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Abstract
Meta-Reinforcement Learning (MRL) is a promis-
ing framework for training agents that can quickly
adapt to new environments and tasks. In this
work, we study the MRL problem under the policy
gradient formulation, where we propose a novel
algorithm that uses Moreau envelope surrogate
regularizers to jointly learn a meta-policy that is
adjustable to the environment of each individual
task. Our algorithm, called Moreau Envelope
Meta-Reinforcement Learning (MEMRL), learns
a meta-policy that can adapt to a distribution of
tasks by efficiently updating the policy parameters
using a combination of gradient-based optimiza-
tion and Moreau Envelope regularization. Moreau
Envelopes provide a smooth approximation of the
policy optimization problem, which enables us to
apply standard optimization techniques and con-
verge to an appropriate stationary point. We pro-
vide a detailed analysis of the MEMRL algorithm,
where we show a sublinear convergence rate to a
first-order stationary point for non-convex policy
gradient optimization. We finally show the effec-
tiveness of MEMRL on a multi-task 2D-navigation
problem.

1. Introduction
The Reinforcement Learning (RL) problem (Szepesvári,
2010; Sutton & Barto, 2018; Agarwal et al., 2019; Liu &
Olshevsky, 2021) studies the interaction of some agent with
an environment to maximize a reward function. In this
problem setup, the agent observes the environment’s state,
selects an action according to a policy, receives a reward
and a new state, and updates its policy based on experi-
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ence (Szepesvári, 2010). Policy Gradient Reinforcement
Learning (PGRL) (Sutton et al., 1999) is a subclass of RL
methods that directly optimize the policy by following the
gradient of the expected reward with respect to the policy
parameters (Van Hasselt et al., 2019). A neural network
or another parametric function usually represents the pol-
icy, mapping states to action probabilities (Clifton & Laber,
2020). PGRL methods are advantageous because they can
handle high-dimensional and continuous action spaces and
integrate prior knowledge or structure into the policy (Schul-
man et al., 2015).

Meta-Reinforcement Learning (MRL) focuses on enabling
agents to learn how to learn or adapt rapidly to new tasks
and environments (Finn et al., 2017; Rajeswaran et al., 2019;
Finn et al., 2019). In MRL, the agent is trained to perform
(i.e., a higher reward in expectation) not just on a single
task but on a range of tasks, each defined by distinct reward
functions, initial state distributions, and transition dynam-
ics (Nagabandi et al., 2018). Thus, the agent learns a meta-
policy that can quickly adapt to new tasks by modifying its
policy or value function based on a few experience samples
from the new task (Finn et al., 2017; Dorfman et al., 2021).
The meta-policy aims to optimize the expected cumulative
reward across tasks rather than maximizing the reward for a
single task. The MRL framework enables agents to general-
ize better to new tasks and contexts, making it a crucial area
of research.

The primary motivation behind MRL is the need for agents
to adapt rapidly to frequently changing environments or
tasks, allowing them to become more efficient (Dasgupta
et al., 2019; Schoettler et al., 2020; Wang et al., 2020).
For instance, a robot that operates in various environ-
ments (Schoettler et al., 2020) or a recommender system
that adapts to different user preferences (Wang et al., 2020).
MRL equips agents with the ability to generalize their skills
and knowledge across tasks, allowing them to learn new
tasks more efficiently by leveraging past experiences. By
enabling agents to learn how to learn, MRL opens new pos-
sibilities for intelligent systems to adapt and succeed in
complex and dynamic environments.

Some works discuss the fast adaptation in MRL via different
techniques (Ren et al., 2022; Melo, 2022; Zintgraf, 2022).
Ren et al. (Ren et al., 2022) develop an algorithm that can
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adapt to new tasks with preference-based feedback from a
human oracle. The algorithm uses information theory tech-
niques to design query sequences that maximize the infor-
mation gained from human interactions while tolerating the
inherent error of a non-expert human oracle. Melo (Melo,
2022) presents a method that uses the transformer architec-
ture to mimic the memory reinstatement mechanism. The
agent associates the recent past of working memories to
build episodic memory recursively through the transformer
layers. Zintgraf (Zintgraf, 2022) proposes an MRL frame-
work that can adapt to new tasks by learning a latent task
representation and a task-conditioned policy. The frame-
work uses variational inference techniques to infer the task
representation from trajectories and optimize the policy with
respect to task distribution.

