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Abstract

The null space of the k-th order Laplacian Lk, known as the k-th homology vector
space, encodes the non-trivial topology of a manifold or a network. Understanding
the structure of the homology embedding can thus disclose geometric or topolog-
ical information from the data. The study of the null space embedding of the
graph Laplacian L0 has spurred new research and applications, such as spectral
clustering algorithms with theoretical guarantees and estimators of the Stochastic
Block Model. In this work, we investigate the geometry of the k-th homology
embedding and focus on cases reminiscent of spectral clustering. Namely, we
analyze the connected sum of manifolds as a perturbation of the direct sum of
their homology embeddings. We propose an algorithm to factorize the homol-
ogy embedding into subspaces corresponding to a manifold’s simplest topological
components. The proposed framework is applied to the shortest homologous loop
detection problem, a problem known to be NP-hard in general. Our spectral loop
detection algorithm complements existing methods of topological data analysis. It
scales better than existing methods with no assumptions on the structure of data
and is effective on diverse data such as point clouds and images.

1 Motivation

The k-th homology vector space Hk provides rich geometric information on manifolds/networks.
For instance, the zeroth, the first, and the second homology vector spaces identify the connected
components, the loops, and the cavities in the manifold, respectively. Topological Data Analysis
(TDA) [24, 58] (as well as other early works in this field) has found wide use in analyzing biological
[31, 47], human behavior [1, 64], or other complex systems [58]. Even though they easily generalize
to k ≥ 1, additional efforts are needed to extract topological features (e.g., instances of loops)
besides ranks due to the combinatorial complexity of the structures that support them.

Spectral methods based on k-Laplacians (Lk), by contrast, investigate Hk in a linear algebraic
manner; abundant geometric information can be extracted from the homology embedding Y (the
null space eigenvectors of Lk) of Hk. Analysis of the eigenfunctions (of H0) [14, 37, 40, 49] of
the graph Laplacian L0 is pivotal in providing guarantees for spectral clustering and community
detection algorithms in well-separated datasets. Recent advances in this field [4, 12, 48] extend the
existing spectral algorithms based on L0 to k ≥ 1; however, the theoretical analysis of Y of Hk,
unlike spectral clustering, is less developed, in spite of intriguing empirical results by [21]. Here,
we put these observations on a formal footing based on the concepts of connected sum and prime
decomposition of manifolds (Section 2 and 3). We examine these operations through the lens of the
(subspace) perturbation to the homology embedding Y of the discrete k-Laplacian Lk (an estimator
of the continuous k-Hodge Laplacian operator ∆k) on finite samples (Section 4). This framework
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finds applications in, i.e., identifying the shortest homologous loops (Section 5). Lastly, we support
our theoretical claims with numerous empirical results from point clouds and images.

2 Background in Hodge theory and topology

Simplicial and cubical complex. An abstract complex is a natural extension of a graph designed
to capture higher-order relationships between its vertices. A simplicial k-complex (used when the
data are point clouds or networks) is a tuple SCk = (Σ0, · · · ,Σk), with Σℓ being a set of ℓ di-
mensional simplices, such that every face of a simplex σ ∈ Σℓ is in Σℓ−1 for ℓ ≤ k. As a side
note, a graph G = (V,E) is an SC1; and SC2 = (V,E, T ), which is commonly used in edge flow
learning [12, 48], is obtained by adding a set of 3-cliques (triangles) T of G. This procedure extends
to defining Σℓ as the set of all ℓ-cliques of G, with the resulting complex called a clique complex
of the graph G. This complex is also known as a Vietoris-Rips (VR) complex if G is the ϵ-radius
neighborhood graph used in the manifold learning literature [12, 14, 53], The cubical k-complex
CBk = (K0, · · · ,Kk) is a complex widely used with image data. The difference between this
complex and the SCk is that a CBk is a collection of sets of ℓ-cubes, for ℓ < k. Note that we write
Σ0 = K0 = V the vertex set and Σ1 = K1 = E the edge set. Σ2 = T and K2 = R are the triangle
and rectangle set, respectively. Additionally, we define nℓ = |Σℓ| (or = |Kℓ|) to be the cardinality of
the ℓ-dimensional cells and let n = n0 for simplicity. For more information about building various
complexes on different datasets please refer to Otter et al. [43].

k-cochain. By choosing an orientation for every k-simplex σk,i ∈ Σk (or Kk), one can define a
finite-dimensional vector space Ck (k-cochain space1). An element ωk =

∑
i ωk(σk,i)σk,i ∈ Ck is

called a k-cochain; one can further express ωk as ωk = (ωk,1, · · · , ωk,nk
)⊤ ∈ Rnk by identifying

each σk,i with the standard basis vector ei ∈ Rnk . Functions on nodes and edge flows, for example,
are elements of C0 and C1, respectively.

