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ABSTRACT

Evaluating the potential privacy leakage of synthetic data is an important but un-
resolved problem. Most existing adversarial auditing frameworks for synthetic
data rely on heuristics and unreasonable assumptions to attack the failure modes
of generative models, exhibiting limited capability to describe and detect the pri-
vacy exposure of training data. In this paper, we study designing Membership
Inference Attacks (MIAs) that specifically exploit the observation that generative
models tend to memorize certain data points in their training sets, leading to sig-
nificant local overfitting. Here, we propose Generative Likelihood Ratio Attack
(Gen-LRA), a novel, computationally efficient shadow-box MIA that, with no as-
sumption of model knowledge or access, attacks the generated synthetic dataset
by conducting a hypothesis test that it is locally overfit to potential training data.
Assessed over a comprehensive benchmark spanning diverse datasets, model ar-
chitectures, and attack parameters, we find that Gen-LRA consistently dominates
other MIAs for generative models across multiple performance metrics. These
results underscore Gen-LRA’s effectiveness as an interpretable and robust privacy
auditing tool, highlighting the significant privacy risks posed by generative model
overfitting in real-world applications.

1 INTRODUCTION

Real world tabular data is often privacy-sensitive to the individual observations that compose these
samples, hindering their ability to be shared in open-science efforts that can aid in new research and
improve reproducibility. A promise of generative modeling is that models trained on private data
can produce samples that preserve the privacy of the training set while maintaining much of the
original statistical information. In practice, a wide array of methodologies have been proposed to
accomplish this involving modifying loss functions (Abadi et al., 2016; Wang et al., 2022), creating
new architectures (Yoon et al., 2019; 2020a), and studying data release strategies (Hardt et al., 2012;
Gupta et al., 2012; Takagi et al., 2021) to provide a guarantee of differential privacy. In another
direction, many methods have been proposed that maximize the fidelity of synthetic data and argue
they are private through similarity metrics like average Distance to Closest Record that evaluate
overfittness (Zhao et al., 2021; Guillaudeux et al., 2022; Liu et al., 2023).

While both lines of synthetic data research (private and non-private) have seen rapid advancements,
techniques to evaluate the empirical privacy of these generative models have lagged behind. Au-
diting differentially private algorithms can be methodologically challenging (Jagielski et al., 2020;
Chua et al., 2024) and from a practitioner perspective, theoretical notions of privacy can be difficult
to practically interpret. For non-differentially-private models, similarity metrics between the train-
ing and synthetic sets have been argued to be heuristic as they do not actually characterize privacy
risk but rather an ad-hoc measure of overfitting (Platzer & Reutterer, 2021; Ganev & Cristofaro,
2023; Ward et al., 2024).

Recently, Membership Inference Attacks (MIAs) have shown to be a computationally efficient, pow-
erful, and interpretable framework for evaluating the empirical privacy of machine learning models
by attacking overfitting (Shokri et al., 2017; Chen et al., 2020; Carlini et al., 2021). Here, privacy
auditing is posed as a game where an adversary, given a threat model that describes what informa-
tion can be used, constructs an attack that classifies whether a test observation is a member of the
dataset a model was trained with. A successful attack represents a practical and interpretable pri-
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vacy breach. As a classic example, an insurance company could have access to a hospital’s synthetic
cancer dataset and, for a new applicant, attack the dataset to determine if the applicant is a member,
leaking their diagnosis (Hu et al., 2022).

While promising, MIAs for generative models and synthetic data release have seen limited success.
Previous work in Generative Model MIAs often relied on heuristics for the attack and usually ex-
plored including additional assumptions about model access that have been argued to be unrealistic
(van Breugel et al., 2023; Ward et al., 2024). In contrast, we focus on studying Membership Infer-
ence for synthetic data release in a shadow-box threat model (Chen et al., 2020) where we make
minimal assumptions about model architecture, model access and model quality in deriving a pow-
erful MIA called Generative Likelihood Ratio Attack (Gen-LRA) which utilizes a hypothesis testing
framework to target privacy leakage from model overfitting. We show that our attack broadly out-
performs competing methods especially at low fixed false positive rates, highlighting that overfitting
presents a more dangerous source of privacy leakage then previously suggested, even in differen-
tially private generative models. Our contributions are as follows:

Contributions:

1. We introduce Gen-LRA, a novel MIA that uses Likelihood Ratio framework to attack over-
fitting in generative models with minimal assumptions by evaluating the likelihood of Syn-
thetic data under a null and alternative hypothesis that the model is overfit to a potential
training example.

2. We show that Gen-LRA is computationally efficient and broadly outperforms other MIAs
for generative models across a diverse benchmark of datasets, model architectures, and
attack parameters.

3. We demonstrate that Gen-LRA identifies a different source of privacy leakage relative to
other commonly used MIAs. Worryingly, we also show that this privacy leakage can occur
non-randomly relative to different sub-groups that compose the training data. This indicates
that even if a model is robust to MIAs in the aggregate, it can still leak the data of outlier
data points in the training set.

2 MEMBERSHIP INFERENCE ATTACKS FORMALISM

In this work, we specifically study the Membership Inference Attack Game in the context of synthetic
data generation. The objective of this game is to determine whether a particular data point was
included in the original training dataset by examining the outputs of a generative model. We first
introduce the formal definition of the Membership Inference Attack Game:

Definition (Membership Inference Attack Game). The game proceeds between a challenger C
and an adversary A as follows:

1. The challenger samples a training dataset T = xi
n
i=1 from the population distribution

xi ∼ P and uses T to train a tabular generative model G ← T (T ). The generative model
G produces synthetic dataset S.

