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ABSTRACT

Modern high-scoring models of vision in the brain score competition do not stem
from Vision Transformers. However, in this paper, we provide evidence against
the unexpected trend of Vision Transformers (ViT) being not perceptually aligned
with human visual representations by showing how a dual-stream Transformer, a
CrossViT a la|Chen et al|(2021)), under a joint rotationally-invariant and adver-
sarial optimization procedure yields 2nd place in the aggregate Brain-Score 2022
competition (Schrimptf et al.,2020b)) averaged across all visual categories, and at
the time of the competition held 1st place for the highest explainable variance of
area V4. In addition, our current Transformer-based model also achieves greater
explainable variance for areas V4, IT and Behavior than a biologically-inspired
CNN (ResNet50) that integrates a frontal V1-like computation module (Dapello
et al.} 2020). To assess the contribution of the optimization scheme with respect
to the CrossViT architecture, we perform several additional experiments on differ-
ently optimized CrossViT’s regarding adversarial robustness, common corruption
benchmarks, mid-ventral stimuli interpretation and feature inversion. Against our
initial expectations, our family of results provides tentative support for an “All
roads lead to Rome” argument enforced via a joint optimization rule even for non
biologically-motivated models of vision such as Vision Transformers.

1 INTRODUCTION

Research and design of modern deep learning and computer vision systems such as the NeoCogni-
tron (Fukushima & Miyakel |1982)), H-Max Model (Serre et al., 2005) and classical CNNs (LeCun
et al.| |2015) have often stemmed from breakthroughs in visual neuroscience dating from Kuffler
(1953) and [Hubel & Wiesel| (1962). Today, research in neuroscience passes through a phase of
symbiotic development where several models of artificial visual computation (mainly deep neural
networks), may inform visual neuroscience (Richards et al.| [2019) shedding light on puzzles of
development (Lindsey et al.| 2019), physiology (Dapello et al.l 2020), representation (Jagadeesh &
Gardner; |2022) and perception (Harrington & Dezal [2022).

Of particular recent interest is the development of Vision Transformers (Dosovitskiy et al.,[2021). A
model that originally generated several great breakthroughs in natural language processing (Vaswani
et al.}2017), and that has now slowly begun to dominate the field of machine visual computation.
However, in computer vision, we still do not understand why Vision Transformers perform so well
when adapted to the visual domain (Bhojanapalli et al.| [2021). Is this improvement in performance
due to their self-attention mechanism; a relaxation of their weight-sharing constraint? Their greater
number of parameters? Their optimization procedure? Or perhaps a combination of all these factors?
Naturally, given the uncertainty of the models’ explainability, their use has been carefully limited as
a model of visual computation in biological (human) vision.

This is a double-edged sword: On one hand, perceptual psychologists still rely heavily on relatively
low-scoring ImageNet-based accuracy models such as AlexNet, ResNet & VGG despite their limited
degree of biological plausibility (though some operations are preserved, eg. local filtering, half-wave
rectification, pooling). On the other hand, a new breed of models such as Vision Transformers has
surged, but their somewhat non-biologically inspired computations have no straightforward mapping
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Figure 1: Diagram of CrossViT-187 (Chen et al.,2021) architecture & specification of selected layers
for the V1, V2, V4, IT brain areas and the behavioral benchmark. Our Brain-Score 2022 competition
entry was a variation of this model where the architecture is cloned, and the network is adversarially
trained with hard data-augmentation rotations starting from a pre-trained ImageNet model.

to approximate the structure of the human ventral streanﬂ— thus discarding them as serious models of
the human visual system. Alas, even if computer vision scientists may want to remain on the sidelines
of the usefulness of a biological/non-biological plausibility debate, the reality is that computer vision
systems are still far from perfect. The existence of Adversarial examples, both artificial (Goodfellow
et al., 2015} |Szegedy et al., [2014) and natural (Hendrycks et al., [2021b), reflects that there is still
a long way to go to close the human-machine perceptual alignment gap (Geirhos et al.| [2021)).
Beyond the theoretical milestone of closing this gap, this will be beneficial for automated systems in
radiology (Hosny et al.| 2018)), surveillance (Deza et al.,[2019)), driving (Huang & Chen), [2020)), and
art (Ramesh et al., [2022).

These two lines of thought bring us to an interesting question that was one of the motivations of this
paper: “Are Vision Transformers good models of the human ventral stream?” Our approach to answer
this question will rely on using the Brain-Score platform (Schrimpf et al.,|2020a)) and participating in
their first yearly competition with a Transformer-based model. This platform quantifies the similarity
via bounded [0,1] scores of responses between a computer model and a set of non-human primates.
Here the ground truth is collected via neurophysiological recordings and/or behavioral outputs when
primates are performing psychophysical tasks, and the scores are computed by some derivation of
Representational Similarity Analysis (Kriegeskorte et al.,|2008) when pitted against artificial neural
network activations of modern computer vision models.

