
ALTER: All-in-One Layer Pruning and Temporal
Expert Routing for Efficient Diffusion Generation

Xiaomeng Yang1∗, Lei Lu1∗, Qihui Fan1, Changdi Yang1, Juyi Lin1,
Yanzhi Wang1, Xuan Zhang1, Shangqian Gao2†
1Northeastern University 2Florida State University

1{yang.xiaome, lu.lei1, fan.qih, yang.changd, lin.juy, yanz.wang,
xuan.zhang}@northeastern.edu 2sgao@cs.fsu.edu

Abstract

Diffusion models have demonstrated exceptional capabilities in generating high-
fidelity images. However, their iterative denoising process results in significant
computational overhead during inference, limiting their practical deployment in
resource-constrained environments. Existing acceleration methods often adopt
uniform strategies that fail to capture the temporal variations during diffusion gen-
eration, while the commonly adopted sequential pruning-then-fine-tuning strategy
suffers from sub-optimality due to the misalignment between pruning decisions
made on pretrained weights and the model’s final parameters. To address these lim-
itations, we introduce ALTER: All-in-One Layer Pruning and Temporal Expoert
Routing, a unified framework that transforms diffusion models into a mixture of
efficient temporal experts. ALTER achieves a single-stage optimization that unifies
layer pruning, expert routing, and model fine-tuning by employing a trainable
hypernetwork, which dynamically generates layer pruning decisions and manages
timestep routing to specialized, pruned expert sub-networks throughout the ongoing
fine-tuning of the UNet. This unified co-optimization strategy enables significant
efficiency gains while preserving high generative quality. Specifically, ALTER
achieves same-level visual fidelity to the original 50-step Stable Diffusion v2.1
model while utilizing only 25.9% of its total MACs with just 20 inference steps
and delivering a 3.64× speedup through 35% sparsity.

1 Introduction

Diffusion models [1, 2, 3] emerged as a leading class of generative models, achieving quality results
in diverse tasks such as image generation [4, 5, 6, 7], image editing [8, 9] and personalized content
generation [10, 11]. However, they face application limits due to costly inference: repeated full-
network denoising causes latency and memory use, restricting real-time and low-resource deployment.

To mitigate the high computational cost of diffusion models, two primary strategies have emerged:
one focuses on reducing the number of denoising steps in the temporal dimension, and the other
explores model-level compression to reduce the per-step computational burden. Extensive research
has been devoted to the former, including improved samplers [12, 13, 14], distillation methods [15]
and feature caching [16]. In this work, we focus on the latter: how model compression can be further
improved to enhance efficiency without sacrificing performance? Pruning has been a long-standing
approach for reducing model complexity, with recent advances focusing on structured pruning
to enable hardware-friendly acceleration. Among various structured pruning schemes, layer-wise

∗ Equal Contribution
† Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: Comparison of model utilization in dynamic pruning. Sample-wise pruning can only use
a static part of the model for one-specific image generation, while ALTER aims to achieve the full
utilization of model capacity according to the necessity of each timestep.

pruning is the most practical in deployment, as it achieves speedup by discarding full layers with
minimal modification to existing model execution pipelines. However, such coarse-grained pruning,
especially when applied statically across all input prompts and denoising timesteps, often results in
significant performance degradation due to both the complete removal of functional operators and the
lack of flexibility to adapt to the varying computational demands.

To improve flexibility while retaining the deployment efficiency of layer-wise pruning, it is natural to
combine dynamic pruning with coarse-grained structural removal, enabling different smaller models
to be activated conditionally during inference. Existing efforts explore a sample-wise dynamic
strategy, where a unique subnetwork is selected for each input [17, 18]. While this improves input
adaptivity, it severely limits parameter utilization: for a given sample, only a small subset of the
model is used throughout the entire denoising trajectory. To further unlock the potential of layer-wise
pruning , we leverage the temporal asymmetry of diffusion, where different timesteps contribute
unevenly to generation, to adaptively activate pruned substructures conditioned on the timestep,
as shown in Fig. 1. This enables full model utilization across the trajectory, while suppressing
redundant computation at each specific time step. While timestep-conditioned pruning improves
overall parameter utilization, each substructure still requires fine-tuning to recover performance. Prior
works often separate pruning and fine-tuning into distinct stages [19, 20], leading to a mismatch
between fixed pruning decisions and evolving model weights. To address this, we propose to jointly
optimize the pruning configuration and model parameters, allowing the substructures to co-adapt
with the backbone during training.

To this end, we introduce the All-in-One Layer Pruning and Temporal Expert Routing (ALTER)
framework, a unified and one-stage optimization approach that seamlessly integrates layer pruning
with temporal expert routing and model fine-tuning. It effectively transforms the standard diffusion
model into a mixture of efficient temporal experts, where each expert is a specialized pruned sub-
network of the original model, tailored for distinct phases of the generation process. This dynamic
configuration is achieved by identifying the optimal substructure for these different expert sub-
networks and intelligently routing denoising timesteps to them throughout the entire finetuning phase.
More specifically, we employ a hypernetwork to generate layer pruning decisions based on the updated
model weights continuously, while managing the routing of timesteps to the appropriate experts at
the same time. The impact of these pruning and routing decisions is simulated during training via a
layer skipping mechanism in the forward pass. At inference time, the finalized hypernetwork allows
for the selection of the most suitable expert and the skipping of designated layers for each timestep,
thereby minimizing the temporal computational redundancy.

Our contributions can be summarized as follows:

(1) We propose ALTER: A novel framework that transforms diffusion models into a mixture of
efficient temporal experts by unifying layer pruning, expert routing, and fine-tuning into a single-stage
optimization process.

(2) Temporal Expert Routing: We introduce a hypernetwork-based mechanism that dynamically
generates layer pruning decisions and manages timestep routing to specialized experts. Meanwhile,
the shared denoising backbone is fully utilized by temporal experts to maximize parameter utilization.

2

(3) Strong Empirical Results: We conduct extensive experiments to show that ALTER significantly
reduces computational costs (e.g., 25.9% FLOPs of 50-step Stable Diffusion v2.1) and accelerates
inference (e.g., 3.64× speedup with 20 steps) thanks to the nature of layer-wise pruning while
maintaining the same-level generative fidelity.

2 Related Work

2.1 Efficient Diffusion Models

Efforts to enhance the efficiency of diffusion models primarily explore two avenues: (1) sampling
acceleration, such as fast samplers [21, 22, 13, 14, 12, 23, 24], step distillation [15, 25, 26, 27, 28,
29] and feature caching [16, 30, 31, 32, 33]. (2) model compression via techniques like pruning,
quantization [34, 35], or efficient attention mechanisms [36]. And our work focus on pruning to
compress the structure. Pruning aims to reduce model size and inference latency with minimal
performance loss [37, 38, 39, 40, 41, 42, 43]. Unstructured pruning [44, 45, 46, 47] removes
individual weights, leading to sparse patterns challenging to accelerate on common hardware. In
contrast, structured pruning [48, 49, 50, 51, 52] removes entire components (e.g., channels, layers),
yielding more readily deployable speedups. Within diffusion models, early structured pruning efforts
often applied static pruning decisions [53]. For instance, LAPTOP-Diff [19] and LD-Pruner [20]
identify and discard less important UNet layers, offering coarse-grained but highly efficient static
pruning. However, the optimal model structure can vary significantly across the iterative denoising
process. More recent advances have explored dynamic pruning [54], where the model learns to prune
in a data- or context-dependent manner for flexibility in resource-constrained inference scenarios.
APTP [18], for example, incorporates a prompt-routing model that learns and adaptively routes
inputs to appropriate sub-architectures. However, although APTP’s sample-wise approach improves
adaptivity over static pruning, it typically commits to a single sub-model for the entire denoising
trajectory, which can lead to under-utilization of the full model capacity. ALTER addresses this by
introducing dynamism at the timestep level.

