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ABSTRACT

We propose to learn to generate grasping motion for manipulation with a dexterous
hand using implicit functions. With continuous time inputs, the model can gener-
ate a continuous and smooth grasping plan. We name the proposed model Con-
tinuous Grasping Function (CGF). CGF is learned via generative modeling with
a Conditional Variational Autoencoder using 3D human demonstrations. We will
first convert the large-scale human-object interaction trajectories to robot demon-
strations via motion retargeting, and then use these demonstrations to train CGF.
During inference, we perform sampling with CGF to generate different grasping
plans in the simulator and select the successful ones to transfer to the real robot.
By training on diverse human data, our CGF allows generalization to manipulate
multiple objects. Compared to previous planning algorithms, CGF is more effi-
cient and achieves significant improvement on success rate when transferred to
grasping with the real Allegro Hand. Our anonymous project page is available at
https://continuous-grasping.github.io/.

(a) Human Demonstration (b) Retargeting Result

(c) Generated Trajectory in the Simulation using CGF

(d) Generated Trajectory in the Real World using CGF

Figure 1: Examples of our generated trajectories learned from human demonstrations. Given hand-
object trajectories from human video (a), we first translate them into robot manipulation demonstra-
tions (b). We then train Continuous Grasping Function (CGF) to generate human-like trajectories
and deploy them in simulation (c) and real robot (d).
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1 INTRODUCTION

Learning to perform grasping with a multi-finger hand has been a long-standing problem in
robotics (Salisbury & Craig, 1982; Rus, 1999; Okamura et al., 2000; Dogar & Srinivasa, 2010).
Using a dexterous hand instead of a parallel gripper offers the robot the flexibility on operating with
daily life objects like humans do, but also largely increases the difficulty given the large Degree-
of-Freedom of the dexterous hand. A typical method for this task is a 2-step paradigm including
grasp pose estimations following by motion planning (Varley et al., 2015; Brahmbhatt et al., 2019;
Lu et al., 2020). Recent works have also studied on using Reinforcement Learning with human
demonstration guidance for grasping (Mandikal & Grauman, 2021; Qin et al., 2021).

While these approaches have shown encouraging results, they plan the grasping with finite discrete
time steps. On the other hand, human grasping motion is continuous, can we learn a continuous
grasping process for robot hands? Making robot grasping continuous can lead to a more natural
and human-like trajectory, and each step we sample will be differentiable which we can use a more
robust augmented PD controller. Recent progress on neural implicit functions have shown successful
applications in learning continuous image representation (Chen et al., 2021; Dupont et al., 2021)
and continuous 3D shape representation (Park et al., 2019; Mescheder et al., 2019; Mildenhall et al.,
2020). Can this success be migrated from representing 2D/3D space to time?

In this paper, we propose to learn Continuous Grasping Function (CGF) with a dexterous robotic
hand. To mimic the continuous human motion, we utilize human grasp trajectories from videos to
provide demonstrations and supervision in training. By training CGF with generative modeling on
a large-scale of human demonstrations, it allows generalization to grasp multiple objects with a real
Allegro robot hand as shown in Figure 1 (d).

Specifically, given the 3D hand-object trajectories from human videos (Figure 1 (a)), we first perform
motion retargeting to convert the human hand motion to the robotic hand motion to obtain the robotic
manipulation demonstrations (Figure 1 (b)). We then learn a CGF in the framework of a Conditional
Variational AutoEncoder (CVAE) (Sohn et al., 2015a) by reconstructing the robotic hand motion
with these demonstrations. Specifically, the conditional encoder of our CGF model will take the
object point clouds as inputs and provides the object embedding. Taking the concatenation of the
object embedding, a latent code z and a time parameter t, the decoder of CGF is an implicit function
which outputs the dexterous hand parameters in the corresponding time t. By sampling a continuous-
time sequence of t, we can recover a continuous grasping trajectory in any temporal resolution. By
sampling the latent code z, we can achieve diverse trajectories for the same object. Figure 1 (c)
shows an example of the inferred grasping trajectory in the simulator.

