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Abstract— Pulmonary function tests (PFTs) are vital for 

diagnosing various pulmonary conditions, including chronic 

obstructive pulmonary disease (COPD) and asthma. Traditional 

PFTs, conducted using laboratory-based spirometers, are 

accurate but costly and require skilled technicians. Recent 

advancements in portable spirometry and large language models 

(LLMs) offer promising alternatives for remote diagnostics and 

clinical decision support. This study evaluates the performance of 

three advanced LLMs: Gemini 1.5 Pro, GPT 4o, and Claude 3.5 

Sonnet in understanding and interpreting PFTs data. The models 

were assessed using three prompt types: zero shot, guidelines 

enhanced, and few shot, and their performance was measured in 

terms of accuracy, precision, recall, F1 score, and processing speed. 

Results indicate that Claude 3.5 Sonnet consistently outperformed 

the other models across all metrics, demonstrating superior 

comprehension and classification abilities. Error analysis revealed 

specific areas for improvement, particularly in logical reasoning 

and adherence to guidelines. The findings highlight the potential 

of LLMs to enhance diagnostic processes and reduce healthcare 

costs, while also emphasizing the need for further research to 

address data privacy, interoperability, and ethical considerations 

for clinical integration. Future efforts should focus on leveraging 

open-source models and expanding datasets to optimize LLMs for 

real-world medical applications.  

Keywords— Chain of Thought, Claude 3.5 Sonnet, Clinical 

Rationale Generation, Large Language Models, Medical Guidelines 

Prompt 

I. INTRODUCTION 

Pulmonary function tests (PFTs) are essential diagnostic 
tools used to assess lung health and diagnose various pulmonary 
conditions, including chronic obstructive pulmonary disease 
(COPD), asthma, and restrictive lung diseases [1-3]. The Global 
Initiative for Chronic Obstructive Lung Disease (GOLD) report 

highlights that COPD is a leading cause of morbidity and 
mortality worldwide, necessitating accurate diagnostic methods 
[4]. Traditionally, PFTs are conducted using laboratory-based 
spirometers, which provide precise measurements but come 
with high costs and require skilled technicians. This makes the 
approach impractical and leads to substantial increases in 
medical expenses for patients directed to tertiary hospitals [5]. 

Several studies have indicated that measurements obtained 
using portable spirometers are nearly identical to those from 
traditional, laboratory-based spirometers [6, 7]. This suggests 
that portable spirometers, with their cost-effectiveness, 
portability, and ease of use, can serve as a viable alternative to 
conventional PFTs devices [8]. Recently, the integration of 
portable spirometry with mobile applications has enabled 
patients to easily measure their lung capacity at home and 
transmit the results to healthcare providers. This advancement 
goes beyond the development of remote treatment plans, 
extending to the creation of diverse software services related to 
pulmonary health [9-11].  

Moreover, with the advent of large language models (LLMs), 
the medical field has seen substantial advancements [12], 
including the development of medical domain LLMs capable of 
passing medical licensing exams [13], as well as applications in 
disease prediction and diagnostic consultation chatbots [14]. 
Ongoing research is also aimed at creating LLMs that can 
perform tasks beyond simple algorithmic classification of 
pulmonary function test data, generating pulmonary function 
test charts at the proficiency level of medical residents [15]. 
Such innovations have the potential to significantly reduce 
unnecessary medical expenditures and alleviate the burden of 
frequent hospital visits for patients. 
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Therefore, the aim of this study is to conduct foundational 
research by evaluating and comparing the comprehension of 
pulmonary function test data among three leading state-of-the-
art large parameter LLMs, namely the Gemini 1.5 Pro [16], the 
GPT 4o [17] and the Claude 3.5 Sonnet [18], which have 
demonstrated top tier performance across various assessments. 

II. METHODOLOGY 

The methodology section provides a comprehensive 
overview of the experimental design, data collection, 
preprocessing, and the specific approaches used to evaluate the 
performance of three advanced LLMs in interpreting PFTs data. 

A. Data Collection and Preprocessing 

The study involved a total of 200 participants who were 
recruited from various primary healthcare settings. Participants 
included individuals across different age groups, genders, and 
varying health statuses to ensure a representative sample. Each 
participant provided informed consent before participating in the 
study, ensuring ethical standards were maintained. 