Altogether, if we find that a specific model yields high Brain-Scores, this may suggest that such flavor
of Vision Transformers-based models obey a necessary but not sufficient condition of biological
plausibility — or at least relatively so with respect to their Convolutional Neural Network (CNN)
counter-parts. As it turns out, we will find out that the answer to the previously posed question
is complex, and depends heavily on how the artificial model is optimized (trained). Thus the
main contribution of this paper is to understand why this particular Transformer-based model when
optimized under certain conditions performs vastly better in the Brain-Score competition achieving
SOTA in such benchmark, and not to develop another competitive/SOTA model for ImageNet (which
has shown to not be a good targetBeyer et al.|(2020)). The authors firmly believe that the former goal
tackled in the paper is much under-explored compared to the latter, and is also of great importance to
the intersection of the visual neuroscience and machine learning communities.

"Even at their start, the patch embedding operation is not obviously mappable to retinal, LGN, or V1-like
primate computation.


https://www.brain-score.org/
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Brain-Score p-Hierarchy
Rank | Model ID # Description Avg V1 V2 V4 IT Behavior
1 1033 Bag of Tricks (Riedel!2022) [New SOTA] | 0.515 | 0.568 | 0.360 | 0.481 | 0.514 0.652 -0.2
2 991 CrossViT-18F (Adv + Rot) [Ours] 0.488 | 0.493 | 0.342 | 0.514 | 0.531 0.562 +0.8
3 1044 Gated Recurrence (Azeglio et al.|2022) 0.463 | 0.509 | 0.303 | 0.482 | 0.467 0.554 -0.4
4 896 N/A 0.456 | 0.538 | 0.336 | 0.485 | 0.459 0.461 -0.4
5 1031 N/A 0.453 | 0.539 | 0.332 | 0.475 | 0.510 0.410 -0.2

Table 1: Ranking of all entries in the Brain-Score 2022 competition as of February 28th, 2022. Scores
in blue indicate world record (highest of all models at the time of the competition), while scores in
bold display the highest scores of competing entries. Column p-Hierarchy indicates the Spearman
rank correlation between per-Area Brain-Score and Depth of Visual Area (V1 — IT).

2  OPTIMIZING A CROSSVIT FOR THE BRAIN-SCORE COMPETITION

Now, we discuss an interesting finding, where amidst the constant debate of the biological plausibility
of Vision Transformers — which have been deemed less biologically plausible than convolutional
neural networks (as discussed in: URL_1/URL_2, though also see |Conwell et al.| (2021)) —, we
find that when these Transformers are optimized under certain conditions, they may achieve high
explainable variance with regards to many areas in primate vision, and surprisingly the highest score
to date at the time of the competition for explainable variance in area V4, that still remains a mystery
in visual neuroscience (see Pasupathy et al.|(2020) for a review). Our final model and highest scoring
model was based on several insights:

Adversarial-Training: Work by Santurkar et al.[| (2019); Engstrom et al.| (2019b); |[Dapello et al.
(2020), has shown that convolutional neural networks trained adversariall yield human perceptually-
aligned distortions when attacked. This is an interesting finding, that perhaps extends to vision
transformers, but has never been qualitatively tested before though recent works — including this
one (See Figure [3) — have started to investigate in this direction (Tuli et al., [2021} |Caro et al.| |[2020).
Thus we projected that once we picked a specific vision transformer architecture, we would train it
adversarially.

Multi-Resolution: Pyramid approaches (Burt & Adelson,|1987;|Simoncelli & Freeman)|1995; Heeger|
& Bergen, |1995) have been shown to correlate highly with good models of Brain-Scores (Marques
et al.l 2021). We devised that our Transformer had to incorporate this type of processing either
implicitly or explicitly in its architecture.

Rotation Invariance: Object identification is generally rotationally invariant (depending on the
category; e.g. not the case for faces (Kanwisher et al.,|1998))). So we implicitly trained our model to
take in different rotated object samples via hard rotation-based data augmentation. This procedure is
different from pioneering work of |[Ecker et al.| (2019) which explicitly added rotation equivariance to
a convolutional neural network.

Localized texture-based computation: Despite the emergence of a global texture-bias in object
recognition when training Deep Neural Networks (Geirhos et al., 2019) — object recognition is a
compositional process (Brendel & Bethge, [2019; Deza et al., 2020). Recently, works in neuroscience
have also suggested that local texture computation is perhaps pivotal for object recognition to either
create an ideal basis set from which to represent objects (Long et al.l 2018}, Jagadeesh & Gardner,
2022)) and/or encode robust representations (Harrington & Deza, |[2022)).

After searching for several models in the computer vision literature that resemble a Transformer
model that ticks all the boxes above, we opted for a CrossViT-187 (that includes multi-resolution
+ local texture-based computation) that was trained with rotation-based augmentations and also
adversarial training (See Appendix [A.3|for exact training details, our best model also used p = 0.25
grayscale augmentation, though this contribution to model Brain-Score is minimal).

