logarithmic model has the highest R? and the coefficient
a satisfies:

a>6 (14)

6. Logarithmic Decay: Similar to Logarithmic Growth, but the compliance condition is a <
—4.

7. Keep Stable: The compliance condition is:
oc<e (15)
where o is the standard deviation of ;.
8. Linear Growth and Linear Decay:

* Segment Division: Divide the time series into two segments at ¢yansition:
— First segment: ¢ € [1, tyansition — 1]
— Second segment: ¢ € [tyansitions 1]

* Model Fitting for Each Segment: Fit linear, exponential, and logarithmic models to
each segment.

+ Compliance Condition: The linear model has the highest R? in both segments, with
slopes satisfying:

{m1 > (First Segment) (16)

mo < —J (Second Segment)
9. Linear Decay and Linear Growth: Same as above, but with conditions:

{ml < —J (First Segment) (17)

mg >0 (Second Segment)
10. Increase Amplitude:
* Compliance Condition (Evaluated per time step): For each time step ¢:
19t —ye x (1+A)| <€ (18)
11. Decrease Amplitude:
* Compliance Condition (Evaluated per time step): For each time step ¢:

19t —ye x (1= A)| < e 19)
E.4 CALCULATING THE COMPLIANCE RATE
The compliance rate C'is calculated based on the action:

1. For actions evaluated per action:

(a) Evaluate the compliance condition for each series.
(b) Aggregate and normalize the results:

C— (Number of Series Satisfying Compliance

N) x 100% (20)

2. For actions evaluated per time step:

(a) Evaluate compliance at each time step.
(b) Aggregate and normalize across all time steps:

- (Number of Time Steps Satisfying Compliance

x 100% 21
Ntotal > ° ()

where Ny = N x T

23

Under review as a conference paper at ICLR 2025

E.5 EXAMPLE CALCULATION

Suppose we evaluate 100 time series with the Linear Trend Up action. If 85 of these series have a
slope m such that m > §, the compliance rate is:

C= (18050) x 100% = 85% (22)

E.6 DISCUSSION

* Threshold §: The threshold ¢ is chosen based on domain knowledge or acceptable perfor-
mance criteria. In our case, we set § = 0.01 based on the acceptable slope range of (0.01,
0.015).

e Threshold ¢: The threshold e for ”Keep Stable” actions is set at 0.001.

F RECONSTRUCTION ABILITY OF AUTOPROMPTER

F.1 ZERO-SHOT ABILITY

In this section, we present the zero-shot generalization performance of the proposed AutoPrompter
method. The model’s ability to follow different trend instructions is measured in terms of the Com-
pliance Rate and Mean Squared Error (MSE). Table [3| provides a detailed performance matrix,
showing how well the model adheres to various trends without any fine-tuning.

Performance Matrix Compliance Rate | MSE
Linear Upward 0.81 1.27
Linear Trend Up Linear Goes Up 0.89 0.93
Linear Growth 0.80 1.13
Linear Downward 0.83 1.03
Linear Trend Down Linear Goes Down 0.88 0.83
Linear Decay 0.74 1.63
. Exponential Upward 0.71 1.93
Exponential Growth Exgonential Gges Up 0.82 1.53
Exponential Decay Exponent@al Downward 0.80 1.43
Exponential Goes Down 0.73 1.89
. . Logarithmic Upward 0.70 1.91
Logarithmic Growth Logarithmic Gocs Up 0.73 2.13
Logarithmic Decay Logar?thm?c Goes Down 0.79 1.88
Logarithmic Downward 0.83 1.75
Linear Growth and Decay | Linear Goes Up and Linear Goes 0.71 1.93
Down
Linear Decay and Growth | Linear Goes Down and Linear 0.73 1.51
Goes Up
Increase Amplitude Raise Amplitude 0.65 2.12
Decrease Amplitude Reduce Amplitude 0.63 2.38

Table 8: Zero-shot performance of AutoPrompter across various instructed actions.

Table [9) and Table [T0] show the average reconstruction losses for different datasets when evaluated
with input lengths of 512 and 2048, respectively.

24

Under review as a conference paper at ICLR 2025

Dataset | Average Reconstruction Loss Dataset Average Reconstruction Loss
ETThl 0.028 National Illness 0.039

Traffic 0.047 Exchange Rate 0.005
Weather 0.007 ETTml 0.019

ETTh2 0.021 Electricity 0.035

ETTm2 0.019 Lorenz Time Series 0.010

Table 9: Reconstruction losses for various datasets: Zero-shot with input length = 512.