2.2 Mixture-of-Experts

Mixture-of-Experts (MoE) models [55, 56] conditionally activate only a subset of parameters during
inference, offering a promising way to scale computation-expensive neural networks. While exten-
sively utilized in large language models [57, 58], the application of MoE principles to enhance the
efficiency of diffusion models remain less explored [59, 60]. APTP [18] highlights the potential
of MoE interpretation in diffusion models by using a prompt router to convert each pruned model
as an expert specializing in the assigned prompt. However, its reliance on routing each prompt to a
fixed expert sub-model throughout the entire diffusion loop restricts model utilization and introduces
parameter redundancy due to maintaining multiple expert copies. In light of this, we propose ALTER,
where each expert is specialized for a specific range of timesteps and dynamically selected based on
timestep embedding routing. Our method uniquely combines timestep-aware routing and structural
pruning into a single-stage optimization framework for diffusion acceleration.

3 Method

ALTER restructures a standard diffusion UNet into a dynamic ensemble of temporal experts, each
defined by a distinct layer-wise pruning configuration applied to the shared backbone. As shown in
Fig. 2, a hypernetwork generates these binary pruning masks, and a lightweight router assigns each
denoising timestep to an appropriate expert. All components are jointly optimized in a single-stage
training process. During inference, the router dynamically activates expert-specific sub-networks
conditioned on the timestep.

3.1 Preliminaries

Diffusion Process Diffusion models [2, 12] capture the data distribution by learning to reverse a
predefined noising process applied to the input data. The forward process of the standard diffusion
gradually adds Gaussian Noise to the clean input x0 over T timesteps, generating a sequence of
increasingly noisy latents {xt}Tt=1 with the assumption that xT approximates pure noise. The reverse

3

Timestep Embedding {𝑒𝑡}

Expert

Generator

Temporal

Router

Hypernetwork 𝐻Φ

UNet 𝜖𝜃

...

𝑁𝑒 Experts

1 0 11 0 0 …

1 1 00 1 1 …

1 1 01 0 1 …

1 0 11 0 0 …

ℒ𝐻

ℒ𝑈

𝑥𝑇𝑡𝑜𝑡𝑎𝑙:1 𝑥𝑇𝑡𝑜𝑡𝑎𝑙−1:0

𝑚𝑡

Figure 2: Overview of the ALTER framework. ALTER is a temporal-adaptive-pruning framework
for diffusion models, where a hypernetwork generates layer-wise pruning configurations for expert
subnetworks and assigns each denoising timestep to a corresponding expert.

process is modeled by a neural network ϵθ(xt, t, c) conditioned on the noisy sample xt, the current
timestep t, and optional context c (e.g., text embeddings). The network is trained denoise xt into
xt−1 by predicting the added noise at the t-th timestep, following the training objective:

Ldenoise = Ex0,ϵ∼N (0,I),t,c

[
||ϵ− ϵθ(xt, t, c)||22

]
, (1)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, and ᾱt are predefined noise schedule coefficients. To enable

the denoising network to adapt its behavior across different noise levels, the discrete timestep t is
converted into a continuous vector embedding et ∈ RDemb , where Demb is the embedding dimension.
This is often achieved using sinusoidal positional encodings [61] or learned embeddings. The timestep
embedding et is then integrated into various layers of the neural network by adding it to the hidden
activations within its blocks.

Layer-wise Pruning for Denoising Network. The denoising network ϵθ is commonly a UNet [62,
63], featuring an encoder-decoder structure with skip connections. Layer-wise pruning in the UNet
architecture refers to the selective omission of entire pre-defined computational blocks, i.e, residual
layers or transformer modules. To formalize the definition of pruning, we represent the configuration
of a UNet with NL prunable layers using a binary mask vector m ∈ {0, 1}NL , where mi = 0
indicates that the i-th layer is pruned, and mi = 1 indicates that it is retained.

3.2 Temporal Expert Construction

ALTER employs a trainable hypernetwork HΦ to generate layer-wise pruning masks for a shared
UNet backbone. These masks define Ne expert configurations, where each expert is equivalent
to a layer-wise-pruned sub-network. HΦ consists of two trainable components whose trainable
parameters jointly form Φ: (1) an Expert Generator G and (2) a Temporal Router R.

Expert Generator. To generate Ne expert configurations, we employ Expert Generator G to produce
a set of pruning masks {mi} ∈ [0, 1]Ne×NL , where each mi ∈ [0, 1]NL serves as the configuration
for the i-th expert, i ∈ {1, . . . , Ne}. The generator takes as input a set of frozen embeddings
Z ∈ RNe×NL×Dinput , initialized with orthogonal vectors, and processes them through several
multi-layer perceptrons (MLPs) to produce a matrix of expert layer logits Lexperts ∈ RNe×NL . To
approximate binomial distributions while retaining differentiability during training, we apply the
Gumbel-Sigmoid function [64] combined with the Straight-Through Estimator (ST-GS) as the final
layer on Lexperts to obtain {mi}.
Temporal Router. To select an appropriate expert for the t-th timestep in the diffusion process, we
employ a Temporal Router R which shares a similar network structure with the expert configuration
generator. The temporal router takes the corresponding pre-defined timestep embeddings et ∈ RDemb

from the target UNet’s timestep embedding mechanism as input, and maps it to the routing logits
Lrouting
t ∈ RNe over the Ne expert candidates. Similar to the expert configuration generator, we apply

4

the Gumbel-Softmax function with the Straight-Through Estimator to the routing logits to obtain the
final categorical selection vector {st}.
By routing based on distinct timestep embeddings, the router enables expert specialization across
different phases of the denoising trajectory, allowing the model to adaptively assign computation to
the most suitable sub-network at each step.

Differentiable Simulation of Layer-wise Pruning. To simulate the effect of timestep-specific
layer-wise pruning on the diffusion UNet during training, we modify the forward computation of
each prunable layer l ∈ {1, . . . , NL} as follows:

xout = (1− (mt)l) · xin + (mt)l · fl(xin), (2)

where xin is the input to layer l, fl(·) is the original layer computation, and (mt)l ∈ [0, 1] denotes
the pruning decision for layer l at timestep t. When (mt)l = 0, the layer is effectively skipped; when
(mt)l = 1, it remains fully active. This formulation allows faithful simulation of pruning behavior
while preserving gradient flow, enabling end-to-end optimization. The use of the Straight-Through
Estimator (STE) in conjunction with Gumbel-Sigmoid and Gumbel-Softmax ensures differentiable
sampling for both the pruning masks and the routing selection vector. During inference, we apply hard
pruning by performing actual layer skipping whenever (mt)l = 0, thereby realizing computational
efficiency through expert-specific subnetwork execution.