Boundary matrix. The k-th boundary matrix Bk [35] maps a k-cochain of k-cells (sim-
plices/cubes) σk to the (k− 1)-cochain of its faces, i.e., Bk : Ck → Ck−1. Bk ∈ {0,±1}nk−1×nk is
a sparse binary matrix, with the sign of the non-zero entries σk−1, σk given by the orientation of σk

w.r.t. its face σk−1. Hence, different SC or CB will induce different Bk. For k = 1 on either the SC
or CB, the boundary map is the graph incidence matrix, i.e., (B1)[x],[x,y] = 1, (B1)[y],[x,y] = −1,
and zero otherwise; for k = 2, each column of B2 contains the orientation of a triangle/rectangle
w.r.t. its edges. Specifically, for an SC, (B2)[x,y],[x,y,z] = (B2)[y,z],[x,y,z] = 1, (B2)[x,z],[x,y,z] =
−1, and 0 otherwise; for a CB, (B2)[x,y],[x,y,z,w] = (B2)[y,z],[x,y,z,w] = (B2)[z,w],[x,y,z,w] = 1,
(B2)[x,w],[x,y,z,w] = −1, and 0 otherwise. Simplex σk+1 is a coface of σk iff σk is a face of σk+1;
let coface(σk) be the set of all cofaces of σk. The (k− 1)-th coboundary matrix B⊤

k (adjoint of Bk)
maps σk−1, as a (k − 1)-cochain, to the k-cochain of coface(σk−1).

k-Hodge Laplacian. Let Wℓ be a diagonal non-negative weight matrix of dimension nℓ, with
[Wℓ]σ,σ representing the weight of the ℓ-simplex/cube σ and wℓ ← diag(Wℓ). The weighted
k-Hodge Laplacian2 [26] is defined as

Lk = A⊤
k Ak +Ak+1A

⊤
k+1, where Aℓ = W

−1/2
ℓ−1 BℓW

1/2
ℓ for ℓ = k, k + 1. (1)

The weights capture combinatorial or geometric information and must satisfy the consistency rela-
tion wℓ(σℓ) =

∑
σℓ+1∈coface(σℓ)

wℓ+1(σℓ+1) (in matrix form: wℓ = |Bℓ+1|wℓ+1) for ℓ = k, k − 1.
Hence Ak can be seen as normalized boundary matrix. To determine the weight for the (k + 1)-
simplices, one can selected wk+1 to be constant [48] or based on (a product of) pairwise distance
kernel (for k = 0, 1) so that the large sample limit exists [12, 14]. The first and second terms of
(1) are called respectively the down (Ldown

k = A⊤
k Ak) and up (Lup

k = Ak+1A
⊤
k+1) Laplacians.

For k = 0, the down component disappears and the resulting L0 is the symmetric normalized graph
Laplacian used in spectral clustering [55] and Laplacian Eigenmap [5].

1We use chain and cochain interchangeably, see Lim [35] for the distinction between them.
2In this paper, these matrices are also called the k-Laplacian for simplicity.
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k-th homology vector space and embedding. The homology vector space Hk is a subspace of
Ck (loop space) such that every k-cycle (expressed as a k-cochain) in Hk is not the boundary of
any (k+ 1)-cochain. In mathematical terms,Hk := ker(Ak)/im(Ak+1). The rank of the subspace
is called the k-th Betti number βk = dim(Hk), which counts the number of “loops” (homology
classes) in the SC. Hk is equivalent to the null space of Lk [35, 48]; therefore, a basis ofHk can be
obtained by the eigenvectors Y = [y1, · · · ,yβk

] ∈ Rnk×βk of Lk with eigenvalue 0. The homology
embedding maps a k-simplex σk to Yσk,: = [y1(σk), · · ·yβk

(σk)]
⊤ ∈ Rβk . Note that the basis Y is

only identifiable up to a unitary transformation; hence, individual homology embedding coordinates
might change with a different basis Y.

Continuous operators on manifolds. The k-cochains are the discrete analogues of k-forms [59].
For k = 1, the following path integral [59] (along the geodesic γ(t) connecting x and y) relates
a 1-cochain ω to a 1-form v (vector field): ω([x, y]) =

∫ y

x
v(γ(t))γ′(t)dt. To estimate a vector

field from ω, one can solve a least-squares problem [12], which is the inverse operation of the path
integral (e.g., the vector fields in Figure 1 are estimated from Y). Similarly, one can define the
differential d and codifferential δ operators which are analog to B⊤

k+1 and Bk, respectively. The
(continuous) k-Hodge Laplacian operators, which act on k-forms, can be defined for manifolds too,
i.e., by ∆k = dk−1δk + δk+1dk. The homology group (the continuous version ofHk) is defined as
the null of ∆k. Its elements are harmonic k-forms ζk, computed by solving ∆kζk = 0 with proper
boundary conditions; they represent the continuous version of the discrete homology basis Y.