In our experiments on testing our model, we will perform sampling on the latent code z multiple
times given a test object and generate diverse grasping trajectories. We then execute these trajecto-
ries in the simulator and select the one which can successfully grasp the object up. Different from
the previous paradigm on grasping followed by planning, we empirically find our method is much
more efficient since we avoid performing planning for each trajectory but directly generate the tra-
jectory from CGF. Given the selected trajectories from the simulator, we can deploy them in the real
world with an Allegro hand attached on an X-Arm 6 robot. Compared with planning, our method
achieves better Sim2Real generalization with more natural and human-like motion, which leads to a
better success rate.

We highlight our main contributions here: (i) A novel Continuous Grasping Function (CGF) model
which allows smooth and dense sampling in time for generating grasping trajectory; (ii) CGF allows
efficient generation of grasping plan and more robust control in simulation; (iii) We achieve much
significant improvement on Sim2Real generation on Allegro hand by learning CGF from human
demonstrations.

2 RELATED WORK

Generalization in Dexterous Manipulation. Dexterous manipulation is one of the most challeng-
ing problems in robotics (Salisbury & Craig, 1982; Rus, 1999; Okamura et al., 2000; Dogar &
Srinivasa, 2010; Dafle et al., 2014; Bai & Liu, 2014; Calli et al., 2018). Recent studies on model-
free (OpenAI et al., 2018; 2019; Huang et al., 2021; Chen et al., 2022) and model-based (Kumar
et al., 2016b; Nagabandi et al., 2020) Reinforcement Learning (RL) have achieved encouraging re-
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sults on multiple complex dexterous manipulation tasks. However, there is still a large challenge on
generalization for RL. For example, when the RL policy in OpenAI et al. (2018) can be transferred
to the real robot, it is learned specifically for one object. On the other hand, an RL policy trained
with multiple objects in simulator (Chen et al., 2022) has not yet been transferred to real. Instead of
using RL, one line of works on dexterous grasping is first performing a grasp estimation and then
planning for execution (Andrews & Kry, 2013; Kappler et al., 2015; Varley et al., 2015; Lu et al.,
2020), which have shown great success on generalization to multiple objects and in real robots at
the same time. Our work is more close to this line of research, where we achieve generalization
by learning a continuous grasping function from human videos. Different from previous works,
our method allows more smooth and natural grasping generation and it is also more efficient and
accurate at the same time. We will provide comparisons to previous planning approaches in our
experiments.

Grasping Motion Synthesis. Synthesizing and predicting human grasp has been an active research
field for both computer vision and robotics (Morrison et al., 2018; Brahmbhatt et al., 2019; Taheri
et al., 2020; Karunratanakul et al., 2020; Jiang et al., 2021a; Grady et al., 2021; Yang et al., 2021;
Wei et al., 2022). For example, Grasping Field (Karunratanakul et al., 2020) is proposed as an
implicit function that generates plausible human grasps given a 3D object. However, to apply on
the robot hand, we will need to synthesize the full motion instead of a static pose. This motivates
the research on synthesizing the hand-object interaction motions (Hsiao & Lozano-Perez, 2006;
Ye & Liu, 2012; Wu et al., 2021; Zhang et al., 2021; Taheri et al., 2022; Christen et al., 2022). For
example, a full body and hand motion are synthesized together to grasp an object in Wu et al. (2021).
While related to our work, most approaches are still focusing on modeling the human hand. In this
paper, we provide a framework where we first retarget the human hand trajectories to the robot hand
trajectories and learn the robot grasping function with them.

Learning from Human Demonstrations. Our work is related to imitation learning or RL with
human demonstrations for not only parallel grippers (Schmeckpeper et al., 2020; Shao et al., 2020;
Young et al., 2020) but also dexterous hands (Gupta et al., 2016; Kumar et al., 2016a; Rajeswaran
et al., 2017; Christen et al., 2019; Garcia-Hernando et al., 2020; Qin et al., 2021; Sivakumar et al.,
2022; Qin et al., 2022; Wu et al., 2022). For example, DexMV is a platform proposed in Qin
et al. (2021) for extracting 3D human demonstrations from videos, generating robot demonstrations
by retargeting, and augmenting Reinforcement Learning with these demonstrations for multiple
manipulation tasks. While we both share similar methods on obtaining robot demonstrations for
training, the RL approach taken GT states as inputs in DexMV limits its generalizability to multiple
objects and real robot transfer. On the other hand, our implicit function is able to generate continuous
grasping given a point cloud input and it can be deployed in the real robot. As most RL approaches
are still with full access to GT states, they are not directly comparable to our method.