The main challenge in MRL is finding a good representation
of the tasks and meta-policy that enables efficient adaptation
to new tasks while preserving knowledge learned from past
tasks. Beck et al. (Beck et al., 2023) provide a compre-
hensive overview of the MRL problem setting, its variations,
algorithms, and applications, along with the open challenges
for this problem. Furthermore, Yu et al. (Yu et al., 2020)
present a benchmark suite for MRL that includes robotic
manipulation tasks with varying difficulty and diversity.

MRL algorithms use different techniques such as gradient-
based methods (Finn et al., 2017), model-based (Clavera
et al., 2018) or model-free RL (Li et al., 2021), and shared
hierarchy (or representation) (Frans et al., 2017; Zhang et al.,
2021) to tackle these challenges. Frans et al. (Frans et al.,
2017) present MetaSH, an MRL algorithm that learns a
shared hierarchy of policies that can generalize across tasks.
This method uses a high-level policy that selects sub-policies
based on the task context and a low-level policy that exe-
cutes actions based on the sub-policy. Finn et al. (Finn et al.,
2017) introduce MAML, another MRL algorithm that learns
a model-agnostic initialization that can be fine-tuned with
a few gradient steps to new tasks. MAML can be applied
to any model trained with gradient descent/ascent and loss
functions.

The main challenge faced by Model-Agnostic Meta-
Reinforcement Learning (MAMRL) and its variants (Finn
et al., 2017; Fallah et al., 2021; Rajeswaran et al., 2019)
is the scalability in training. The MAMRL formulation re-
quires computing and storing multiple gradients and Hes-
sians for each task and updating the meta-policy with respect
to these parameters. This may incur high computational and
memory costs, especially for large-scale or continuous prob-
lems (Shin et al., 2021). Moreover, the stability of training,
which depends on the number of gradient steps, poses an-
other challenge for MAMRL-based methods. Such issues
affect the convergence and generalization of MAMRL and re-
quire careful tuning/trade-off. Some possible solutions are

to use Hessian-free methods (Fallah et al., 2020) or adaptive
learning rates (Jiang et al., 2019).

This work studies the MRL problem through gradient-based
techniques. We formulate the MRL problem via surro-
gate cost functions, i.e., Moreau Envelope proximal op-
erators (Moreau, 1965; Parikh & Boyd, 2013) and derive
the first-order information for this framework building upon
the policy gradient problem setup. Our main contribution
is lowering memory requirements and reducing arithmetic
complexity by removing the need for second-order infor-
mation, i.e., a reduction from O(d2) to O(d). We list our
contributions as follows:

• We propose a novel framework for MRL via Moreau
Envelopes and propose a novel first-order algorithm
called MEMRL to maximize the proposed personalized
value function.

• We present a detailed convergence analysis of the pro-
posed algorithm under customary assumptions and
show a sublinear convergence result for our proposed
method.

• We finally present the performance of MEMRL on multi-
task 2D-navigation on a discrete grid with a set of finite
actions.

The remainder of this paper is arranged as follows. In Sec-
tion 2, we introduce the underlying problem setup, compare
with prior works, and present our novel algorithm MEMRL
for Meta-Reinforcement Learning with Moreau Envelopes.
In Section 3, we present the convergence result of our pro-
posed algorithm along with the underlying assumptions. We
provide a numerical experiment demonstrating the perfor-
mance of our method in Section 4. Finally, we conclude the
remarks and highlight future works in Section 5.

2. Problem Setup & Algorithm
In this section, we first describe the Meta-Reinforcement
Learning (MRL) problem setup and discuss the Policy Gra-
dient Reinforcement Learning (PGRL) method via function
approximation. Then, we explain the setup for MRL through
Moreau Envelope auxiliary cost and a brief comparison
with some relevant works. Finally, we present our method
MEMRL for the underlying problem.