3.3 Optimization Strategy

ALTER, consisting of the shared UNet ϵθ with parameters θ and the hypernetwork HΦ with parame-
ters Φ, is jointly optimized via a single-stage alternating training scheme. As detailed in Algorithm 1,
each training step alternates between the following two optimization phases:

Shared UNet Backbone Optimization Given the Ne expert configurationsM generated by the
current hypernetwork HΦ, the goal of shared UNet optimization is to ensure each expert substructure
achieves strong denoising performance on its assigned group of timesteps. Thus, the primary training
objective is the standard denoising loss Ldenoise, computed over masked subnetworks that simulate the
active expert at each diffusion timestep. To further improve performance and stabilize training under
layer-wise pruning, we optionally employ knowledge distillation from the frozen pretrained teacher
model ϵT . Specifically, we introduce an output-level distillation loss LoutKD, which encourages
the student UNet ϵS ≡ ϵθ to produce similar denoising outputs as the teacher, and a feature-level
distillation loss LfeatKD, which aligns intermediate representations between teacher and student. These
auxiliary losses are defined as:

LoutKD = E[∥ϵT (xt, t, c)− ϵS(xt, t, c)∥22], LfeatKD = E[Σk

∥∥fk
T (xt, t, c)− fk

S(xt, t, c)
∥∥2
2
], (3)

where fk
T and fk

S denote the k-th block feature activations from the teacher and student models,
respectively. The total UNet loss combines the denoising objective and the distillation terms:

LU = λdenoiseLdenoise + λoutKDLoutKD + λfeatKDLfeatKD, (4)

where λoutKD and λfeatKD are hyperparameters that control the influence of each distillation term.

Hypernetwork Optimization. Based on the current shared UNet backbone, the updated hypernet-
work must satisfy three principles: (1) Performance Preservation: the temporal expert selected for
a given denoising timestep should preserve the denoising capability depicted by the performance
loss Lperf mirrors the UNet objective LU . It is evaluated using the masks m′

t from the trainable HΦ

applied to the frozen UNet, ensuring HΦ generates effective masks maintaining good generation
performance.

(2) Structure Sparsity: the temporal sparsity specialization throughout the diffusion trajectory should
approach the user-defined computational reduction target. A sparsity regularization loss Lratio(m

′
t)

guides HΦ to achieve a target overall pruning ratio p. This term utilizes a log-ratio matching loss to
penalize deviations of the current effective sparsity S(m′

t) from p. The precise method for calculating
S(m′

t) based on layer costs and mask activations is detailed in Appendix B.2. S(m′
t) is a measure of

the active portion of the network’s FLOPs under mask m′
t. The loss is defined as:

Lratio(m
′
t) = log

(
max(S(m′

t), p)

min(S(m′
t), p) + ϵ

)
, (5)

5

Algorithm 1 ALTER Training Algorithm

1: Input: Training datasetDtrain; UNet ϵθ; Hypernetwork HΦ; Total training steps T ; Hypernetwork
training end step Tend; Loss coefficients λratio, λbalance, λoutKD, λfeatKD.

2: Initialization: Initialize UNet parameters θ; Initialize Hypernetwork parameters Φ (e.g., to
output all-active masks).

3: M←HΦ(eval=True) ▷ Initial mask configuration from HΦ

4: for t = 1 to T do
5: Sample a mini-batch sb from Dtrain;
6: if t ≤ Tend then ▷ Hypernetwork Update
7: m′

t ←HΦ(sb, train=True) ▷ Differentiable masks for batch sb
8: Lperf ← Ldenoise(ϵθ(sb, {m′

t})) + λoutKDLoutKD + λfeatKDLfeatKD ▷ θ frozen
9: Compute Lratio(m

′
t) and Lbalance(m

′
t);

10: LH ← Lperf + λratioLratio + λbalanceLbalance;
11: Update Φ with∇ΦLH;
12: M←HΦ(eval=True) ▷ Update mask from new HΦ

13: end if
14: ▷ UNet Update
15: Select masks {mt} for sb fromM;
16: LUNet ← Ldenoise(ϵθ(sb, {mt})) + λoutKDLoutKD + λfeatKDLfeatKD ▷ Φ frozen
17: Update θ with∇θLUNet;
18: end for
19: Output: A fine-tuned UNet ϵθ and temporal mask decisions {mt}.

where ϵ is a small constant for numerical stability.

(3) Expert diversity: The router should promote diverse expert selection across timesteps to prevent
mode collapse. A router balance loss Lbalance encourages diverse utilization of Ne experts [65, 66]:

Lbalance = Ne

Ne∑
i=1

FiPi, (6)

where Fi =
1
|B|

∑
sb∈B I(argmaxj(L

routing
sb)j = i) is the fraction of samples in batch B assigned to

expert i, and Pi =
1
|B|

∑
sb∈B(Softmax(Lrouting

sb))i is the average router probability for expert i.

The total hypernetwork objective is

LH = Lperf + λratioLratio + λbalanceLbalance, (7)

where λratio and λbalance are scalar coefficients. The differentiability of m′
t is achieved by ST-GS and

ST-GSmax, whose implementation details are discussed in Appendix B.3. After updating the hypernet,
the mask configurationMU for subsequent UNet training steps is refreshed using the updated HΦ.
This alternating optimization strategy allows the UNet to adapt to the dynamic architectures from
HΦ, while HΦ learns to generate efficient and effective configurations. The hypernetwork would be
trained until Tend is reached.

Such alternating training strategy enables the co-adaptation within ALTER: the UNet progressively
recovers its denoising performance under various configurations of layer-wise sparsity, while the
hypernetwork keeps refining the configurations and routing of specialized expert configurations
tailored to the diffusion process.

4 Experiment

4.1 Experimental Setup

Implementation Details. We experiment on official pretrained diffusion model SDv2.1 [4] to
demonstrate the effectiveness of our method. For training, we utilize a randomly sampled 0.3M
subset of the LAION-Aestheics V2 (6.5+) [67]. We prune the models as 65% and 10 temporal experts
with the loss weight λratio = 5. The bi-level optimization takes 32k steps with global batch size 64,
where the hypernetwork is trained for 2 epochs. All experiments are conducted on 2 A100 GPUs.

6

Table 1: Comparison with BK-SDM and APTP on CC3M and MS-COCO for SD-v2.1. The images
are generated at the default resolution 768 and then downsampled to 256.

Method Steps
CC3M MS-COCO

MACs Latency FID CLIP CMMD MACs Latency FID CLIP CMMD
(G)(↓) (s)(↓) (↓) (↑) (↓) (G)(↓) (s)(↓) (↓) (↑) (↓)

SDv2.1 [4] 25 1384.2 4.0 17.08 30.96 0.361 1384.2 4.0 14.29 32.17 0.537
SDv2.1 [4] 20 1384.2 3.2 17.37 30.89 0.374 1384.2 3.2 14.46 32.08 0.532

BK-SDM-v2 (Base) [53] 25 876.5 2.5 17.53 29.77 0.486 876.5 2.5 19.06 30.67 0.654
BK-SDM-v2 (Small) [53] 25 863.2 2.5 18.78 29.89 0.453 863.2 2.5 20.58 30.75 0.645

APTP (0.85) [18] 25 1182.8 3.4 36.77 30.84 0.675 1076.6 3.1 22.60 31.32 0.569
APTP (0.66) [18] 25 916.3 2.6 60.04 28.64 1.094 890.0 2.5 39.12 29.98 0.867

ALTER (0.65) (Ours) 25 899.7 2.6 16.74 30.94 0.393 899.7 2.6 13.70 32.17 0.536
ALTER (0.65) (Ours) 20 899.7 2.1 17.14 30.92 0.392 899.7 2.1 13.89 32.18 0.533
ALTER (0.60) (Ours) 20 830.5 1.9 17.87 30.88 0.479 830.5 1.9 14.24 32.17 0.596

Datasets. We evaluate our proposed method on two widely-used diffusion benchmarks: Conceptual
Captions 3M [68] (CC3M) and MS-COCO [69]. We evaluate pruning methods using 14k samples in
the validation set of CC3M and 30k samples from the MS-COCO 2014’s validation split. We sample
the images at the default 768 resolution and then resize them to 256 for calculating the metrics with
the PNDM [22] sampler following previous works [53, 18]. To compare with previous cache method,
we also experiment on the COCO 2017’s 5k validation dataset.