2Adversarial training is the process in which an image in the training distribution of a network is perturbed
adversarially (e.g. via PGD); the perturbed image is re-labeled to its original non-perturbed class, and the
network is optimized via Empirical Risk Minimization (Madry et al., 2018)).


http://www.brain-score.org/model/1033
http://www.brain-score.org/competition/#leaderboard
http://www.brain-score.org/model/1044
http://www.brain-score.org/model/896
http://www.brain-score.org/model/1031
https://twitter.com/martin_schrimpf/status/1377640443266105352
https://mobile.twitter.com/dileeplearning/status/1377688297296687105
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ImageNet (1) Brain-Score (1)

Model ID # Description Validation Accuracy (%) | Avg Vi1 V2 V4 IT Behavior
N/A Pixels (Baseline) N/A 0.053 | 0.158 | 0.003 | 0.048 | 0.035 0.020
N/A AlexNet (Baseline) 63.3 0.424 | 0.508 | 0.353 | 0.443 | 0.447 0.370
N/A VOneResNet50-robust (SOTA) 71.7 0.492 | 0.531 | 0.391 | 0471 | 0.522 0.545
991 CrossViT-187 (Adv + Rot) 73.53 0.488 | 0.493 | 0.342 | 0.514 | 0.531 0.562
1084 CrossViT-187 (Adv) 64.60 0.462 | 0.497 | 0.343 | 0.508 | 0.519 0.441
1095 79.22 0.458 | 0.458 | 0.288 | 0.495 | 0.503 0.547
1057 83.05 0.442 | 0473 | 0.274 | 0478 | 0.484 0.500

Table 2: A list of different models submitted to the Brain-Score 2022 competition. Scores in bold
indicate the highest performing model per column. Scores in blue indicate world record (highest of
all models at the time of the competition). All CrossViT-187 entries in the table are ours.

Results: Our best performing model #991 achieved Table 3: Selected Layers of CrossViT-18t
2nd place in the overall Brain-Score 2022 compe-
tition (Schrimpf et al.l|2020b))) as shown in Table m
At the time of submission, it holds the first place for
the highest explainable variance of area V4 and the
second highest score in the IT area. Our model also ~ V1,V2,V4  blocks.1.blocks.1.0.norm1

Benchmark Layer

currently ranks 6th across all Brain—Score submit- IT blocks. 1 blocks.1.4.norm?2
ted models as shown on the main brain-score web- - -
site (including those outside the competition and Behavior blocks.2.revert_projs.1.2

since the start of the platform’s conception, totaling
219). Selected layers used from the CrossViT-187
are shown in Figure|[T] and a general schematic of how Brain-Scores are calculated can be seen in

Figure[2]

Additionally, in comparison with the
biologically-inspired ~ model = (VOneRes-

ol _ B Net50+ Adv. training), our model achieves
A5 Recordings from Biological (Primate) . .

“l Catae Neural Networks greater scores in the IT, V4 and Behavioral
% - . benchmarks. Critically we notice that our

best-performing model (#991) has a positive
e p-Hierarchy coefficien{’| compared to the

sascore st ovato pederer oo panos) new state of the art model (#1033) and other
Y Y Y Y Y remaining entries, where this coefficient is
negative. This was an unexpected result that

.
Z/yﬂ @ﬂ@ﬂ@ we found as most biologically-driven models
& obtain higher Brain-Scores at the initial stages
Recordings from Artificial Neural Networks of the visual hierarchy (V1) (Dapello et al.
2020), and these scores decrease as a function

of hierarchy with generally worse Brain-Scores
in the final stages (e.g. IT).

Figure 2: A schematic of how brain-score is cal-
culated as similarity metrics obtained from neural
responses and model activations.

We also investigated the differential effects of

rotation invariance and adversarial training used
on top of a pretrained CrossViT-18} as shown in Table[2] We observed that each step independently
helps to improve the overall Brain-Score, quite ironically at the expense of ImageNet Validation
accuracy (Zhang et al.,[2019). Interestingly, when both methods are combined (Adversarial training
and rotation invariance), the model outperforms the baseline behavioral score by a large margin
(+0.062), the IT score by (+0.047), the V4 score by (+0.036), the V2 score by (+0.068), and the
V1 score by (+0.020). Finally, even though is not the objective of our paper, our best model
outperforms on Imagenet standard accuracy (73.53%) to a more biologically principled model such
as the adversarially trained VOneResNet-50 (71.7%) (Dapello et al.| 2020).

3 p-Hierarchy coefficient: We define this as the Spearman rank correlation between the Brain-Scores of areas
[V1,V2,V4,IT] with hierarchy: [1,2,3,4]


http://www.brain-score.org/competition/#leaderboard
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Figure 4: An extended demonstration of our winning model (CrossViT-181 [Adv. Training + Rot.
invariance]) where a targeted attack is done for 3 images and the resulting stimuli is perceptu-
ally aligned with a human judgment of the fooled class. To our knowledge, this is the first time
perceptually-aligned adversarially attacks have been shown to emerge in Transformer-based models.

3 ASSESSMENT OF CROSSVIT-181-BASED MODELS

As we have seen, the optimization procedure heavily influences the brain-score of each CrossViT-187
model, and thus its alignment to human vision (at a coarse level accepting the premise of the Brain-
Score competition). Since understanding the importance of each step in the constrained optimization
procedure of the CrossViT is of vital importance not only when benchmarked with non human
primate neurophysiological data but also in more classical in computer vision, We will now explore
how different variations of such CrossViT’s change as a function of their training procedure, and
thus their learned representations via a suite of experiments. Additional experiments on common
corruptions (ImageNet-C) and ImageNet-R can be seen in Appendix

3.1 ADVERSARIAL ATTACKS

One of our most interesting qualitative results is o m E . ’}s : E
that the direction of the adversarial attack made "

on our highest performing model resembles a e —
distortion class that seems to fool a human ob-
server too (Figures Ié—_tlﬂ Alas, while the ad-
versarial attack can be conceived as a type of
eigendistortion as in[Berardino et al.| (2017) we
find that the Brain-Score optimized Transformer
models are more perceptually aligned to human
observers when judging distorted stimuli. Sim-
ilar results were previously found by
(]@[) with ResNets, though there has not Figure 3: A qualitative demonstration of the
been any rigorous & unlimited time verification human-machine perceptual alignment of the
of this phenomena in humans similar to the work CrossViT-187 via the effects of adversarial per-

of [Elsayed et al.| (2018). Experimental details turbations. As the average Brain-Score increases
can be found in Appendix [C] in our system, the distortions seem to fool a human
as well.