Connected sum and manifold (prime) decomposition. The connected sum [33] of two d di-
mensional manifoldsM =M1♯M2 is built from removing two d dimensional “disks” from each
manifoldM1,M2 and gluing together two manifolds at the boundaries (technical details in [33]).
The analog of the connected sum for the abstract complexes will be defined in Section 3. The
connected sum is a core operation in topology and is related to the concept of manifold (prime)
decomposition. Informally speaking, the prime decomposition aims to factorize a manifoldM into
κ smaller building blocks (M =M1♯ · · · ♯Mκ) so that eachMi cannot be further expressed as a
connected sum of other manifolds. The well-known classification theorem of surfaces [3] states that
any oriented and compact surface is the finite connected sum of manifolds homeomorphic to either
a circle S1, a sphere S2, or a torus T2. Classification theorems for d > 2 are currently unknown; for-
tunately, the uniqueness of the prime decomposition for d = 3 (up to homeomorphism) was shown
(Kneser-Milnor theorem [39]). Recently, Bokor et al. [9] (Corollary 2.5) showed the existence of
factorizations of manifolds with d ≥ 5, even though they might not be unique.

In this paper, we are interested in the following: given finite samples from M, which is a κ-fold
connected sum ofMi, can this decomposition be recovered from the discrete homology embedding
Y ofM? Namely, we would like to understand how Y relates to the homology embedding of each
prime manifoldMi.

3 Definitions, theoretical/algorithmic aims, and prior works

Definitions. We assume that the data X is sampled from a d-dimensional oriented manifold M
that can be decomposed into κ prime manifolds (M = M1♯ · · · ♯Mκ). Let Ii be an index set of
the data points in X sampled from Mi, for i = 1, . . . κ. Denote by SCk, Lk, Hk(M), and βk

the simplicial complex, the k-Laplacian, the k-homology space, and the k-th Betti number of X

sampled fromM. Furthermore, let ŜC
(i)

k = (Σ̂
(i)
0 , · · · , Σ̂(i)

k ), L̂
(ii)

k ,Hk(Mi), βk(Mi) be the same
quantities for manifold Mi (supported on Ii for i ≤ κ). ŜCk and L̂k (without superscript i) are

the comparable notations for the disjoint manifolds Mi’s, i.e. ŜC = ∪κi=1ŜC
(i)

= (Σ̂0, · · · , Σ̂k)

with Σ̂ℓ = ∪κi=1Σ̂
(i)
ℓ for ℓ ≤ k, and L̂k is a block diagonal matrix with the i-th block being L̂

(ii)

k .
Additionally, let Y and Ŷ (both in Rnk×βk ) be the homology basis of Lk and L̂k, respectively. Let
Si be the index set of columns of Ŷ corresponding to homology subspaceHk(Mi), with Si∩Sj = ∅
for i ̸= j, |Si| = βk(Mi), and S1∪· · ·∪Sκ = {1, · · · , βk}. Since Ŷ is the homology embedding of

a block diagonal matrix L̂k, we choose it so that [Ŷ]σ,m equals the homology embedding of L̂
(ii)

k if
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σ ∈ Σ̂
(i)
k with column m ∈ Si and is zero otherwise. Namely, Ŷ lies in the direct sum of subspaces

Hk(Mi) for i ≤ κ.

Theoretical aim. We are interested in the geometric properties of the null space eigenvectors Y,
and specifically in recovering the homology basis Ŷ of the prime manifolds. Hence, we aim to
bound the distance between the spaces spanned by Y and Ŷ. Under a small perturbation, one can
provide an analogous argument to the orthogonal cone structure [40, 49] in spectral clustering (the
zeroth homology embedding). The main technical challenge is that the connected sum of manifolds
is a highly localized perturbation; namely, most cells are not affected at all, while those involved in
the gluing process gain or lose O(1) (co)faces. Without properly designing Lk and L̂k, one might
get a trivial bound.

1st
coordinate

Y

2nd
coordinate 3rd

coordinate 4th
coordinate

Z
Figure 1: Harmonic vector fields obtained by solv-
ing a least-squares [12] with Y (top) and Z (bottom).

Algorithmic aim. We exemplify the algo-
rithmic aim using k = 1, d = 2, and κ = 2,
particularly the genus-2 surface shown in Fig-
ure 1. The null space basis Y of Lk is only
identifiable up to a unitary matrix due to the
multiplicity of the zero eigenvalues. For in-
stance, the top and bottom rows of Figure 1
are both valid bases for the harmonic edge
flows inH1. However, the basis vector fields
in the second row of Figure 1 are more inter-
pretable than those in the top row because Y (the first row) is a linear combination of Z (the second
row), with each basis (column in the figure) corresponding to a single homology class (loop). There-
fore, here we propose a data-driven approach to obtain the optimal basis Z such that the coupling
from other manifolds/subspaces is as weak as possible. Being able to obtain Z from an arbitrary Y
can support numerous applications (more in Section 5); however, it is difficult to design a criterion
for finding the optimal Z without knowing the geometric structure of the embedding ofHk.

Prior work. The shape of the embedding by the principal eigenvectors of the graph Laplacian
L0 is pivotal for showing the guarantees of spectral clustering algorithms for point cloud data or the
inference algorithms for the stochastic block model. The analyses used either the matrix perturbation
theory [40, 55, 56] or assume a mixture model [49]. For the higher-order k-Laplacian, it is reported
empirically that the homology embedding is approximately distributed on the union (directed sum)
of subspaces [21]; subspace clustering algorithms [30] were applied to partition edges/triangles
under their framework.