Data were collected using the portable spirometer BULO M, 
developed by BREATHINGS Co., Ltd. This device is known for 
its accuracy and portability, which makes it ideal for use in both 
clinical and home settings. The spirometer measured two key 
pulmonary parameters: forced vital capacity (FVC) and forced 
expiratory volume in one second (FEV1). These parameters are 
critical in diagnosis of pulmonary diseases. 

The predicted normal values for FVC and FEV1, used to 
classify pulmonary disease types, were calculated using Dr. 
Choi's equation [19], a widely accepted formula for predicting 
normal values based on the Asian population and considering 
age, sex, height, and weight. 

This normalization was essential to account for individual 
variations and ensure that the comparisons made across 
participants were valid. 

Using the predicted normal values for FVC and FEV1, the 
data were classified into four pulmonary disease categories: 
normal, restrictive, obstructive, or combined. The classification 
followed established diagnostic guidelines: 

• Normal: FEV1/FVC ratio of 70% or higher and FVC 80% 
or higher of the predicted normal value for FVC; labeled 
as ‘normal’. 

• Restrictive: FEV1/FVC ratio of 70% or higher and FVC 
less than 80% of the predicted normal value for FVC; 
labeled as ‘restrictive’. 

• Obstructive: FEV1/FVC ratio of less than 70% and FVC 
80% or higher of the predicted normal value for FVC; 
labeled as ‘obstructive’. 

• Combined: Meeting the criteria for both restrictive and 
obstructive conditions; labeled as ‘combined’. 

The ground truth labels for each participant were determined 
based on the above contents. 

To facilitate the evaluation of the LLMs, the numerical PFTs 
data were transformed into standardized sentences. These 
sentences followed a specific structure, as outlined in the study's 

guidelines, to ensure consistency and clarity. Each sentence 
included the measured FVC and FEV1 values and the predicted 
normal values for these measurements to maintain uniformity. 

B. Large Language Models 

The study evaluated three state of the art LLMs: Gemini 1.5 
Pro (developed by Google), GPT 4o (developed by OpenAI), 
and Claude 3.5 Sonnet (developed by Anthropic). These models 
were chosen based on their superior performance across various 
natural language processing tasks and their availability via 
application programming interfaces. 

Each model was accessed through its respective application 
programming interface and configured with specific parameters 
to ensure consistent performance across all tests: 

• Temperature: Set to 0.0 to ensure deterministic outputs. 
This parameter controls the randomness of the model's 
predictions, with a lower temperature resulting in more 
consistent and predictable responses. 

• Top p: Set to 1.0, which means the entire probability 
distribution of possible tokens was considered during the 
generation of responses. This setting ensures that no 
potential answers are excluded from consideration. 

C. Prompts for Pulmonary Disease Type Classification 

Prompt engineering is a crucial aspect of evaluating LLMs, 
as the quality and structure of prompts can significantly impact 
the models’ performances. This study employed three types of 
prompts to assess the models’ abilities to interpret PFTs data and 
generate accurate clinical rationales. 

Each case was processed in a separate session to ensure that 
prior inputs did not influence subsequent responses, maintaining 
the integrity and independence of each test case. 

Zero shot prompting involves providing the model with 
PFTs data without any additional context or examples. This type 
of prompt assesses the model's inherent ability to understand and 
interpret the data based solely on its pre-existing knowledge. 
Each model was given a prompt structured as follows, 
corresponding to Fig. 1: 

• Entry of transformed PFTs data. 

• A request to generate a diagnosis (normal, restrictive, 
obstructive, or combined). 

• A request to provide a clinical rationale in four sentences. 

To improve the models' performance, zero shot prompt were 
enhanced with specific diagnostic guidelines and the chain of 
thought (CoT) technique [20]. The guidelines provided explicit 
criteria for classifying pulmonary diseases, while the CoT 
technique involved breaking down the reasoning process into 
sequential steps. The guidelines enhanced prompt structure 
included the following, corresponding to Fig. 1: 

• The same PFTs data as provided in the zero shot prompt. 

• Detailed diagnostic guidelines to assist the model in 
making accurate classifications. 

• CoT sentences to guide the model through the reasoning 
process step by step. 