Dataset | Average Reconstruction Loss Dataset Average Reconstruction Loss
ETThl 0.028 National Illness 0.039

Traffic 0.047 Exchange Rate 0.005
Weather 0.007 ETTml 0.019

ETTh2 0.021 Electricity 0.035

ETTm?2 0.019 Lorenz Time Series 0.010

Table 10: Reconstruction losses for various datasets: Zero-shot with input length = 2048.

F.2 VISUALIZATION OF RECONSTRUCTION ABILITY

Figures 4] and [T8] depict the model’s reconstruction ability across various datasets for input lengths
of 512 and 2048, respectively.

.| — origin_data
— reconstructed_data

Figure 11: Electricity Dataset Figure 12: ETThl Dataset Figure 13: ETTh2 Dataset
(512) (512) (512)

Figure 14

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ - ex

Figure 15: Electricity Dataset Figure 16: ETThl Dataset Figure 17: ETTh2 Dataset
(2048) (2048) (2048)

Figure 18

F.3 COMPARISON WITH OTHER BASELINES
To further evaluate the performance of AutoPrompter, we compare it against other baseline methods.

Figure[T9]illustrates how AutoPrompter performs in terms of reconstruction loss when compared to
various baselines on the ETTh1 dataset.

25

Under review as a conference paper at ICLR 2025

Reconstruction Performance of AutoPrompter, sequence length=512

%

il

i

—— origin_data
—— AutoPrompter

Reduced Codebook Size=50
—— No Cross-Attention

—44

0 100 200 300 400 500
Index

Figure 19: Comparison of AutoPrompter and other baselines on the ETTh1 dataset.

F.4 PERFORMANCE WITH DIFFERENT COMPRESSED CODEBOOK SIZES

We also examine the effect of different compressed codebook sizes on the total reconstruction loss.
As shown in Figure the performance of the AutoPrompter is sensitive to the size of the com-
pressed codebook.

Total Loss as a Function of Codebook Size

0.40 1

0.35 1

Loss
o
w
o

0.25 1

0.20 1

0.15 1

10t 102 103
Codebook Size

Figure 20: Total loss performance with varying compressed codebook sizes.

G DEALING WITH LONG SEQUENCES

In this section, we discuss the influence of different lengths of prompts. In practical use, users may
input long sequences, but only a few words may be crucial for instructing time-series prediction. In
our TITSP model, the attention query is the aligned embedding of the time-series, and the key and
value are the embeddings of the prompt.

26

Under review as a conference paper at ICLR 2025

We study three different settings:

¢ Case 1: The input prompt is only about the instruction, with a length of about 2 to 5 words.

* Case 2: The input prompt includes both the instruction and dataset description, with a
length of about 30 to 40 words.

» Case 3: The input prompt includes the instruction, dataset description, and randomly ini-
tialized tokens, with a length greater than 50 words, totaling about 100 words.

0.10
0.08
0.44 -
. n c o
o o o] @
g g a 2 L2 2 S o8 o2 - 9
- = 0.42 50 T 9B, %,] £E8538cc_ 5 &
’ 3 wgeBESGL, ot 2 SBECEESETT D
cloc XEOOMXToC > €53t ®83c30oct
=55F 00000 ll50 00000V NUBZNcN 0.06
0.38
0.04
0.36
Case 1: Instruction only 0.02

Case 2: Instruction and dataset description

0.035
Top 40 Attention Tokens 0.030
el
$. %8485 ¢
o 5o & 85,8 585 8 0.025
o_+< _ " 2 32 £om>cdP SSogsO .
6884585 a0m. L 8oE855EEE 835825855
SN I IE—— 0.020
0.015
0.010
0.005

Case 3: Random tokens with instruction and dataset description, showing
top 40 tokens’ attention weights

Figure 21: Attention matrix study when dealing with long sequences

From the attention maps, we can identify that TITSP can effectively handle long sequences and
extract essential words that are crucial for determining the prediction result.

To further explore the performance of TITSP, we compute the compliance rate and MSE perfor-
mance with different input sequence lengths. In this case, we choose the instruction “Linear trend

27

Under review as a conference paper at ICLR 2025

up” and calculate the compliance rate and MSE for these three different settings. The following
figure visualizes the results.

Compliance Rate and MSE performance on linear trend up

90
—=— MSE 2.4
85 2.2
S
— 2.0
]
= 80
< 184
])
2 =
o
375 1.6
€
S
© 14
70
1.2
65 1.0
Instruction Instruction + Dataset Random Input + Instruction + Dataset

Figure 22: MSE and Compliance rate performance with different input sequence lengths

Our model can effectively extract essential information when dealing with long input sequences,
performing well in this zero-shot situation. However, as the figure shows, the performance worsens
as the input sequence length increases.