On the application side, the eigen-embedding of Lk is used implicitly or explicitly in graph signal
processing [27, 44, 45] and in learning algorithms utilizing Hodge decomposition [12, 28, 62]. They
use the gradient/curl cochains (which correspond to the images of Ldown

k and Lup
k , respectively) in

addition to the homology embedding (ker(Lk)); hence, our framework is intrinsically different from
these works.

4 Main result: connected sum as a matrix perturbation

In this section, we analyze the geometric structure of Y by viewing the operation of connected
sum through the lens of matrix perturbation theory [51]. We show that, under certain conditions,
the homology embedding Y of the joint Laplacian Lk is approximated by Ŷ for the simplices in
Σk ∩ Σ̂k. In matrix terms, we show that Y ≈ ŶO (Theorem 1) with O a unitary transformation.

We first prepare our assumptions suited for SC built from point clouds. Most of the assumptions
(except Assumption 1 for which the connected sum might not be defined) can be extended to the
clique complex (for networks) or cubical complex (for images) without too many modifications.

Assumption 1. The point cloud X ∈ Rn×D is sampled from a d-dimensional oriented and com-
pact manifold M ⊆ RD; the homology vector spaces Hk(SC) formed by the simplicial complex
constructed from X are isomorphic to the homology groupHk(M) ofM, i.e.,Hk(SC) ≃ Hk(M).

Furthermore, assume thatM =M1♯ · · · ♯Mκ, and thatHk(ŜC
(i)
) ≃ Hk(Mi) for i = 1, · · · , κ.
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This assumption is the minimal assumption needed for the analysis of the embedding of the Lk; it
states that any procedure to construct the simplicial complex or weight function for Lk is accepted as
long as the isomorphic condition holds. The construction of the SC from the point cloud is out of the
scope of this manuscript (see, e.g., Chen et al. [12] for building L1 from X with an analyzable limit
and Latschev’s theorem [32] on VR complexes). The last condition requires that the manifoldM can
be decomposed; this is most likely true, except for the known hard case ofM with d = 4 discussed
in Section 2. Note that Assumption 1 is similar to those used in the multi-manifold clustering [54],
where they required the manifold to be constructed by a κ-fold unionM =M1 ∪ · · · ∪Mκ. The
goal of our framework is to analyze the homology embedding of k-Laplacian. By contrast, Trillos
et al. [54] are interested in identifying each manifold with the notion of clustering (H0).

Assumption 1 is for points sampled from manifold M only. To make this assumption hold for
networks or images, one can require that the Lk constructed from these two datasets can be roughly
factorized into block-diagonal entries. Below we provide two other assumptions that are valid for
both SC and CB (with some modifications): the first one controls the eigengap and the second one
ensures a small perturbation in the spectral norm of Lk − L̂k. By construction, Lk is positive semi-
definite; since we are interested in the stability of its null space, we define, for any matrix L ⪰ 0,
the eigengap as the smallest non-zero eigenvalue of L and denote it λmin(L).

Assumption 2. We denote the set of non-intersecting simplices be Nk := Σk ∩ Σ̂k. Let the set
of destroyed and created k-simplices during connected sum by Dk and Ck, respectively; they are
defined by Ck := Σk\Nk and Dk := Σ̂k\Nk. We have: (1) no k-homology class is created

during the connected sum process, i.e., βk(SC) =
∑κ

i=1 βk(ŜC
(i)
). (2) The eigengaps of LC,C

k

and L̂
D,D

k are bounded away from the eigengaps of L(ii)
k , i.e., min{λmin(LC,C

k ), λmin(L̂
D,D

k )} ≫
min{δ1, · · · , δκ}, where δi is the eigengap of L(ii)

k .

The first condition requires that the intersecting simplices Dk ∪ Ck do not create or destroy any
k-th homology class; this holds, for instance, when the manifoldM has dimension d > k. Under
this condition, we have Hk(M1♯M2) ≃ Hk(M1) ⊕ Hk(M2) [33]. A counterexample for this
condition is, e.g., inspecting the cavity space (k = 2) of a genus-2 surface built from gluing two
tori together. That is, β2 of a genus-2 surface is 1, while the sum of β2 of two tori is 2. The second
condition requires that the principal submatrix of Lk described by the block of Ck ∪ Dk has large
eigengap. This happens, e.g., when Ck and Dk are cliques and are contained in small balls.

Assumption 3 (Informal). Let w̃k = |Bk+1[Nk,Nk+1]|wk+1, w̃k−1 = |Bk[:,Nk]|w̃k. For ℓ = k
or k − 1, we have maxσ∈Nℓ

{wℓ(σ)/w̃ℓ(σ)− 1} ≤ ϵℓ, maxσ∈Nℓ
{ŵℓ(σ)/w̃ℓ(σ)− 1} ≤ ϵℓ, and

maxσ∈Nℓ
{|wℓ(σ)/ŵℓ(σ)− 1|} ≤ ϵ′ℓ. Assumption S1 is the formal version of this assumption.

