
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INSTRUCTION-FOLLOWING LLMS FOR TIME SERIES
PREDICTION: A TWO-STAGE MULTIMODAL AP-
PROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Text-Informed Time Series Prediction (TITSP), an innovative
multimodal framework that integrates textual knowledge with temporal dynamics
using Large Language Models (LLMs). TITSP employs a two-stage process that
bridges numerical data with rich contextual information for enhanced forecasting
accuracy and interpretability. In the first stage, we present AutoPrompter, which
captures temporal dependencies from time series data and aligns them with se-
mantically meaningful text embeddings. In the second stage, these aligned embed-
dings are refined by incorporating task-specific textual instructions through LLM.
We evaluate TITSP on several multimodal time series prediction tasks, demon-
strating substantial improvements over state-of-the-art baselines. Quantitative re-
sults reveal significant gains in predictive performance, while qualitative analyses
show that textual context enhances interpretability and actionable insights. Our
findings indicate that integrating multimodal inputs not only improves prediction
accuracy but also fosters more intuitive, user-centered forecasting.

1 INTRODUCTION

Time series prediction is critical in fields such as finance, healthcare, and climate science, where
timely and accurate forecasts drive informed decision-making. Traditional time series forecasting
pipelines typically involve three key stages: data preprocessing, model selection, and performance
evaluation.

Data Preprocessing

and Feature Engineer Modelling Evaluation

Expert Analysis

and Adjustment

Figure 1: The ideal complete process of Time-series Prediction

However, methods like ARIMA (Shumway et al., 2017), while foundational, often struggle to cap-
ture the complex non-linear patterns and long-range dependencies present in real-world datasets.
With the rise of deep learning, models such as Long Short-Term Memory (LSTM) networks (Siami-
Namini et al., 2019) and Convolutional Neural Networks (CNNs) (Wang et al., 2019) have shown
significant improvements in modeling these complexities. However, they remain constrained by
their reliance on numerical data alone, which limits their ability to integrate external contextual in-
formation—such as expert insights or macroeconomic events—that could enhance forecast accuracy
and interpretability. This shortcoming becomes especially problematic in chaotic or highly volatile
systems, such as financial markets or patient health monitoring.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recent advancements in Transformer-based architectures Ilbert et al.; Zhou et al. (2021); Wen et al.
(2022) and Large Language Models (LLMs) (Gruver et al., 2024; Jin et al., 2023) have enhanced
the ability to capture long-range dependencies in time series data. Yet, these models also face
limitations when applied in isolation, often missing out on crucial domain-specific insights provided
through other modalities, such as text. In practical scenarios, domain experts may wish to provide
instructions or insights that can guide the forecasting process, but existing models do not easily
accommodate such interactions.

To address these challenges, we propose Text-Informed Time Series Prediction (TITSP), a novel
two-stage framework that combines the strengths of deep learning models for time series prediction
with the contextual richness of domain-specific textual inputs. TITSP first captures temporal depen-
dencies using numerical time series data and then refines these predictions by incorporating task-
specific textual instructions through a Large Language Model. This integration allows the model
to generate more accurate, context-aware, and interpretable predictions. Our extensive experiments
demonstrate that TITSP significantly outperforms state-of-the-art models, particularly in scenarios
where expert input is essential.

20
08

-09
-20

20
08

-09
-23

20
08

-09
-26

20
08

-09
-29

20
08

-10
-02

20
08

-10
-05

20
08

-10
-08

20
08

-10
-11

20
08

-10
-14

20
08

-10
-17

Time

1.51

1.52

1.53

1.54

1.55

1.56

1.57

Va
lu

e

Comparision Of Prediction on Exchange Rate Dataset

Previous Sequence
Ground Truth
Ours with order "logarithmic decay"
itransformer
Time-LLM with order "logarithmic decay"

Figure 2: Interactive Prediction of GBP/USD Exchange Rate during the 2008 Financial Crisis com-
pared with other methods.

Figure 2 demonstrates the effectiveness of TITSP in predicting the GBP/USD exchange rate during
the 2008 financial crisis. It highlights how expert textual inputs can enhance predictions in volatile
environments. Additionally, Appendix J provides details on why a finance expert might offer insights
into the logarithmic decay observed on October 11, 2008.

The remainder of the paper is structured as follows. In Section 2 , we discuss related work, covering
existing approaches in time series prediction and multimodal learning. Section 3 formalizes the
problem statement and the key challenges we aim to address. In Section 4, we describe our proposed
methodology, providing a detailed explanation of the architecture and the rationale behind its design.
Section 5 presents the experimental results, showcasing the effectiveness of our approach through
evaluations on multiple benchmark datasets.

The code to reproduce the results of this paper is included in the supplementary material and will be
made publicly available upon acceptance.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING APPROACHES

Time series forecasting began with classical models like ARIMA (Box et al., 2015), which are
effective for linear patterns but struggle with non-linearities common in real-world data (Chatfield,
2000). Feature extraction methods like tsfresh (Christ et al., 2018) and machine learning algorithms
such as Random Forests (Breiman, 2001) and Support Vector Machines (Vapnik, 1998) improved
predictive accuracy by capturing non-linear dependencies.

The adoption of deep learning models, particularly RNNs (Rumelhart et al., 1986), LSTMs (Hochre-
iter & Schmidhuber, 1997), and Transformers (Vaswani et al., 2017), has further advanced the field
by automatically learning complex temporal patterns (Wen et al., 2017). Following the sucess of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

transformer, works including TimeXer (Wang et al., 2024), itransformer (Liu et al., 2023), PatchTST
(Nie et al., 2022) and Informer (Zhou et al., 2021) are designed to address time-series prediction
problems. Despite these advancements, most approaches rely solely on time series data. Our work
diverges by integrating time series with textual context via Large Language Models (LLMs),
offering a richer, more contextual understanding of the data.

2.2 MULTIMODAL LEARNING IN TIME SERIES PREDICTION

Integrating time series data with unstructured text has become a key strategy for enhancing forecast-
ing accuracy through multimodal approaches that leverage diverse data types for richer context.

Advances in Model Architectures and Joint Prediction Zhang et al. (2024) introduced the Dual-
Adapter model to optimize time series representation by balancing textual and temporal information.
Building on this, Liu et al. (2024b) proposed UniTime, a unified model leveraging NLP for enhanced
time series forecasting across domains, while Liu et al. (2024a) explored LLMs for dynamical sys-
tems, showcasing their adaptability. Surveys such as (Liang et al., 2024; Deldari et al., 2022) offer
taxonomies of multimodal learning, identifying gaps in self-supervised methods for multimodal and
temporal data. The Multi-Modal Forecaster by Kim et al. (2024) jointly predicts time series and
text, highlighting the potential of cohesive multimodal frameworks. Similarly, Cheng et al. (2024)
introduced a prompt-based multimodal framework focused on classification. Recent advancements,
such as (Jia et al., 2024) and (Jin et al., 2023), further integrate time series and text using LLMs,
enhancing predictions through textual cues.

Existing Gaps and Novel Contributions. While recent works have advanced the integration of
time series and text, a key gap remains in instruction-based time series forecasting. Our method
addresses this by introducing a novel framework for text instruction-based forecasting, leveraging
the interplay between textual instructions and time series data for richer, interactive predictions.
Additionally, we present a tailored methodology to benchmark such tasks, enabling applications in
”what-if” scenarios and dynamic, user-interactive forecasting.

2.3 CONTRIBUTIONS OF OUR WORK.

Building on recent advancements in multimodal time series forecasting, our work makes the follow-
ing key contributions:

• Data Generation Workflow: We propose a novel data generation workflow that enables
the evaluation of instruction-based time series forecasting. This workflow facilitates the
testing of model applicability in scenarios that require adherence to specific instructions, a
previously underexplored area.

• Innovative Two-Stage Approach: We introduce a two-stage model that effectively inte-
grates both temporal data and textual instructions. This design captures contextual infor-
mation while adhering to instruction-based predictions, leading to enhanced performance.

• Comprehensive Ablation Studies: We conduct ablation studies to validate each step of the
proposed approach, demonstrating the importance and rationale behind each component.

• Comparative Evaluation: We benchmark our method against state-of-the-art models for
multimodal time series and text forecasting, showing competitive or superior performance
across key metrics (both in terms of a new metrics called compliance rate and in terms of
MSE).

These contributions address a significant gap in instruction-based forecasting, offering a structured
and interpretable solution.

3 PROBLEM DEFINITION

Let X = {x1,x2, . . . ,xT } denote a multivariate time series, where xt ∈ Rd represents the d-
dimensional vector at time step t ∈ {1, 2, . . . , T}. Traditional time series forecasting aims to predict
future values X̂ = {x̂T+1, x̂T+2, . . . , x̂T+H}, where H is the forecasting horizon, using only the
historical observations X.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In real-world applications, textual information often provides critical context or specific instructions
that can influence the expected trajectory of the time series. Let S = s1, s2, . . . , sn be a sequence of
n tokens representing a textual description or instruction, where si ∈ V and V is a fixed vocabulary.
This text can convey information about future events, conditions, or hypothetical scenarios that
could affect the future behavior of the time series.