H SENSITIVITY OF Aggcon

In this section, we discuss the sensitivity of Arecon. As described in Section there are two parts
to the loss function, and Aecon 18 set to balance them. We choose Arecon to be 0.1, 1, 5, 10, and 20 to
evaluate the performance of the data reconstruction loss on the ETTh1 dataset. The following figure
visualizes the results, and we finally choose 10 as the value of Aecon-

4 Reconstruction Loss and Zero-Shot Reconstruction Loss vs Aecon
1

(==
3

—e— Reconstruction Loss
-m- Zero-Shot Reconstruction Loss [0-7
0.44

<
o

IS}

w
=3
o

o
>
Zero-Shot Reconstruction Loss

=)
o

Reconstruction Loss
S
w

°
N

0.14

0.01
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Arecon

Figure 23: Reconstruction and zero-shot ability with different Ayecon

I DETAILED EXPERIMENTAL SETUP FOR THE PROPOSED METHOD

28

Under review as a conference paper at ICLR 2025

To ensure the quality of data generation, we utilize different datasets for different instructions. Ta-
ble [outlines which dataset is used to generate new data based on the corresponding instructions.

Additionally, Section [C] provides details about how we select the hyperparameters and functions.
Here, we summarize the process based on the original dataset.

* The sequence length is set to 192, with the first 96 points used as the input x.

* For the prediction target y, the values are adjusted according to the specific instructions.

Table 11: Datasets with different instructions and the number of training examples.

Dataset Instruction Count
increase amplitude
ETTHI1 decrease amplitude 14307

keep stable
increase amplitude
ETTH2 decrease amplitude 14307
keep stable

linear trend up
linear trend down
exponential growth
exponential decay
Weather logarithmic growth 52603
logarithmic decay

keep stable

linear growth and linear decay
linear decay and linear growth
linear trend up

linear trend down

exponential growth
exponential decay

Exchange rate | logarithmic growth 7207
logarithmic decay

keep stable

linear growth and linear decay
linear decay and linear growth
linear trend up

linear trend down

exponential growth
exponential decay

Electricity logarithmic growth 26210
logarithmic decay

keep stable

linear growth and linear decay
linear decay and linear growth
increase amplitude

ETTml1 decrease amplitude 57507
keep stable
increase amplitude

ETTm2 decrease amplitude 57507
keep stable
increase amplitude

Traffic decrease amplitude 16476

keep stable

The detailed function of each instruction is described in Section[C] We select the instruction for each
dataset based on the original features of the dataset.

29

Under review as a conference paper at ICLR 2025

DETAILS ABOUT THE CONVOLUTION LAYERS AND PATCHING

PATCHING PROCESS

The input time series are divided into smaller sequences of length 96, similar to the approach used

in PatchTST (Nie et al] 2022).

ENCODER ARCHITECTURE
The encoder in AutoPrompter consists of:

e Three 1-dimensional convolutional layers.

* One residual connection applied to the first layer.

* ReLU activation function after the second and third convolutional layers.

* A linear layer projects features to a dimensionality of 1536, matching the language model
embedding size.

The encoder structure is summarized in Table [T2] Layers with a stride of 2 compress the input
sequence by a factor of 4, meaning every four points are combined into one embedding in the
compressed semantic space.

Table 12: Encoder Configuration

Layer Input Channels OQutput Channels Kernel Size Stride Padding
Convolution Layer 1 1 128 4 2 1
Convolution Layer 2 128 256 4 2 1
Convolution Layer 3 256 256 3 1 1

DECODER ARCHITECTURE
The decoder consists of:

e Three convolutional layers.

¢ One residual connection.
The decoder structure is shown in Table

Table 13: Decoder Configuration

Layer Input Channels OQOutput Channels Kernel Size Stride Padding
Convolution Layer 1 1536 256 3 1 1
Convolution Layer 2 256 128 4 2 1
Convolution Layer 3 128 1 4 2 1

DECODER CONNECTED TO LLM OUTPUT
The decoder connecting to the LLM output consists of a single 1-dimensional convolutional layer
(Table[T4). Since the original time series is compressed by a factor of 4, there are 24 embeddings of

size 1536. The input channel is the product of 24 and 1536 after flattening.