 

Fig. 1. Prompts for classification of pulmonary disease types and generation of clinical rationale

Few shot prompting involves providing the model with a 
small number of example cases in addition to the primary 
prompt. This approach helps the model understand the task 
better by learning from the examples. For this study, four 
example datasets were included in the prompts. The structure 
of the few shot prompt, as shown in Fig. 1, was as follows: 

• The same PFTs data input as the previous two prompts. 

• The same diagnostic guidelines and CoT sentences 
input as the previous prompts. 

• Input of four example responses. 

D. Evaluation for Classification 

The quantitative performance of the LLMs in classifying 
different types of pulmonary diseases was assessed through a 
variety of evaluation metrics: 

• Accuracy: The proportion of correct predictions out of 
the total predictions. 

• Precision: The ratio of true positives to the sum of true 
positives and false positives, indicating the model's 
ability to avoid false positives and its reliability in 
positive predictions. 

• Recall: The ratio of true positives to the sum of true 
positives and false negatives, reflecting the model's 
ability to identify all relevant instances and its 
effectiveness in capturing actual positives. 

• F1 Score: The harmonic mean of precision and recall, 
providing a balanced measure of the model's 
performance, particularly useful when there is an 
uneven class distribution. 

These metrics were selected to ensure a comprehensive 
understanding of how well the models performed in 
distinguishing between the four categories of pulmonary 
conditions. 

E. Error Types 

The clinical rationales generated by the LLMs were 
analyzed for different types of errors, including: 

• Comparison Operation Errors (COE): These errors 
occurred when the model's logical operations 
involving numerical comparisons were flawed, despite 
the calculations being correct. 

• Guideline Deviations (GD): These errors happened 
when the model deviated from the provided diagnostic 



guidelines, either by offering alternative explanations 
or additional clinical opinions that were not aligned 
with the guidelines. 

• Misdiagnoses (MD): In these cases, the model 
generated a clinical rationale that aligned with the 
diagnostic guidelines, but the final diagnosis was 
incorrect. 

• Miscalculations (MC): These errors involved incorrect 
calculations during the reasoning process, which could 
lead to incorrect conclusions. 

III. RESULTS 

In this section, we present the detailed results of our 
evaluation of the three LLMs: Gemini 1.5 Pro, GPT 4o, and 
Claude 3.5 Sonnet, on their comprehension of PFTs data. The 
evaluation was conducted across three types of prompts: zero 
shot, guidelines enhanced, and few shot. This includes the 
quantitative performance metrics, such as accuracy, precision, 
recall, and F1 score, along with the time efficiency and the 
number of tokens generated by the three models for 200 
iterations to assess their processing speed and efficiency under 
different prompt types. Additionally, we present a 
comprehensive error analysis to provide insights into the 
models' capabilities and limitations. 

A. Quantitative Performance and Time Efficiency of 

Pulmonary Disease Type Classification by Prompt 

The zero shot performance of the models was evaluated by 
providing them with only the PFTs results without any 
additional context. Table I summarizes the accuracy, precision, 
recall, and F1 score for each model across the four pulmonary 
disease types: normal, restrictive, obstructive, and combined. 

Claude 3.5 Sonnet outperformed the other models in the 
zero shot setting across all disease types, achieving the highest 
accuracy, precision, recall, and F1 score. This indicates that 
Claude 3.5 Sonnet has a superior inherent ability to understand 
and classify pulmonary diseases based solely on the provided 
PFTs data. 

TABLE I. PERFORMANCE EACH MODEL IN CLASSIFYING PULMONARY 

DISEASE TYPES WITH ZERO SHOT PROMPT 

Model 

Pulmonary 

Disease 

type 

Precision Recall F1 Score 
Overall 

Accuracy 

Gemini 

1.5  

Pro 

Normal 1.00 0.13 0.24 

0.55 
Restrictive 0.81 0.66 0.72 

Obstructive 0.43 1.00 0.60 

Combined 0.00 0.00 0.00 

GPT  

4o 

Normal 1.00 0.48 0.65 

0.73 
Restrictive 0.81 0.92 0.86 

Obstructive 0.60 0.98 0.75 

Combined 0.00 0.00 0.00 

Claude 

3.5 

Sonnet 

Normal 0.92 0.77 0.84 

0.80 
Restrictive 0.71 1.00 0.83 

Obstructive 1.00 0.72 0.83 

Combined 0.41 0.44 0.42 

 

The guidelines enhanced prompt included specific 
diagnostic criteria and the CoT technique to aid the models in 
their reasoning process. Table II presents the performance 
metrics for each model using the guidelines enhanced prompt. 