For k = 1, it states that not too many triangles are being created or destroyed during connected sum.
For this assumption to hold, the sampling density in the connected sum region should be smaller than
in other regions, i.e., the manifoldM should be sparsely connected (e.g., Figure 2a). Empirically,
we observed that the perturbation is small even whenM is not sparsely connected (more discussions
in Section 6). Note also that ϵ′ℓ ≪ ϵℓ, for ϵ′ℓ represents the net change in the degree after connected
sum. It might be possible to obtain a tighter bound fully by ϵ′ℓ’s, which do not depend on the relative
density between the connected sum region and the remaining manifolds; we leave it as future work.

Theorem 1. Let DiffLdown
k (DiffLupk ) be the modified difference (defined in Supplement A) of Ldown

k

and L̂
down

k (respectively Lup
k and L̂

up

k ). Under Assumptions 1–3 with notations defined as before

and λk = k + 2, if
∥∥∥DiffLdown

k

∥∥∥2 ≤ [
2
√
ϵ′k + ϵ′k +

(
1 +

√
ϵ′k
)2 √

ϵ′k−1 + 4
√
ϵk−1

]2
λ2
k−1 and

∥DiffLupk ∥
2 ≤

[
2
√
ϵ′k + ϵ′k + 2ϵk + 4

√
ϵk
]2

λ2
k, then there exists a unitary matrix O ∈ Rβk×βk

such that

∥∥∥YNk,: − ŶNk,:O
∥∥∥2
F
≤

8βk

[∥∥∥DiffLdown
k

∥∥∥2 + ∥DiffLupk ∥2]
min{δ1, · · · , δκ}

. (2)

The proof (in Supplement A) is based on bounding the error between Lk and L̂k with L̃k (the
Laplacian after removal of k-simplices during connected sum), the use of a variant of the Davis-
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Kahan theorem [61], and the bound of the spectral norm of Lk for a simplicial complex, i.e.,
∥Lk∥2 ≤ λk = k + 2 [26].

Algorithm 1: Subspace identification
Input :SC, k, weights Wk+1

1 Bk,Bk+1 = BOUNDARYMAPS(SC, k)

▷ in Algorithm S2
2 for ℓ = k, k − 1 do
3 Wℓ ← diag{|Bℓ+1|Wℓ+11nℓ+1

}
4 Aℓ+1 ←W

−1/2
ℓ Bℓ+1W

1/2
ℓ+1

5 Lk = A⊤
k Ak +Ak+1A

⊤
k+1

6 Y ∈ Rnk×βk ← NULLSPACE(Lk)

7 Z← ICANOPREWHITE(Y)

Return :Independent basis Z

The LHS of (2) contains only the simplices in
Nk because Y is not defined on Dk (similar for
Ŷ and Ck). Nonetheless, (2) makes sure that
the (unbounded) perturbations in the embedding
of Ck ∪ Dk do not propagate to the rest of the
simplices. The bound in (2) can be extended to
CB (Corollary 2) by changing the λk value from
(k+2) to 2k+2. The 2k+2 term here is the maxi-
mum eigenvalue of the Lk built from any cubical
complex (Proposition S3).
Corollary 2 (For Lk built from a CB). Under As-
sumptions 2–3 with DiffLupk as well as DiffLdown

k
defined in Theorem 1 and λk = 2k + 2, there
exists a unitary matrix O such that (2) holds.

Subspace Hk(Mi) identification. We propose to approximately recover Ŷ from the columns of
the coupled basis Y by blind source separation, as described by Algorithm 1. Specifically, the
independent basis Z is obtained by Infomax ICA [6] on Y of Lk, with a modification (Line 7) that
preserves the necessary properties of harmonic cochains (i.e., they are divergence-free and curl-free,
see also Proposition 3). Algorithm 1 works for CB as well by using the appropriate Bk, Bk+1

construction method (Line 1). Each column of the obtained Z is now approximately supported on a
single prime manifoldMi.

5 Applications: homologous loops detection, clustering, and visualization

Algorithm 2: Spectral homologous loop detection
Input :Z = [z1, · · · , zβ1

], V , E, edge distance d

1 for i = 1, · · · , β1 do
2 E+

i ← {(s, t) : (s, t) ∈ E and [zi](s,t) > 0}
3 E−

i ← {(t, s) : (s, t) ∈ E and [zi](s,t) < 0}
4 τ ← PERCENTILE(|zi|, 1− 1/β1)

5 E×
i ← {e ∈ E+

i ∪ E−
i : |[zi]e| < τ}

6 Ei ← E+
i ∪ E−

i \E
×
i

7 Gi ← (V,Ei), with weight of e ∈ Ei being [d]e
8 dmin = inf
9 for e = (t, s0) ∈ Ei do

10 P∗, d∗ ← DIJKSTRA(Gi, from=s0, to=t)
▷ Note that P∗ = [s0, s1, · · · , t]

11 if d∗ < dmin then
12 Ci ← [t, s0, s1, · · · , t]