2. The challenger flips a bit b ∈ 0, 1. If b = 0, the challenger samples a test observation x⋆

from the population distribution P. Otherwise, the challenger selects the test observation
x⋆ from the training set T .

3. The challenger sends the test observation x⋆ to the adversary A.

4. The adversary has access to some information defined by a threat model and uses this
information to output a guess b̂← A(x⋆).

5. The output of the game is 1 if b̂ = b, and 0 otherwise. The adversary wins if b̂ = b, i.e.,
if it correctly identifies whether the test observation x⋆ was part of the training set T or a
freshly sampled data point from the population distribution P.

Adversary’s Goal and Capabilities The adversaryA in the Membership Inference Game aims to
determine whether a specific data point x⋆ was part of the original training dataset T or was drawn
from the population distribution P. Here, the adversary can utilize available information in any
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manner to construct a method to classify the membership of x∗. The performance of the classifier,
which can be evaluated with binary classification metrics, is a measure of the privacy leakage of the
training data from G and S. Formally, this classification or Membership Inference Attack can be
expressed as:

A(x⋆) = I [f(x⋆) > γ] (1)
where I is the indicator function, f(x⋆) is a scoring function of x∗, and γ is an adjustable decision
threshold.

Threat Model In this paper, we consider a threat model where the attacker has access to a set of
synthetic data S generated by a modelM learned on D. We make no assumptions on the architecture
or parameterization of the model nor do we assume the attacker has access to an API of the model
in which to continuously query for an arbitrarily large S (Meehan et al., 2020; Bhattacharjee et al.,
2023). This corresponds to the practical scenario in which a synthetic dataset is released publicly
for use. We also assume the attacker has access to a reference dataset R that was not used in the
training of the model, but is an independent sample from the same population as the training dataset,
T,R

iid∼ P. We assume this in practice because this represents a plausible scenario for the owner
of S as an attacker may be able to find comparable data in the real world such as open source
datasets, paid collection, prior knowledge, etc. van Breugel et al. (2023) for example showed that
reference datasets often improve the effectiveness of MIAs for generative models and many MIAs
for supervised learning models incorporate reference sets as well in ”shadow-box” attacks (Carlini
et al., 2021; Ye et al., 2022; Zarifzadeh et al., 2024).

Attack Strategy The adversary must develop a strategy in which to construct f(x∗). We specifi-
cally propose that the adversary utilize the degree of local overfitting within S as the primary signal
to determine whether a specific data point x⋆ belongs to the training set.

Overfitting is a common and difficult-to-eliminate failure mode in generative models, particularly in
the context of tabular synthetic data generation. In the setting of Membership Inference Attacks, this
failure mode becomes a significant source of privacy leakage. van Breugel et al. (2023) for example
identified that TVAE (Xu et al., 2019) overfit to minority class examples in a medical training dataset,
leaking their privacy. Similarly, Ward et al. (2024) found that TabDDPM (Kotelnikov et al., 2022),
when tasked with generating synthetic data for the well-known Adult dataset, heavily replicated
data points from certain demographic groups within the training data. The key insight drawn from
this phenomenon is that areas of the synthetic data distribution with higher density are likely to
reflect signals from the original training data. Leveraging this failure, it becomes possible to infer
whether specific data points were part of the training set, thus providing a basis for designing privacy
attacks. Our work builds on these findings by proposing a new method to measure the degree of local
overfitting in generative models. We utilize this metric to design a Membership Inference Attack
aimed at exposing the potential privacy risks inherent in synthetic data (See Section 3).

3 GENERATIVE LIKELIHOOD RATIO ATTACK

In this section, we propose Generative Likelihood Ratio Attack (Gen-LRA), a powerful Membership
Inference Attack which exploits overfitting to expose privacy leakage in generative models. Broadly
speaking, Gen-LRA builds a hypothesis test around assessing if S is overfit to x∗. By framing the
problem as a hypothesis test, we can define a likelihood ratio that measures the extent of overfitting
that is then used as the scoring function in Equation 1.

To begin, we compare the likelihood of the synthetic dataset S under two competing hypotheses. The
null hypothesis H0 assumes that the synthetic data follows the population distribution P, meaning
that the generative model correctly models P. Under this assumption, the likelihood of the synthetic
dataset is given by:

H0 : p(S|H0) =
∏
s∈S

pP(s) (2)

In contrast, the alternative hypothesis H1 assumes that the generative model overfits near x⋆, result-
ing in a modified probability distribution pP∪{x⋆}(s), which places additional weight on the vicinity

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of x⋆. Thus, the likelihood of the synthetic dataset under H1 is:

H1 : p(S|H1) =
∏
s∈S

pP∪{x⋆}(s) (3)

This formulation suggests that the synthetic data distribution is overly influenced by x⋆, leading to a
higher density of samples near this point. To compare the two hypotheses, we define the likelihood
ratio as:

λP(S, x
⋆) =

∏
s∈S pP∪{x⋆}(s)∏

s∈S pP(s)
(4)

However, equation 4 uses P, meaning that the likelihood ratio λP(S, x
⋆) operates at a population

level. While theoretically well-defined, this ratio is computationally infeasible without full access to
the population distribution. Instead, we use the reference dataset R as an approximation of P as by
definition from the threat model, R iid∼ P. We redefine the sample-level likelihood ratio as:

λR(S, x
⋆) =

∏
s∈S pR∪{x⋆}(s)∏

s∈S pR(s)
(5)

Here, pR∪{x⋆}(s) represents the probability density of a synthetic element s under the reference
dataset augmented with x⋆. In contrast, pR(s) reflects the probability density under the reference
dataset R without the influence of x⋆. The intuition of this attack is that in the absence of overfit-
ting (null hypothesis), the likelihood of the synthetic data should not significantly change with the
inclusion of x∗ as an ideal generative model would produce synthetic data that follows the same
population distribution as the training data. On the other hand, if overfitting is present (alternative
hypothesis), the synthetic data will be concentrated near distinct points in the training set, leading to
a distinct density increase around those points (See Figure 1).