Implicit Functions for Robotic Tasks. Beyond its successful applications in computer vision,
implicit functions have recently been explored in robotic manipulation tasks (Li et al., 2021; Sime-
onov et al., 2021; Li et al., 2022; Jiang et al., 2021b; Adamkiewicz et al., 2022). For example,
NeRF (Mildenhall et al., 2020) is used as a manner for learning 3D representations for control in Li
et al. (2021). Instead of using implicit functions to learn static 3D representations, our work focuses
on the continuity in time. We build a grasping function to directly generate the trajectory instead of
a static scene.

3 METHOD

3.1 OVERVIEW

We aim to learn human-like robot grasping given object point clouds as input. We emphasize that
learning from human demonstration could lead to more natural trajectories and the continuity helps
the following control. To this end, we train Continuous Grasping Function with a CVAE framework
to generate continuous trajectories and deploy them in the simulator and real robot consecutively.
The pipeline is shown in Fig. 2. During training, we first perform hand motion retargeting on a
large-scale hand-object interaction dataset (Chao et al., 2021) to collect demonstrations. Then the
retargeting results served as the supervision for the grasping function learning. During inference,
numerous continuous trajectories are sampled for a specific object and tested in the simulator. The
successful trajectories will be deployed to the real robot. Besides, we can take more advantage
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Figure 2: Pipeline overview. During training, human demonstrations are first translated to robot
joint positions which serve as the supervision for grasping function learning. During inference, our
trained CGF takes a sampled latent code z, object feature and query time sequence as inputs to
generate the trajectory. We then execute these trajectories in the simulator and deploy successful
ones to the real robot.

of continuous implicit function by utilizing augmented PD control with the derivative of the joint
positions.

3.2 HUMAN DEMONSTRATION TRANSLATION

Data collection on human hand-object interactions is relatively well established and accessible. Us-
ing large-scale human hand-object interaction data, we can learn patterns of how dexterous hands
manipulate objects, and our goal is to generalize it to the robot hand. In this paper, we use ground
truth trajectories from DexYCB (Chao et al., 2021). Translating human hand motion to robotics mo-
tion is the first step. Following Qin et al. (2022), we formulate our hand motion retargeting problem
as a position-based optimization problem. We encourage the robot’s joint position to be as close as
possible to its corresponding human hand joint position,

min
qt

N∑
i=0

||Ji(qt)− ji||2 + λ||Ji(qt)− Ji(qt−1)||2 s.t. qlower ≤ qt ≤ qupper, (1)

where qt is joint position at time t, Ji is the forward kinematics function of the i-th joint and ji
is the Cartesian coordinates of the hand joint which matches the i-th joint of the robot. qlower and
qupper are the joint limits. We also encourage smoothness by incorporating a normalization term to
penalize a large distance between qt and qt−1. We set the initial q0 = 1

2 (qlower + qupper).

3.3 CONTINUOUS GRASPING FUNCTION LEARNING

Our generative model is based on Conditional Variational Auto-Encoder (CVAE) (Sohn et al.,
2015b), where we propose Continuous Grasping Function (CGF) to replace the traditional decoder.
During training, both encoder and CGF are used to learn the grasping generation in a robot hand re-
construction task with object point clouds and robot joint positions as inputs; During inference, only
CGF is used to generate continuous grasping with only object point clouds as input. The architecture
is shown in Figure 3.