Return : C1, · · · , Cβ1

Homologous loop detection. In ad-
dition to the rank information, one
might find it beneficial to extract the
shortest cycle of the corresponding
Hk generator. This application is
found useful in domains including
finding minimum energy trajectories
in molecular dynamics datasets, tra-
jectory inference in RNA single-cell
sequencing [46], and segmenting cir-
cular structures in medical images
[50]. We propose a spectral short-
est homologous loop detection algo-
rithm (Algorithm 2) based on the
shortest path algorithm (Dijkstra) as
follows: for each dimension i =
1, · · · , β1, the algorithm reverses ev-
ery edge e having negative [zi]e to
generate a weighted digraph Gi =
(V,Ei) (Lines 2–4), with the weight
of edge e = (j, j′) ∈ Ei equal to the
Euclidean distance [d](j,j′) = ∥xj − xj′∥2. The algorithm finds a shortest (in terms of d) loop on
this weighted digraph for each i and outputs it as the homologous loop representing the i-th class.
We present the following proposition (with the proof in Supplement B) to support Algorithm 2; it
implies that if each coordinate of Z extracted from Algorithm 1 corresponds to a homology class,
then the detected homologous loop for each homology class is the shortest.
Proposition 3. Let zi for i = 1, · · · , β1 be the i-th homology basis that corresponds to the i-th
homology class. For every i = 1, · · · , β1, (1) there exist at least one cycle in the digraph Gi such
that every vertex v ∈ V can traverse back to itself (reachable); (2) the corresponding cycle will
enclose at least one homology class (no short-circuiting).
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Since every vertex is reachable from itself, we are guaranteed to find a loop for any starting/ending
pair (Lines 9–12). Additionally, there will be no short-circuiting for any loop; each loop we found
from Dijkstra is guaranteed to be non-trivial. However, there is one caveat from the second property:
even though the i-th loop is non-trivial, it might not always be corresponding to the i-th homology
class due to the noise in small [zi]e. Namely, loops that do not represent i-th homology class can
be formed with edges e having small [zi]e, resulting in the instability and the (possible) duplication
of the identified loops. To address the issue, we propose a heuristic thresholding, by which we keep
the n1/β1 edges with the largest absolute value in |[zi]e| (Lines 4–5). We chose to keep n1/β1 by
treating each homology class equally, i.e., each class has roughly n1/β1 edges. Unlike Theorem
1 or Algorithm 1, Algorithm 2 cannot be extended to the case when k ≥ 2 because the Dijkstra
algorithm is employed. We leave its generalization to extract higher-order cavities as future work.

Compared with the previous approach that finds the shortest loops [16] combinatorially, our ap-
proach has better time complexity; specifically, the algorithm by Dey et al. [16] has time complexity
O(nn3

1 + nn2
1n2), whereas Algorithm 2 runs in time O(n2.37···

1 + β2
1n1 + β1n1n log n). The first,

second, and third terms correspond to the time complexity of eigendecomposition of L1, the Info-
max ICA, and the Dijkstra algorithm on every digraph Gi, respectively. Note that if the simplicial
complex is built from point clouds, the number of triangles n2 may be large; this dependency on n2

makes the algorithm [16] hard to scale. On the other hand, our framework requires that zi are each
supported on one homology class; therefore, loops can only be correctly identified using Algorithm
2 if the manifold is sparsely connected (Assumptions 1–3). Additional comparisons between our
algorithm and other methods that pose special requirements on the analyzed data can be found in
Supplement D.4.2.

Classifying any 2-dimensional manifold. The Betti number β1 of a torus is 2, which is equal to
that of two disjoint circles; hence one cannot distinguish these two manifolds only by rank informa-
tion. Fortunately, they can be categorized using the homology embedding Z. By the classification
theorem [3], any 2D surface is the connected sum of circles S1 and tori T1; therefore, Theorem 1
indicates that embedding lies approximately in the directed sum of homology subspace of S1 and/or
T2. The homology embedding of S1 is a line since it is in R1. On the other hand, any loop in a torus
can be a convex combination of the two homology classes, implying that the intrinsic dimension of
the homology embedding is 2. It is hard to obtain Z of any arbitrary torus; we present the homology
embedding of the flat m-torus below by expressing the null space basis (1-cochains) as the path
integrals of the corresponding harmonic 1-forms [12, 59].

Proposition 4. The envelope of the first homology embedding (1-cochain) induced by the harmonic
1-form on the flat m-torus Tm is an m-dimensional ellipsoid.

The proof (in Supplement B) is straightforward thus is omitted here. Proposition 4 and the classifi-
cation theorem suggest that the first homology embedding is either a line, a disk, or a combination
of the two (with replacement). See an example for the genus-2 surface in Figures 2j and S1.

Note that it is possible to classify any 2-manifold with higher-dimensional homology groups; for
instance, one can distinguish T2 from S1♯S1 by the second homology group. However, our approach
scales better in computation or memory usage since inspectingH2 needs at least the calculation and
storage of tetrahedrons from the neighborhood graph.

Other applications. As pointed out earlier, one can visualize the basis of the harmonic vector
fields (of Hk) by overlaying the columns of Y onto the original dataset (Figure 1). Being able
to successfully extract a decoupled basis Z increases the interpretability of Hk, as shown in the
second row of Figure 1. Theorem 1 also supports the use of subspace clustering algorithm in the
higher-order simplex clustering framework [21].