3.1 GEN-LRA WITH KERNEL DENSITY ESTIMATORS

While λR(S, x
⋆) brings us closer to a practical computation compared to λP(S, x

⋆), it remains
computationally infeasible from observed data alone. Thus in order to implement Gen-LRA, we
need to estimate the densities of pR∪{x⋆} and pR. While most density estimation techniques such
as tractable probabilistic models (De Cao et al., 2019; Kobyzev et al., 2021; Liu & Van den Broeck,
2021) and Bayesian methods Grazian & Fan (2020); Hjort (1996) are compatible with Gen-LRA,
we focus on studying Gen-LRA with non-parametric Gaussian Kernel Density Estimators (KDEs)
(Weglarczyk, Stanisław, 2018) as they are widely known, computationally cheaper and have an
explicit form. In our case, the KDE estimate for the density p̂R,K,h(s) at a point s is given by:

p̂R,K,h(s) =
1

nh

n∑
i=1

K

(
s− ri
h

)
(6)

Here, n is the number of samples in the reference dataset R, and h is the bandwidth parameter
that controls the smoothness of the estimate. The terms ri represent individual samples from the
reference dataset R, and K

(
s−ri
h

)
is the kernel function applied to the scaled difference between

the sample s and the reference sample ri. When incorporating the test point x⋆, the KDE for the
augmented dataset R ∪ {x⋆} is given by:

p̂R∪{x⋆},K,h(s) =
1

(n+ 1)h

[
n∑

i=1

K

(
s− ri
h

)
+K

(
s− x⋆

h

)]
(7)

Thus, the likelihood ratio λR,K(S, x⋆) can now be expressed as:

λR,K(S, x⋆) =

∏
s∈S p̂R∪{x⋆},K,h(s)∏

s∈S p̂R,K,h(s)
(8)

Substituting the explicit KDE forms, we get:

λR,K(S, x⋆) =

∏
s∈S

(
1

(n+1)h

[∑n
i=1 K

(
s−ri
h

)
+K

(
s−x⋆

h

)])
∏

s∈S

(
1
nh

∑n
i=1 K

(
s−ri
h

)) (9)
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(a) Overfitting on x∗ (b) Underfitting on x∗

Figure 1: A geometric intuition for Gen-LRA with a 1-dimensional toy example. In Figures 1a and
1b, we visualize the KDE plots of R,R ∪ x∗, S as well as the estimated densities of the synthetic
observations over R and R ∪ x∗. In Figure 1a we consider x∗ = 0.5. Here, the likelihood of the
synthetic observations (product of orange intersections) are higher under the density estimate of
R ∪ x∗ than R (product of purple intersections) and therefore we conclude that x∗ ∈ T . In Figure
1b where x∗ = 0.9, the opposite is true and we therefore conclude x∗ /∈ T .

The likelihood ratio λR,K(S, x⋆), as computed from the KDE-based estimates, serves as our scoring
function for membership prediction:

f(x⋆) ≡ λR,K(S, x⋆) (10)

By computing this score, we measure the degree of local overfitting around the test point x⋆. A
higher score indicates that the synthetic dataset is likely overfitting near x⋆, suggesting that this
point was part of the training data used to generate the synthetic samples. Thus, by thresholding
λR,K(S, x⋆), we can perform membership inference—predicting whether x⋆ belongs to the original
training dataset. This method allows us to use the synthetic dataset to infer sensitive information
about the underlying training data with no assumptions of the qualities of the generative model that
generated it.

3.2 GEN-LRA IMPLEMENTATION

We refer to Algorithm 1 for a pseudo-code description of the Gen-LRA attack.

Localization A common theme in designing MIAs is to adopt techniques that maximize the signal
of x∗’s membership in the attack. Realistically, there is likely to be very little signal in comparing
the likelihoods of S over estimated probability density functions with a difference of a single ob-
servation. Indeed, equation 5 is an attack over the global difference in pR∪x∗ and pR. Instead, if
we have some idea for what regions of the two estimated PDFs are likely to most differ, we can
focus the attack on areas that should contain the most signal. Here, we localize Gen-LRA by only
considering the k-nearest elements in S to x∗ in our calculation of equation 5. In practice, the choice
of k can have minor impacts on the effectiveness of the attack, but we find we get excellent results
with small values (See Appendix A.3).

Choice of Decision Threshold While the previous sections detail the derivation of a scoring func-
tion, equation 1 still requires a decision threshold γ. Intuitively for Gen-LRA, γ can be any chosen
threshold but λR,K(S, x⋆ > 1 implies some degree of overfitting. As many MIAs do not have a
natural thresholding heuristic, a technique often employed is simply taking the median score over
many test observations. In practice though, as MIAs are privacy auditing tools the decision thresh-
old is less important as a practitioner should evaluate the attack at all possible thresholding values
to understand the maximal privacy risk of the attack. In evaluating MIAs, we therefore focus on
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metrics like AUC-ROC and True Positive Rate at False Positive Rate as these are independent of a
fixed γ (See Section 5 for more details).