Average Brain-Score

We also applied PGD attacks on our winning
entry model (Adversarial Training + Rot. Invari-

“Rigorous psychophysical experiments are still needed to empirically show this, although seem
(2019); [Feather et al.{(2021); Harrington & Deza|(2022) where attacks on brain-aligned models fool humans too.
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Figure 5: A suite of multiple steps [1,10,20] PGD-based adversarial attacks on clones of CrossViT-187
models that were optimized differently. Here we see that our winning entry (Adversarial training
+ Rotation Invariance) shows greater robustness (adversarial accuracy) than all other models as the
number of steps of PGD-based attacks increases only for big step sizes of 10 & 20.

ance) on range € € {1/255,2/255,4/255,6/255,8/255,10/255} and step-size = m as
in the robustness Python library (Engstrom et al.,[2019a)) , in addition to three other controls: Adv.
Training, Rotational Invariance, and a pretrained CrossViT, to evaluate how their adversarial robust-
ness would change as a function of this particular distortion class. When doing this evaluation we
observe in Figure[3]that Adversarially trained models are more robust to PGD attacks (three-step size
flavors: 1 (FGSM), 10 & 20). One may be tempted to say that this is “expected” as the adversarially
trained networks would be more robust, but the type of adversarial attack on which they are trained is
different (FGSM as part of FAT (Wong et al., 2020) during training; and PGD at testing). Even if
FGSM can be interpreted as a 1 step PGD attack, it is not obvious that this type of generalization
would occur. In fact, it is of particular interest that the Adversarially trained CrossViT-181 with
“fast adversarial training” (FAT) shows greater robustness to PGD 1 step attacks when the epsilon
value used at testing time is very close to the values used at training (See Figure [5a)). Naturally, for
PGD-based attacks where the step size is greater (10 and 20; Figs. [5bl5c), our winning entry model
achieves greater robustness against all other trained CrossViT’s independent of the € values.

3.2 MID-VENTRAL STIMULI INTERPRETATION

Next we are interested in exposing our models to a new type of stimuli/distortion class called
“texforms” because recent work has used these types of stimuli to show that human peripheral
computation may act as a biological proxy for an adversarially robust processing system (Harrington
& Dezal [2022), and that humans may in-fact use strong texture-like cues to perform object recognition
(in IT) without the specific need for a strong structural cue (Long et al.|[2018; Jagadeesh & Gardner,
2022). Roughly speaking these texforms are very similar to their original counter-part, where they
match in global structure (i.e. form), but are locally distorted through a texture-matching operation
(i.e. texture) as seen in Figure|§| (Inset 0.).

In particular we are interested in knowing if the class separation is preserved across the visual
hierarchy for both the original and texform stimuli for the CrossViT-181 (Adv. Training + Rot.
Invariance but not for the CrossViT-187 (PreTrained) — as this would show a models’ dissociation
modulated by a higher Brain-Score even if fixed with the same architecture. We used both the original
and texform stimuli (100 images per class) from Harrington & Dezal (2022), showing only 2 classes
to the systems: primate and insect represented as circles and crosses respectively in Figure[] In this
analysis, we will use a t-SNE projection with a fixed random seed across both models and stimuli to
evaluate the qualitative similarity/differences of their 2D clustering patterns.

We find that Pretrained CrossViT-181 models have trouble in early visual cortex read-out sections
to cluster both classes. In fact, several images are considered “visual outliers” for both original and
texform images. These differences are slowly resolved only for the original images as we go higher
in depth in the Transformer model until we get to the Behavior read-out layer. This is not the case for
the texforms, where the PreTrained CrossViT-18t can not tease apart the primate and insect classes
at such simulated behavioral stage. However, this story was to our surprise very different and more
coherent with human visual processing for the Adv + Rot CrossViT-181 where outliers no longer
exist — as there are none in the small dataset —, and the degree of linear separability for the original
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Figure 6: A comparison of how two CrossViT-181 models manage to classify original and texform
stimuli. In (0.) we see a magnification of a texform, and in (A.,B.) we see how our winning Model
Adv. + Rot. manages to create tighter vicinities across the visual stimuli, and ultimately — at the
behavioral level — can separate both original and texform stimuli, while pretrained transformers seem
to struggle with texform linear separability at the behavioral stage.

and texform stimuli increases in tandem through the hierarchy to near perfect separation for both
stimuli at the behavioral stage.