Table 14: Decoder-LLM Configuration

Layer Input Channels Output Channels Kernel Size Stride Padding
Convolution Layer 1 36864 96 3 1 1

30

Under review as a conference paper at ICLR 2025

HYPERPARAMETERS USED
The hyperparameters used in the experiments are summarized in Table[T3} Early stopping is applied
if no improvement is observed on the test set for more than 10 epochs. For the electricity and traffic

datasets, the number of epochs is reduced to 5 due to faster convergence.

Table 15: Hyperparameter Configuration

Hyperparameter Value

Learning Rate 5.00E-04

Batch Size 16

Epochs 20 (default), 5 (electricity/traffic)
Optimizer Adam

IMPLEMENTATION DETAILS FOR QWEN4MTS, UNITIME AND
LLAMA-8B-INSTRUCT

QWEN4MTS (FROM GPT4MTS)

Following GPT4MTS 2024):
* Word Embedding, Position Embedding, Add & Norm, and Output Linear Layer are train-
able.
* The embedding size is set to 1536, consistent with Qwen.

* The learning rate is set to 5e—->5.

UNITIME

Following UniTime 2024b):

* A binary indicator is used to generate the mask.

» Time-series embeddings are concatenated with sentence embeddings.

* The hidden dimension is set to 1536 (matching Qwen), with n_embd set to 1536.
* The mask rate is 0.5, and the learning rate is set to 1e—4.

* The lightweight transformer is replaced with Qwen LLM.

 All experiments are trained for 10 epochs.

LLAMA-3.1-8B-INSTRUCT

Prompt Design for Llama-3.1-8B-instruct (Dubey et al.} [2024)):

The prompt include task description, instruction and specific input number. The following is an
example.

o ”[Task Description]: forecast the next 96 steps given the previous 96 steps information.”
o "[Instruction]:the prediction should follow ’Linear Growth’”
* ”[Input Number]: 0.173, 0.125, ...”

J WHAT REALLY HAPPENED ON OCTOBER 10, 2008?

The sharp drop in the GBP/USD exchange rate on October 11, 2008, can be traced to events on
October 10, 2008, when global financial markets experienced a massive sell-off, exacerbating the
effects of the ongoing financial crisis.

31

Under review as a conference paper at ICLR 2025

On October 10, 2008, the Dow Jones Industrial Average plunged 679 points (or about 7.3%) by
the end of the trading day, after dipping as much as 800 points during intra-day trading. European
markets saw even steeper declines, with the FTSE 100 (UK’s benchmark index) dropping around
8.9% and Germany’s DAX falling 7%. In Asia, Japan’s Nikkei 225 dropped 9.6%, adding to the
already severe financial instability.

Despite the UK government’s £500 billion bailout package announced on October 8 to rescue major
banks like Royal Bank of Scotland and Lloyds TSB, concerns over the health of the global financial
system persisted. Investors began fleeing to safer assets, driving demand for the U.S. dollar as a safe
haven, which in turn weakened the British pound.

In addition to the stock market crashes, the growing fear of a deep global recession weighed heavily
on the British pound, especially because the UK economy was seen as particularly vulnerable due
to its dependence on the financial sector. This combination of stock market turmoil, concerns over
the UK’s banking system, and the safe-haven demand for the U.S. dollar caused the sharp decline in
the GBP/USD exchange rate on October 11, 2008 (Times}, [2008).

32

	Introduction
	Related works
	Time Series Forecasting Approaches
	Multimodal Learning in Time Series Prediction
	Contributions of Our Work.

	Problem definition
	Proposed methodology
	Data Generation
	Proposed architecture

	Experiments
	experiments setup
	AutoPrompter: Unsupervised Alignment Evaluation
	Overall Performance Evaluation of TITSP

	Concluding remarks
	Limitations of Time-LLM: Influence of Textual Prompts
	Overall Performance of TITSP
	Visualization of Instruction-Based Time-Series Predictions
	Zero-Shot Samples of TITSP
	Visualization of Normal Prompted Time-Series Prediction

	Data Generation
	Ablation Study
	Importance of W
	Are LLMs Really Important in Time-Series Prediction?

	Compliance Rate Definition
	Notation
	General Definition
	Compliance Conditions per Action
	Calculating the Compliance Rate
	Example Calculation
	Discussion

	Reconstruction Ability of AutoPrompter
	Zero-shot Ability
	Visualization of Reconstruction Ability
	Comparison with Other Baselines
	Performance with Different Compressed Codebook Sizes

	Dealing with Long Sequences
	Sensitivity of recon
	Detailed Experimental Setup for the Proposed Method
	What Really Happened on October 10, 2008?