Algorithm 1 Gen-LRA

Require:
1: Xtest ∈ Rntest×d: Test dataset
2: S ∈ RnS×d: Generated dataset
3: R ∈ Rnref×d: Reference dataset
4: k ∈ N: Number of closest points to compare

Ensure:
5: Sscores ∈ Rntest : Attack scores for test samples
6: function GENLRATTACK(Xtest,S,R, k)
7: Sscores ← ∅ ▷ Initialize score array
8: DER ← FitDensityEstimator(R) ▷ Fit density estimator on R
9: for x ∈ Xtest do

10: R′ ← R ∪ {x} ▷ Insert x into reference set
11: DER′ ← FitDensityEstimator(R′) ▷ Fit density estimator on R′

12: Sclose ← FindKNearestNeighbors(S,x, k) ▷ Find k closest points in S
13: LR′ ← DER′(Sclose) ▷ Compute likelihoods using DER′

14: LR ← DER(Sclose) ▷ Compute likelihoods using DER

15: s←
∑

s∈Sclose
log(LR′ [s])−

∑
s∈Sclose

log(LR[s]) ▷ Compute log-likelihood difference
16: Sscores ← Sscores ∪ {s}
17: end for
18: return Sscores
19: end function

4 RELATED WORKS

4.1 ASSESSING OVERFITTING IN TABULAR GENERATIVE MODELS

Several measures have been developed to assess the fitness of tabular synthetic data, particularly
from a privacy perspective. These metrics generally aim to measure the similarity between the
training and synthetic datasets, with the ideal outcome being that the synthetic data is neither too
similar to the training data nor too different. A widely used metric for this purpose is Distance to
Closest Record1 (Park et al., 2018; Lu et al., 2019; Yale et al., 2019; Zhao et al., 2021; Guillaudeux
et al., 2022; Liu et al., 2023), which compares the distance from each training point to its nearest
neighbor in the synthetic dataset to which a mean is computed. Another commonly used metric is
the Identical Matching Score (IMS) (Lu et al., 2019; AI, 2020; 2021), which measures the proportion
of identical records between the training and synthetic datasets. While these measures can be useful
for describing overfitness from a sample quality and model generalization perspective, they do not
characterize privacy risk because there is no assumed threat model and they are not evaluated over
non-member examples.

4.2 MIAS FOR MACHINE LEARNING MODELS

Membership Inference Attacks on the other hand, explicitly characterize the empirical privacy risk
of a machine learning model (Song & Mittal, 2020; Yeom et al., 2018). Originally, MIAs were
developed for attacking supervised learning classifiers (Shokri et al., 2017). In this context, the
general idea for these attacks is to query a model with different observations to learn patterns in its
class probability outputs. Membership can then be inferred by comparing the outputs of the model
to outputs from reference models in some manner (Sablayrolles et al., 2019a; Long et al., 2020;
Carlini et al., 2021; Watson et al., 2022; Ye et al., 2022; Zarifzadeh et al., 2024). While fundamental
to the literature, these methods are largely incompatible with attacking synthetic data generators as

1DCR in the similarity metric case compares a training point to a synthetic point. However, Chen et al.
(2020) proposes an MIA where the scoring function is a distance computation for a test point and a synthetic
point. In all other sections of the paper we use DCR to refer to the MIA.
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they rely on unlimited query access to the model and also formulate their attacks around returned
probability predictions.

To adapt to the structural differences in the problem domain, MIAs in the generative model setting
have adopted two broad styles of developing a scoring function: distance-based and density-based
attacks. Distance-based attacks rely on using some measure of distance between the test observation
and the synthetic and/or reference sets (Hayes et al., 2017; Chen et al., 2020; Ward et al., 2024).
Similarly to Gen-LRA, density-based attacks attack inconsistencies in the probability densities of
the synthetic and reference sets (Hilprecht et al., 2019; van Breugel et al., 2023). While these works
usually cover MIAs under a wide range of threat models, we only consider the attacks that use a
black-box (only synthetic data access) or shadow-box (only synthetic and reference data access)
threat model. This is in contrast to white-box attacks in which an adversary have both synthetic and
reference data as well as internal access to the model (Matsumoto et al., 2023; Pang et al., 2023; Wu
et al., 2023). White-box attacks generally are specific to the architecture of a model (Sablayrolles
et al., 2019b) and are not generalizable to the broader synthetic data release paradigm in which data
owners usually do not release their model weights.

5 EXPERIMENTS

5.1 BENCHMARKING

We test the effectiveness of Gen-LRA across a benchmark of 15 tabular datasets (Full details on
MIAs, architectures, and datasets are in Appendix A.4, A.5, A.6, respectively). From each dataset,
we scale continuous and one-hot-encode discrete variables before randomly sampling without re-
placement 3 equal sized training T , reference R, and holdout testing H sets. The training set is used
to train various popular private and non-private architectures to which an equally sized synthetic set
is generated. Using the synthetic and reference sets, MIAs are then evaluated by their AUC-ROC and
Accuracy on distinguishing between the training and holdout testing sets X∗ = T ∪H . We repeat
this 10 times for each dataset for each T,R,H , and S with sample size of N = (250, 1000, 4000).

For DOMIAS and Gen-LRA which rely on density estimation, we implement these methods using
a Kernel Density Estimator (KDE). As KDEs struggle to converge for high dimensional, heteroge-
neous data, in line with Wen & Hang (2022), we reduce the dimensionality for qualifying datasets
by fitting a Principle Component Analysis (PCA) transformation to S and transforming R and X∗

accordingly.