2.1. Policy Gradient Meta-Reinforcement Learning

We consider a set of (potentially infinite) Markov Deci-
sion Processes (MDPs) {Mi}i∈I that represent different
tasks drawn from a distribution p over a finite time horizon1

1A common assumption in RL is that the agent operates in
an infinite-horizon setting, where the goal is to maximize the
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{0, 1, . . . ,H}. For each task i ∈ I , we denote the states and
actions by Si and Ai, respectively. In this setup, the initial
state distribution is given by µi : Si → ∆(Si), where ∆(Si)
is the set of probability distributions over Si. Moreover, the
transition kernel is denoted by Pi, where Pi(s

′
i|si, ai) is

the probability of transitioning from state si ∈ Si to s′i ∈ Si
by taking action ai ∈ Ai for which a reward ri(si, ai) is
received according to its corresponding reward function
ri : Si×Ai → [0, R]. Therefore, the value of a trajectory
τi = (s0i , a

0
i , . . . , a

H−1
i , sHi ) can be defined as

Ri(τi) :=

H−1∑
h=0

γhri(s
h
i , a

h
i ), (1)

where γ ∈ (0, 1) is the discount factor for reward accumula-
tion over time. Eventually, each task i ∈ I can be modeled
as an MDP defined by the tuple (Si,Ai,Pi, ri, µi, γ). In
this setting, a random policy πi : Si → ∆(Ai) determines
the probability of each action ai given a state si as πi(ai|si).
In Policy Gradient Reinforcement Learning (PGRL), we pa-
rameterize the policy by a d-dimensional parameter w ∈ Rd

(like a large neural network), i.e., πi(·|·;w). Therefore, the
probability of trajectory τi is given by

qi(τi;w) := µi(s
0
i )

H−1∏
h=0

πi(a
h
i |shi ;w)

H−1∏
h=0

Pi(s
h+1
i |shi , ahi ).

(2)

Accordingly, the average reward value for each task i ∈ I is

Ji(w) := Eτi∼qi(·;w) [Ri(τi)] , (3)

which is a function of parameter w. In multi-task RL prob-
lems, we seek to find a joint parameter that maximizes the
expected reward on all tasks I:

J(w) := Ei∼p [Ji(w)] . (4)

The goal of policy gradient is to find a (sub)optimal param-
eter that maximizes the expected cumulative reward in (4)
obtained by πi(·|·;w), for all i ∈ I. The key idea behind
PGRL is to use the gradient of value function with respect to
the policy parameters w to update the policy in the direction
that increases the expected cumulative reward.

In multi-task settings with heterogeneous environments, we
seek to find a global policy w ∈ Rd that performs well by
adapting quickly to each task, i.e., obtaining a personal
policy θi ∈ Rd through fine-tuning. We formulate the joint
multi-task setup via Moreau Envelope Meta-Reinforcement

expected discounted or average reward over an infinite number of
steps. However, in many practical scenarios, the agent may face a
finite-horizon setting, where the goal is to maximize the expected
discounted reward over a finite number of steps (VP et al., 2021).

Learning cost (MEMRL)

max
w∈Rd

V (w) := Ei∼p [Vi(w)] (5a)

with Vi(w) := max
θi∈Rd

[
Ji(θi)−

λ

2
∥θi − w∥2

]
, (5b)

where parameter λ≥0 forms a trade-off on the similarity
of policies for different tasks. The formulation in (5) is
a bilevel optimization problem. A solution w⋆ ∈ Rd to
Problem (5a) is considered a meta-model that yields a task-
personalized parameter θ⋆i by maximizing Problem (5b). In
the next subsection, we discuss the cost function in (5) and
present a novel policy gradient-based algorithm with access
to a first-order oracle to maximize this cost.

Related Works: The MRL problem has been studied (Ra-
jeswaran et al., 2019; Finn et al., 2019) for multi-task
setups with parameter adjustment mainly under Model-
Agnostic Meta-Learning (MAML) framework (Finn et al.,
2017), where the goal is to maximize the following cost
function:

max
w∈Rd

V ′(w) := Ei∼p [V
′
i (w)] , (6a)

with V ′
i (w) := Ji(w + α∇Ji(w)). (6b)

This formulation suggests to find an initial policy that per-
forms well after modification with one step of gradient
ascent. Finn et al. (Finn et al., 2019) studied the online
meta-learning setting under the MAML setup and Rajeswaran
et al. (Rajeswaran et al., 2019) established one of the first
theoretical results for this framework. Some other recent
works have examined the complexity analysis of MAML in
different contexts such as supervised meta-learning (Fal-
lah et al., 2020; Ji et al., 2020). Assuming the inner loop
loss function is sufficiently smooth and strongly convex,
iMAML converges to a first-order stationary point in the
deterministic case. Moreover, works such as (Fallah et al.,
2021; Ji et al., 2020; Toghani et al., 2022a) study the im-
pact of multi-step fine-tuning, an extended version of (6),
under appropriate assumptions. Specifically, (Fallah et al.,
2021) establishes the first analysis for multi-step MRL with
stochastic gradients via a novel algorithm called SGMRL.