Our objective is to design a multimodal framework that integrates both the time series X and the text
S to produce a more informed forecast X̂(S) = {x̂(S)

T+1, x̂
(S)
T+2, . . . , x̂

(S)
T+H}, conditioned on both

the historical data and the information in S. Formally, the forecasting function is defined as:

X̂(S) = f(X,S; θ) (1)

where f(·, ·; θ) is a function parameterized by θ, capturing the relationships between the time series
and the text. The goal is to learn the parameters θ to minimize the forecasting error:

θ∗ = argmin
θ

L
(
X̂(S),Xtrue

)
(2)

where L is a loss function that measures the discrepancy between the forecasted values X̂(S) and
the true future values Xtrue = {xtrue

T+1,x
true
T+2, . . . ,x

true
T+H}.

4 PROPOSED METHODOLOGY

4.1 DATA GENERATION

To train and evaluate our multimodal forecasting model, we generate a synthetic dataset that inte-
grates time series data with textual instructions. The goal is to modify forecasted time series values
based on text descriptions, simulating real-world scenarios where instructions influence future pre-
dictions.

The data generation process consists of the following steps:

• Base Time Series Creation: We generate multivariate time series X = {x1,x2, . . . ,xT }
using standard generators (e.g., sine waves, real-world data including financial, electricity
data among others). The full description of all the base time series used for the generation
is provided in Appendix C.

• Textual Instruction Integration: For each time series, we generate corresponding textual
instructions S, such as “increase,” “decrease,” or “stabilize,”, ..., which provide guidance
on how to modify future values.

• Forecast Modification Based on Text: Forecasted values X̂(S) = {x̂(S)
T+1, . . . , x̂

(S)
T+H}

are adjusted based on the instructions.

As example, for the instruction ”trend up”, the forecast is modified by applying a linear increment
to the last observed value xT :

x̂
(S)
T+h = xT +A× h, where h ∈ {1, 2, . . . ,H} (3)

In this expression, A is a constant controlling the upward trend. In the data generation, A evolves
with time while being positive to add complexity to the generative model, as seen in Figure 3,
where some non-linear transformations may be observed for linear growth. Further details on the
instructions and their corresponding mathematical modifications are provided in Appendix 6.

To demonstrate the realism of the synthetic dataset, we present several example scenarios where
textual instructions are used to modify the base time series. Each scenario shows the base time
series and its modified forecasted values, highlighting how the text influences the trajectory of future
predictions. Figure 3 shows three different scenarios: ”Linear Growth”, ”Exponential Downward”,
and ”Logarithmic Decay”. These examples illustrate the diversity of the dataset and how textual
instructions are effectively incorporated into the time series predictions. More figures are listed in
Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 50 100 150 200

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Linear Growth
linear growth
No Instruction

0 50 100 150 200

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Exponential Decay

exponential decay
No Instruction

0 50 100 150 200

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
logarithmic growth

logarithmic growth
No Instruction

Figure 3: Comparison of different orders for the data generation: (a) Linear Growth, (b) Exponential
Decay, and (c) logarithm growth. The vertical line indicates the start of the forecast.

4.2 PROPOSED ARCHITECTURE

Our proposed framework employs a two-stage approach to integrate time series data and textual
information for predictive tasks. This multimodal architecture leverages both unsupervised and
supervised learning paradigms to align time series data with corresponding semantic information
derived from textual context, improving interpretability and predictive performance (see Figure 4
for an architectural overview).

𝑝1
1 𝑝2

1 𝑝2
1 𝑝3

1 𝑝4
1 𝑝5

1 𝑝6
1

(a) Stage I: Fast Adaption by Reconstruction

Patching

𝑝1
1 𝑝2

1 𝑝2
1 𝑝3

1 𝑝4
1 𝑝5

1 𝑝6
1

𝑝1
1 𝑝2

1 𝑝2
1 𝑝3

1 𝑝4
1 𝑝5

1 𝑝6
1

1D convolution

Codebook of Pre-trained LLM

Linear Compression

Compressed Semantic Space

Cross-Attention

1D deconvolution

Training

Projected embedding

Reconstruction loss

Vector quantization loss

Frozen

Embedding
Stage 1

(a) Stage I: AutoPrompter

(b) Stage II: Instruction-based Prediction Task

Low-Rank
Embeddings

LLM Backbone

Prompt-

Formatting

Low-Rank
Embeddings

Fused Embedding

Hadamard Product

[instruction]

The trend is going
up

1D deconvolution

Prediction Result

Cross-Attention

LLM Backbone

Embedding stage 1

Prediction loss

(b) Stage II: Instruction prediction

Figure 4: Model architecture

Stage 1: AutoPrompter: Enhancing VQ-VAE for Unsupervised Alignment of Time Series and
Pre-trained Language Codebook

In the first stage, we propose a novel mechanism, AutoPrompter, which serves as a bridge, trans-
lating time series data into a compressed, semantically meaningful text embedding space. By in-
troducing cross-attention and a pre-trained language codebook to the classical VQ-VAE (Vector
Quantised-Variational AutoEncoder; (Van Den Oord et al., 2017)), AutoPrompter quantizes the time
series space, allowing it to align effectively with text embeddings. This translation helps capture the
underlying semantic patterns within the time series data, facilitating meaningful connections with
textual information. The key components are as follows:

1. Time Series Embedding: The time series data, X, is processed through a Convolutional
Neural Network (CNN), producing a high-dimensional temporal embedding, zts, that cap-
tures key temporal patterns.

2. Text Embedding with Pre-trained Codebook and Linear Compression: A pre-trained
language model, equipped with a fixed vector quantization codebook, provides discrete text
embeddings, ztxt. These embeddings are subsequently passed through a linear compression
layer to obtain a compressed semantic representation, ztxt compressed. This compression re-
duces the dimensionality of the text embeddings, facilitating efficient alignment with the
time series embeddings while preserving essential semantic information.

3. Cross-Attention Alignment: A cross-attention mechanism aligns the time series embed-
ding zts with the compressed text embedding ztxt compressed. In this setup, zts acts as the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

query, and ztxt compressed serves as the key-value pair. This interaction facilitates the integra-
tion of temporal and semantic information, producing an aligned multimodal representa-
tion, zaligned.

4. Self-Supervised Learning: Our model is trained using self-supervised learning to align
time series embeddings with meaningful text embeddings while preserving key character-
istics of the original time series data. The training minimizes two key losses:
1. Reconstruction Loss (Lrecon) 2. Vector Quantization Loss (Lvq)

• Vector Quantization Loss (Lvq): The Vector Quantization Loss ensures that the en-
coder outputs are quantized by aligning them with the nearest vectors from a fixed,
pre-trained language codebook. This encourages the model to represent time series
data using a discrete set of embeddings from the codebook, facilitating alignment be-
tween the input data and text-based embeddings.
Unlike traditional VQ-VAE, where the codebook is updated during training, our model
employs a fixed codebook. However, because we apply a linear compression layer to
the text embeddings, we use two distinct terms to maintain effective alignment:

– Quantization Latent Loss (Lvq latent) ensures that the quantized embeddings (ob-
tained from the codebook) closely match the encoder’s output.

– Commitment Loss (Lcommit) encourages the encoder’s output to remain close to
the quantized embeddings. This ensures the model consistently uses the closest
embedding in the codebook, preventing the encoder from drifting too far from the
quantized space.

These losses are defined as:

Lvq latent = ∥zaligned − sg(zencoder)∥22
Lcommit = ∥zencoder − sg(zaligned)∥22

Lvq = Lvq latent + Lcommit

where:
– zencoder is the output of the encoder.
– zaligned refers to the quantized embeddings obtained from the vector quantizer.
– sg(·) is the stop-gradient operator, which ensures gradients don’t flow back to the

quantizer during optimization.
By jointly minimizing these two components, we ensure that the encoder’s outputs
align well with the codebook, while keeping the representations compact and consis-
tent.

• Reconstruction Loss (Lrecon): The Reconstruction Loss measures how well the re-
constructed time series x̂, generated by the decoder, matches the original input x.
This loss ensures that essential information from the original time series is preserved:

Lrecon = ∥x− x̂∥1
• Total Loss: The final loss function is a weighted sum of the Vector Quantization Loss

and the Reconstruction Loss:

Ltotal = Lvq + λrecon · Lrecon

where λrecon is a hyperparameter that balances the importance of the reconstruction
task relative to the vector quantization. We further investigate the sensitivity of this
parameter in Appendix H.

Stage 2: Supervised Multimodal Fusion for Prediction In this stage, we perform supervised time
series prediction, conditioned on textual information. This leverages the embeddings learned in
Stage 1, combined with a Large Language Model (LLM), to improve prediction accuracy.