During training, given the object point cloud Po ∈ RN×3 (N is the number of points) and a
sequence of joints positions {qt}, t ∈ {0, 1, · · · , T} (T is the number of frames) as inputs, we em-
ploy PointNet (Qi et al., 2017) and MLP to extract object feature Fo ∈ R1024 and hand features
{Fh

t } ∈ R256 respectively. All these features are then concatenated as Foh for the encoder input.
The outputs of the encoder are the mean µ ∈ R256 and variance σ2 ∈ R256 of the Gaussian distri-
bution Q

(
z | µ, σ2

)
. The latent code z is sampled from the distribution for the hand reconstruction.

After the encoding and sampling, we use our CGF to decode continuous grasping. Inspired by
implicit functions (Park et al., 2019; Mescheder et al., 2019; Chen & Zhang, 2019) for shape repre-
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Figure 3: Network architecture. Our generative model takes object point cloud and a sequence of
joint positions as input and recovers corresponding robot hands. The proposed CGF takes the latent
code z, object feature, and the query time t as inputs to predict the corresponding joint position q̂t.
⊕ denotes concatenation.

sentation, our proposed CGF maps the query time t to the joint position qt. We concatenate latent
code z and the object feature Fo with time t as the input for CGF. Specifically, CGF is a MLP f
parameterized by θ which predicts the corresponding joint position q̂t:

q̂t = f(t, z,Fo; θ). (2)

We reverse the time and define t = 0 as the end of the grasping, i.e., when the robot’s hand touches
the object. And as t grows, the hand moves further away from the object. Given the predicted joint
position q̂t, a differentiable forward kinematics layer Ji is utilized to get the Cartesian coordinate of
the i-th joint.

The first objective function is the reconstruction error, which is defined as the L2 distance between
the joint positions as well as their Cartesian coordinates. We denote them as Lq =

∑T−1
t=0 ∥q̂t−qt∥22

and Lj =
∑T−1

t=0

∑
i=0 ∥Ji(q̂t) − Ji(qt)∥22 respectively. Following the training of VAE (Andrews

& Kry, 2013), we define a KL loss to encourage the latent code distribution Q
(
z | µ, σ2

)
to be

close to the standard Gaussian distribution, which is achieved by maximizing the KL-Divergence as
LKL = −DKL

(
Q
(
z | µ, σ2

)
∥N (0, I)

)
. We also introduce a contact loss at the end of the grasping

to push the tips of robot hand to the object surface, which is achieved by minimizing distances to
their closest object points Lcontact =

∑
i minp∈Po ∥Ji(q0)− p∥22 where i belongs to the indices of

all tips. The full training loss is:

L = λqLq + λjLj + λKLLKL + λcLcontact, (3)

where λq, λj , λKL and λc are weights for various losses.

During inference, our CGF can easily sample a large number of diverse trajectories. We use Point-
Net to get the object feature Fo and sample a random latent code z from the standard Gaussian
distribution, then with a time query sequence, our CGF can produce a continuous and natural tra-
jectory. By sampling a large amount of z, we can find trajectories with a smaller gap between the
human hand and robot hand, which guarantees both natural and successful trajectories.

3.4 AUGMENTED PD CONTROL

Different from previous works, we utilize an implicit function to output the target joint position qd,
and given the continuity property of the implicit function, we can easily get the derivative (target
joint velocity) q̇d and the second-order derivative (target joint acceleration) q̈d. Thus we can use a
more robust controller, augmented PD control with the form of

τ = ID(q̈d, q, q̇)−Kpe−Kv ė, (4)

where e = q− qd, ė = q̇− q̇d, τ is the joint torque and ID(q̈d, q, q̇) is the inverse dynamics. Kp and
Kv are hyperparameters. q, q̇, and q̈ are the joint position, velocity, and acceleration of the robot.
As far as we know, our method is the first end-to-end manner that can directly get the derivative to
use the augmented PD control.

4 EXPERIMENTS

We perform quantitative and qualitative evaluations of the grasping generated by our method. We
show that by learning from human demonstrations, our method is more efficient in finding successful
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grasping in the simulator. We do not plan for each trajectory, instead, we sample a large number of
trajectories to get successful trajectories. For real-world experiments, we employ an Allegro hand
attached on X-Arm 6. We perform evaluations to show that our generation results have the ability to
be transferred to the real robot with a higher success rate.