6 Experiments

We demonstrate our approach by computing Y,Z and the shortest loops for five synthetic mani-
folds: two of them are prime manifolds (TORUS torus, 3-TORUS three-torus) and three (PUNCTPLANE
punctured plane with two holes, GENUS-2 genus-2, and TORI-CONCAT concatenation of 4 tori) are
factorizable manifolds. Furthermore, five additional real point clouds (ETH and MDA from chemistry,
PANCREAS from biology, 3D-GRAPH from 3D modeling, and ISLAND from oceanography) are ana-
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Figure 2: (a) The first homology embedding of PUNCTPLANE. The harmonic vector fields are overlaid
on the data in the inset plots; green, blue, red, and yellow arrows correspond to y1, y2, z1, and z2,
respectively. (b), (c), (e), (i), and (l) are the detected loops using Dijkstra on Z for PUNCTPLANE
(colors are in (a)), TORUS, 3-TORUS, GENUS-2, and TORI-CONCAT, respectively. (g) and (k) represent
the identified loops on the coupled embedding Y for GENUS-2 and TORI-CONCAT, respectively. (d),
(f), (h), and (j) present the embeddings used to detect loops in (c), (e), (g), and (i), respectively.

lyzed under this framework. For all the point clouds, we build the VR complex SC from the CkNN
kernel [8] so that the resulting L1 is sparse and the topological information is preserved. Note that
other methods for building an SC from X can also be used as long as Hk is successfully identified
(Assumption 1). Lastly, we illustrate the efficacy of our framework to a non-manifold data: RETINA
from medical imaging. Please refer to Supplement D for detailed discussions on procedures to gen-
erate, preprocess, and download these datasets. All experiments are replicated more than five times
with similar results. We perform our analysis on a desktop running Linux with 32GB RAM and an
8-Core 4.20GHz Intel® Core™ i7-7700K CPU; every experiment completes within 3 minutes (1-2
minutes on eigendecomposition of L1, and around 30 seconds on both ICA and Algorithm 2).

Synthetic manifolds. The results for the synthetic manifolds are in Figure 2. Figure 2a (the har-
monic embedding of PUNCTPLANE) confirms Theorem 1 that Y is approximately distributed on two
subspaces (yellow and red), with each loop parametrizing a single hole (inset of Figure 2a). As
discussed previously in Figure 1, the harmonic vector bases (green and blue) are mixtures of the
separate subspaces; therefore, these bases have poor interpretability compared with the independent
subspace Z identified by Algorithm 1. The shortest loops (Figure 2b) corresponding to z1 (yellow),
z2 (red) are obtained by running Dijkstra on the digraphs induced by z1 and z2 separately (Algo-
rithm 2). Figures 2c–2f show the results of the two simple prime manifolds: TORUS and 3-TORUS.
The harmonic embeddings of TORUS (Figure 2d) and 3-TORUS (Figure 2f) are a two-dimensional
disk and a three-dimensional ellipsoid, respectively; this confirms the conclusion from Proposition
4. The shortest loops obtained from Algorithm 2 for these two datasets are in Figures 2c and 2e,
showing that these loops travel around the holes in TORUS (or 3-TORUS). Note that we plot 3-TORUS
in the intrinsic coordinate because a three torus can not be embedded in 3D without breaking neigh-
borhood relationships. Three lines in 2e are indeed loops due to the periodic boundary condition,
i.e., 0 = 2π, in the intrinsic coordinate. Figures 2h and 2j show the embedding of the coupled
harmonic basis (Y) and that corresponding to the independent subspace (Z) obtained by Algorithm
1. Compared with Y, each coordinate of Z corresponds to a subspace, i.e., the left or right handle of
GENUS-2, and does not couple with other homology generators. Z is thus a union of two 2D disks,
with each disk approximating the harmonic embedding of a torus (see Figure S1 for more detail).
Compared with the loops obtained by running Algorithm 2 on Y (Figure 2g), each loop in Figure 2i
identified from Z parameterizes the corresponding homology generator without being homologous
to other loops. Similar results on TORI-CONCAT are in Figures 2k and 2l, which correspond to the
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Figure 3: (a) and (b) are the detected loops of ETH using Dijkstra on Z (in (c)) in the torsion space
(inset of (a)) and in the PCA space, respectively. (d)–(f) are the results for MDA that are similar
to those for ETH in (a)–(c). (g)–(j) show the identified loops using Z for PANCREAS, 3D-GRAPH,
ISLAND, and RETINA, respectively.

loops obtained from Y and Z, respectively. The pairwise scatter plots of the eight-dimensional Z (or
Y) are in Figure S2 of Supplement D. Note that PUNCTPLANE is an example of a sparsely connected
manifold (see the low-density area in the middle), with ϵ1 ≈ 0.035 and ϵ0 ≈ 0.038. Manifolds of
other synthetic/real datasets might not be sparsely connected due to the (approximately) constant
sampling densities; nevertheless, the perturbations to the subspaces remain small for these datasets.