1. Text Embedding Extraction: A pre-trained LLM extracts embeddings from textual inputs
(e.g., ”orders” or instructions). These embeddings capture the semantic context of the text,
enriching the model’s understanding for time series prediction.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2. Multimodal Fusion: Time series embedding works as query to get text embeddings com-
bined using a cross-attention mechanism, which dynamically identifies relevant parts of
both data sources. And then the embeddings are compressed to half of original dimension
to further extract the essential information. This is followed by an adaptive Hadamard prod-
uct, where time series embeddings A, text embeddings B, and a learnable weight matrix
W interact element-wise to form the joint representation:

Cij = Aij ·Wij ·Bij

3. Supervised Training Objective: The fused representation is processed by the LLM, whose
output is passed into a CNN-based decoder (serving as the AutoPrompter decoder to trans-
late from word embeddings to time-series again). The model is trained to minimize the
mean absolute error (MAE) between predicted and actual values:

LMAE =
1

N

N∑
i=1

|yi − ŷi|

Key Innovation: The core innovation of our framework is the semantic alignment of time series data
with textual context through self-supervised learning. This approach enhances both interpretability
and predictive accuracy by integrating multimodal data sources, making it particularly effective for
applications where numerical signals and natural language descriptions are interdependent.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

In this section, we present the experimental framework used to evaluate the performance of our
proposed models, AutoPrompter and TITSP. The experiments are designed to assess key aspects
such as unsupervised alignment, zero-shot generalization, and overall performance metrics.

For computational efficiency, we use Qwen2-1.5B (Yang et al., 2024) as our backbone language
model, although other language models could also be used.

• Stage 1: To enhance both performance and resource efficiency, we employ the pre-trained
codebook from Qwen, which is linearly compressed to 512 dimensions. This dimension-
ality was chosen based on empirical evidence, as illustrated in Figure 20 in the Appendix,
which demonstrates an optimal balance between these factors.

• Stage 2: The parameters from Stage 1 are kept fixed, and we perform end-to-end training
using our designed loss function.

5.2 AUTOPROMPTER: UNSUPERVISED ALIGNMENT EVALUATION

We evaluate the AutoPrompter using key metrics: reconstruction loss, zero-shot performance,
and latent space visualization. Our approach is compared against several baseline architectures to
highlight the contributions of the model’s components.

Baselines: The following baseline models are introduced for comparison:

• No Cross-Attention: This baseline excludes the cross-attention mechanism between time
series and text embeddings. Instead, it directly employs a traditional Vector Quantized
Variational Autoencoder (VQ-VAE) to map the time series embeddings to the nearest or
most similar embeddings in the fixed pre-trained language codebook.

• Reduced Codebook Size: Employs a smaller compressed codebook to evaluate its impact
on performance. The codebook is compressed into 50.

Zero-shot Performance: Table 1 summarizes the performance of AutoPrompter and also its zero-
shot generalization performance when training on ETTh1 and testing on various datasets. The Re-
construction loss will demonstrate how well the information of time-series is represented using

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset AutoPrompter AutoPrompter (Zero-shot) No Cross-Attention No Cross-Attention (zero-shot) Reduced Codebook
ETTh1 0.018 0.018 0.104 0.104 1.025
National Illness 0.029 0.031 0.138 0.173 1.141
Traffic 0.027 0.056 0.273 0.475 2.131
Exchange Rate 0.005 0.015 0.820 1.090 1.053
Weather 0.007 0.008 0.540 0.950 1.101
ETTm1 0.019 0.030 0.147 0.102 1.512
ETTh2 0.011 0.015 0.129 0.145 1.357
Electricity 0.035 0.058 0.255 0.410 2.092
ETTm2 0.019 0.026 0.122 0.192 0.947
Lorenz Time 0.010 0.011 0.132 0.212 0.133

Table 1: Zero-shot reconstruction loss comparison across different architectures. The best-
performing value for each dataset is in bold, and the second-best is in italics.

compressed language codebook. The results clearly demonstrate that the AutoPrompter achieves
superior performance across all datasets.

Latent Space Visualization (t-SNE): To examine the alignment of time series and text embeddings,
we visualize the latent space using t-SNE. Figure 5 shows that AutoPrompter with the compressed
codebook results in well-clustered embeddings. In comparison, a trainable randomly initialized
codebook produces scattered, unstructured embeddings after training.

Figure 5: t-SNE Visualization: with pre-trained Codebook (Right) vs. with trainable Randomly
initialized Codebook (Left)

Conclusion: The evaluation results demonstrate that the AutoPrompter significantly outperforms
the baseline models in zero-shot tasks. The t-SNE visualization emphasizes the importance of the
codebook in generating semantically structured embeddings, while the codebook size analysis sug-
gests that an optimal size enhances performance, underscoring the critical role of the codebook in
our framework.

5.3 OVERALL PERFORMANCE EVALUATION OF TITSP

To provide a thorough assessment of the TITSP model’s performance, we focus on three critical
metrics: Order Compliance Rate, Zero-shot Ability, and the performance of TITSP for long
sequence for the instruction.

• Order Compliance Rate: To provide a thorough assessment of the TITSP model’s perfor-
mance, we introduce the Compliance Rate metric to quantitatively evaluate how well the
model adheres to specified actions guiding time series predictions. This metric reflects the
proportion of time steps where the model’s predictions align with the expected trends or
patterns dictated by the actions.
The Compliance Rate R is defined as: R =

∑T1

t=1 Ct, where Ct is an indicator variable
such that Ct = 1 if the prediction at time step t adheres to the prescribed action, and Ct = 0
otherwise. Here, T1 represents the total number of time steps considered.
A higher compliance rate indicates better adherence to specified actions, showcasing the
model’s ability to incorporate desired behaviors into its predictions. For detailed definitions
and calculations, refer to Appendix E. In this study, we compare our method with Time-
LLM (Jin et al., 2023), which uses natural language as input with well-designed prompts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to aid predictions. Additionally, we introduce two other baselines that use only LLMs
with a prompt concatenating both instructions and time series, as well as UniTime (Liu
et al., 2024b) and GPT4MTS(Jia et al., 2024). We adapt GPT4MTS to Qwen4MTS with
the same language model we use so that we can fairly compare. Further insights into the
Time-LLM prompt are provided in Appendix A. We also provide the detail implementation
of Qwen4MTS and UniTime(Qwen) in Appendix I. Pure LLM results are also provided
with Llama-3.1-8B-Instruct (Dubey et al., 2024), the desinged prompts are provided in
Appendix I. We did not compare with Chronos (Ansari et al., 2024) and UniTS (Gao et al.,
2024) as they only input time-series.

Instruction TITSP Time-LLM Qwen4MTS UniTime (Qwen) Llama-3.1-8B
Metric CR MSE CR MSE CR MSE CR MSE CR MSE
Linear Growth and Linear Decay 0.83 1.15 0.38 3.45 0.69 1.90 0.54 2.73 0.32 4.95
Linear Growth and Linear Decay 0.79 1.17 0.49 2.85 0.79 1.34 0.57 2.28 0.41 2.80
Linear Trend Up 0.90 1.03 0.63 1.71 0.76 1.08 0.63 1.65 0.91 1.15
Linear Trend Down 0.87 0.88 0.64 1.55 0.71 1.36 0.51 1.59 0.85 0.92
Exponential Growth 0.89 1.33 0.58 2.59 0.63 2.07 0.60 2.38 0.58 2.35
Exponential Decay 0.84 1.25 0.56 2.26 0.67 2.10 0.69 2.05 0.46 2.39
Keep Stable 0.98 0.35 0.76 0.76 0.93 0.48 0.83 0.62 0.95 0.33
Decrease Amplitude 0.90 0.91 0.85 1.04 0.90 0.84 0.79 1.09 0.52 1.89
Increase Amplitude 0.94 0.94 0.79 1.20 0.89 0.96 0.81 1.03 0.75 1.35
Logarithmic Growth 0.77 1.65 0.49 2.31 0.79 1.55 0.60 1.73 0.55 1.94
Logarithmic Decay 0.83 1.68 0.48 2.19 0.81 1.69 0.67 2.04 0.63 2.60

Table 2: Comparison of Compliance Rate (CR) and MSE for TITSP, Time-LLM, Qwen4MTS,
UniTime, and Llama-3.1-8B across various instructed actions with highlighted best (in bold) and
second-best (underline) results.

0 25 50 75 100 125 150 175 200

0.5

1.0

1.5

2.0

2.5

3.0

exponential growth

TITSP
Time-LLM

instruction: exponential
growth

0 25 50 75 100 125 150 175 200
0.6

0.8

1.0

1.2

1.4

keep stable

TITSP
Time-LLM

instruction: keep stable
0 25 50 75 100 125 150 175 200

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
linear trend up

TITSP
Time-LLM

instruction: linear trend up

Figure 6: comparision of Time-LLM and TITSP. Our method succeed in learning the dependency
of prediction and instruction, (red: Time-LLM, blue: TITSP)

• Zero-shot Ability: The TITSP model demonstrates strong zero-shot generalization, ef-
fectively adapting to variations of action instructions without retraining. Across a range
of similar expressions, it achieves high compliance rates, showcasing its robust ability to
understand and follow instructions with minimal performance degradation. The detailed
performance for selected instructions is presented in Table 3 in Appendix, where the model
maintains near-perfect compliance, indicating superior adaptability across different con-
texts.

To further highlight the TITSP model’s zero-shot generalization ability, we present time
series predictions for various instructions. These examples in Figure 7 demonstrate the
model’s capacity to adapt to new, unseen patterns, reinforcing its robustness in generalizing
across different instructions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Training Instruction Test Instruction Compliance Rate MSE

Linear Trend Up
Linear Upward 0.81 1.27
Linear Goes Up 0.89 0.93
Linear Growth 0.80 1.13

Linear Growth and Decay Linear Up and Down 0.71 1.93
Linear Decay and Growth Linear Down and Up 0.73 1.51

Exponential Growth
Exponential Upward 0.71 1.93
Exponential Goes Up 0.82 1.53

Table 3: Zero-shot performance of TITSP on selected test instructions.