4.1 EXPERIMENTAL SETTING

Datasets. We utilize the DexYCB dataset (Chao et al., 2021) to serve as human demonstrations.
DexYCB contains 1,000 sequences of human grasping motions with 20 YCB objects (Calli et al.,
2015). We use 15 of them as training objects and 5 of them as test objects. We filter out all left-
handed sequences and perform hand motion retargeting (Sec. 3.2) on other sequences to translate
the hand motion into Allegro robot motion.

Baselines. We mainly compare CGF to two-step methods, i.e., grasping synthesis followed by
motion planning. We provide two grasping synthesis baselines: GraspTTA (Jiang et al., 2021a) and
GraspIt (Miller & Allen, 2004), where the former is also a generative model and the latter is based
on searching. For GraspTTA, since its direct output is the Mano hand pose, we apply the same
hand motion retargeting to obtain the Allegro hand joint positions. After that, we utilize rapidly
exploring random tree (RRT) (LaValle et al., 1998) and cross-entropy method (CEM) (Rubinstein,
1999) with model predictive control (MPC) (Maciejowski, 2002) for planning the trajectory to reach
the grasp pose. We name them GraspTTA+RRT and GraspTTA+CEM-MPC respectively. Note
that GraspTTA+CEM-MPC is used for generating the demonstrations in Wu et al. (2022), and we
use its reward for CEM-MPC. For GraspIt, due to the high Degree-of-Freedom of the dexterous
hand, we firstly leverage the large set of grasping poses from ContactGrasp (Brahmbhatt et al.,
2019) to construct a low-dimensional subspace via EigenGrasp (Ciocarlie et al., 2007). We then use
GraspIt (Miller & Allen, 2004) and RRT for the grasping searching (including post-optimization)
and motion planning respectively. We name it GraspIt+RRT. For the smoothness evaluation, we
additionally perform linear interpolation between the beginning and ending joint positions generated
by CGF and take it as a trivial baseline.

Implementation Details. For training CGF, we sample 2, 000 points on the object mesh as the input
object point clouds. During training, we employ the Adam optimizer with the learning rate 5e− 4,
where the learning rate is reduced by half per 500 epochs. The batch size is 32. The training takes
1000 epochs in total. The loss weights are λq = 1, λj = 10, λKL = 1e−3 and λc = 50. We sample
10, 000 latent codes for CGF and output the trajectories. We then pick the successful trajectories in
the simulator to evaluate in the real world and count the success rate. For simulation experiments,
environments are built upon the SAPIEN (Xiang et al., 2020) simulator.

For GraspTTA, we generate 200 grasp poses for each object. For CEM-MPC, we set popsize M =
100, time horizon T = 5, number of elites e = 10, and iterations I = 2. For GraspIt, we search
for valid grasp poses with 100 different random seeds and use the contact energy as the objective
function. For motion planning with RRT, we set 10,000 nodes in the tree and set step size ϵ = 0.01
and probability of sampling β = 0.5.

4.2 EVALUATION METRICS

Smoothness. To measure the continuity of the generated grasping, we propose to compare the
smoothness. We first normalize joint positions by making all joints start at 0 and end at 1 in all
trajectories. Then we calculate discrete first-order and second-order gradients, i.e. velocity and
acceleration. Smoothness is defined as the sum of the L1 distances of position, velocity, and ac-
celeration between neighboring frames. Note that the linear interpolation is the upper bound with a
joint position smoothness of 1.0.

Cost per successful trajectory in simulator. While sampling more grasps with a generative model
or more random configurations with a planning algorithm could increase the probability of find-
ing a successful trajectory, the issue of cost should not be neglected. At this point, it is important
to evaluate the average cost of one successful trajectory. Therefore, we evaluate this average cost
among baselines and our method in the simulator. Our method and GraspTTA+CEM-MPC require
environment steps during the deployment and the cost is the number of steps per successful trajec-
tory. GraspTTA+RRT requires collision checks during the planning and the cost is the number of
collision checks per successful trajectory.
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Figure 4: Qualitative evaluation in the simulation. Because of human demonstrations, our CGF
generates a more natural and reasonable trajectory, which is helpful for the sim-to-real transfer. G is
short for GraspTTA.