3.3 FEATURE INVERSION

The last assessment we provided was inspired by feature inversion models that are a window to the
representational soul of each model (Mahendran & Vedaldi, 2015)). Oftentimes, models that are
aligned with human visual perception in terms of their inductive biases and priors will show renderings
that are very similar to the original image even when initialized from a noise image (Feather et al.,
2019). We use the list of stimuli from |Harrington & Dezal (2022)) to compare how several of these
stimuli look like when they are rendered from the penultimate layer of a pretrained and our winning
entry CrossViT-based model. A collection of synthesized images can be seen in Figure

Even when these images are rendered starting from different noise images, Transformer-based models
are remarkably good at recovering the structure of these images. This hints at coherence with the
results of [Tuli et al.| (2021) who have argued that Transformer-based models have a stronger shape
bias than most CNN’s (Geirhos et al.}2019). We think this is due to their initial patch-embedding
stage that preserves the visual organization of the image, though further investigation is necessary to
validate this conjecture.

4 COMPARISON OF CROSSVIT VS VANILLA TRANSFORMER (VIT) MODELS

In this last section, we investigated what is the role of the architecture in our results. Did we arrive at
a high-scoring Brain-Score model by virtue of the general Transformer architecture, or was there
something particular about the CrossViT (dual stream Transformer), that in tandem with our training
pipeline allowed for a more ventral-stream like representation? We repeated our analysis and training
procedures with a collection of vanilla Vision Transformers (ViT) where we manipulated the patch
size and number of layers with the conventions of [Dosovitskiy et al.| (2021) as shown in Figure 8]

Here we see that the Brain-Score on V2, V4, superior processing IT, Behavior and Average increase
independent of the type of Vision Transformer used for our suite of models (CrossViT-187, and
multiple ViT flavors) except for the particular case of ViT-S/16 due to over-fitting (See Figure [ T]
that heavily reflects on the behavior score. To our surprise, adversarial training in some cases helped
V1 score and in some not, potentially due to an interaction with both patch size and transformer depth
that has not fully been understood. In addition, to our knowledge, this is also the first time that it has
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CrossViT-18*1 ResNet-50
Original  Initial Image (Noise) Pretrained Adv.+ Rot. Standard Robust

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2

Turtle Frog Cat Dog

Bird

Figure 7: A summary of Feature Inversion models when applied on two different randomly samples
noise images from a subset of the stimuli used in|[Harrington & Dezal (2022). Standard and Pretrained
models poorly invert the original stimuli leaving high spatial frequency artifacts. Adversarial training
improves image inversion models, and this is even more evident for Transformer models. Notice
that Transformer models independent of their optimization seem to preserve a higher shape bias as
they recover the global structure of the original images. An extended figure can be viewed in the
supplementary material.

been shown that adversarial training coupled with rotational invariance homogeneously increases
brain-scores across Transformer-like architectures, as previous work has shown that classical CNNs
(i.e. ResNets) increase Brain-Scores with adversarial training (Dapello et al., 2020).
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Figure 8: Similarity Brain-Score analysis on the different cortical areas of the ventral stream for
vanilla transformers (ViT) and CrossViT. For nearly all Transformer variations, Adversarial Training
with Joint Rotational Invariance increases per Area and Average Brain-Scores.
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5 DISCUSSION

A question from this work that motivated the writing of this paper beyond the achievement of a high
score in the Brain-Score competition is: How does a CrossViT-18} perform so well at explaining
variance in primate area V4 without many iterations of hyper-parameter engineering? In this paper,
we have only scratched the surface of this question, but some clues have emerged.

One possibility is that the cross-attention mechanism of the CrossViT-187 is a proxy for Gramian-like
operations that encode local texture computation (vs global a la|Geirhos et al.|(2019)) which have
been shown to be pivotal for object representation in humans (Long et al.,[2018; |Jagadeesh & Gardner,
2022; Harrington & Dezal [2022)). This initial conjecture is corroborated by our image inversion
effects (Section [3.3)) where we find that CrossViT’s preserves the structure stronger than Residual
Networks (ResNets), while vanilla ViT’s shows strong grid-like artifacts (See Figures [I5] [I6]in the
supplementary material).

Equally relevant throughout this paper has been the critical finding of the role of the optimization
procedure and the influence it has on achieving high Brain-Scores — even for non-biologically plausible
architectures (Riedel, 2022). Indeed, the simple combination of adding rotation invariance as an
implicit inductive bias through data-augmentation, and adding “worst-case scenario” (adversarial)
images in the training regime seems to create a perceptually-aligned representation for neural
networks (Santurkar et al., 2019)).

On the other hand, the contributions to visual neuroscience from this paper are non-obvious. Tra-
ditionally, work in vision science has started from investigating phenomena in biological systems
via psychophysical experiments and/or neural recordings of highly controlled stimuli in animals, to
later verify their use or emergence when engineered in artificial perceptual systems. We are now in
a situation where we have “by accident” stumbled upon a perceptual system that can successfully
model (with half the full explained variance) visual processing in human area V4 — a region of which
its functional goal still remains a mystery to neuroscientists (Vacher et al., |2020; |Bashivan et al.,
2019) —, giving us the chance to reverse engineer and dissect the contributions of the optimization
procedure to a fixed architecture. We have done our best to pin-point a causal root to this phenomena,
but we can only make an educated guess that a system with a cross-attention mechanism can even
under regular training achieve high V4 Brain-Scores, and these are maximized when optimized with
our joint adversarial training and rotation invariance procedure.