0 25 50 75 100 125 150 175 200

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

linear decay

TITSP(zero-shot)
No Instruction

instruction: linear decay

0 25 50 75 100 125 150 175 200

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
linear goes up and linear goes down

TITSP(zero-shot)
No Instruction

instruction: linear goes up
and linear goes down

0 25 50 75 100 125 150 175 200

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

logarithmic downward

TITSP(zero-shot)
No Instruction

instruction:logarithmic
downward

Figure 7: Samples of Zero-shot about TITSP, which illustrate that TITSP has strong zero-shot ability,
which is also an advantage of LLMs.

• Keyword Extraction Capability: The TITSP model exhibits remarkable performance in
extracting relevant keywords from long sequences. The attention mechanism effectively
identifies critical components in the input data, enhancing the model’s ability to discern
patterns and relationships in the time series. For visual insights, refer to the attention matrix
provided in Appendix G.

Conclusion: The results underscore the efficacy of the TITSP model, particularly in its order com-
pliance, zero-shot learning ability, and adeptness at keyword extraction. These strengths position
TITSP as a powerful tool for time series prediction, capable of seamlessly integrating and adhering
to textual instructions while maintaining high accuracy and interpretability.

To conclude this experimental section, we address the ongoing debate regarding the relevance of
large language models (LLMs) in time-series prediction. While some researchers question their
importance (Tan et al., 2024), others highlight their potential in sequence modeling (Liu et al.,
2024a). Our work contributes to this discussion by systematically replacing LLMs with traditional
architectures, such as transformers and multilayer perceptrons (MLPs), and evaluating the resulting
performance as seen in Appendix D. Additionally, we conduct extensive ablation studies, detailed
in Appendix D, to assess the significance of specific model components..

6 CONCLUDING REMARKS

In this paper, we introduced Text-Informed Time Series Prediction (TITSP), a novel framework that
enhances time series forecasting by integrating domain-specific textual information. Extensive ex-
periments across diverse datasets demonstrate that TITSP significantly outperforms traditional and
existing multimodal approaches, improving both predictive accuracy and interpretability. Notably,
TITSP exhibits robust zero-shot generalization, enabling effective deployment across various do-
mains without extensive retraining. Our findings underscore the potential of multimodal methodolo-
gies to transform time series modeling, offering more accurate and versatile solutions for real-world
applications. By bridging numerical data and contextual textual information, TITSP promises sub-
stantial impacts in fields requiring precise forecasting and decision-making.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Chris Chatfield. Time-series forecasting. Statistics in Medicine, 19(2):205–207, 2000.

Mingyue Cheng, Yiheng Chen, Qi Liu, Zhiding Liu, and Yucong Luo. Advancing time series clas-
sification with multimodal language modeling. arXiv preprint arXiv:2403.12371, 2024.

Michael Christ, Mark Ploesch, and Uwe Römer. Time series feature extraction based on scalable
hypothesis tests. In Proceedings of the 21st International Conference on Data Mining, pp. 945–
950. IEEE, 2018.

Shohreh Deldari, Hao Xue, Aaqib Saeed, Jiayuan He, Daniel V Smith, and Flora D Salim. Beyond
just vision: A review on self-supervised representation learning on multimodal and temporal data.
arXiv preprint arXiv:2206.02353, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. Units: Building a unified time series model. arXiv preprint arXiv:2403.00131,
2024.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Pal-
panas, and Ievgen Redko. Samformer: Unlocking the potential of transformers in time series
forecasting with sharpness-aware minimization and channel-wise attention. In Forty-first Inter-
national Conference on Machine Learning.

Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based large
language model for multimodal time-series forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 23343–23351, 2024.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Kai Kim, Howard Tsai, Rajat Sen, Abhimanyu Das, Zihao Zhou, Abhishek Tanpure, Mathew Luo,
and Rose Yu. Multi-modal forecaster: Jointly predicting time series and textual data. arXiv
preprint arXiv:2411.06735, 2024. URL https://arxiv.org/abs/2411.06735. Li-
cense: CC BY 4.0.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
machine learning: Principles, challenges, and open questions. ACM Computing Surveys, 56(10):
1–42, 2024.

Toni JB Liu, Nicolas Boullé, Raphaël Sarfati, and Christopher J Earls. Llms learn governing
principles of dynamical systems, revealing an in-context neural scaling law. arXiv preprint
arXiv:2402.00795, 2024a.

11

https://arxiv.org/abs/2411.06735

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
Unitime: A language-empowered unified model for cross-domain time series forecasting. In
Proceedings of the ACM on Web Conference 2024, pp. 4095–4106, 2024b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

Robert H Shumway, David S Stoffer, Robert H Shumway, and David S Stoffer. Arima models. Time
series analysis and its applications: with R examples, pp. 75–163, 2017.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm and bilstm
in forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp.
3285–3292. IEEE, 2019.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

The New York Times. Whiplash ends a roller coaster week, 2008. URL https://www.
nytimes.com/2008/10/11/business/11markets.html.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Vladimir N Vapnik. Statistical Learning Theory. Wiley, 1998.

Ashish Vaswani, Noam Shard, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, Andrew Ku, N. Killar, Y. Cheng, et al. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Kang Wang, Kenli Li, Liqian Zhou, Yikun Hu, Zhongyao Cheng, Jing Liu, and Cen Chen. Multiple
convolutional neural networks for multivariate time series prediction. Neurocomputing, 360:107–
119, 2019.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. arXiv preprint arXiv:2402.19072, 2024.

Liang Wen, Qian Wang, and Qiang Yang. Multi-task learning for time series forecasting: A survey.
arXiv preprint arXiv:1712.07450, 2017.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Weiqi Zhang, Jiexia Ye, Ziyue Li, Jia Li, and Fugee Tsung. Dualtime: A dual-adapter multimodal
language model for time series representation. arXiv preprint arXiv:2406.06620, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

12

https://www.nytimes.com/2008/10/11/business/11markets.html
https://www.nytimes.com/2008/10/11/business/11markets.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Roadmap. This appendix provides additional experiments and details omitted from the main pa-
per for conciseness. It is organized as follows:

• Section A: Explores the main disadvantage of Time LLM in handling textual context, mo-
tivating the present work.

• Section B: Complements the main paper’s experiments with additional visualizations of
TITSP’s performance and evidence of its zero-shot capability.

• Section C: Details the data generation process, emphasizing base time series and transfor-
mations to incorporate context and text.

• Section D: Conducts extensive ablation studies to validate the rationale of each architectural
element.

• Section E: Provides a formal definition of the compliance rate with descriptive examples.

• Section F: Presents evidence on Stage 1 and its reconstruction ability.

• Sections G and H: Explain how the model handles longer sequences and establish sensitiv-
ity to loss hyperparameters.

TABLE OF CONTENTS

A Limitations of Time-LLM: Influence of Textual Prompts 15

B Overall Performance of TITSP 15

B.1 Visualization of Instruction-Based Time-Series Predictions 15

B.2 Zero-Shot Samples of TITSP . 16

B.3 Visualization of Normal Prompted Time-Series Prediction 17

C Data Generation 18

D Ablation Study 21

D.1 Importance of W . 21

D.2 Are LLMs Really Important in Time-Series Prediction? 21

E Compliance Rate Definition 21

E.1 Notation . 21

E.2 General Definition . 22

E.3 Compliance Conditions per Action . 22

E.4 Calculating the Compliance Rate . 23

E.5 Example Calculation . 24

E.6 Discussion . 24

F Reconstruction Ability of AutoPrompter 24

F.1 Zero-shot Ability . 24

F.2 Visualization of Reconstruction Ability . 25

F.3 Comparison with Other Baselines . 25

F.4 Performance with Different Compressed Codebook Sizes 26

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

G Dealing with Long Sequences 26

H Sensitivity of λrecon 28

I Detailed Experimental Setup for the Proposed Method 28

J What Really Happened on October 10, 2008? 31

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Performance of Time-LLM under various textual modifications

Modification MSE MAE
No change 0.383 0.402

Incorrect dataset description 0.386 0.404
Random mean, max, min values 0.383 0.403

Opposite trend description 0.383 0.403

A LIMITATIONS OF TIME-LLM: INFLUENCE OF TEXTUAL PROMPTS

In this section, we investigate the limitations of Time-LLM by examining the impact of textual
prompts on its performance. We systematically alter the dataset descriptions to assess whether
changes in textual context, unrelated to the time series data, affect the model’s predictions. The
modifications tested include:

• Providing an incorrect dataset description.

• Assigning random mean, max, and min values between 0 and 1.

• Providing a description with an opposite trend.

To evaluate the model, we use a sequence length of 96 for both input and prediction on the ETTh1
dataset. The results are summarized in Table 4.

These results indicate that altering the textual descriptions had negligible effects on the performance
of Time-LLM. The MSE and MAE values remained largely unchanged, suggesting that the model’s
predictions are primarily driven by the time series data, with minimal influence from the textual
context. This observation underscores the limitations of using prompts in this particular setup and
motivates the need for further exploration to determine the conditions under which text can mean-
ingfully guide time-series predictions.