Evaluation Metrics. We report FID (↓) [70] and CMMD (↓) [71] to assess image quality, CLIP (↑)
score [72] to measure text–image alignment, the number of multiply–accumulate operations (MACs)
(↓) as a proxy for computational cost, and wall-clock inference latency in seconds (Latency) (↓). We
also report the speedup of ALTER compared with the original model. The MACs and latency are
measured with batch size 1 in the A100 GPU platform.

4.2 Comparison Results

Comparison with Static and Sample-wise Dynamic Pruning Method. We benchmark ALTER
against two representative pruning baselines: BK-SDM-v2 [53], which employs static pruning, and
APTP [18], which utilizes a sample-wise Mixture-of-Experts (MoE) approach conditioned on input
prompts. As detailed in Table 1, ALTER consistently demonstrates superior generative quality and
competitive efficiency. Specifically, during a 25-step inference on MS-COCO, ALTER achieves
a leading FID of 13.70 and a CLIP score of 32.17, which outperforms BK-SDM-v2 (Small) and
APTP (0.66), while operating at comparable computational costs. Similar advantages for ALTER
are observed on the CC3M dataset. Remarkably, ALTER’s efficiency allows for even stronger
performance with fewer steps. With only 20 inference steps, ALTER still surpasses the 25-step
performance of both BK-SDM-v2 and APTP, highlighting its superior trade-off between speed and
quality. Furthermore, ALTER’s performance at both 25 and even 20 steps is not only competitive with
but even exceeds that of the original unpruned SDv2.1 model. These comprehensive results confirm
that ALTER’s strategy of routing masks by timestep, rather than relying on a single global pruning
or solely on prompt-based cues, allocates model capacity more precisely to the varying demands of
the diffusion process. Qualitative comparisons presented in Figure 3 visually affirm these findings,
showcasing that images generated by ALTER exhibit a quality comparable to the unpruned SD-v2.1
model and display fewer artifacts than those produced by BK-SDM-v2.

Comparison with Cache-Based Method. We further evaluate ALTER against DiP-GO [30], a
leading cache-based acceleration technique, on the MS-COCO 2017 validation set, with results
detailed in Table 2. Cache-based methods primarily aim to reduce computation by reusing features
from previous timesteps. While effective, they often operate on the original model architecture and
may require careful tuning of parameters like cache rate [16] for optimal performance with different
inference schedules. In contrast, ALTER’s temporal pruning-based approach results in an inference
schedule-agnostic model. Once the hypernetwork has determined the temporal expert structures and
routing, the resulting dynamically pruned UNet can be deployed with any number of denoising steps
without retraining or specific adjustments, offering significant operational flexibility.

7

A cat laying on top

of a blanket near a

wall

we saw a lot of deer

this year

retro filtered picture

of ferris wheel in a

park

A stack of old

trunks and luggage

against a wall

A view of a boat at

sea with a lighthouse

in the…

A brown teddy bear

sitting in the middle

of a road

SD v2.1

(4.0s)

BK-SDM-v2
(Small)

(2.5s)

ALTER

(ours)

(2.1s)

A man dressed up

and posing for a

picture

Figure 3: A qualitative comparison with original SDv2.1 and BK-SDM-Small. SDv2.1 and BK-
SDM-Small adopt the 25-step PNDM while our method adopts the 20-step inference.

Table 2: Comparison with DiP-GO on the MS-COCO 2017 validation set on SD-2.1. MACs here is
the total MACs for all steps.

Method MACs(↓) Speedup(↑) CLIP (↑) FID-5K (↓)

SDv2.1 (50 steps) [4] 38.04T 1.00× 31.55 27.29

SDv2.1 (20 steps) [4] 15.21T 2.49× 31.53 27.83
DiP-GO (0.7) [30] 11.42T 3.02× 31.50 25.98

ALTER (0.65) (Ours) (20steps) 9.89T 3.64× 31.62 25.25

SDv2.1 (15 steps) 11.41T 3.23× 30.99 27.46
DiP-GO (0.8) [30] 7.61T 3.81× 30.92 27.69

ALTER (0.65) (Ours) (15steps) 7.42T 4.37× 31.19 26.58

For a 20-step inference process, ALTER significantly reduces total MACs to 9.89T, which is a
substantial improvement over the original SDv2.1 and achieves a 3.64× speedup compared to the
50-step SDv2.1 baseline, while delivering generative quality that is comparable or even superior
(e.g., FID-5K of 25.25 for ALTER vs. 27.83 for SDv2.1 20-steps and 27.29 for SDv2.1 50-steps).
ALTER (20 steps) is also more computationally efficient than DiP-GO (0.7) and demonstrates superior
performance scores. When the inference step is further reduced to 15 steps, ALTER maintains strong
generative quality and achieves better performance compared with the 15-step SDv2.1. It again
outperforms DiP-GO (0.8) in both efficiency and generative quality. This robust ability to adapt to
various inference steps without re-tuning demonstrates ALTER’s suitability for real-time applications.

4.3 Abalation Study

Ablation Study on ALTER’s Key Components. To evaluate the contributions of ALTER’s key
design components, the usage of multiple specialized experts, the temporal router and the single-stage
joint optimization strategy, we conduct a comprehensive ablation study. As shown in Table 3, we
compare the full ALTER framework against three variants: (1) "Static", which employs a static global
pruning pattern across all timesteps; (2) "Manual", which introduces multiple experts but assigns
them to predefined fixed timestep intervals instead of employing a learnable router; (3) "TwoStage",
which incorporates ALTER’s architecture but adopts a two-stage optimization approach where the
hypernetwork is trained first, followed by fine-tuning the UNet.

The results clearly demonstrate the benefits of each component. The "Static" variant, lacking
specialized temporal handling, expectedly exhibits the worst performance. Transitioning to the
"Manual" approach, which introduces multiple experts for different fixed temporal intervals, yields
a significant improvement (e.g., FID drops from 19.03 to 17.91 on CC3M). This demonstrates the
importance of having specialized experts for different phases of the denoising process. Further
introducing the learnable timestep router in ALTER provides an additional performance boost over

8

Table 3: Ablation study on pruning and optimization strategies.

Variant Multi
Expert

Timestep
Router

Joint
Training

CC3M MS-COCO

FID (↓) CLIP (↑) CMMD (↓) FID (↓) CLIP (↑) CMMD (↓)

Static ✗ ✗ ✓ 19.03 30.75 0.397 15.35 32.01 0.544
Manual ✓ ✗ ✓ 17.91 30.82 0.427 14.13 32.08 0.571

TwoStage ✓ ✓ ✗ 17.65 30.88 0.401 14.45 32.02 0.539
ALTER ✓ ✓ ✓ 17.14 30.92 0.392 13.89 32.18 0.533

Table 4: Comparison with TinyFusion and DyDiT for DiT-XL/2 on ImageNet of 256×256 resolution.
Method Speedup IS(↑) FID(↓) sFID(↓) Precision(↑) Recall(↑)

DiT-XL/2 [7] (28-layer) 1.00× 277.00 2.27 4.60 0.83 0.57
DyDiT-XL [54] (λ=0.5) 1.72× 248.03 2.07 4.56 0.80 0.61

TinyFusion [73] (14-layer) 1.96× 234.50 2.86 4.75 0.82 0.55
ALTER (Ours) (avg. 14-layer) 1.92× 254.29 2.36 4.63 0.82 0.58

Figure 4: ALTER (0.65)’s temporal experts and router behavior. (a) Visualization of pruning patterns
for Ne = 10 experts. (b) Visualization of timestep-to-expert routing dynamics. (c) Ablation results
for the number of experts on CC3M and MS-COCO 2014.

the "Manual" variant’s coarse-grained, fixed assignments, reducing FID to 17.14 on CC3M and
13.89 on MS-COCO, which underscores the benefits of a dynamically learned, fine-grained temporal
routing mechanism. Finally, the comparison between ALTER and the "TwoStage" optimization
variant shows the critical advantage of our single-stage joint optimization strategy, which facilitates
the co-adaptation of UNet’s generative ability with the hypernetwork, leading to superior generative
quality across all evaluated metrics on both datasets. These ablation experiments collectively validate
the effectiveness and contributions of ALTER’s key design choices.