Ultimately, does this mean that Vision Trans-
formers are good models of the Human Ventral
Stream? We think that an answer to this ques-
tion is a response to the nursery rhyme: "It looks

CrossVit-187
(Adv. Training 4+ Rotation)

like a duck, and walks like a duck, but it’s not Machlr?e Human

a duck!" One may be tempted to affirm that it Perception Perception

is a duck if we are only to examine the family Adversaria) I Distribution
of in-distribution images from ImageNet at in- Image Set w‘age Set
ference; but when out of distribution stimuli are

shown to both machine and human perceptual

systems we will have a chance to accurately as- N, Out of Distribution

sess their degree of perceptual similarityf’] We Image Set

can tentatively expand this argument further by >

studying adversarial images for both perceptual
systems (See also Figure[J). Future images used
in the Brain-Score competition that will better
assess human-machine representational similar-
ity should use these adversarial-like images to
test if the family of mistakes that machines make
are similar in nature than to the ones made by hu-
mans (See For example|Golan et al.| (2020)). If
that is to be the case, then we are one step closer
to building machines that can see like humans.

Figure 9: A cartoon inspired by |[Feather et al.
(2019; 2021)) depicting how our model changes
its perceptual similarity depending on its optimiza-
tion procedure. The arrows outside the spheres
represent projections of such perceptual spaces
that are observable by the images we show each
system. While it may look like our winning model
is “nearly human" it has still a long way to go, as
the adversarial conditions have never been physio-
logically tested.

3Consider for example, that some stimuli used in Brain-Score are a basis set of Gabor filters, which are never
encountered in nature
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A EXPERIMENTAL SETUP

A.1 DATASET

We used the ImageNet 1k (Deng et al.|[2009) dataset for training. ImageNet1K contains 1,000 classes
and the number of training and validation images are 1.28 million and 50,000, respectively. We
validate the effectiveness of our models in the different datasets proposed in the Brain-Score (Schrimpf
et al.,[2020a) competition.

A.2 CUSTOM SCHEDULER

The proposed learning rate scheduler is based 500 S

on Jeddi et al.| (2020) and is formulated as 175

LR = 0.00012 x e — 0.0004 for e = 1 and 4 150

LR = 200002 for 1 < ¢ <= 6. As shown in 81

Figure we start with a small learning rate g’ 1.00

and then it is smoothly increased for one epoch. € 075

We empirically found that fine-tuning the trans- - 0.50

former for more than 1 epoch resulted in an 025

under-fitting behavior of the adversarial robust-

ness. After this first epoch, the learning rate ! ? E:och umber °

is reduced very fast so that model performance o
converges to a steady state, without having too ~ Figure 10: Custom scheduler used for training the
much time to overfit on the training data. Vision Transformer.

A.3 TRAINING SETUP

We used a pretrained CrossViT-187 (Chen et al.|

2021) downloaded from the timm! library that

is adversarially trained via a fast gradient sign

method (FGSM) attack and random initializa- L G
tion (Wong et al,[2020). We opted for this strat- e i
egy, known as "Fast Adversarial Training" as it 60 | T8/t (e + hon
allows a faster iteration in comparison with other

common approaches (e.g. adversarial training
with the PGD attack). In particular, all experi-
ments used € = 2/255 and step size o = 1.25¢
as proposed originally in (Wong et al.| [2020). 0
However, in contrast to the previous method, we 0 200 0 ermtion” 800 1000
follow a 5 epoch fine-tuning approach with a cus-

tom learning rate scheduler in order to avoid un- Figure 11: Training robust acc. of each Vision
derfitting. We optimize our networks with Adap- Transformer model (Adv + Rot). We clearly ob-
tive Moment Estimation (Adam a la |Kingma, served that ViT-S/16 has over-fitted during train-
& Ba (2014)) and employed mixed precision ing.

for faster training. All input images were pre-

processed with resizing to 256 x 256 followed

by standard random cropping and horizontal mirroring. In the case of our best performing model
(#991), we additionally incorporated a random grayscale transformation (p = 0.25) and a set of hard
rotation transformations of (0°, 90°, 180°, 270°) — implicitly aiding for rotational invariance — due to
the characteristics of images appearing in the behavioral benchmark of |Rajalingham et al.|(2018).
All our experiments were run locally on a GPU-Tesla V-100. Each adversarial training of a vision
transformer took around 48 hours.

Train Robust Acc.

20
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B ADDITIONAL ASSESSMENT OF CROSSVIT-181-BASED MODELS

B.1 CoMMON CORRUPTION BENCHMARKS

We also looked into how adversarial training would affect the performance of the different sets of
neural networks to common corruptions that are not adversarial. To do this, we ran our models and
benchmarked them to the ImageNet-C dataset (Hendrycks & Dietterichl 2019).

One would have expected Brain-Aligned models like our adversarially-trained + rotationally invariant
CrossViT to also present strong robustness to common corruptions. To our surprise, this was not
the case as seen in Table @ This is a puzzling result, though there have been several bodies of
work suggesting that adversarial robustness and common corruptions robustness are independent
phenomena (Laugros et al., |2019), however Kireev et al.| (2021) have proved otherwise contingent on
the [ radiusE]— but now see|Li et al.|(2022).