B OVERALL PERFORMANCE OF TITSP

This section presents the overall performance of the Text-Informed Time Series Prediction (TITSP)
model, including visualizations of instruction-based time-series predictions and zero-shot samples.

B.1 VISUALIZATION OF INSTRUCTION-BASED TIME-SERIES PREDICTIONS

In this subsection, we provide visualizations of the prediction results with and without instructions.
These visualizations demonstrate the model’s ability to adapt to various textual instructions, show-
casing its versatility and accuracy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200

4

3

2

1

0

1

decrease amplitude

TITSP
No Instruction

Instruction: Decrease Ampli-
tude

0 25 50 75 100 125 150 175 200

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
exponential decay

TITSP
No Instruction

Instruction: Exponential De-
cay

0 25 50 75 100 125 150 175 200
2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

exponential growth

TITSP
No Instruction

Instruction: Exponential
Growth

0 25 50 75 100 125 150 175 200

6

4

2

0

2

increase amplitude

TITSP
No Instruction

Instruction: Increase Ampli-
tude

0 25 50 75 100 125 150 175 200

3.5

3.6

3.7

3.8

3.9

4.0

keep stable

TITSP
No Instruction

Instruction: Keep Stable

0 25 50 75 100 125 150 175 200

3.5

3.6

3.7

3.8

3.9

4.0

keep stable

TITSP
No Instruction

Instruction: Keep Stable

0 25 50 75 100 125 150 175 200

2.0

2.5

3.0

3.5

4.0
linear decay and linear growth

TITSP
No Instruction

Instruction: Linear Decay and
Linear Growth

0 25 50 75 100 125 150 175 200

3.4

3.6

3.8

4.0

4.2

4.4

linear growth and linear decay

TITSP
No Instruction

Instruction: Linear Growth
and Linear Decay

0 25 50 75 100 125 150 175 200

1.0

1.5

2.0

2.5

3.0

3.5

linear trend down

TITSP
No Instruction

Instruction: Linear Trend
Down

0 25 50 75 100 125 150 175 200

3.6

3.8

4.0

4.2

4.4

linear trend up

TITSP
No Instruction

Instruction: Linear Trend Up

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
logarithmic decay

TITSP
No Instruction

Instruction: Logarithmic De-
cay

0 25 50 75 100 125 150 175 200

3.50

3.75

4.00

4.25

4.50

4.75

5.00

logarithmic growth

TITSP
No Instruction

Instruction: Logarithmic
Growth

Figure 8: Samples of prediction results with and without instructions

B.2 ZERO-SHOT SAMPLES OF TITSP

In this subsection, we present zero-shot samples of the TITSP model. These samples demonstrate
the model’s ability to generalize to new, unseen instructions without additional training, highlighting
its robustness and adaptability.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

exponential goes down

TITSP(zero-shot)
No Instruction

Zero-Shot: Exponential Goes
Down

0 25 50 75 100 125 150 175 200

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

exponential upward

TITSP(zero-shot)
No Instruction

Zero-Shot: Exponential Up-
ward

0 25 50 75 100 125 150 175 200

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

linear decay

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Decay

0 25 50 75 100 125 150 175 200

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

linear decay

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Decay

0 25 50 75 100 125 150 175 2001.0

1.5

2.0

2.5

3.0

3.5

4.0
linear goes down and linear goes up

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Goes
Down and Linear Goes Up

0 25 50 75 100 125 150 175 200

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
linear goes up and linear goes down

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Goes Up
and Linear Goes Down

0 25 50 75 100 125 150 175 200

3.6

3.8

4.0

4.2

4.4

4.6

linear upward

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Upward

0 25 50 75 100 125 150 175 200

3.6

3.8

4.0

4.2

4.4

4.6

linear upward

TITSP(zero-shot)
No Instruction

Zero-Shot: Linear Upward

0 25 50 75 100 125 150 175 200

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

logarithmic downward

TITSP(zero-shot)
No Instruction

Zero-Shot: Logarithmic
Downward

0 25 50 75 100 125 150 175 200
2.0

2.5

3.0

3.5

4.0

4.5

5.0

logarithmic upward

TITSP(zero-shot)
No Instruction

Zero-Shot: Logarithmic Up-
ward

0 25 50 75 100 125 150 175 200

6

4

2

0

2
raise amplitude

TITSP(zero-shot)
No Instruction

Zero-Shot: Raise Amplitude

0 25 50 75 100 125 150 175 200

4

3

2

1

0

1

reduce amplitude

TITSP(zero-shot)
No Instruction

Zero-Shot: Reduce Ampli-
tude

Figure 9: Samples of zero-shot prediction results

These visualizations and zero-shot samples provide a comprehensive overview of the TITSP model’s
capabilities, demonstrating its effectiveness in integrating textual instructions with time-series data.

B.3 VISUALIZATION OF NORMAL PROMPTED TIME-SERIES PREDICTION

In this subsection, we present the full results of the TITSP model using only dataset descriptions and
task descriptions.

We give here two examples of prompt that are used to show that they may differe from one dataset
to another.

• ”Dataset description: The Electricity Transformer Temperature (ETT) is a crucial indi-
cator in the electric power long-term deployment. This dataset consists of 2 years data
from two separated counties in China. To explore the granularity on the Long sequence

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

time-series forecasting (LSTF) problem, different subsets are created, ETTh1, ETTh2 for
1-hour-level and ETTm1 for 15-minutes-level. Each data point consists of the target value
”oil temperature” and 6 power load features. The train/val/test is 12/4/4 months. Task
description: forecast the next 96 steps given the previous 96 steps information.”

• ”Traffic is a collection of hourly data from California Department of Transportation, which
describes the road occupancy rates measured by different sensors on San Francisco Bay
area freeways. Task description: forecast the next 96 steps given the previous 96 steps
information.”

To ensure a fair comparison, we adapt GPT4TS and Time-LLM to QWEN2-1.5B (Yang et al., 2024).
The input and output sequence length is set to 96. The results demonstrate that TITSP excels at
building the dependency between prompt words and time-series input, fully utilizing the capabilities
of large language models.

Models TITSP GPT4TS Time-LLM itransformer Rlinear PatchTST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.416 0.422 0.428 0.426 0.450 0.445 0.454 0.448 0.446 0.434 0.469 0.455
ETTh2 0.406 0.409 0.405 0.413 0.427 0.430 0.432 0.434 0.422 0.420 0.441 0.437
ETTm1 0.375 0.399 0.390 0.405 0.408 0.419 0.417 0.425 0.406 0.411 0.423 0.426
ETTm2 0.365 0.389 0.373 0.399 0.395 0.414 0.402 0.418 0.390 0.406 0.404 0.418
Weather 0.342 0.382 0.354 0.395 0.382 0.405 0.383 0.407 0.375 0.399 0.387 0.407
Traffic 0.360 0.383 0.357 0.396 0.398 0.414 0.393 0.412 0.391 0.408 0.394 0.412
Electricity 0.357 0.381 0.351 0.392 0.402 0.415 0.392 0.409 0.396 0.409 0.389 0.408
Exchange rate 0.365 0.397 0.349 0.389 0.400 0.410 0.391 0.406 0.398 0.406 0.382 0.402
1st count 11 5 0 0 0 0

Table 5: Comparison of models based on MSE and MAE metrics with highlighted best (red) and
second-best (green) results

These results highlight the superior performance of TITSP in building dependencies between prompt
words and time-series input, effectively utilizing the capabilities of large language models. The
table presents a comprehensive comparison of various models, with the best and second-best results
highlighted in red and green, respectively. This demonstrates the robustness and effectiveness of the
TITSP model in time-series prediction tasks.

C DATA GENERATION

In this section, we provide a detailed definition of the data generation process to ensure high-quality
datasets for evaluation. We generate data from various datasets, including ETTh1, ETTh2, ETTm1,
ETTm2, weather, traffic, electricity, exchange rate.

In this table:

• np.arange(x) generates a sequence of time steps.

• time represents the time variable in the time series.

• transition time is set to 0.5 for uniform experiments.

• A, B, and C are constants defining the amplitude and the slopes. In our case, we set A
∼ U(0, 0.5), B and C ∼ U(0.01, 0.015).