With the inclusion of diagnostic guidelines and CoT, 
overall accuracy showed minimal change, but there was an 
improvement in the classification of the 'combined' type. The 
Claude 3.5 Sonnet maintained its lead, achieving the highest 
scores across all metrics and disease types. The enhancements 
provided clearer criteria and reasoning steps, which helped the 
models make more accurate diagnoses. 

The few shot prompt included four example datasets to 
provide additional context and improve the models' 
understanding. Table III details the performance metrics for 
each model with the few shot prompt. 

The few shot prompting further improved the performance 
of all models, with Claude 3.5 Sonnet continuing to 
outperform Gemini 1.5 Pro and GPT 4o. The additional 
examples provided context that helped the models better 
understand the classification task, leading to higher accuracy 
and more reliable predictions. 

TABLE II. PERFORMANCE EACH MODEL IN CLASSIFYING PULMONARY 

DISEASE TYPES WITH GUIDELINES ENHANCED PROMPT 

Model 

Pulmonary 

Disease 

type 

Precision Recall F1 Score 
Overall 

Accuracy 

Gemini 

1.5  

Pro 

Normal 1.00 0.22 0.36 

0.48 
Restrictive 0.47 0.92 0.62 

Obstructive 0.74 0.28 0.41 

Combined 0.21 0.50 0.30 

GPT  

4o 

Normal 0.88 0.50 0.64 

0.73 
Restrictive 0.62 0.95 0.75 

Obstructive 0.79 0.83 0.81 

Combined 1.00 0.31 0.48 

Claude 

3.5 

Sonnet 

Normal 0.92 0.57 0.70 

0.81 
Restrictive 0.69 0.97 0.81 

Obstructive 0.98 0.83 0.90 

Combined 0.73 1.00 0.84 

TABLE III. PERFORMANCE EACH MODEL IN CLASSIFYING PULMONARY 

DISEASE TYPES WITH FEW SHOT PROMPT 

Model 

Pulmonary 

Disease 

type 

Precision Recall F1 Score 
Overall 

Accuracy 

Gemini 

1.5  

Pro 

Normal 0.97 0.50 0.66 

0.71 
Restrictive 0.74 0.70 0.72 

Obstructive 0.75 0.88 0.81 

Combined 0.41 0.94 0.57 

GPT  

4o 

Normal 1.00 0.47 0.64 

0.81 
Restrictive 0.68 0.98 0.80 

Obstructive 0.93 0.95 0.94 

Combined 0.83 0.94 0.88 

Claude 

3.5 

Sonnet 

Normal 0.97 0.65 0.78 

0.84 
Restrictive 0.73 1.00 0.84 

Obstructive 0.93 0.85 0.89 

Combined 0.88 0.94 0.91 



B. Time Efficiency of Three Models by Prompt Type 

Table IV presents the time required for three LLMs, 
Gemini 1.5 Pro, GPT 4o, and Claude 3.5 Sonnet across 
different prompt types: zero shot, guidelines enhanced, and 
few shot. 

TABLE IV. TIME EFFICIENCY OF THREE MODELS ACROSS DIFFERENT 

PROMPT TYPES 

Model 
Prompt 

Type 

Total Time 

(seconds) 

Average 

Time 

per Iteration 

(seconds) 

Average 

Tokens 

per Iteration 

(tokens) 

Gemini  

1.5  

Pro 

Zero Shot 531.94 2.66 63.99 

Guidelines 

Enhanced 
688.14 3.44 77.84 

Few Shot 676.78 3.38 70.19 

GPT  

4o 

Zero Shot 489.86 2.45 88.93 

Guidelines 

Enhanced 
557.63 2.79 100.00 

Few Shot 348.57 1.74 47.33 

Claude  

3.5  

Sonnet 

Zero Shot 751.22 3.75 92.03 

Guidelines 

Enhanced 
967.45 4.84 99.71 

Few Shot 1090.10 5.04 105.44 

 

Gemini 1.5 Pro showed intermediate performance, with 
average times per iteration ranging from 2.66 to 3.44 seconds, 
depending on the prompt type. For the zero-shot prompt, GPT 
4o had the shortest total time (489.86 seconds) and average 
time per iteration (2.45 seconds), with 88.93 tokens per 
iteration.  