The full results for each MIA’s mean and standard deviation AUC-ROC across all runs and N -sizes
for each architecture are reported in table 1. We report a similar table for accuracy in Appendix A.1.2
although the results are largely equivalent. For Gen-LRA, we found that the choice of k can have
a small impact on the performance of the attack (See Appendix A.3), we therefore use the results
of the best k choice for each run as the goal for an MIA is to characterize the maximal empirical
privacy risk.

Table 1: Average AUC-ROC for each Membership Inference Attack across model architectures and
datasets.

Model Gen-LRA (Ours) DCR-Diff DPI DOMIAS DCR MC Logan 2017
AdsGAN 0.529 (0.02) 0.517 (0.02) 0.521 (0.02) 0.517 (0.02) 0.516 (0.02) 0.515 (0.02) 0.503 (0.02)
ARF 0.548 (0.03) 0.540 (0.02) 0.538 (0.02) 0.534 (0.02) 0.533 (0.02) 0.527 (0.02) 0.504 (0.02)
Bayesian Network 0.654 (0.07) 0.656 (0.06) 0.557 (0.02) 0.632 (0.06) 0.680 (0.07) 0.625 (0.05) 0.505 (0.02)
CTGAN 0.527 (0.02) 0.515 (0.02) 0.519 (0.02) 0.515 (0.02) 0.513 (0.02) 0.511 (0.02) 0.504 (0.02)
Tab-DDPM 0.603 (0.08) 0.587 (0.06) 0.552 (0.03) 0.587 (0.06) 0.585 (0.07) 0.564 (0.05) 0.505 (0.02)
Normalizing Flows 0.517 (0.02) 0.504 (0.02) 0.506 (0.02) 0.505 (0.02) 0.505 (0.02) 0.504 (0.02) 0.502 (0.02)
PATEGAN 0.514 (0.02) 0.497 (0.02) 0.500 (0.02) 0.498 (0.02) 0.500 (0.02) 0.501 (0.02) 0.502 (0.02)
TVAE 0.541 (0.02) 0.529 (0.03) 0.523 (0.02) 0.524 (0.03) 0.529 (0.03) 0.522 (0.02) 0.504 (0.02)
Rank 1.3 3.5 3.6 3.8 4.0 5.4 6.4

Overall, Gen-LRA outperforms other MIAs across nearly all architectures with an average rank of
1.3. As Gen-LRA relies on estimating the likelihood of high dimensional, heterogeneous data, it is
surprising that it excels with using PCA coupled with KDE, which is a baseline that is usually beaten
by more modern density estimation methods (Wen & Hang, 2022; De Cao et al., 2019). Although
using these newer methods would likely improve the attack, we benchmark with PCA + KDE as it
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is computationally cheaper than these methods and it showcases that the gain in the attack comes
from equation 5, minimally implemented.

5.2 THE LOW FALSE POSITIVE SETTING

While AUC-ROC provides an easily comparable global measure of an attack’s effectiveness, from
a privacy perspective it does not indicate how well an attack performs when the False Positive Rate
(FPR) is low. As Carlini et al. (2021) and Zarifzadeh et al. (2024) argue, researchers should analyze
how well an attack performs with a low FPR because in practical settings there is a greater privacy
risk to individual training observations that can be correctly classified with few false positives versus
observations that are included with many false positives. Similarly, as the goal of MIAs is to identify
positive membership, identifying if x∗ is not a member is less important.

We therefore report the mean and standard deviation TPR@FPRs (True Positive Rate at False Posi-
tive Rate) for a range of fixed FPR values for each MIA across datasets, architectures, and N -sizes
in table 2. Achieving a high TPR at a very low FPR is challenging in this scenario as MIAs are inher-
ently an unsupervised classification task. However, Gen-LRA nearly doubles the performance of the
next best method at FPR = 0.001 and consistently sees significant gains over the next best method
at higher thresholds. This highlights that Gen-LRA is better able to detect egregious overfitting to
certain training observations, relative to other competing attacks.

Table 2: True Positive Rates for MIAs at different fixed False Positive Rate levels.

MIA 0.001 0.01 0.1
Logan 2017 0.003 (0.01) 0.012 (0.01) 0.102 (0.02)
DPI 0.002 (0.00) 0.014 (0.01) 0.118 (0.03)
MC 0.003 (0.00) 0.014 (0.01) 0.120 (0.04)
DOMIAS 0.002 (0.00) 0.016 (0.01) 0.134 (0.06)
DCR-Diff 0.005 (0.01) 0.019 (0.02) 0.138 (0.07)
DCR 0.016 (0.05) 0.036 (0.08) 0.153 (0.11)
Gen-LRA (ours) 0.031 (0.01) 0.056 (0.03) 0.193 (0.08)

5.3 TARGETING OVERFITTING IN OUTLIERS

An additional question we are interested in investigating is if Gen-LRA displays patterns of behavior
that are different from other MIAs. As a case study, we replicate an experiment from Ward et al.
(2024) where the authors train Tab-DDPM on the Adult dataset, and evaluate Membership Inference
Attack scores over a 2-D projection of the training set. Here, we perform this same procedure,
plotting a UMAP projection (McInnes et al., 2018) of the training data and coloring the observations
with the 99.5th percentile highest Gen-LRA and DCR scores (See figure 2).

We find that Gen-LRA’s highest scores are concentrated in an outlier cluster in the (0,12) region
whereas DCR’s are spread through the plot. We examined the observations in this cluster and found
that nearly every data point had the same demographics: white, male, American, married, high
income, and with high capital gains. This provides evidence that Gen-LRA is specifically attacking
overfitting to outlier regions of the training distribution.