The detailed equations for Linear Trend Up, Linear Trend Down, Linear Growth and Linear Decay,
and Linear Decay and Linear Growth are listed as follows:


Original slope m = linear regression(time, batch y i)
New slope m′ = −m+ δ, δ ∼ U(0.01, 0.015)
New sequence y′ = batch y i +m′ × time

(4)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Action Description Mathematic Func-
tion

Generated Dataset

Linear Trend Up Linear increase over
time

see Equation 4 weather, ex-
change rate

Linear Trend Down Linear decrease over
time

see Equation 5 weather, ex-
change rate

Exponential Growth Exponential increase
over time

prediction×exp(B×
np.arange(x))

weather, ex-
change rate, electric-
ity

Exponential Decay Exponential decrease
over time

prediction ×
exp(−B ×
np.arange(x))

weather, ex-
change rate, electric-
ity

Logarithmic Growth Logarithmic growth
over time

prediction + C ×
log(1+np.arange(x))

weather, ex-
change rate, electric-
ity

Logarithmic Decay Logarithmic decay
over time

prediction − C ×
log(1+np.arange(x))

weather, ex-
change rate, electric-
ity

Keep Stable Constant value last input point All
Linear Growth and
Linear Decay

Linear increase fol-
lowed by decrease

see Equation 6 weather, ex-
change rate

Linear Decay and
Linear Growth

Linear decrease fol-
lowed by increase

see Equation 7 weather, ex-
change rate

Increase Amplitude Scale up predictions
by a factor

prediction × (1 +A) ETTh1, ETTh2,
ETTm1, ETTm2,
traffic

Decrease Amplitude Scale down predic-
tions by a factor

prediction × (1−A) ETTh1, ETTh2,
ETTm1, ETTm2,
traffic

Table 6: Summary of actions, their descriptions, corresponding mathematical functions, and gener-
ated datasets.


Original slope m = linear regression(time, batch y i)
New slope m′ = −m− δ, δ ∼ U(0.01, 0.015)
New sequence y′ = batch y i +m′ × time

(5)

trend =

{
initial slope × time(t), t < transition time
initial slope × time(transition time)− decline slope × (t− transition time), t ≥ transition time

(6)

trend =

{
−initial slope × time(t), t < transition time
−initial slope × time(transition time) + increase slope × (t− transition time), t ≥ transition time

(7)

For this part, we provide some examples of data generation:

C.0.1 LORENZ TIME SERIES

In addition to the generation of synthetic datasets for general time series tasks, we also generate
data based on the Lorenz system, which is commonly used to model chaotic dynamics. The Lorenz
system is governed by the following set of ordinary differential equations (ODEs):

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5
Original Data
exponential upward

Exponential Upward

0 25 50 75 100 125 150 175 200

3

2

1

0

1

2
Original Data
exponential downward

Exponential Downward

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Original Data
logarithmic decay

Logarithmic Decay

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Original Data
increase amplitude

Increase Amplitude

0 25 50 75 100 125 150 175 200

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9 Original Data
keep_constant

Keep Constant

0 25 50 75 100 125 150 175 200

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Original Data
logarithmic growth

Logarithmic Growth

0 25 50 75 100 125 150 175 200

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
Original Data
linear growth

Linear Growth

0 25 50 75 100 125 150 175 200
1.0

0.5

0.0

0.5

1.0
Original Data
decrease amplitude

Decrease Amplitude

0 25 50 75 100 125 150 175 200

0.6

0.8

1.0

1.2

1.4

1.6

Original Data
Linear Growth and Linear Decay

Linear Growth and Linear
Decay

0 25 50 75 100 125 150 175 200

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Original Data
linear decay

Linear Decay

0 25 50 75 100 125 150 175 200

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Original Data
Linear Decay and Linear Growth

Linear Decay and Linear
Growth

0 25 50 75 100 125 150 175 200
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Original Data
linear decay

Linear Decay

Figure 10: Examples of data generation

dx

dt
= σ(y − x) (8)

dy

dt
= x(ρ− z)− y (9)

dz

dt
= xy − βz (10)

where x, y, and z represent the state variables, and σ, ρ, and β are system parameters. For the
generation of Lorenz time series data, we typically set the parameters as follows:

• σ = 10

• ρ = 28

• β = 8
3

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To numerically solve this system, we use methods such as the fourth-order Runge-Kutta method,
initializing the system with a set of initial conditions (x0, y0, z0). The time series for each of the
state variables (x(t), y(t), and z(t)) exhibits chaotic behavior, characterized by high sensitivity to
the initial conditions.

The generated Lorenz time series data provide a rich dataset for testing models on chaotic systems, as
it challenges the model’s ability to predict complex, non-linear temporal dependencies. The chaotic
nature of the Lorenz system makes it an excellent benchmark for evaluating time series forecasting
models.

D ABLATION STUDY

In this section, we conduct an ablation study to understand the importance of various components in
the TITSP model. Specifically, we investigate the significance of the weight matrix W and the role
of Large Language Models (LLMs) in time-series prediction.

D.1 IMPORTANCE OF W

To evaluate the importance of the weight matrix W , we directly use the following equation:

Cij = Aij ·Bij

and compare the performance with the baseline model. The results are presented in Section D.2.

D.2 ARE LLMS REALLY IMPORTANT IN TIME-SERIES PREDICTION?

In this part, we follow the settings of (Tan et al., 2024) to replace LLMs with a Multi-Layer Percep-
tron (MLP) and compare the performance. The results are summarized in Table 7.

Action TITSP TITSP (without W) TITSP (without LLM, with MLP) Time-LLM (Jin et al., 2023)
Metric Compliance Rate MSE Compliance Rate MSE Compliance Rate MSE Compliance Rate MSE
Linear Trend Up 0.90 1.03 0.79 1.19 0.59 2.83 0.63 1.71
Linear Trend Down 0.87 0.88 0.80 0.89 0.60 2.23 0.64 1.55
Exponential Growth 0.89 1.33 0.81 1.57 0.52 3.19 0.58 2.59
Exponential Decay 0.84 1.25 0.79 1.42 0.44 3.25 0.56 2.26
Keep Stable 0.98 0.35 0.82 0.73 0.79 0.70 0.83 0.76
Decrease Amplitude 0.90 0.91 0.79 1.30 0.67 1.51 0.85 1.04
Increase Amplitude 0.94 0.94 0.68 2.05 0.59 2.02 0.79 1.20
Logarithmic Growth 0.77 1.65 0.69 1.69 0.53 2.58 0.49 2.31
Logarithmic Decay 0.83 1.68 0.71 1.74 0.54 2.36 0.48 2.19
Linear Growth and Linear Decay 1 0.83 1.15 0.63 1.89 0.54 3.09 0.38 3.45
Linear Growth and Linear Decay 2 0.79 1.17 0.65 1.97 0.64 2.28 0.49 2.85

Table 7: Comparison of Compliance Rate and MSE for TITSP (with various configurations) and
Time-LLM across various instructed actions.

In summary, both LLMs and the weight matrix W play important roles in the task of time-series
prediction. Specifically, W helps in dynamically building the complex dependency of input instruc-
tions and giving weights to the input embedding. LLMs play a crucial role in modeling complex
patterns, which are essential for accurate time-series prediction.

E COMPLIANCE RATE DEFINITION

In time-series prediction tasks that are guided by specific actions or directives (as outlined in Ta-
ble 6), it is essential to quantitatively evaluate how well the model adheres to these prescribed
behaviors. We introduce the Compliance Rate as a metric that measures the proportion of cases
where the model’s predictions align with the expected trends or patterns dictated by the actions.

E.1 NOTATION

We define the following terms:

• ŷt: The model’s predicted value at time t with the specified action.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• yt: The model’s predicted value at time t without the specified action (i.e., the baseline
prediction).

• T : The total number of time steps in the time series.

• 1{·}: The indicator function, which equals 1 if the condition inside is true, and 0 otherwise.

• δ: A small positive threshold indicating the minimum acceptable rate of change (slope).

• ϵ: A small threshold value representing acceptable fluctuation for the ”Keep Stable” action.

• ttransition: The transition time point for actions involving a change in trend.

E.2 GENERAL DEFINITION

The compliance rate C is computed as:

C =

N∑
i=1

1{Compliance Condition for series i is satisfied}

N
(11)

where N is the total number of time series (or segments) being evaluated.

E.3 COMPLIANCE CONDITIONS PER ACTION

The compliance conditions evaluate the overall trends of the model’s predictions using statistical
methods such as linear regression, which accounts for inherent fluctuations in the data.

1. Linear Trend Up:

• Model Fitting: Fit the following models to ŷt:
(a) Linear Model: ŷt = mt+ c
(b) Exponential Model: ŷt = aebt

(c) Logarithmic Model: ŷt = a ln(t) + c

• Goodness-of-Fit: Compute R2 for each model.
• Compliance Condition: The linear model has the highest R2 and the slope m satis-

fies:
m ≥ δ (12)

2. Linear Trend Down: Similar to Linear Trend Up, but the compliance condition is m ≤
−δ.

3. Exponential Growth:

• Model Fitting: Fit the following models to ŷt:
(a) Exponential Model: ŷt = aebt

(b) Linear Model: ŷt = mt+ c
(c) Logarithmic Model: ŷt = a ln(t) + c

• Goodness-of-Fit: Compute R2 for each model.
• Compliance Condition: The exponential model has the highest R2 and the rate pa-

rameter b satisfies:
b ≥ δ (13)

4. Exponential Decay: Similar to Exponential Growth, but the compliance condition is b ≤
−δ.

5. Logarithmic Growth:

• Model Fitting: Fit the following models to ŷt:
(a) Logarithmic Model: ŷt = a ln(t) + c
(b) Linear Model: ŷt = mt+ c
(c) Exponential Model: ŷt = aebt

• Goodness-of-Fit: Compute R2 for each model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• Compliance Condition: The logarithmic model has the highest R2 and the coefficient
a satisfies:

a ≥ δ (14)

6. Logarithmic Decay: Similar to Logarithmic Growth, but the compliance condition is a ≤
−δ.

7. Keep Stable: The compliance condition is:

σ ≤ ϵ (15)

where σ is the standard deviation of ŷt.