In contrast, Claude 3.5 Sonnet took the most time for all 
prompt types, particularly with the few shot prompt, where the 
total time was 1090.10 seconds and the average per iteration 
was 5.04 seconds. 

C. Error Rate 

In this study, we conducted a detailed error analysis to 
understand the types and frequencies of errors made by 
Gemini 1.5 Pro, GPT 4o, and Claude 3.5 Sonnet in 
interpreting PFTs data. 

Fig. 2 illustrates the error rate for each model across the 
different prompt types (zero shot, guidelines enhanced, and 
few shot). The results reveal that Claude 3.5 Sonnet 
consistently outperformed both Gemini 1.5 Pro and GPT 4o 
in all prompt settings, achieving the lowest error rate. 

In the zero shot setting, Claude 3.5 Sonnet achieved an 
error rate of 20%, significantly lower than GPT 4o (26%) and 
Gemini 1.5 Pro (45%). This indicates that Claude 3.5 Sonnet 
has a superior inherent ability to understand and classify 
pulmonary disease types based on PFTs data without 
additional context. 

 

Fig. 2. Error rate in the classification of pulmonary disease types 

The introduction of diagnostic guidelines and the CoT 
technique resulted in improved performance for all models. 
Claude 3.5 Sonnet again demonstrated the lowest error rate at 
19%, followed by GPT 4o at 27% and Gemini 1.5 Pro at 52%. 
Despite the addition of guidelines, the error rate for both 
Gemini 1.5 Pro and GPT 4o slightly increased. 

The inclusion of four example datasets further reduced the 
error rate across all models. Claude 3.5 Sonnet achieved the 
lowest error rate at 16%, GPT 4o improved to 18%, and 
Gemini 1.5 Pro showed a notable reduction to 28%. The few 
shot learning approach significantly enhanced the models' 
ability to leverage additional context, resulting in more 
accurate classifications. 

D. Types of Errors in Few Shot Prompt 

Fig. 3 categorizes the examples of errors generated by the 
LLMs into four types. COE referred to instances where the 
calculations were correct, but the logical operation involving 
comparisons with values such as 70 or 80 was flawed. GD 
indicated cases where the LLMs deviated from the provided 
diagnostic guidelines during the second and third prompts, 
providing alternative explanations or additional clinical 
opinions.  

MD occurred when the clinical rationale aligns with the 
diagnostic guidelines, but the "diagnosis:" field contained an 
incorrect answer. Lastly, MC denoted calculation errors, 
which were observed only in the Gemini 1.5 Pro model. These 
errors cooccurred with 3 instances of MD, 6 instances of GD, 
and 10 instances of COE. 

Fig. 4 illustrates the number of errors by type generated by 
each model for the few shot prompt. The Gemini 1.5 Pro 
model displayed a balanced distribution of errors, including 
COE, GD, and MD, as well as calculation mistakes. The GPT 
4o model exhibited relatively fewer errors overall, most of 
which were of the COE type. The Claude 3.5 Sonnet model 
had the fewest errors overall, with the most common type 
being GD, indicating its tendency to provide additional 
clinical insights. 



 

Fig. 3. Examples of errors generated by models in few shot prompt 

 

Fig. 4. Number of errors generated by each model in few shot prompt 

The Gemini 1.5 Pro displayed a more balanced 
distribution of error types, including significant instances of 
COEs, GDs, and MDs. This indicates that while the model had 
some understanding of the guidelines, it frequently made 
logical errors and provided incorrect diagnoses despite correct 
rationales, compounded further by instances of MCs. 

The GPT 4o, with relatively fewer errors, showed a 
predominant issue with COEs, suggesting that the model's 
main challenge was in the logical interpretation of numerical 
data rather than following the guidelines or providing accurate 
diagnoses. 

The Claude 3.5 Sonnet generated the least number of 
errors overall, with the majority being GDs. The tendency of 
Claude 3.5 Sonnet to deviate slightly from the guidelines 
while still offering clinically relevant insights indicates its 
advanced understanding of the context, albeit with a 
propensity to provide more information than necessary. 