Different variations of MAML setup require access to the
second-order information in the underlying update rule for
the policy gradient maximization. Moreover, in the RL se-
tups, MAML with one gradient often fails to perform well in
practice, hence the choice of multi-step MAML with multiple
updates remains a crucial for MRL tasks. In the contrary,
Moreau Envelope (ME) (Dinh et al., 2020; Toghani et al.,
2022b) controls the trade-off between the similarity and
divergence of personal parameters θi via the regularization
parameter λ. Furthermore, the inner optimization problem
can be maximized without the need for second-order infor-
mation.
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2.2. Meta-Reinforcement Learning with Moreau
Envelopes

We start by presenting the first-order information of (3).
According to (Peters & Schaal, 2008; Shen et al., 2019;
Sutton & Barto, 2018; Fallah et al., 2021), the gradient of
Ji(·) can be derived via the logarithm derivative trick as
follows:

∇Ji(w) := Eτi∼qi(·;w) [gi(τi;w)] , (7)

where the stochastic policy gradient gi(·;w) is given by

gi(τi;w) :=

H−1∑
h=0

∇w log πi(a
h
i |shi ;w)Rh

i (τi),

(8a)

where Rh
i (τi) :=

H−1∑
l=h

γl ri(s
l
i, a

l
i). (8b)

We drop parameter w from the gradient notation for simplic-
ity of presentation in (8a). In this setup, gi(·;w) is the score
function that measures the sensitivity of the log-probability
of the trajectory τi to the policy parameters w. Moreover, (1)
and (8b) implyR0

i (τi) = Ri(τi).

To deal with the computational intractability of the full
gradient in (7), we approximate this term by a stochastic
policy gradient over a batch Di of trajectories sampled from
distribution qi(·;w), i.e.,

∇J̃i(Di;w) :=
1

|Di|
∑

τi∈Di

gi(τi;w), (9)

where∇Ji(w)=E
[
∇J̃i(Di;w)

]
.

Next, we present the first-order information of the surrogate
function Vi(·) in (5b). To compute the gradient, let

θ̂i(w) := argmax
θi∈Rd

{
Ji(θi)−

λ

2
∥θi − w∥2

}
, (10)

then, by taking derivative of Vi(·) with respect to w, we
have

∇Vi(w) =
∂θ̂i(w)

∂w
∇Ji(θ̂i(w))

− λ

[
∂θ̂i(w)

∂w
− I

](
θ̂i(w)− w

)
,

(11)

and due to first-order optimality,

∇Ji(θ̂i(w))− λ
(
θ̂i(w)− w

)
= 0

(11)⇒ (12)

∇Vi(w) = λ
(
θ̂i(w)− w

)
. (13)

Algorithm 1 MEMRL: First-Order Moreau Envelope Meta-
Reinforcement Learning

1: input: regularization parameter λ, inexact approxima-
tion precision ν, meta stepsize α, task batch size B,
trajectory batch size D.

2: initialize: w0 ∈ Rd, t← 0
3: repeat
4: sample a batch of tasks Bt ⊆ I with size B
5: for all tasks i ∈ Bt do
6: find θ̃i(w

t) such that for a batch of trajectories Dt
i

(of size D) sampled from qi(·; θ̃i(wt)) to maxi-
mize F̃i (·; ·, wt) up to accuracy level ν with∥∥∥∇F̃i

(
Dt

i ; θ̃i(w
t), wt

)∥∥∥ ≤ ν

7: end for
8: wt+1 ← (1−αλ)wt + αλ

|Bt|
∑
i∈Bt

θ̃i(w
t)

9: t← t+ 1
10: until not converged
11: output:

Therefore, one needs to obtain θ̂i(w) for computing∇Vi(w).
Note that given a set of parameters w, finding θ̂i(w) for
a general policy function πi(·|·;w) is computationally in-
tractable, since (i) deterministic gradient∇Ji(·) cannot be
computed and (ii) an exact solution to (10) requires cer-
tain assumptions on the function class, e.g., quadratic func-
tions (Charles & Konečnỳ, 2021). Hence, we instead pro-
pose to maximize the following stochastic approximation
with respect to parameter θi

F̃i (Di; θi, w) := J̃i (Di; θi)−
λ

2
∥θi − w∥2 , (14)

whereDi is a batch of trajectories sampled from distribution
qi(·; θi). Thus, it is sufficient to find an inexact solution
θ̃i(w) that satisfies∥∥∥∇θi F̃i

(
Di; θ̃i(w), w

)∥∥∥ ≤ ν, (15)

for some approximation precision ν > 0, where

∇θi F̃i (Di; θi, w) = ∇J̃i (Di; θi)− λ(θi − w). (16)

Then, we can approximate the exact gradient∇Vi(w) in (13)
with

∇Ṽi(w) := λ(θ̃i(w)− w), (17)

where θ̃i(w) satisfies (15). Note that a small parameter
ν provides a better approximation, thus less error in the
solution of the algorithm.

We are now ready to propose MEMRL for solving the prob-
lem in (5). Algorithm 1 shows the pseudo-code for our
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method. Starting from a random initial set of parameter
w0, we perform an iterative method. At each round t ≥ 0,
we sample a batch of tasks Bt with size B and for each
task i ∈ Bt, we maximize ∇θi F̃i (·; ·, wt) up to precision
ν (Step 1 of Algorithm 1). Then, we use the approximate
individual sub-optimal solutions θ̃i(wt) to approximate the
gradient of ∇Vi(w

t) according to (17) and use this to ag-
gregate and apply one step of gradient ascent in Step 1 of
Algorithm 1.

We will discuss the convergence of Algorithm 1 in the next
section.

3. Convergence Result
We start this section by stating the underlying assumption
for our analysis. Further, we present two auxiliary lemmas
stating the properties of Ji and Vi functions. Finally, we
show the convergence result of MEMRL as the main result of
this work along with its proof.

Assumption 3.1 (Log-Probability Properties). The loga-
rithm of the policy functions πi are twice differentiable, for
all i ∈ I. Moreover, there exist constants G and L, such
that for any task i ∈ I and state si ∈ Si, action ai ∈ Ai,
and arbitrary parameter w ∈ Rd,

∥∇ log πi(ai|si;w)∥ ≤ G, (18)∥∥∇2 log πi(ai|si;w)
∥∥ ≤ L. (19)

This assumption is conventional in prior works on pol-
icy gradient optimization (Fallah et al., 2021; Shen et al.,
2019; Papini et al., 2018; Agarwal et al., 2020; Rajeswaran
et al., 2019). Particularly, one can see that for Softmax
policy (Fallah et al., 2021)[Appendix D], which is cus-
tomary in practice, both (18) and (19) hold. Moreover,
recall that the reward functions ri(·, ·) are nonnegative and
bounded, i.e., there exists a constant R such that for all
i ∈ I, ai ∈ Ai, ri ∈ Si, we have 0 ≤ ri(si, ai) ≤ R.

Lemma 3.2 ((Fallah et al., 2021), Lemma 1, Properties of
Ji). Let Assumption 3.1 hold. Then, for all i ∈ I and
w ∈ Rd, and any batch of trajectories Di sampled from
distribution qi(·;w), we have:∥∥∇Ji(w)∥∥,∥∥∇Ĵi(Di;w)

∥∥ ≤ Ĝ, (20)∥∥∇2Ji(w)
∥∥,∥∥∇2Ĵi(Di;w)

∥∥ ≤ L̂, (21)

where Ĝ := GR
(1−γ)2 and L̂ :=

(HG2+L)R
(1−γ)2 .

Lemma 3.2 indicates gradient boundedness and smoothness
for the customary value function Ji, for each task i ∈ I.
Note that this work defines the trajectory up to H actions
starting from s0. Hence, the value L̂ of is slightly differ-
ent from (Fallah et al., 2021). By modifying the proof of

Lemma 3.2, we may replace 1
1−γ with min{ 1

1−γ , H} due
to the fact that the tasks are MDPs with finite time horizons.