8. Linear Growth and Linear Decay:

• Segment Division: Divide the time series into two segments at ttransition:
– First segment: t ∈ [1, ttransition − 1]
– Second segment: t ∈ [ttransition, T]

• Model Fitting for Each Segment: Fit linear, exponential, and logarithmic models to
each segment.

• Compliance Condition: The linear model has the highest R2 in both segments, with
slopes satisfying: {

m1 ≥ δ (First Segment)
m2 ≤ −δ (Second Segment)

(16)

9. Linear Decay and Linear Growth: Same as above, but with conditions:{
m1 ≤ −δ (First Segment)
m2 ≥ δ (Second Segment)

(17)

10. Increase Amplitude:

• Compliance Condition (Evaluated per time step): For each time step t:

|ŷt − yt × (1 +A)| ≤ ϵ (18)

11. Decrease Amplitude:

• Compliance Condition (Evaluated per time step): For each time step t:

|ŷt − yt × (1−A)| ≤ ϵ (19)

E.4 CALCULATING THE COMPLIANCE RATE

The compliance rate C is calculated based on the action:

1. For actions evaluated per action:

(a) Evaluate the compliance condition for each series.
(b) Aggregate and normalize the results:

C =

(
Number of Series Satisfying Compliance

N

)
× 100% (20)

2. For actions evaluated per time step:

(a) Evaluate compliance at each time step.
(b) Aggregate and normalize across all time steps:

C =

(
Number of Time Steps Satisfying Compliance

Ntotal

)
× 100% (21)

where Ntotal = N × T .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.5 EXAMPLE CALCULATION

Suppose we evaluate 100 time series with the Linear Trend Up action. If 85 of these series have a
slope m such that m ≥ δ, the compliance rate is:

C =

(
85

100

)
× 100% = 85% (22)

E.6 DISCUSSION

• Threshold δ: The threshold δ is chosen based on domain knowledge or acceptable perfor-
mance criteria. In our case, we set δ = 0.01 based on the acceptable slope range of (0.01,
0.015).

• Threshold ϵ: The threshold ϵ for ”Keep Stable” actions is set at 0.001.

F RECONSTRUCTION ABILITY OF AUTOPROMPTER

F.1 ZERO-SHOT ABILITY

In this section, we present the zero-shot generalization performance of the proposed AutoPrompter
method. The model’s ability to follow different trend instructions is measured in terms of the Com-
pliance Rate and Mean Squared Error (MSE). Table 3 provides a detailed performance matrix,
showing how well the model adheres to various trends without any fine-tuning.

Performance Matrix Compliance Rate MSE

Linear Trend Up
Linear Upward 0.81 1.27
Linear Goes Up 0.89 0.93
Linear Growth 0.80 1.13

Linear Trend Down
Linear Downward 0.83 1.03
Linear Goes Down 0.88 0.83
Linear Decay 0.74 1.63

Exponential Growth Exponential Upward 0.71 1.93
Exponential Goes Up 0.82 1.53

Exponential Decay Exponential Downward 0.80 1.43
Exponential Goes Down 0.73 1.89

Logarithmic Growth Logarithmic Upward 0.70 1.91
Logarithmic Goes Up 0.73 2.13

Logarithmic Decay Logarithmic Goes Down 0.79 1.88
Logarithmic Downward 0.83 1.75

Linear Growth and Decay Linear Goes Up and Linear Goes
Down

0.71 1.93

Linear Decay and Growth Linear Goes Down and Linear
Goes Up

0.73 1.51

Increase Amplitude Raise Amplitude 0.65 2.12
Decrease Amplitude Reduce Amplitude 0.63 2.38

Table 8: Zero-shot performance of AutoPrompter across various instructed actions.

Table 9 and Table 10 show the average reconstruction losses for different datasets when evaluated
with input lengths of 512 and 2048, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Dataset Average Reconstruction Loss Dataset Average Reconstruction Loss
ETTh1 0.028 National Illness 0.039
Traffic 0.047 Exchange Rate 0.005

Weather 0.007 ETTm1 0.019
ETTh2 0.021 Electricity 0.035
ETTm2 0.019 Lorenz Time Series 0.010

Table 9: Reconstruction losses for various datasets: Zero-shot with input length = 512.

Dataset Average Reconstruction Loss Dataset Average Reconstruction Loss
ETTh1 0.028 National Illness 0.039
Traffic 0.047 Exchange Rate 0.005

Weather 0.007 ETTm1 0.019
ETTh2 0.021 Electricity 0.035
ETTm2 0.019 Lorenz Time Series 0.010

Table 10: Reconstruction losses for various datasets: Zero-shot with input length = 2048.

F.2 VISUALIZATION OF RECONSTRUCTION ABILITY

Figures 14 and 18 depict the model’s reconstruction ability across various datasets for input lengths
of 512 and 2048, respectively.

0 100 200 300 400 500
Index

1.0

0.8

0.6

0.4

0.2

0.0

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=512

origin_data
reconstructed_data

Figure 11: Electricity Dataset
(512)

0 100 200 300 400 500
Index

4

3

2

1

0

1

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=512

origin_data
reconstructed_data

Figure 12: ETTh1 Dataset
(512)

0 100 200 300 400 500
Index

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=512

origin_data
reconstructed_data

Figure 13: ETTh2 Dataset
(512)

Figure 14

0 500 1000 1500 2000
Index

1

0

1

2

3

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=2048

origin_data
reconstructed_data

Figure 15: Electricity Dataset
(2048)

0 500 1000 1500 2000
Index

5

4

3

2

1

0

1

2

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=2048

origin_data
reconstructed_data

Figure 16: ETTh1 Dataset
(2048)

0 500 1000 1500 2000
Index

3

2

1

0

1

Va
lu

e

Reconstruction Performance of AutoPrompter, sequence length=2048

origin_data
reconstructed_data

Figure 17: ETTh2 Dataset
(2048)

Figure 18

F.3 COMPARISON WITH OTHER BASELINES

To further evaluate the performance of AutoPrompter, we compare it against other baseline methods.
Figure 19 illustrates how AutoPrompter performs in terms of reconstruction loss when compared to
various baselines on the ETTh1 dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Index

4

3

2

1

0

1
Va

lu
e

Reconstruction Performance of AutoPrompter, sequence length=512

origin_data
AutoPrompter
Reduced Codebook Size=50
No Cross-Attention

Figure 19: Comparison of AutoPrompter and other baselines on the ETTh1 dataset.

F.4 PERFORMANCE WITH DIFFERENT COMPRESSED CODEBOOK SIZES

We also examine the effect of different compressed codebook sizes on the total reconstruction loss.
As shown in Figure 20, the performance of the AutoPrompter is sensitive to the size of the com-
pressed codebook.

101 102 103

Codebook Size

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Lo
ss

Total Loss as a Function of Codebook Size

Figure 20: Total loss performance with varying compressed codebook sizes.

G DEALING WITH LONG SEQUENCES

In this section, we discuss the influence of different lengths of prompts. In practical use, users may
input long sequences, but only a few words may be crucial for instructing time-series prediction. In
our TITSP model, the attention query is the aligned embedding of the time-series, and the key and
value are the embeddings of the prompt.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We study three different settings:

• Case 1: The input prompt is only about the instruction, with a length of about 2 to 5 words.
• Case 2: The input prompt includes both the instruction and dataset description, with a

length of about 30 to 40 words.
• Case 3: The input prompt includes the instruction, dataset description, and randomly ini-

tialized tokens, with a length greater than 50 words, totaling about 100 words.

lin
ea

r

tre
nd

up

0.36

0.38

0.40

0.42

0.44

Case 1: Instruction only

lin
ea

r
tre

nd
up Th

e
ex

ch
an

ge
ra

te
da

ta
se

t
co

nt
ai

ns
da

ily
ex

ch
an

ge
ra

te
s

fo
r

th
e

cu
rre

nc
ie

s
o if e gh

t
co

un
tri

es
Au

st
ra

lia
Br

iti
sh

Ca
na

da
Sw

itz
er

la
nd

Ch
in

a
Ja

pa
n

Ne
w

Ze
al

an
d

an
d

Si
ng

ap
or

e

0.02

0.04

0.06

0.08

0.10

Case 2: Instruction and dataset description

tri
ng

po
n

Co
nt

+ in
al

ur
n

Ñ 2 £ in ec
t

ut
h

"; µ à 3 " re
at

e
Ü lin

ea
r

tre
nd

up ex
ch

an
ge

ra
te

da
ta

se
t

da
ily

ex
ch

an
ge

ra
te

s
cu

rre
nc

ie
s

gh
t

co
un

tri
es

Sw
itz

er
la

nd
Ja

pa
n

Ze
al

an
d

an
d

Si
ng

ap
or

e

Top 40 Attention Tokens

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Case 3: Random tokens with instruction and dataset description, showing
top 40 tokens’ attention weights

Figure 21: Attention matrix study when dealing with long sequences

From the attention maps, we can identify that TITSP can effectively handle long sequences and
extract essential words that are crucial for determining the prediction result.