6 DISCUSSION

6.1 GEN-LRA PERFORMANCE

Gen-LRA is a density-based attack that, using a simple estimation strategy, broadly outperforms
competing methods. Constructing the attack as a likelihood ratio over local regions of the synthetic
probability distribution allows greater attack performance as Gen-LRA is customizable in its choice
of k to different datasets and architectures. Indeed as table 1 shows, models like Tab-DDPM and
Bayesian Networks experience more privacy leakage than others and a tunable attack can realize
large performance gains. While Gen-LRA excels in a global attack evaluation setting with an aver-
age rank of 1.3 across models, Gen-LRA also sees best-in-class performance in the more difficult
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Figure 2: A UMAP projection of the Adult training dataset then used to train Tab-DDPM. In red
and blue are the observations with 99.5th percentile Gen-LRA and DCR scores respectively. Gen-
LRA targets specific outlier regions of the distribution whereas DCR is dispersed. Concerningly,
the cluster at (0,12) are nearly all observations with white, male, American, married, high income,
and high capital gains demographics. This suggests that specific subgroups of training data can
experience more privacy leakage than others.

low FPR setting. While TPR@FPR performance for generative MIAs is lower than in the supervised
setting, table 2 indicates Gen-LRA is a step in the right direction as most other attacks outright fail
at the 0.001 and 0.01 levels. Lastly, figure 2 shows Gen-LRA attacks outlier regions of a training
distribution. This is surprising as Gen-LRA can indicate where and how a generative model may
be overfitting to its training data and it highlights that the privacy leakage of individuals appears
non-random in that similar training observations can be more egregiously overfit to than others.

6.2 ON DISTANCE VERSUS DENSITY-BASED ATTACKS

One finding is that distance based attacks like DCR can outperform density based attacks like Gen-
LRA in some architectures and datasets. For example, DCR slightly outperforms Gen-LRA with
Bayesian Networks and is the next best method in the low FPR domain. We hypothesize that this
is because DCR and Gen-LRA attack fundamentally different types of overfitting. Consider two
toy data simulations (full details in A.2.1): in one we let T and R be random samples from a
2-dimensional standard multivariate Gaussian: T,R

iid∼ N2(0, I) and a model M exactly copies
training examples for its output; S = T . In the other, we similarly let R iid∼ N2(0, I) but, the
sampling distribution of T is made to slightly differ than R (perhaps due to sampling variation or

bias) and S well-models T such that D,S
iid∼ N2(0,

(
2 0
0 1

)
). The average AUC-ROC of DCR and

Gen-LRA are compared in table 3.

For the data copying simulation, distance based attacks like DCR always outperform density attacks
because all measures of distance between T and S are 0. A DCR MIA will thus always have an
Accuracy and AUC-ROC of 1 and Gen-LRA struggles to detect any privacy leakage. On the other
hand, DCR is worse than random at detecting privacy leakage from a generator overfitting to a
training dataset, relative to the reference population distribution whereas Gen-LRA identifies this
difference. In practice, there will usually be natural variation between the empirical distributions
of PT and PR, the danger that Gen-LRA highlights is that G can leak the privacy of training data
by generating S that is closer to pT than to the true population distribution. Indeed, this is further
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evidenced by figure 2 that demonstrates Gen-LRA attacks specific outlier regions of distributions
whereas DCR does not.

Table 3: AUC-ROC for MIAs across the data copying and overfitting toy simulations.

Simulation Example DCR Gen-LRA
Data Copying 1.00 (.00) 0.53 (.02)
Overfitting 0.46 (.02) 0.59 (.02)

7 CONCLUSION

Membership Inference Attacks are a useful tool for evaluating generative models for synthetic data
release. They can characterize the privacy risk towards training observations, provide information
on how a model may be overfit, and add subtle context to patterns of behavior in generative models.
In this paper, we propose Gen-LRA, which constructs a likelihood ratio of the synthetic data using
simple Kernel Density Estimators. We show that it excels at attacking a diverse set of generative
models across a wide-range of datasets and that this success comes from Gen-LRA’s unique ability to
target a generative model’s tendency to overfit to training outliers- a trait that is not well-shared with
other common MIAs. We note that there are several drawbacks with Gen-LRA in that it requires
dimension reduction techniques to be compatible with high dimensional heterogeneous data and that
it fails at detecting flagrant data-copying. However, we point out that Gen-LRA is compatible with
high dimensional density estimation strategies and that empirically, Gen-LRA usually outperforms
other attacks despite these disadvantages.

We believe that there are many directions for future work. Exploring emerging density estima-
tion methodologies would likely yield better empirical performance, especially on high dimensional
datasets. On a different front, research into developing adversarial techniques to better understand
model overfitting in general could also lead to important interpretability techniques. Lastly, we
believe that it is important to investigate the observed phenomenon that Gen-LRA can specifically
target distinct sub-groups of a training dataset as this implies that even if an attack is largely unsuc-
cessful in the aggregate, high-risk observations may still be leaked.
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A APPENDIX

A.1 ADDITIONAL FIGURES

A.1.1 SAMPLE SIZE AND MIA EFFECTIVENESS

It is known that Membership Inference Attacks benefit from low sample sizes of T , R, and S. We
explore the effect of the size of these samples across all models and datasets in figure 3. Here,
we see that performance drops off between N=250 and N=1000; however it is relatively the same
across all MIAs between N=1000 and N=4000. Across all N-sizes, Gen-LRA has a greater average
AUC-ROC then all other MIAs. This further demonstrates that Gen-LRA is an excellent choice for
a privacy auditing adversarial attack.