Lemma 3.3 (Properties of Vi). Let Assumption 3.1 hold and
λ ≥ κL̂ for some κ>1, and Ĝ, L̂ as in Lemma 3.2. Then,
for all i ∈ I and w, v ∈ Rd, the following properties hold:∥∥∇Vi(w)

∥∥ ≤ Ĝ, (22)∥∥∇Vi(w)−∇Vi(v)
∥∥ ≤ L̃ ∥w − v∥ , (23)

where L̃ := λ
κ−1 .

This lemma suggests that the Moreau Envelope surrogate
value function in (5) has similar properties as the value
function in (3). The upper bound on the gradient is the same,
and the smoothness parameter depends on the regularization
term λ. Also note that the global expected value function
V (·) has similar boundedness and smoothness properties as
each Vi(·), according to the definition in (5a).

Now, we state the proof of the above lemma.

Proof of Lemma 3.3. Before proceeding with the proof, let
us present a set of inequalities we will use in the proofs. For
a constant α > 0 and set of m vectors {wi}mi=1 such that
wi ∈ Rd, we have

∥wi + wj∥2 ≤ (1+α)∥wi∥2 + (1+α−1)∥wj∥2, (24a)
∥wi + wj∥ ≤ ∥wi∥+ ∥wj∥, (24b)∥∥∥∥∥

m∑
i=1

wi

∥∥∥∥∥
2

≤ m

(
m∑
i=1

∥wi∥2
)
, (24c)

∥E [wi]∥ ≤ E [∥wi∥] , (24d)

−∥wi∥2−∥wj∥2 ≤ 2⟨wi, wj⟩ ≤ ∥wi∥2+∥wj∥2. (24e)

To prove the bound on the gradient norm in (22), we have

∥∇Vi(w)∥
(13)
=
∥∥∥λ(θ̂i(w)− w)

∥∥∥ (12)
=
∥∥∥∇Ji(θ̂i(w))∥∥∥ (20)

≤ Ĝ.

(25)

Moreover, we can show the smoothness in (23) by

∥∇Vi(w)−∇Vi(v)∥
(13)
=
∥∥∥∇Ji(θ̂i(w))−∇Ji(θ̂i(v))∥∥∥ (26)

(21)
≤ L̂

∥∥∥θ̂i(w)− θ̂i(v)
∥∥∥ (27)

(12)
= L̂

∥∥∥∥ 1λ∇Ji(θ̂i(w)) + w − 1

λ
∇Ji(θ̂i(v))− v

∥∥∥∥ (28)

(24b)
≤ L̂ ∥w − v∥+ L̂

λ

∥∥∥∇Ji(θ̂i(w))−∇Ji(θ̂i(v))∥∥∥
(29)

(13)
= L̂ ∥w − v∥+ L̂

λ
∥∇Vi(w)−∇Vi(v)∥ (30)
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⇒∥∇Vi(w)−∇Vi(v)∥ ≤
λL̂

λ−L̂
∥w − v∥ , (31)

where λL̂
λ−L̂

≤ L̃:= λ
κ−1 , which completes the proof of (23).

We are now ready to present our main technical result.
Theorem 3.4 (MEMRL Convergence). Let Assumption 3.1
hold, λ>L̂, and α = 1

4L̃
. Then for any timestep T ≥ 4L̃2,

the following property holds for the iterates of Algorithm 1:

1

T

T−1∑
t=0

∥∇V (wt)∥2 ≤ 8R

(1−γ)
√
T

+
λ2ν2

(λ−L̂)2
+

8L̃Ĝ2

B
√
T

+
8L̃λ2ν2

(λ−L̂)2B
√
T

+
8αL̃λ2Ĝ2

(λ−L̂)2BD
√
T
,

where Ĝ, L̂ as in Lemma 3.2, and L̃ as in Lemma 3.3.

Theorem 3.4 implies a sublinear convergence rate for
MEMRL algorithm to a first-order stationary point with oracle
complexity O(1/

√
T ) +O(ν2). In other words, to reach

a complexity of O(ε), it is sufficient to run the algorithm
for T = O(1/ε2) iterations via an inexact inner solver with
precision ν = O(

√
ε).

We are now ready to show the proof of the above Theorem.