Small molecule data [13]. Figures 3a–3c and 3d–3f show our analysis on ETH and MDA, respec-
tively. These two small molecule datasets, whose ambient dimensions are D = 102 and D = 98,
are suggested to be noisy non-uniformly sampled tori [52]; the harmonic embeddings of these two
datasets (Figures 3c and 3f ) confirm this idea. Finding the minimum trajectories corresponding to
a specific bond torsion is of interest in chemistry; in these two molecular dynamics systems, this
problem can be translated into finding the homologous loops in the point cloud. The homologous
loops found by Algorithm 2 overlaid on the first three principal components (PCs) for these two
datasets can be found in Figures 3b (for ETH) and 3e (for MDA). The same homologous loops plotted
in the bond torsion space (with definition in the insets) based on our prior knowledge are in Figures
3a and 3d. Similar to the discussion for 3-TORUS (Figure 2e), the yellow/red trajectories form loops
due to the periodic boundary condition of the bond torsions.

RNA single-cell sequencing data [7]. The trajectory inference methods [46] for analyzing the
RNA single-cell sequencing datasets aim to order the cells (points in high-dimensional expression
space) along developmental trajectories, which are inferred from the structure of the point clouds.
Identifying loops in the dataset can serve as a building block for delineating a correct trajectory,
especially for determining cell cycle and cell differentiation. To illustrate the idea, we compute
the 1-Laplacian on the CkNN kernel [8] constructed on the UMAP [36] embedding (Algorithm 1).
Figure 3g shows the identified loops from Algorithm 2, with the green loop being the cycle of ductal
cells and yellow/red loops representing a trifurcation (endocrine cell differentiation).

Additional point cloud datasets. 3D-GRAPH [15] is a 3D model of a Buddha statue with a pre-
computed triangulation. We treat the 3D model as a point cloud and subsample 3000 farthest points
from the original dataset; L1 is obtained from the VR complex of the CkNN kernel. Note that with
this small sample size, two smaller loops near the waist of the statue are not detectable. Hence, the
number of zero eigenvalues of L1 is 3, with the corresponding homology generators shown in Fig-
ure 3h. ISLAND [23], which contains ocean buoys around the Tasman sea, is the other point cloud in
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our analysis. The estimated β1 is 3, with the detected loops being the North Island of New Zealand,
the South Island of New Zealand, and the main island of Tasmania (Figure 3i).

Non-manifold dataset. Our framework for identifying subspaces is still valid for cubical com-
plexes built from images (by Corollary 2). We demonstrate the idea on RETINA, a medical retinal
image [25]. The cubical complex is constructed by intensity thresholding (also called the sub-level
set method in TDA [58]) and then applying morphological closing on the binary image to remove
small cavities. The weight for every rectangle w2(σ) is set to 1; the estimated null space dimension
of the L1 built from CB is β1 = 12, with the identified homologous loops in Figure 3j. The result
shows the robustness of the proposed framework even for large β1.

7 Conclusion and broader impact

Our contributions in the emerging field of spectral algorithms for k-Laplacians Lk [12, 21, 35, 48]
are summarized as follows. (i) We extend the study of the homology embedding of vertices by the
graph Laplacian L0 (spectral clustering) to those of higher-order simplices by Lk. Specifically, the
k-th homology embedding can be approximately factorized into parts, with each corresponding to a
prime manifold given a small perturbation (small ϵℓ and ϵ′ℓ for ℓ = k, k−1). (ii) The analysis is made
possible by expressing the κ-fold connected sum as a matrix perturbation. This convenient property
of the homology embedding supports (iii) the use of ICA to identify each decoupled subspace and
motivates (iv) the application to the shortest homologous loop detection problem. The proposed
framework opens up numerous future directions for us to explore. For instance, one can extend
our framework to investigate the generalization of the loosely connected clusters, i.e., when the null
spaceHk eigenvalues are not strictly zero; it applies to the case when analyzing the noisy topological
structures in the data manifold. Moreover, the connections of our framework to the recent advances
in spectral TDA and representation learning can be further explored; they include the persistent
spectral method [38, 57] and the disentanglement of representation [63] in generative modeling.

Broader impact. Our analysis provides insight into the structure of the k-th harmonic embedding.
This framework can inspire researchers in developing spectral topological data analysis algorithms
(e.g., visualization, clustering, tightest higher-order cycles for k ≥ 2 [20, 42]) similar to those
that were inaugurated by spectral clustering two decades ago. These applications are especially
beneficial to scientists (chemists, biologists, oceanographers, etc.) who use high-dimensional data
analysis techniques for studying complex systems. Similar to the limitation of other unsupervised
learning algorithms, practitioners without solid understandings of both the analyzed datasets and the
used algorithm might draw controversial conclusions (see, e.g., discussions in [2, 41]). Possible ap-
proaches to mitigate the negative consequences are to design proper validation and causal inference
algorithms for this framework; we leave them as potential directions we will explore.
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(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [Yes] In Supplement D

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A] Datasets do not contain personal identi-
fiable information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No crowdsourcing data nor conducted research with human sub-
jects

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing data nor conducted
research with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing data nor conducted re-
search with human subjects

15

https://github.com/yuchaz/homology_emb