Smoothness - Joints Smoothness - Cartesian
Method Pos ↓ Vel (log) ↓ Acc (log) ↓ Pos ↓ Vel (log) ↓ Acc (log) ↓
GraspTTA (Jiang et al., 2021a) + RRT 3.19 3.40 6.43 7.82 3.80 6.83
GraspTTA (Jiang et al., 2021a) + CEM-MPC 6.96 3.09 5.50 13.18 3.33 5.74
Ours 9.77 2.03 3.47 5.39 1.84 3.31
Linear Interpolation 1.00 -3.58 -1.99 1.96 0.70 1.38

Table 1: For smoothness of joint positions and Cartesian coordinates, our CGF outperforms base-
lines by a large margin, which helps produce more natural trajectories and better control.

Success rate in the real world. We also evaluate the success rate in the real world. Note the
successful trajectories in the simulator do not guarantee success in the real world because of the
sim-to-real gap. For our method and all the baselines, we collect 20 successful trajectories, deploy
them in the real world and count the success rate. This metric reflects the sim-to-real transfer ability.

4.3 SIMULATED EXPERIMENTAL RESULTS

Smoothness evaluation. We compare the smoothness with three baselines and summarize the re-
sults in Tab. 1. For better comparison, the smoothness for velocity and acceleration is in the log
form. For both joint positions and Cartesian coordinates, our CGF outperforms baselines by a large
margin. Note that for the joint position smoothness, our method does not show an advantage over the
baseline. This is due to that humans tend to follow a natural curve rather than the shortest path. Nev-
ertheless, the improvement in the smoothness of velocity and acceleration plays an important role in
producing natural trajectories, suppressing vibration, and achieving high accuracy control (Flash &
Hogan, 1985; Piazzi & Visioli, 2000).

Success cost evaluation. The average cost per successful trajectory is shown in Tab. 2. For better
comparison, the number of simulation steps and collision detection are in the log form. Since we di-
rectly execute the target joint positions generated from our CGF, through sampling a large number of
trajectories, we can get a certain number of successful trajectories. Quantitatively, the average cost of
getting a successful trajectory is significantly lower than the GraspTTA+RRT and GraspTTA+CEM-
MPC. The main reasons are: (i) Our method does not require excessive exploration like MPC-CEM
or sampling numerous configurations like RRT; (ii) Our method produces more natural trajectories
than two-step methods, yielding a higher probability for finding a successful trajectory. We also
evaluate the cost of unseen objects, although the cost increased a little, our method still surpasses
the baselines. Although linear interpolation produces the smoothest trajectory, it never grasps an
object successfully in the simulator.
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Interpolation
Figure 5: Grasping interpolation. We show the first frame and the last frame of the grasping trajec-
tory. Yellow lines indicate the trajectory of the palm joint. Our method produces diverse grasping
and the interpolation between them is also plausible. To the best of our knowledge, this result on
interpolating both robot hand grasping pose and trajectory has not been shown before.

Cost / Successful Trajectory (log) ↓
Method Seen Object Unseen Object
GraspTTA (Jiang et al., 2021a) + RRT 5.41∗ 5.55∗

GraspTTA (Jiang et al., 2021a) + CEM-MPC 5.96 6.16
Ours 4.29 4.67
Linear Interpolation - -

Table 2: Success cost evaluation. Since our method only requires fewer simulation steps to test a
trajectory, the average cost for a successful trajectory is much lower than baselines. Note that we
calculate the amount of collision detection for RRT.

Qualitative evaluation. We visualize the typical trajectories of the baselines and our method in
Fig. 4. Since RRT is only planning the reachable target joint positions, the trajectory may not be
natural. And a small perturbation in the execution process may cause it to collide with objects.
CEM-MPC is not a long-time horizon method, which will make it fall into a local optimum quickly.
As shown in Fig. 4, the middle finger is not in the ideal position. However, our CGF, learning from
the human demonstration, could generate a much more natural and smooth trajectory. This is helpful
for the sim-to-real transfer, which we will discuss in the next section.