Analysis of Temporal Experts To understand the characteristics of the temporal experts learned by
ALTER, we analyze their pruning patterns, routing dynamics, and the impact of number of experts,
as shown in Figure 4. The visualization of pruning patterns for the Ne = 10 experts (Fig 4(a))
demonstrates structural diversity. Different experts adopt distinct pruning patterns across the UNet
blocks and layers. For instance, some experts being heavily pruned (e.g., experts 3,8,9) while some
retain greater capacity (e.g., experts 5-7). This learned structural differentiation allows for temporal
specialization. The router dynamics in Fig. 4(b) illustrates how these specialized experts are allocated
across different denoising timesteps. We observe that specific experts are predominantly active
during certain phases of the diffusion process. Furthermore, the ablation study on the number of
experts highlights the importance of an adequate expert number for achieving optimal performance,

9

as shown in Fig. 4(c). Our chosen configuration of Ne = 10 experts consistently yields the best
or near-best FID and CLIP scores on both CC3M and MS-COCO datasets. Performance tends to
degrade with fewer experts, likely due to insufficient capacity for fine-grained temporal specialization
across the entire denoising process. Conversely, increasing to Ne = 15 experts does not yield further
improvements and can sometimes slightly degrade performance, potentially due to challenges in
effectively training a larger set of specialized experts or increased complexity in the routing decisions.

Generality to DiT. To assess generality beyond U-Nets, we apply ALTER to a DiT-XL/2 back-
bone [7] and evaluate on ImageNet [74] at 256×256 using a 250-step DDPM sampler [2]. As shown
in Table 4, our method achieves a 1.92× speedup while maintaining an FID score (2.36) comparable
to the full model (2.27). With approximately half the layers active on average, our method signifi-
cantly outperforms static pruning (TinyFusion [73]), especially on key quality metrics like IS (254.29
vs. 234.50) and FID (2.36 vs. 2.86). When comparing to dynamic methods like DyDiT [54], ALTER
brings higher speedup. It is important to note that our approaches are orthogonal and complementary.
ALTER performs coarse-grained layer-level pruning, while DyDiT performs fine-grained pruning
within each block. This empirically confirms that our framework is effective beyond U-Nets and is
applicable to modern Transformer-based architectures.

5 Conclusion

In this paper, we presented an acceleration framework ALTER that transforms the diffusion model
to a mixture of efficient temporal experts by employing a trainable hypernetwork to dynamically
generate layer pruning decisions and manage timestep routing to specialized, pruned expert sub-
networks throughout the ongoing fine-tuning of the UNet. This timestep-wise approach overcomes
the limitations of static pruning and sample-wise dynamic methods, enabling superior model capacity
utilization and denoising efficiency. The experiments under various settings and ablation analysis
demonstrate the effectiveness of ALTER, which could achieve a 3.64× speedup on the original
SDv2.1 with 35% sparsity.

References
[1] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data

distribution. Advances in neural information processing systems, 32, 2019.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[3] Sungbin Lim, Eunbi Yoon, Taehyun Byun, Taewon Kang, Seungwoo Kim, Kyungjae Lee, and
Sungjoon Choi. Score-based generative modeling through stochastic evolution equations in
hilbert spaces. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[5] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller,
Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution
image synthesis. In The Twelfth International Conference on Learning Representations, 2024.

[6] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[7] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

[8] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
natural images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 18208–18218, 2022.

10

[9] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 6007–6017,
2023.

[10] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3836–3847, 2023.

[11] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
22500–22510, 2023.

[12] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[13] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[14] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023.

[15] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

[16] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15762–15772, 2024.

[17] Yu Xu, Fan Tang, Juan Cao, Yuxin Zhang, Xiaoyu Kong, Jintao Li, Oliver Deussen, and
Tong-Yee Lee. Headrouter: A training-free image editing framework for mm-dits by adaptively
routing attention heads. arXiv preprint arXiv:2411.15034, 2024.

[18] Alireza Ganjdanesh, Reza Shirkavand, Shangqian Gao, and Heng Huang. Not all prompts
are made equal: Prompt-based pruning of text-to-image diffusion models. In The Thirteenth
International Conference on Learning Representations, 2025.

[19] Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024.

[20] Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Effi-
cient pruning of latent diffusion models using task-agnostic insights, 2024.

[21] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models, 2022.

[22] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022.

[23] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator, 2023.

[24] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling
of diffusion models, 2023.

[25] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference, 2023.

[26] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho,
and Tim Salimans. On distillation of guided diffusion models, 2023.

[27] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation, 2023.

11

[28] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation, 2023.

[29] Zhaoyang Lyu, Xudong XU, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion
models via early stop of the diffusion process, 2022.

[30] Haowei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng, Jinzhang Peng, Dong Li, Yu Wang,
Fan Jiang, Lu Tian, et al. Dip-go: A diffusion pruner via few-step gradient optimization.
Advances in Neural Information Processing Systems, 37:92581–92604, 2024.

[31] Senmao Li, taihang Hu, Joost van de Weijer, Fahad Khan, Tao Liu, Linxuan Li, Shiqi Yang,
Yaxing Wang, Ming-Ming Cheng, and jian Yang. Faster diffusion: Rethinking the role of the
encoder for diffusion model inference. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[32] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[33] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
diffusion models through block caching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6211–6220, 2024.

[34] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization
on diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1972–1981, 2023.

[35] Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal
dynamic quantization for diffusion models. Advances in neural information processing systems,
36:48686–48698, 2023.

[36] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
Muyang Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with
linear diffusion transformers. arXiv preprint arXiv:2410.10629, 2024.

[37] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[38] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[39] Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic,
generic, user-friendly. arXiv preprint arXiv:2303.06862, 2023.

[40] Runxue Bao, Bin Gu, and Heng Huang. An accelerated doubly stochastic gradient method with
faster explicit model identification. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 57–66, 2022.

[41] Runxue Bao, Xidong Wu, Wenhan Xian, and Heng Huang. Doubly sparse asynchronous
learning for stochastic composite optimization. In Thirty-First International Joint Conference
on Artificial Intelligence (IJCAI), pages 1916–1922, 2022.

[42] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang, and Heng Huang. Structural align-
ment for network pruning through partial regularization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 17402–17412, October 2023.

[43] Shangqian Gao, Junyi Li, Zeyu Zhang, Yanfu Zhang, Weidong Cai, and Heng Huang. Device-
wise federated network pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12342–12352, June 2024.

12

[44] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon, 2017.

[45] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of
magnitude-based pruning, 2020.

[46] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[47] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. Loraprune: Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint
arXiv:2305.18403, 2023.

[48] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns. In
The Twelfth International Conference on Learning Representations, 2024.

[49] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[50] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey
Tulyakov, and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within
two seconds. Advances in Neural Information Processing Systems, 36:20662–20678, 2023.

[51] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model
made slim, 2022.

[52] Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian
Wang, and Heng Huang. Auto-train-once: Controller network guided automatic network pruning
from scratch. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16163–16173, June 2024.

[53] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: A
lightweight, fast, and cheap version of stable diffusion. arXiv preprint arXiv:2305.15798, 2023.