Figure 3: Average MIA AUC-ROC across different sample sizes. There is little decrease in perfor-
mance after N=1000 and Gen-LRA has the highest global attack performance across N-sizes.

A.1.2 AVERAGE ACCURACY TABLE

Table 4: Average AUC-ROC for each Membership Inference Attack across model architectures and
datasets.

Model Gen-LRA (Ours) MC DCR DCR-Diff DPI DOMIAS LOGAN 2017
AdsGAN 0.524 (0.02) 0.513 (0.02) 0.513 (0.02) 0.513 (0.02) 0.515 (0.02) 0.513 (0.02) 0.503 (0.02)
ARF 0.539 (0.02) 0.524 (0.02) 0.524 (0.02) 0.529 (0.02) 0.526 (0.02) 0.524 (0.02) 0.503 (0.02)
Bayesian Network 0.619 (0.05) 0.629 (0.05) 0.629 (0.05) 0.621 (0.05) 0.538 (0.02) 0.599 (0.05) 0.504 (0.02)
CTGAN 0.523 (0.02) 0.509 (0.02) 0.509 (0.02) 0.511 (0.02) 0.513 (0.02) 0.511 (0.02) 0.504 (0.02)
Tab-DDPM 0.58 (0.04) 0.564 (0.05) 0.564 (0.05) 0.563 (0.05) 0.537 (0.02) 0.563 (0.04) 0.504 (0.02)
Normalizing Flows 0.517 (0.02) 0.504 (0.02) 0.504 (0.02) 0.504 (0.02) 0.505 (0.02) 0.504 (0.02) 0.501 (0.02)
PATEGAN 0.514 (0.02) 0.501 (0.02) 0.501 (0.02) 0.499 (0.02) 0.499 (0.02) 0.500 (0.02) 0.501 (0.02)
TVAE 0.533 (0.02) 0.520 (0.02) 0.520 (0.02) 0.522 (0.02) 0.517 (0.02) 0.518 (0.02) 0.503 (0.02)
Rank 1.3 3.2 3.4 3.6 3.6 3.9 5.5

A.1.3 MODEL UTILITY AND GEN-LRA EFFECTIVENESS

We benchmark various statistical metrics used to describe the quality of tabular synthetic data across
architectures and datasets. We plot the mean Wasserstein distance and Maximum Mean Discrepancy
between the corresponding training and synthetic data against the mean AUC-ROC of Gen-LRA in
figure 4. Here, it seems there is some relationship between measures of statistical distance and
Gen-LRA’s global effectiveness. As these metrics are often used in utility benchmarks for tabular
synthetic data, it is important to note that for practitioners, statistical fidelity in synthetic data can
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come at a privacy cost. It also illustrates that measures of utility should include some kind of holdout
testing method to consider overfitting.

Figure 4: Average Wasserstein Distance and Average Maximum Mean Discrepancy plotted against
Gen-LRA AUC-ROC for benchmarked models. Bayesian Network and Tab-DDPM outperform
other models in these performance metrics but have higher privacy risk.

A.2 EXPERIMENT DETAILS

A.2.1 SECTION 6.2

We conducted two experiments to evaluate the performance of DCR and Gen-LRA on different
types of model failure, with the full results shown in table 3. The experiments were carried out as
follows:

Data Copying Simulation In this setup, we let T and R be random samples from a 2-dimensional
standard multivariate Gaussian distribution; i.e., T,R iid∼ N2(0, I). Here, we assume a model M
that exactly reproduces the training examples in its output, meaning S = T .

Overfitting Simulation In this simulation, we again let R iid∼ N2(0, I), but the sampling distribu-
tion of T is modified to slightly differ from R, potentially due to sampling variation or bias. In this

case, the output S models T well, where D,S
iid∼ N2(0,

(
2 0
0 1

)
).

For both simulations, we set the sample size n = 500 for T , R, and S, and the AUC-ROC of DCR
and Gen-LRA was compared over 10,000 iterations.

A.3 ABLATION: DIFFERENT k SIZES

Gen-LRA targets local fitting by selecting a subset of S to evaluate likelihoods with. This is im-
plemented using the k-nearest neighbors in S to x∗. In practice, this means that k must be selected
as a hyperparameter for the attack. In order to understand how k impacts the quality of the attack,
we replicate section 5 benchmarking with various k values. We report the average AUC-ROC and
standard deviations in table 5. Overall, we find that empirically usually smaller values of k are better
although it depends on the model. As stated in section 3, a global attack over all S is unlikely to
yield much membership signal. This is confirmed with k = N , where the AUC-ROC is always 0.5
and highlights that overfitting is a local phenomenon and that generative model adversarial attacks
should focus on attacking locality to be successful.
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Table 5: Average AUC-ROC at different k values for Gen-LRA.