Grasping Diversity. The ability to generate diverse outputs is one of the motivations for using
CVAE. We perform interpolation in the latent space and show the results in Fig. 5. Our method
produces diverse grasping and the interpolation between them is also plausible. We believe this is
an interesting and potentially very useful property of our model. To the best of our knowledge, this
result on interpolating both robot hand grasping pose and trajectory has not been shown before.

4.4 REAL-WORLD ROBOT EXPERIMENTS

Setup. For the real-world robot experiments, we attached an Allegro hand on an X-Arm 6 robot. We
select 6 real objects from YCB (Calli et al., 2015) which are Banana, Bleach Cleanser, Ball Potted
Meat Can, Tomato Soup Can and Mustard Bottle, where the first 3 objects are unseen. The initial
pose of the object is given and we use open-loop control for grasping.

Results with a Real Robot Hand. We evaluate the sim-to-real transfer ability of the trajectories
generated by our method and baselines. For each object and method, we collect 20 successful tra-
jectories in the simulator and deploy them in the real world. We report the success rate in Tab. 3.
Although all the trajectories succeeded in the simulator, our method has a much higher success
rate in the real world than the baselines. We believe there are two main reasons leading to better
sim-to-real transfer ability: (i) Learning from human demonstration can lead to more natural behav-
ior trajectory; (ii) The use of implicit function also helps provide a continuous and more smooth
trajectory. In contrast, the motion planning used in the 2-step procedure baselines often generates
unnatural trajectories which reduces the success rate when deploying in the real world. Specifically,
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Figure 6: Real-world results on Potted Meat Can, Tomato Soup Can and Ball. Our CGF successfully
transfers the simulation trajectory to the real robot.

Success Rate (%) ↑
Method Banana Cleanser Meat Can Soup Can Bottle Ball
GraspTTA (Jiang et al., 2021a) + RRT 10.0 15.0 10.0 5.0 5.0 10.0
GraspTTA (Jiang et al., 2021a) + CEM-MPC 10.0 10.0 15.0 5.0 0.0 15.0
GraspIt (Miller & Allen, 2004) + RRT 60.0 65.0 50.0 50.0 65.0 40.0
Ours 70.0 85.0 70.0 80.0 85.0 65.0

Table 3: Real-world experiments. For the successful trajectories in the simulation, our CGF has a
higher success rate in the real world.

while GraspTTA (Jiang et al., 2021a) is able to generate grasp poses in the simulation, it does not
ensure stable robotic grasping in the real world, and an unnatural trajectory approaching the grasp
accumulates additional errors. On the other hand, GraspIt (Miller & Allen, 2004) is able to generate
stable robot grasp pose in the real world, however, the 2-step procedure with it still performs worse
than our method. We further provide a visualization of our successful trajectories in the real world
in Fig. 6, which shows that our method could generate natural and human-like grasping.

4.5 ABLATION STUDY

Mass 1x Mass 2x Mass 3x
Velocity 1x 5.66% 4.15% 7.10%
Velocity 2x 14.95% 7.73% 2.10%
Velocity 3x 4.29% 1.65% 16.77%

Table 4: Ablation study on the augmented
PD control. We report improvements on
the success rate of the augmented PD con-
trol over the default PD control with dif-
ferent velocities and masses.

To demonstrate the advantages of continuous grasping,
we ablate the augmented PD control (Sec. 3.4) which
relies on the derivatives of CGF. We compare the per-
formance of the augmented PD control to the default
PD control in the simulator with different velocities and
masses. Specifically, we set the speed to 1x, 2x and 3x
and the mass of the robot to 1x, 2x and 3x. We combine
them in pairs and report the augmented PD control’s
improvements on the success rate in Tab. 4. We show
that the augmented PD control has improvements in all
various cases, which proves its robustness.

5 CONCLUSION

We propose a novel implicit function named Continuous Grasping Function to generate smooth and
dense grasping trajectories. CGF is learned in the framework of a Conditional Variational AutoEn-
coder using 3D human demonstrations. During inference, we sample various grasping plans in the
simulator and deploy the successful ones to the real robot. By training on diverse human-object
data, our method allows generalization to manipulate multiple objects. Compared to previous plan-
ning algorithms, CGF is more efficient and has a better sim-to-real generalization ability. We are
committed to releasing our code and environment.