[54] Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang,
and Yang You. Dynamic diffusion transformer. In The Thirteenth International Conference on
Learning Representations, 2025.

[55] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547–5569. PMLR, 2022.

[56] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[57] Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts, 2024.

[58] Shangqian Gao, Ting Hua, Reza Shirkavand, Chi-Heng Lin, Zhen Tang, Zhengao Li, Longge
Yuan, Fangyi Li, Zeyu Zhang, Alireza Ganjdanesh, Lou Qian, Xu Jie, and Yen-Chang Hsu. To-
moe: Converting dense large language models to mixture-of-experts through dynamic structural
pruning, 2025.

[59] Alireza Ganjdanesh, Yan Kang, Yuchen Liu, Richard Zhang, Zhe Lin, and Heng Huang. Mixture
of efficient diffusion experts through automatic interval and sub-network selection. In European
Conference on Computer Vision, pages 54–71. Springer, 2024.

[60] Haotian Sun, Tao Lei, Bowen Zhang, Yanghao Li, Haoshuo Huang, Ruoming Pang, Bo Dai,
and Nan Du. EC-DIT: Scaling diffusion transformers with adaptive expert-choice routing. In
The Thirteenth International Conference on Learning Representations, 2025.

13

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[62] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[63] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[64] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[65] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with
conditional computation and automatic sharding. In International Conference on Learning
Representations, 2021.

[66] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

[67] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
neural information processing systems, 35:25278–25294, 2022.

[68] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565, 2018.

[69] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014,
proceedings, part v 13, pages 740–755. Springer, 2014.

[70] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[71] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti,
and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9307–9315, 2024.

[72] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

[73] Gongfan Fang, Kunjun Li, Xinyin Ma, and Xinchao Wang. Tinyfusion: Diffusion transformers
learned shallow. arXiv preprint arXiv:2412.01199, 2024.

[74] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[75] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[76] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

14

[77] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[78] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903–15935, 2023.

[79] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng
Li. Human preference score v2: A solid benchmark for evaluating human preferences of
text-to-image synthesis. arXiv preprint arXiv:2306.09341, 2023.

[80] Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 4599–4603, 2023.

15

A Limitations

While ALTER employs joint optimization for the co-adaptation of the U-Net and hypernetwork, a
final fine-tuning stage for the dynamically pruned U-Net is still found to be a necessary step after
Tend is reached. This final tuning phase is crucial for fully recovering any potential performance
degradation incurred during the temporal-wise structure pruning and for allowing the U-Net to
optimally adapt to its newly defined sparse, dynamic structure, thereby maximizing its generative
quality.

B More Details of ALTER

This appendix provides further details on the architectural components of our hypernetwork HΦ, the
calculation of sparsity metrics, the implementation of Gumbel-Sigmoid and Gumbel-Softmax with
straight-through estimation, and the handling of dynamic masks.

B.1 Detailed Hypernetwork Architectures

The hypernetwork HΦ consists of two main modules: the Expert Structure Generator and the
Temporal Router. Their architectures are detailed in Table 5 and Table 6. We use Dinput for the
dimensionality of the learnable embeddings for the Expert Structure Generator, Dexpert for its hidden
layer, Demb for the UNet’s timestep embedding dimension, and Drouter for the Temporal Router’s
hidden layer. Specific values used in our experiments are provided in Appendix C.

Table 5: Architecture of the Expert Structure Generator module in HΦ. Processes Ne ×NL input
embeddings to produce Ne ×NL logits.

Component Details

Input Frozen Embeddings Z ∈ RNe×NL×Dinput (Initialized orthogonally)

Hidden Layer Linear(Dinput → Dexpert)→ LayerNorm(Dexpert)→ ReLU
Output Layer Linear(Dexpert → 1, no bias)

Output Logits Lexperts ∈ RNe×NL (Squeeze last dim)

Table 6: Architecture of the Temporal Router module (Rrouter) in HΦ. Processes each timestep
embedding et to produce Ne routing logits.

Component Details

Input Timestep Embedding et ∈ RDemb (from Etimesteps ∈ RTtotal×Demb)

Hidden Layer Linear(Demb → Drouter)→ LayerNorm(Drouter)→ ReLU
Output Layer Linear(Drouter → Ne, no bias)

Output Routing Logits Lrouting
t ∈ RNe (for a single et)

(Total output Lrouting ∈ RTtotal×Ne)

B.2 Calculation of Current Sparsity

The current effective sparsity S(m′
t) used in the sparsity regularization term Lratio (Equation 5),

quantifies the active computational cost relative to the total potential cost. It is calculated based on
the soft (differentiable) pruning masks m′

t generated by HΦ during its training phase. Let (m′
t)l

be the soft mask value for the l-th prunable layer and cl be the pre-calculated computational cost
(e.g., FLOPs) of that layer. The current sparsity S(m′

t) is the weighted average of these mask values,
normalized by the total cost of all prunable layers:

S(m′
t) =

∑NL

l=1(m
′
t)l · cl∑NL

l=1 cl
(8)

16

This formulation ensures that S(m′
t) represents the fraction of the total computational cost that

remains active under the current soft mask m′
t. The per-layer costs cl are typically profiled once from

the pretrained full UNet architecture.

B.3 ST-GS & ST-GSmax Implementation Details

To enable differentiable sampling of discrete architectural decisions, we employ ST-GS and ST-
GSMax techniques.

ST-GS Sampling. For layer pruning decisions within the Expert Structure Generator, logits
(Lexperts)e,l are converted to binary masks. We sample Gumbel noise g ∼ Gumbel(0, 1). Given
a logit L, a sampling temperature τg = 0.4, and an offset bg = 4, the soft decision yg is computed:

yg = σ

(
L+ g + bg

τg

)
where σ(·) is the sigmoid function. To obtain a hard binary decision (Mexperts)e,l while maintaining
differentiability for training, we use STE [75]: (Mexperts)e,l = round(yg). During backpropagation,
the gradient is passed through yg as if the rounding operation were the identity function for values
not exactly at 0.5, effectively using∇(round(yg)) ≈ ∇yg . This results in a tensor of ’0’s and ’1’s for
the forward pass, forming the pruning masks.

ST-GSmax Sampling. For temporal routing decisions, given a vector of routing logits Lrouting
t ∈

RNe , a temperature τr = 0.4, an offset br = 0, and a vector of Gumbel noise G ∈ RNe (components
gj sampled independently), the soft Gumbel-Softmax probabilities yr ∈ [0, 1]Ne are:

(yr)j =
exp(((Lrouting

t)j + gj + br)/τr)∑Ne

k=1 exp(((L
routing
t)k + gk + br)/τr)

To obtain a hard one-hot selection vector st for the forward pass while enabling gradient flow for
training, STE is applied. Determine the index of the maximally activated expert: j∗ = argmaxj(yr)j .
Create a hard one-hot vector (shard

t)j = 1j=j∗ . The output used in computation, which enables STE,
is st = (shard

t − yr).detach() + yr. This makes st a one-hot vector in the forward pass, while its
gradient in the backward pass is taken with respect to the soft probabilities yr.

B.4 Dynamic Mask Handling

The dynamic pruning masks, central to ALTER’s efficiency, are generated and applied as follows.
For each timestep t, an effective mask mt ∈ [0, 1]NL is composed from the Ne expert structure
masks Mexperts and the per-timestep routing selection st. When training the UNet or during inference,
deterministic binary masks (mhard

t , forming the setMUNet) are derived by setting the hypernetwork
HΦ to evaluation mode. For training HΦ itself, differentiable soft versions of these masks (m′

t) are
utilized.