Model k=1 k=3 k=5 k=10 k=15 k=20 k=N
AdsGAN 0.514 (0.02) 0.518 (0.02) 0.519 (0.02) 0.520 (0.02) 0.521 (0.02) 0.521 (0.02) 0.500 (0.00)
ARF 0.532 (0.02) 0.538 (0.02) 0.540 (0.02) 0.540 (0.03) 0.540 (0.03) 0.539 (0.03) 0.500 (0.00)
Bayesian Network 0.650 (0.07) 0.645 (0.07) 0.640 (0.07) 0.634 (0.07) 0.631 (0.07) 0.629 (0.07) 0.500 (0.00)
CTGAN 0.514 (0.02) 0.516 (0.02) 0.517 (0.02) 0.517 (0.02) 0.518 (0.02) 0.518 (0.02) 0.500 (0.00)
Tab-DDPM 0.595 (0.07) 0.595 (0.07) 0.594 (0.07) 0.592 (0.06) 0.591 (0.06) 0.589 (0.06) 0.500 (0.00
Normalizing Flow 0.503 (0.02) 0.503 (0.02) 0.505 (0.02) 0.506 (0.02) 0.506 (0.02) 0.506 (0.02) 0.500 (0.00)
TVAE 0.527 (0.03) 0.531 (0.03) 0.531 (0.03) 0.531 (0.03) 0.530 (0.03) 0.529 (0.03) 0.500 (0.00)

A.4 MIAS FOR GENERATIVE MODELS DESCRIPTIONS

The Membership Inference Attacks referenced in this paper is are described as follows:

• LOGAN Hayes et al. (2017): LOGAN consists of black box and shadow box attack. The
black-box version involves training a Generative Adversarial Network (GAN) on the syn-
thetic dataset and using the discriminator to score test data. A calibrated version improves
upon this by training a binary classifier to distinguish between the synthetic and reference
dataset. In this paper, we only benchmark the calibrated version.

• Distance to Closest Record (DCR) / DCR Difference Chen et al. (2020): DCR is a black-
box attack that scores test data based on a sigmoid score of the distance to the nearest
neighbor in the synthetic dataset. DCR Difference enhances this approach by incorporating
a reference set, subtracting the distance to the closest record in the reference set from the
synthetic set distance.

• MC Hilprecht et al. (2019): MC is based on counting the number of observations in the
synthetic dataset that fall into the neighborhood of a test point (Monte Carlo Integration).
However, this method does not consider a reference dataset, and the choice of distance
metric for defining a neighborhood is a non-trivial hyperparameter to tune.

• DOMIAS van Breugel et al. (2023): DOMIAS is a calibrated attack which scores test
data by performing density estimation on both the synthetic and reference datasets. It then
calculates the density ratio of the test data between the learned synthetic and reference
probability densities.

• DPI Ward et al. (2024): DPI computes the ratio of k-Nearest Neighbors of x∗ in the syn-
thetic and reference datasets. It then builds a scoring function by computing the ratio of the
sum of data points from each class of neighbors from the respective sets.

A.5 GENERATIVE MODEL ARCHITECTURE DESCRIPTIONS

In all experiments, we use the implementations of these models from the Python package Synthcity
Qian et al. (2023). For benchmarking purposes, we use the default hyperparameters for each model.
A brief description of each model is as follows:

• CTGAN Xu et al. (2019): Conditional Tabular Generative Adversarial Network uses a
GAN framework with conditional generator and discriminator to capture multi-modal dis-
tributions. It employs mode normalization to better learn mixed-type distributions.

• TVAE Xu et al. (2019): Tabular Variational Auto-Encoder is similar to CTGAN in its use of
mode normalizing techniques, but instead of a GAN architecture, it employs a Variational
Autoencoder.

• Normalizing Flows (NFlows) Durkan et al. (2019): Normalizing flows transform a simple
base distribution (e.g., Gaussian) into a more complex one matching the data by applying
a sequence of invertible, differentiable mappings.

• Bayesian Network (BN) Ankan & Panda (2015): Bayesian Networks use a Directed
Acyclic Graph to represent the joint probability distribution over variables as a product
of marginal and conditional distributions. It then samples the empirical distributions esti-
mated from the training dataset.

• Adversarial Random Forests (ARF) Watson et al. (2023): ARFs extend the random forest
model by adding an adversarial stage. Random forests generate synthetic samples which
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are scored against the real data by a discriminator network. This score is used to re-train
the forests iteratively.

• Tab-DDPM Kotelnikov et al. (2022): Tabular Denoising Diffusion Probabilistic Model
adapts the DDPM framework for image synthesis. It iteratively refines random noise into
synthetic data by learning the data distribution through gradients of a classifier on partially
corrupted samples with Gaussian noise.

• PATEGAN Yoon et al. (2019): The PATEGAN model uses a neural encoder to map dis-
crete tabular data into a continuous latent representation which is sampled from during
generation by the GAN discriminator and generator pair.

• Ads-GAN Yoon et al. (2020b): Ads-GAN uses a GAN architecture for tabular synthesis
but also adds an identifiability metric to increase its ability to not mimic training data.

A.6 BENCHMARKING DATASETS REFERENCES

We provide the URL for the sources of each dataset considered in the paper. We use datasets com-
mon in the tabular generative modeling literature Suh et al. (2023)

1. Abalone (OpenML): https://www.openml.org/search?type=data&sort=
runs&id=183&status=active

2. Adult Becker & Kohavi (1996)
3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+

dataset

4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/
shrutimechlearn/churn-modelling

5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+
plates+faults

6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2
7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/

indian-liver-patient-records?resource=download

8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/
insurance

9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/
magic-gamma-telescope-dataset?resource=download

10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+
news+popularity

11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/
nursery

12. Obesity (Kaggle): https://www.kaggle.com/datasets/
tathagatbanerjee/obesity-dataset-uci-ml

13. Shoppers (Kaggle): https://www.kaggle.com/datasets/henrysue/
online-shoppers-intention

14. Titanic (Kaggle): https://www.kaggle.com/c/titanic/data
15. Wilt (OpenML): https://www.openml.org/search?type=data&sort=

runs&id=40983&status=active
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