Network | Clean Accuracy (1) mce (}) | Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
ResNet50-Augmix | 7753 67.1 | 655 651 664 67.7 81 639 655 716 709 665 578 602 769 595 685
CrossViT-18f (Adv + Rot) | 73.53 795 | 807 816 832 902 787 824 80 776 74 1079 65 1004 742 574 587
CrossViT-18f (Adv) | 64.60 888 | 85 857 867 96.7 88 921 913 858 836 1093 822 1049 90 703 809

| 79.22 730 | 754 767 75 757 853 723 792 688 709 643 547 676 784 754 764
| 83.05 51 | 461 488 464 612 726 544 65 449 421 372 415 37 672 468 542

Table 4: A table showing the comparison of mean corruption errors (mce)’s across CrossViT models
contingent on their training regime. A ResNet50-Augmix is shown as a reference of a particularly
strong model to common corruptions. Here lower scores are indicative of better robustness to the
different distortion types of [Hendrycks & Dietterich| (2019).

B.2 IMAGENET-R

We also looked into how adversarial training would affect the performance of generalization to
various abstract visual renditions. To do this, we ran our models and benchmarked them on the
ImageNet-Rendition (ImageNet-R) dataset (Hendrycks et al.,[2021a)).

We observe that the accuracy on ImageNet-R decreases when the CrossViT is adversarially trained.
However, when we combine the rotation invariance and adversarial training regimes, the accuracy on
ImageNet-R becomes competitive with its pretrained version. In addition, we also appreciate that this
combination does not affect the [ID/OOD Gap with respect to the pretrained CrossViT.

Network | ImageNet-200 (1) | ImageNet-R (1) | Gap (|)
CrossViT-18f (Adv + Rot) | 90.75 | 4L14 | 4961
CrossViT-18f (Adv) | 85.52 | 3573 | 49.79

| 93.89 | 3735 | 56.54

| 95.64 | 457 | 49.94

Table 5: A table showing the comparison of the accuracy on Imagenet-R dataset across CrossViT
models contingent in their training regime.

B.3 CENTER KERNEL ALIGNMENT TO UNDERSTAND CROSSVIT REPRESENTATIONS

We also calculated the center kernel alignment (Kornblith et al.,[2019) scores at each brain-region
layer and on the Behavior and Inversion layers using a linear kernel. Besides, CKA scores were
generated using the ‘ImageNette’ validation dataset (Howard, |2019) which is a subset of 10 easily
classified classes from ImageNet. The objective of this experiment is to understand how correlated are
the variance of internal representations across the different versions of the optimized CrossViT-187.

SAlso see [Li et al|(2022) that shows that generally robust models (robust to adversarial + commmon
corruptions) have a preference for low-spatial frequency statistics.
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We can see in Figure [12] that intermediate brain-region layers (IT, Behavior) tend to have similar
representations across the 3 variants of CrossViT-187 (Rot. + Adv., Rot. and Adv.) based on the
CKA score. In addition, we also appreciate that our best model (Crossvit-181 + Rot. + Adv.) is more
correlated with their individual versions (Rot. and Adv.) than with its pretrained version.

It is also remarkable that at the penultimate layer of the largest branch (inversion layer), our best
CrossViT possesses a very weak similarity with its pretrained form. This suggests that adversarial
training and rotation invariance, either jointly or independently, strongly changes the representation
of the final layers with respect to its pretrained version (CrossViT-187).
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Figure 12: Similarity of representations at V1, V2, V4, Behavior and Inversion layers across the
four versions of CrossViT-187 (pretrained, Adv., Adv. + Rot., Rot.). A score of 1.0 indicates highest
representational similarity, while a score of 0.0 indicated lowest.

C ADVERSARIAL ATTACKS EXPERIMENTS

C.1 TARGETED ADVERSARIAL ATTACKS

In this experiment, we maximize the probability of a specific class ("Goldfish" targeted attack) for the
4 flavors of the CrossViT-181. We observed that as the average "Brain-Score" increases, the models
tend to resemble more accurately the samples of the target class (Figure [3). In addition, we also
performed targeted attacks for different classes on the ImageNet dataset as can be seen in Figure[d]
Parameters used for these experiments can be found in Table[]

C.1.1 ADVERSARIAL ROBUSTNESS TO PGD ATTACKS

Results of PGD adversarial attacks on different versions of CrossViT-18t can be found in Table 7L All
experiments used € € {1/255,2/255,4/255,6/255,8/255,10/255} and step-size =

m
as in the robustness Python library (Engstrom et al.,2019a).
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Dataset € Steps  Step size
ImageNet 300 500 1

Table 6: Parameters used for the targeted attacks

€ — test(T)
Model 1/255 2/255 47255 6/255 8/255 10/255
CrossViT-181 (Adv + Rot) | 65.1/64.84/64.83 | 55.99/54.27/54.23 | 39.52/32/31.69 | 27.81/15.76/15.28 | 19.33/6.67/6.32 | 14.77/2.72/2.43
CrossViT-181 (Adv) 62.27/5.3/4.15 59.9/4.2/2.14 55.36/7.18/0.996 | 51.02/14.97/0.66 | 47.16/12.84/0.6 | 43.76/6.37/0.6
CrossViT-187 (Rot) 48/1.75/1.5 4.87/0/0 2.17/0/0 1.89/0/0 1.87/0/0 2.13/0/0
CrossViT-187} 48.31/14.87/6.64 44.01/5.56/1.1 41.58/1.47/0.09 40.96/0.59/0.02 | 40.79/0.35/0.01 40.9/0.13/0

Table 7: PGD adversarial attacks on different flavors of CrossViT-18t. Results represent adversarial
accuracy at 1/10/20 PGD-iterations

D BRAIN-SCORE

D.1 METRICS

Brain-Score is a composite of multiple neural and behavioral benchmarks that score most of the
artificial neural networks on how similar they are to the primate’s brain mechanisms for core object
recognitionSchrimpf et al.| (2020a)).