9
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the following information in the main paper
and appendix:

• Implementation details. We provide all implementation details and relevant hyper parame-
ters of the proposed method and baselines in Sec. 4.1 and Appendix A, which are sufficient
to reproduce our experiment results.

• Simulation environment. We describe our simulation environment settings, action space
and success criteria in Appendix A.

• Real robot setup. We provide details on setting up real robot and conducting real-world
experiments in Appendix B.

We are also committed to releasing our code and environment, which we believe is important to
maintain an open research community.
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A IMPLEMENTATION DETAILS

Environment. Environments are built upon the SAPIEN (Xiang et al., 2020) simulator with
timestep set to 0.004 and frame skip set to 5. The action space is the motor commands of the
22 actuators on the robot’s hand. The first 6 motors control the global position and orientation of the
robot while the last 16 motors control the fingers of the hand. The success criteria for our grasping
task are (i) the object and the hand are in contact and (ii) the object is lifted by 4 cm.

Network Architecture. We show our network architectures during training and testing in Tab. 5
and Tab. 6 respectively. During training, the object point cloud and 20 frames of hand joint positions
are utilized as inputs. Then a PointNet encoder and an MLP encoder are employed to extract object
feature Fo and a set of hand features {Fh

t } respectively. Then all features are concatenated and
passed to the CVAE encoder to predict the posterior distribution Q(z|µ, σ2). Then, a latent code z
is sampled from the distribution, and concatenated with the object feature Fo and query time t as
the input of CGF for regressing the hand joint positions. Note that the global rotation (in the form
of axis angle) is converted to the continuous 6d representation (Zhou et al., 2019). In the end, a
forward kinematics layer is utilized to convert the joint positions to the Cartesian coordinates.

Stage Configuration Output

0
Input object point cloud Po 2000× 3

Input joint positions {qt} 20× 22

Feature extraction

1
PointNet encoder 1024 (Fo)

MLP encoder
(22, 256, 256, 64) 20× 64 ({Fh

t })

Calculating distribution (Input concat({Fh
t }, Fo) )

2 CVAE encoder
(2304, 256, 256)

256 (µ)
256 (σ2)

Latent code sampling
3 Sampling from Q(z|µ, σ2) 256 (z)
Hand reconstruction (Input concat(Fo, z, t) )

4
Continuous Grasping Function

(1281, 512, 256, 25) 25 (q̂t)

4 Forward Kinematics Layer 15× 3 (Ji(q̂t))

Table 5: Training time architecture.

Stage Configuration Output
0 Input object point cloud Po 2000× 3

Feature extraction
1 PointNet Encoder 1024 (Fo)

Latent code sampling
3 Sampling from N (z|0, 1) 256 (z)
Hand reconstruction (Input concat(Fo, z, t) )

4
Continuous Grasping Function

(1281, 512, 256, 25) 25 (q̂t)

4 Forward Kinematics Layer 15× 3 (Ji(q̂t))

Table 6: Test-time architecture.

During inference, the latent code z is randomly sampled from the standard Gaussian distribution
N (z|0, 1). Hence the hand joint positions and the CVAE encoder are not required.

B SYSTEM SETUP FOR REAL-WORLD EXPERIMENTS

We attach an Allegro Hand to an X-Arm6 robot for deployment. Allegro Hand is a 16-DoF anthro-
pomorphic hand with four fingers and XArm6 is a 6-DoF robot arm. The system setup is shown in
Fig. 7. 6 YCB objects are chosen for real-world experiments (see Fig. 8).

Figure 7: System setup.
Figure 8: Selected YCB objects.
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C QUALITATIVE EVALUATION ON UNSEEN OBJECTS

Given the point cloud of unseen objects, we also sample grasping trajectories and test them in the
simulator and then in the real world. We visualize the successful grasping trajectories in Fig. 9,
which demonstrates the generalization ability of our CGF.

Figure 9: Real-world results on Mug. Our CGF allows generalization to manipulate unseen objects.
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