IV. DISCUSSION 

The results highlight the potential of advanced LLMs, 
particularly the Claude 3.5 Sonnet, in the medical field for 
diagnosing pulmonary diseases. Although Claude 3 Opus is a 
different model from the Claude 3.5 Sonnet and is not 
specialized for the medical domain, it demonstrated 
performance [21] on the PubMedQA dataset [22] nearly 
equivalent to Google's Med-PaLM 2 [23], which is designed 
specifically for medical applications. This suggests that the 
contexts of our experiment and those results are similar. 

The ability of these models to accurately interpret PFTs 
data and generate clinical rationales can significantly enhance 
diagnostic processes [24], reduce healthcare costs [25], and 
improve patient outcomes [26, 27]. Integrating such AI 
technologies into clinical settings can provide healthcare 
professionals with reliable decision support tools [28], leading 
to more efficient and accurate diagnoses [29], and potentially 
advancing to specific tasks such as summarizing risk levels 
based on preoperative pulmonary function test results [30]. 

However, implementing LLMs in clinical settings requires 
careful consideration of data privacy and integration with 
existing systems [31]. Key steps include ensuring data security 
through local deployment and anonymization, as well as 
complying with healthcare regulations like the Health 
Insurance Portability and Accountability Act (HIPAA) and 
establishing interoperability with electronic health record 
(EHR) systems using a standardized application programming 
interface (API) [32, 33]. Additionally, fine tuning LLMs with 
domain specific data and incorporating human oversight are 
crucial for enhancing accuracy and maintaining clinical 
standards [34]. Therefore, balancing technological 
advancements with ethical and practical considerations will be 
critical for the successful integration of LLMs in healthcare 
[35]. 

Furthermore, for the future development of LLMs capable 
of generating pulmonary function test charts for use in real 
world medical settings, it is essential to utilize open sourced 
LLMs [36]. Related research has demonstrated the application 
of large parameter LLMs, such as GPT 4, to clinical data for 
diagnosing Alzheimer's disease and generating clinical 



rationales, subsequently using knowledge distillation to train 
open sourced models [37]. 

The key aspect is that large parameter LLMs generate 
instruction following data for training open sourced models 
[38]. This study's significance lies in comparing three state of 
the art models, which currently demonstrate superior 
performance, using PFTs data, and analyzing their errors to 
provide insights into the understanding of pulmonary diseases 
by large parameter LLMs. 

Additionally, exploring and fine tuning other open sourced 
LLMs can help identify models with even greater potential for 
clinical applications [39]. Further efforts should focus on 
minimizing specific types of errors, such as COEs and GDs, 
to enhance the models' reliability and accuracy [40]. 

V. CONCLUSION 

This study evaluated the performance of three state of the 
art LLMs: Gemini 1.5 Pro, GPT 4o, and Claude 3.5 Sonnet in 
interpreting PFTs data and generating clinical rationales for 
diagnosing pulmonary diseases. Notably, there are no recent 
studies that directly compare the performance of these latest 
models on specific clinical tasks, making this research a novel 
contribution to the field. 

The Claude 3.5 Sonnet consistently outperformed the 
Gemini 1.5 Pro and the GPT 4o across all evaluation metrics 
and prompt types. It demonstrated the highest accuracy, 
precision, recall, and F1 score, indicating its superior ability 
to understand and classify PFTs data. The model's 
performance was enhanced by the inclusion of diagnostic 
guidelines and few shot examples, showcasing its capacity to 
learn effectively from additional context. The Gemini 1.5 Pro 
and the GPT 4o also showed improvements with enhanced 
prompts, but their overall performance remained below that of 
the Claude 3.5 Sonnet.  

From the perspective of error analysis, the Gemini 1.5 Pro 
exhibited a balanced distribution of errors, including COEs, 
GDs, and MDs, indicating a need for better logical reasoning 
and adherence to guidelines. The GPT 4o, while 
demonstrating fewer errors overall, struggled primarily with 
COEs, suggesting a need for improved numerical 
interpretation capabilities. 

While this study provides valuable insights, it is limited by 
the sample size and the specific models evaluated. Future 
research should involve larger and more diverse datasets to 
better generalize the findings. Additionally, further efforts 
should focus on minimizing specific types of errors, such as 
COEs and GDs, to enhance the models' reliability and 
accuracy. 
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