In the same direction, the Brain-Score competition was held for 4 months from December 21 to March
22. The objective was to evaluate models that engage with the whole ventral visual stream. These
models were evaluated in 33 neuronal and behavioral benchmarks related to activity in macaque
visual cortical areas V1, V2, V4, and IT and human psychophysical performance in a set of object
classification tasks. The metrics used in the evaluation are the followings:

Neural predictivity: Measures how well the responses to given images in a model area predict the
responses of a neuronal population of the corresponding area in the macaque brain. First, the model
responses are mapped to the neuronal recordings using a linear transformation (PLS regression with
25 components) on a training set of images. Then the model’s predictivity is determined for held-out
images by computing the Pearson correlation coefficient between the model’s predictions and the
neuronal responses.

Single-neuron property distribution similarity: Measures whether single neurons in a model area
are functionally similar to single-neurons in the corresponding monkey brain area. This is done by
comparing the distribution of single-neuron response properties between the model area and the brain
area using a similarity score (using the KS distance).

Behavioral consistency: Measures the behavioral similarity between the model and humans in core
object recognition tasks. This metric does not measure the overall accuracy of the model but whether
it can predict the patterns of successes and failures of humans in a set of object recognition tasks.
Model’s and humans’ behavioral accuracies are first transformed to a d’statistic and then compared
using the Pearson correlation coefficient.

D.1.1 SELECTING BEST-BRAINSCORE LAYERS

Best performing layers on each vision transformer were selected by a brute-force approach. We
evaluate each layer of the vision transformer models on each brain region and behavior dataset
and select the layer that got the best score on the public benchmarks (in order to avoid overfitting)
proportioned by Brain-Score organization. After this step, the "Adv + Rot" & pretrained versions
of each transformer are submitted to the competition fixing best performing layers (See Table[§]).
We achieved our highest score at the time of our 4th submission, which was the lowest number of
submissions in the competition (the winner of the competition performed nearly 60 submissions). All
our results reflect the private scores obtained by each vision transformer model.

Additionally to the experiments on CrossViT-187, we also evaluate the brain-scores on vanilla Vision
transformers that can be seen in Table [0l
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Model Vi V2 V4 1T Behavior
CrossViT-181  blocks.1.blocks.1.0.norm1  blocks.1.blocks.1.0.norm1  blocks.1.blocks.1.0.norm1  blocks.1.blocks.1.4.norm2  blocks.2.revert_projs.1.2
VIT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norm1 pre_logits
ViT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norml pre_logits
ViT-S/32 blocks.1.mlp.act blocks.10.norm1 blocks.2.mlp.act blocks.10.norml pre_logits
ViT-B/16 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.8.norml pre_logits
ViT-B/32 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.11.norm1 pre_logits

Table 8: Layers selected for each brain region on each vision transformer.

ImageNet(1) Brain-Score(1)

Description Validation Acc. (%) | Avg V1 V2 V4 IT Behavior
ViT-S/16 81.40 0.445 | 0.527 | 0.295 | 0.454 | 0.449 0.498
ViT-S/32 75.99 0.415 | 0.531 | 0.271 | 0.422 | 0.423 0.426
ViT-B/16 84.53 0.451 | 0.522 | 0.317 | 0.398 | 0.487 0.529
ViT-B/32 80.72 0.440 | 0.553 | 0.311 | 0413 | 0.418 0.505

ViT-S/16 (Adv + Rot) 50.44 0.443 | 0.506 | 0.332 | 0.470 | 0.496 0.409
ViT-S/32 (Adv + Rot) 55.20 0.457 | 0.512 | 0.347 | 0.433 | 0.485 0.508
ViT-B/16 (Adv + Rot) 67.25 0.486 | 0.536 | 0.332 | 0.470 | 0.496 0.598
ViT-B/32 (Adv + Rot) 53.01 0.457 | 0.524 | 0.357 | 0.417 | 0.472 0.515

Table 9: ImageNet accuracy, Brain-Scores of each brain area & Behavior benchmark evaluated on
vanilla vision transformers. The spearman rank correlation between the validation accuracy and the
average Brain-Score is —0.28 suggesting an inverse correlation between clean ImageNet accuracy
and Brain-Score (Schrimpf et al.| 2020a).

E IMAGE SYNTHESIS EXPERIMENTS

E.1 STANDARD & ROBUST STIMULI

We used publicly available transformer models from timm! library which were trained adversarially
(e = 2/255 and step size e = 1.25) as in (Wong et al., 2020) coupled with a set of hard rotation462
transformations of (0°, 90°, 180°, 270°) as proposed in this paper. In order to synthesize the standard
and robust images, we used the penultimate layer (norm layer) in all of our vision transformer models
except in the case of the CrossViT-18} versions in which we used the penultimate layer of the largest
branch for all variations. Parameters used in these experiments can be seen in Table[T0]

Constraint € Step-size Iterations
lo 1000 1 10000

Table 10: Parameters used for standard & robust stimuli by feature inversion
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