The UNet architecture has a specific block structure. The generated flat mask vector (whether mhard
t

or m′
t) of length NL is mapped to the corresponding prunable layers within the UNet using a utility

function. This ensures that the correct mask component (mt)l is applied to the l-th prunable layer fl.
The application of this component follows Equation 2 from the main text: xout = (1− (mt)l) · xin +
(mt)l · fl(xin). This general mechanism applies to all designated prunable layers. It is noteworthy
that in UNet architectures, particularly in the decoder pathway, layers fl often process inputs that are
a result of concatenating features from a previous layer in the same pathway with features from an
earlier encoder layer via a skip connection. Our layer-wise pruning applies directly to such layers
fl: if fl is skipped due to (mt)l ≈ 0, its entire operation, including its specific handling of any
skip-connected features, is bypassed.

C More Implementation Details

Here we provide additional details regarding our experimental setup, training details and hyperparam-
eter configurations for ALTER. All models are trained or fine-tuned starting from official pretrained

17

(c) Loss ℒbalance (d) Loss ℒratio

(b) Loss ℒ𝐻(a) Loss ℒ𝑈

𝑝 = 0.50, 𝜆ratio= 9.0

𝑝 = 0.60, 𝜆ratio= 5.0

𝑝 = 0.65, 𝜆ratio= 5.0

L
o

ss
 ℒ

𝑈
L

o
ss

 ℒ
b

a
la

n
c

e

Iterations Iterations

L
o

ss
 ℒ

𝐻

Iterations

L
o

ss
 ℒ

ra
ti

o

Iterations

Figure 5: The training dynamics given different ratios p and λratio weights.

SD-2.1 [4] checkpoints. The training is conducted at a resolution of 512×512 pixels using a randomly
sampled subset of 0.3M images from the LAION-Aesthetics V2 dataset (rated 6.5+) [67]. The total
optimization process spans T = 32, 000 steps with a global batch size of 64, distributed across 2 A100
GPUs (32 samples per GPU). The hypernetwork HΦ is actively trained until Tend, which is set to 2
epochs. We employ Ne = 10 temporal experts and sparsity ratio p = 0.65 for our main experiments.
We use the AdamW optimizer [76] for both the U-Net parameters θ and the hypernetwork parameters
Φ. A linear learning rate warm-up is applied for the first 250 iterations for both optimizers. After
the warm-up phase, constant learning rates are used: 1× 10−5 for the U-Net and 7× 10−5 for the
hypernetwork. For the GS function used in the Expert Generator, the temperature τg is set to 0.4 and
the offset bg to 4.0, which initializes expert masks to all-ones, promoting layer activity at the start of
training and preventing an overly detrimental impact on the U-Net from aggressive initial pruning. For
the GSmax function in the Temporal Router, the temperature τr is 0.4 and the offset br is 0.0. Since
the denoising loss Ldenoise tends to result in unstable optimization and slow convergence. The loss
weights for the objective functions are set to λdenoise = 1e− 4, λoutKD = λfeatKD = λbalance=1.0 and
λratio = 5.0. For hypernetwork’s implementation, we set Dinput = 64, Dexpert = 256, Drouter = 64,
and the Demb is depedent on the pre-trained official SDv2.1 model. For generating samples for
evaluation, we use classifier-free guidance (CFG) [77] with the default scale of the respective SDv2.1
checkpoint (e.g., 7.5). Image generation is performed using the PNDM sampler [22], following
practices in prior works for consistency.

D More Experimental Results

D.1 Training Dynamics

In Fig. 5, we visualize the training dynamics for different pruning ratios p and their associated λratio,
highlighting the co-adaptation between the shared UNet backbone and the hypernetwork. As shown
in Fig. 5(a), the UNet loss LU generally follows a two-phase pattern: it first increases, especially
under high sparsity targets (e.g., p = 0.50), and then gradually decreases. This early rise reflects a
transient mismatch, as the hypernetwork begins to sample diverse pruning structures across timesteps
while the shared UNet parameters have not yet adapted to the corresponding architectural variations.
Over time, however, LU steadily declines, indicating that the shared UNet progressively learns to
meet the performance demands imposed by a wide range of expert sub-structure configurations at
different timesteps. The final converged LU remains slightly higher under more aggressive pruning
configurations, reflecting the expected trade-off between model sparsity and generative fidelity.

18

Table 7: Comparison of Image Reward and HPSv2 metrics. The images are sampled with 25-step
inference.

Method MACs(G)(↓) Image Reward(↑) HPSv2(↑)

SDv2.1 1384.2 0.1139 24.47
BK-SDM-v2-Base 876.5 -0.0365 23.97

APTP (0.66) (COCO) 916.3 -0.8706 19.08
APTP (0.66) (CC3M) 916.3 -1.2226 18.19
ALTER (0.65) (Ours) 899.7 0.1494 24.54
ALTER (0.60) (Ours) 830.5 0.1487 24.36

Table 8: Comparison of SSIM and PSNR metrics.

Method Steps MACs
(G)(↓)

Latency
(s)(↑)

CC3M MS-COCO

SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑)

SDv2.1 25 1384.2 4.0 - - - -
SDv2.1 20 1384.2 3.2 0.3529 13.71 0.1582 10.24

BK-SDM-v2 (Base) 25 876.5 2.5 0.1208 9.42 0.1551 9.47
APTP (0.66) 25 916.3 2.6 0.0782 8.99 0.0730 8.83

ALTER (0.65) (Ours) 25 899.7 2.6 0.1233 9.90 0.3261 12.81
ALTER (0.65) (Ours) 20 899.7 2.1 0.1247 9.95 0.2484 11.61
ALTER (0.60) (Ours) 20 830.5 1.9 0.1224 9.94 0.1898 10.73

In contrast, the hypernetwork’s loss LH (Fig. 5(b)) exhibits a steady and consistent decline across all
configurations, indicating that HΦ is effectively optimizing its composite objective, which includes
the UNet performance term Lperf and the associated regularization components. This consistent
improvement suggests that the hypernetwork progressively discovers better expert structures and
routing strategies alongside the UNet’s parameter update, while gradually approaching the desired
computational reduction target.

The regularization losses further elucidate this process. The sparsity loss Lratio (Fig. 5(d)) decreases
smoothly over time, confirming that the hypernetwork successfully aligns the average computational
cost of selected experts with the target sparsity level p. The convergence rate is influenced by both the
sparsity target and the loss weight λratio. Similarly, the router balance loss Lbalance (Fig. 5(c)) shows a
downward trend, indicating that the temporal router gradually learns to distribute computation evenly
across experts. Notably, under the most aggressive pruning setting (p = 0.50), Lbalance initially
spikes, suggesting a greater challenge in achieving balanced routing when sparsity constraints are
tighter.

This intricate interplay—where LH steadily improves while LU undergoes a transient perturba-
tion—highlights the bi-level nature of ALTER’s optimization process, which enables the emergence
of efficient, dynamically structured expert configurations.

This intricate interplay, where LH steadily improves while LU overcomes an initial perturbation,
highlights the bi-level nature of the optimization problem that ALTER navigates to achieve its
efficient, dynamically structured experts with high performance preservation.

D.2 More Evaluation Metrics

ImageReward and HPSv2 We benchmark our models using advanced preference metrics, Im-
ageReward [78] and Human Preference Score v2 (HPSv2) [79] in order to provide a more compre-
hensive evaluation of generation quality. These metrics assess perceptual quality and human aesthetic
preference. As shown om Table 7, our method ranks highest on both metrics, even outperforming the
original SDv2.1, confirming that our efficiency gains do not come at the cost of visual quality.