To further explore the performance of TITSP, we compute the compliance rate and MSE perfor-
mance with different input sequence lengths. In this case, we choose the instruction ”Linear trend

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

up” and calculate the compliance rate and MSE for these three different settings. The following
figure visualizes the results.

Instruction Instruction + Dataset Random Input + Instruction + Dataset
65

70

75

80

85

90
Co

m
pl

ia
nc

e
Ra

te
 (%

)
Compliance Rate (%)
MSE

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
SE

Compliance Rate and MSE performance on linear trend up

Figure 22: MSE and Compliance rate performance with different input sequence lengths

Our model can effectively extract essential information when dealing with long input sequences,
performing well in this zero-shot situation. However, as the figure shows, the performance worsens
as the input sequence length increases.

H SENSITIVITY OF λRECON

In this section, we discuss the sensitivity of λrecon. As described in Section 4.2, there are two parts
to the loss function, and λrecon is set to balance them. We choose λrecon to be 0.1, 1, 5, 10, and 20 to
evaluate the performance of the data reconstruction loss on the ETTh1 dataset. The following figure
visualizes the results, and we finally choose 10 as the value of λrecon.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
recon

0.0

0.1

0.2

0.3

0.4

Re
co

ns
tr

uc
ti

on
 L

os
s

0.43

0.39

0.23

0.018 0.02

Reconstruction Loss
Zero-Shot Reconstruction Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ze
ro

-S
ho

t
Re

co
ns

tr
uc

ti
on

 L
os

s

0.71

0.32

0.04
0.011

0.033

Reconstruction Loss and Zero-Shot Reconstruction Loss vs recon

Figure 23: Reconstruction and zero-shot ability with different λrecon

I DETAILED EXPERIMENTAL SETUP FOR THE PROPOSED METHOD

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

To ensure the quality of data generation, we utilize different datasets for different instructions. Ta-
ble 6 outlines which dataset is used to generate new data based on the corresponding instructions.

Additionally, Section C provides details about how we select the hyperparameters and functions.
Here, we summarize the process based on the original dataset.

• The sequence length is set to 192, with the first 96 points used as the input x.

• For the prediction target y, the values are adjusted according to the specific instructions.

Table 11: Datasets with different instructions and the number of training examples.

Dataset Instruction Count

ETTH1
increase amplitude

14307decrease amplitude
keep stable

ETTH2
increase amplitude

14307decrease amplitude
keep stable

Weather

linear trend up

52603

linear trend down
exponential growth
exponential decay
logarithmic growth
logarithmic decay
keep stable
linear growth and linear decay
linear decay and linear growth

Exchange rate

linear trend up

7207

linear trend down
exponential growth
exponential decay
logarithmic growth
logarithmic decay
keep stable
linear growth and linear decay
linear decay and linear growth

Electricity

linear trend up

26210

linear trend down
exponential growth
exponential decay
logarithmic growth
logarithmic decay
keep stable
linear growth and linear decay
linear decay and linear growth

ETTm1
increase amplitude

57507decrease amplitude
keep stable

ETTm2
increase amplitude

57507decrease amplitude
keep stable

Traffic
increase amplitude

16476decrease amplitude
keep stable

The detailed function of each instruction is described in Section C. We select the instruction for each
dataset based on the original features of the dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

DETAILS ABOUT THE CONVOLUTION LAYERS AND PATCHING

PATCHING PROCESS

The input time series are divided into smaller sequences of length 96, similar to the approach used
in PatchTST (Nie et al., 2022).

ENCODER ARCHITECTURE

The encoder in AutoPrompter consists of:

• Three 1-dimensional convolutional layers.
• One residual connection applied to the first layer.
• ReLU activation function after the second and third convolutional layers.
• A linear layer projects features to a dimensionality of 1536, matching the language model

embedding size.

The encoder structure is summarized in Table 12. Layers with a stride of 2 compress the input
sequence by a factor of 4, meaning every four points are combined into one embedding in the
compressed semantic space.

Table 12: Encoder Configuration

Layer Input Channels Output Channels Kernel Size Stride Padding
Convolution Layer 1 1 128 4 2 1
Convolution Layer 2 128 256 4 2 1
Convolution Layer 3 256 256 3 1 1

DECODER ARCHITECTURE

The decoder consists of:

• Three convolutional layers.
• One residual connection.

The decoder structure is shown in Table 13.

Table 13: Decoder Configuration

Layer Input Channels Output Channels Kernel Size Stride Padding
Convolution Layer 1 1536 256 3 1 1
Convolution Layer 2 256 128 4 2 1
Convolution Layer 3 128 1 4 2 1

DECODER CONNECTED TO LLM OUTPUT

The decoder connecting to the LLM output consists of a single 1-dimensional convolutional layer
(Table 14). Since the original time series is compressed by a factor of 4, there are 24 embeddings of
size 1536. The input channel is the product of 24 and 1536 after flattening.

Table 14: Decoder-LLM Configuration

Layer Input Channels Output Channels Kernel Size Stride Padding
Convolution Layer 1 36864 96 3 1 1

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

HYPERPARAMETERS USED

The hyperparameters used in the experiments are summarized in Table 15. Early stopping is applied
if no improvement is observed on the test set for more than 10 epochs. For the electricity and traffic
datasets, the number of epochs is reduced to 5 due to faster convergence.

Table 15: Hyperparameter Configuration

Hyperparameter Value
Learning Rate 5.00E-04
Batch Size 16
Epochs 20 (default), 5 (electricity/traffic)
Optimizer Adam

IMPLEMENTATION DETAILS FOR QWEN4MTS, UNITIME AND
LLAMA-8B-INSTRUCT

QWEN4MTS (FROM GPT4MTS)

Following GPT4MTS (Jia et al., 2024):

• Word Embedding, Position Embedding, Add & Norm, and Output Linear Layer are train-
able.

• The embedding size is set to 1536, consistent with Qwen.
• The learning rate is set to 5e-5.

UNITIME

Following UniTime (Liu et al., 2024b):

• A binary indicator is used to generate the mask.
• Time-series embeddings are concatenated with sentence embeddings.
• The hidden dimension is set to 1536 (matching Qwen), with n embd set to 1536.
• The mask rate is 0.5, and the learning rate is set to 1e-4.
• The lightweight transformer is replaced with Qwen LLM.
• All experiments are trained for 10 epochs.

LLAMA-3.1-8B-INSTRUCT

Prompt Design for Llama-3.1-8B-instruct (Dubey et al., 2024):

The prompt include task description, instruction and specific input number. The following is an
example.

• ”[Task Description]: forecast the next 96 steps given the previous 96 steps information.”
• ”[Instruction]:the prediction should follow ’Linear Growth’”
• ”[Input Number]: 0.173, 0.125, ...”

J WHAT REALLY HAPPENED ON OCTOBER 10, 2008?

The sharp drop in the GBP/USD exchange rate on October 11, 2008, can be traced to events on
October 10, 2008, when global financial markets experienced a massive sell-off, exacerbating the
effects of the ongoing financial crisis.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

On October 10, 2008, the Dow Jones Industrial Average plunged 679 points (or about 7.3%) by
the end of the trading day, after dipping as much as 800 points during intra-day trading. European
markets saw even steeper declines, with the FTSE 100 (UK’s benchmark index) dropping around
8.9% and Germany’s DAX falling 7%. In Asia, Japan’s Nikkei 225 dropped 9.6%, adding to the
already severe financial instability.

Despite the UK government’s £500 billion bailout package announced on October 8 to rescue major
banks like Royal Bank of Scotland and Lloyds TSB, concerns over the health of the global financial
system persisted. Investors began fleeing to safer assets, driving demand for the U.S. dollar as a safe
haven, which in turn weakened the British pound.

In addition to the stock market crashes, the growing fear of a deep global recession weighed heavily
on the British pound, especially because the UK economy was seen as particularly vulnerable due
to its dependence on the financial sector. This combination of stock market turmoil, concerns over
the UK’s banking system, and the safe-haven demand for the U.S. dollar caused the sharp decline in
the GBP/USD exchange rate on October 11, 2008 (Times, 2008).

32

	Introduction
	Related works
	Time Series Forecasting Approaches
	Multimodal Learning in Time Series Prediction
	Contributions of Our Work.

	Problem definition
	Proposed methodology
	Data Generation
	Proposed architecture

	Experiments
	experiments setup
	AutoPrompter: Unsupervised Alignment Evaluation
	Overall Performance Evaluation of TITSP

	Concluding remarks
	Limitations of Time-LLM: Influence of Textual Prompts
	Overall Performance of TITSP
	Visualization of Instruction-Based Time-Series Predictions
	Zero-Shot Samples of TITSP
	Visualization of Normal Prompted Time-Series Prediction

	Data Generation
	Ablation Study
	Importance of W
	Are LLMs Really Important in Time-Series Prediction?

	Compliance Rate Definition
	Notation
	General Definition
	Compliance Conditions per Action
	Calculating the Compliance Rate
	Example Calculation
	Discussion

	Reconstruction Ability of AutoPrompter
	Zero-shot Ability
	Visualization of Reconstruction Ability
	Comparison with Other Baselines
	Performance with Different Compressed Codebook Sizes

	Dealing with Long Sequences
	Sensitivity of recon
	Detailed Experimental Setup for the Proposed Method
	What Really Happened on October 10, 2008?