SSIM and PSNR We provide the SSIM and PSNR to show the deviation of different methods
from the original SDv2.1 25-step inference. As shown in Table 8, our method ALTER not only
matches the MACs of prior work but also achieves significantly higher SSIM and PSNR scores,

19

Table 9: Scalability with token reduction method ToMeSD on the MS-COCO 2017 validation set.
Method Steps ToMe r% Speedup(↑) CLIP (↑) FID-5K (↓)

SDv2.1 50 0 1.00× 31.55 27.29
SDv2.1 20 0 2.49× 31.53 27.83

ALTER (0.65) (Ours) 20 0 3.64× 31.62 25.25

w/ ToMeSD [80]
20 40 4.93× 31.48 25.93
20 50 5.75× 31.34 26.89
20 60 6.54× 31.24 27.96

Table 10: Ablation study on the sparsity ratio p. The images are sampled with 20-step inference.

Method
CC3M MS-COCO

MACs Latency FID CLIP CMMD MACs Latency FID CLIP CMMD
(G)(↓) (s)(↓) (↓) (↑) (↓) (G)(↓) (s) (↓) (↓) (↑) (↓)

SDv2.1 [4] 1384.2 3.2 17.37 30.89 0.374 1384.2 3.2 14.46 32.08 0.532

ALTER (0.65) 899.7 2.1 17.14 30.92 0.392 899.7 2.1 13.89 32.18 0.533
ALTER (0.60) 830.5 1.9 17.87 30.88 0.479 830.5 1.9 14.24 32.17 0.596
ALTER (0.55) 761.3 1.8 18.27 30.87 0.563 761.3 1.8 14.59 32.16 0.679
ALTER (0.50) 692.1 1.6 18.99 30.74 0.612 692.1 1.6 14.70 32.05 0.727

which demonstrates that our approach better preserves the generative characteristics of the original
model.

D.3 Generality to DiT

To assess generality beyond U-Nets, we apply ALTER to a DiT-XL/2 backbone [7] and evaluate on
ImageNet [74] at 256×256 using a 250-step DDPM sampler [2].

As shown in Table 4, our method achieves a 1.92× speedup while maintaining an FID score (2.36)
comparable to the full model (2.27). With approximately half the layers active on average, our
method significantly outperforms static pruning (TinyFusion [73]), especially on key quality metrics
like IS (254.29 vs. 234.50) and FID (2.36 vs. 2.86). When comparing to dynamic methods like
DyDiT [54], ALTER brings higher speedup. It is important to note that our approaches are orthogonal
and complementary. ALTER performs coarse-grained layer-level pruning, while DyDiT performs
fine-grained pruning within each block. This empirically confirms that our framework is effective
beyond U-Nets and is applicable to modern Transformer-based architectures.

D.4 Scalability with Other Accelerators

ALTER’s design makes it orthogonal to and compatible with other diffusion acceleration methods
such as diffusion cache and token reduction. We conduct an experiment combining ALTER with a
token reduction method ToMeSD [80] to demonstrate ALTER’s scalability. For this combination,
we follow the default setting of ToMeSD. As shown in Table 9, we boost the total speedup from
3.64× to an impressive 6.54× with only a minor, controllable trade-off in performance scores. This
empirically validates the excellent scalability of our method.

D.5 Ablation Study of Sparsity Ratio

We investigate the impact of varying the target sparsity ratio p on ALTER’s performance. Results are
reported in Table 10 under the unified 20-step inference setting, showing a clear trade-off between
sparsity and generation quality. As p decreases from 0.65 to 0.50, performance metrics degrade
gradually. Notably, ALTER variants with p = 0.65 and p = 0.60 match the generative quality of the
original SDV2.1 baseline while significantly reducing computational cost. Even the most aggressive
setting, ALTER (0.50), maintains competitive performance (e.g., FID of 14.70 and CLIP score of
32.05 on MS-COCO) with the highest efficiency gains. These results highlight ALTER’s flexibility
and its ability to balance quality and efficiency under different sparsity budgets.

20

Table 11: Ablation study on different components of LU for the "Static" Variant.

LU
CC3M MS-COCO

FID (↓) CLIP (↑) CMMD (↓) FID (↓) CLIP (↑) CMMD (↓)

Ldenoise 23.76 29.93 0.531 21.57 30.91 0.709
Ldenoise + LoutKD 20.15 30.54 0.424 15.98 31.79 0.549
Ldenoise + LoutKD + LfeatKD 19.03 30.75 0.397 15.35 32.01 0.544

Table 12: Ablation of post-Tend fine-tuning.
Method Steps CLIP(↑) FID-5K(↓)

SDv2.1 20 31.53 27.83
ALTER (0.65) (Tend) 20 31.54 25.98
ALTER (0.65) (Ttotal) 20 31.62 25.25
ALTER (0.65) (Tend) 15 31.05 27.16
ALTER (0.65) (Ttotal) 15 31.19 26.58

D.6 Ablation on Loss Components of LU

We investigate the impact of incorporating knowledge distillation losses into the UNet’s training
objective LU for the "Static" variant. As shown in Table 11, introducing the distillation of the output
and block features are able to enhance the performance of the statically pruned model, which guides
our choice of loss components.

D.7 Ablation on Final Finetuning

As the results in Table 12 demonstrate, the model’s performance after Tend is already very strong,
achieving the majority of the final quality. The final fine-tuning provides a consistent and important
boost across both metrics and step counts, further improving both FID and CLIP scores.

D.8 More Qualitative Results

We provide more qualitative results compared with the 25-step original SDv2.1 and BK-SDM-V2-
Small. As shown in Fig. 6, ALTER exhibits a quality comparable to the unpruned SD-v2.1 model
and displays fewer artifacts than those produced by BK-SDM-v2.

21

SD v2.1
(4.0s)

 BK-SDM-v2-Small
(2.5s)

Ours
(2.1s)

A bird is perched a
top a branch over a
river

portrait of a horse
drinking water

the mountain lake
is located close

A microwave sitting
on a brown shelf

A herd of zebra
standing next to
each other while
drinking water

on the docks of the
fishing town and
tourist destination

a sandwich that is
sitting in a bowl

a beautiful coral
reef thrives

Figure 6: More qualitative results compared with original SDv2.1 and BK-SDM-Small. SDv2.1 and
BK-SDM-Small adopt the 25-step PNDM while our method adopts the 20-step inference.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the main contributions and scope
of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work. Please refer to Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .

23

Justification: Our propositions are mainly based on experiments and empirical results which
do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the implementation details of model design, network
training and inference in Section 4.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be released upon acceptance. We believe that the results are
easy to reproduce with the details of hypernetwork provided in Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details of experimental setup for model training and testing
in Section 4.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments conducted in our paper do not involve the use of error bars or
statistical significance analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detailed utilization of the GPU resources, training batch size
and iterations in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not believe that enhancing and accelerating diffusion models will
inherently result in direct negative social impact, nor do we anticipate any significant social
consequences from this optimization.

26

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper, are properly
credited. Additionally, the license and terms of use associated with these assets are explicitly
mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

27

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Efficient Diffusion Models
	Mixture-of-Experts

	Method
	Preliminaries
	Temporal Expert Construction
	Optimization Strategy

	Experiment
	Experimental Setup
	Comparison Results
	Abalation Study

	Conclusion
	Limitations
	More Details of ALTER
	Detailed Hypernetwork Architectures
	Calculation of Current Sparsity
	ST-GS & ST-GSmax Implementation Details
	Dynamic Mask Handling

	More Implementation Details
	More Experimental Results
	Training Dynamics
	More Evaluation Metrics
	Generality to DiT
	Scalability with Other Accelerators
	Ablation Study of Sparsity Ratio
	Ablation on Loss Components of LU
	Ablation on Final Finetuning
	More Qualitative Results