Proof of Theorem 3.4. Let us start by rewriting the MEMRL
method (Alg. 1) by denoting ∇̃V (wt) and ∇Ṽ (wt) as

∇̃V (wt) =
1

B

∑
i∈Bt

∇Ṽi(w
t), (32)

∇Ṽ (wt) = Ei∼p

[
∇Ṽi(w

t)
]
, (33)

where (33) is the expectation of (32). Therefore, we obtain
the following update rule

wt+1 = wt + α∇̃V (wt), (34)

for MEMRL. Then, according to Lemma 3.3, we have∣∣V (wt+1)− V (wt)−
〈
∇V (wt), wt+1 − wt

〉∣∣ (35)

≤ L̃

2

∥∥wt+1 − wt
∥∥2 (34)⇒

−V (wt+1) ≤ −V (wt)− α
〈
∇V (wt), ∇̃V (wt)

〉︸ ︷︷ ︸
A1

+
α2L̃

2

∥∥∇̃V (wt)
∥∥2︸ ︷︷ ︸

A2

, (36)

where by taking conditional expectation from (36) condi-
tioned on F t, we have

−E
[
V (wt+1)|F t

]
≤ −V (wt)− E

[
αA1 −

α2L̃

2
A2

∣∣∣∣∣F t

]
.

(37)

Therefore, it is sufficient to show appropriate bounds for the
conditional expectation of A1 and A2. First, we have

E
[
A1|F t

]
= E

[〈
∇V (wt), ∇̃V (wt)

〉 ∣∣F t
]

(38)

(24e)
≥ ∥∇V (wt)∥2 − 1

2
∥∇V (wt)∥2 (39)

− 1

2

∥∥∥E [∇Ṽ (wt)−∇V (wt)
∣∣F t
]∥∥∥2

=
1

2
∥∇V (wt)∥2 (40)

− 1

2

∥∥∥Ei∼p

[
E
[
∇Ṽi(w

t)−∇Vi(w
t)
∣∣F t
]]∥∥∥2 .

(24d)
≥ 1

2
∥∇V (wt)∥2 (41)

− 1

2

(
Ei∼p

[∥∥∥E [∇Ṽi(w
t)−∇Vi(w

t)
∣∣F t
]

︸ ︷︷ ︸
A3

∥∥∥])2

.

Now, let us define Fi(θi;w) as

Fi(θi;w) := Ji(θi)−
λ

2
∥θi − w∥2 ⇒ (42)

∇Fi(θi;w) := ∇Ji(θi)− λ(θi − w), (43)

then due to (16), (43), and the fact that∇Fi(θ̂i(w);w) = 0,

∥A3∥ = λ
∥∥∥E [θ̃i(wt)− θ̂i(w

t)
∣∣F t
]∥∥∥ (44)

(24b)
≤
∥∥∥E[∇Ji(θ̃i(wt))−∇Ji(θ̂i(wt))

∣∣F t
]∥∥∥+ ν

(45)
(21)
≤ L̂

∥∥∥E[θ̃i(wt)− θ̂i(w
t)
∣∣F t
]∥∥∥+ ν (46)

(44)
=

L̂

λ
∥A3∥+ ν ⇒ (47)

∥A3∥ ≤
λ

λ−L̂
ν. (48)

Therefore, according to (38)-(41) and (44)-(48), we have

E
[
A1|F t

]
≥ 1

2
∥∇V (wt)∥2 − λ2ν2

2(λ−L̂)2
. (49)

We now bound the expectation of A2 conditioned on F t.

E
[
A2|F t

] (24c)
≤ 2∥∇V (wt)∥2 (50)

+ 2E
[∥∥∥∇̃V (wt)−∇V (wt)

∥∥∥2 ∣∣F t

]
= 2∥∇V (wt)∥2 (51)

+ 2E
[
Ei∼p

∥∥∇̃V (wt)−∇V (wt)
∥∥2︸ ︷︷ ︸

A4

∣∣F t
]
.



Submission and Formatting Instructions for ICML 2023

We can bound A4 using Lemma 3.3 and conditional inde-
pendence. So,

E[A4|F t] = E

Ei

∥∥∥∥∥ 1

B

∑
i∈Bt

∇Ṽi(w
t)−∇V (wt)

∥∥∥∥∥
2 ∣∣∣F t


(52)

(24c)
≤ 2

B2
E

Ei

∥∥∥∥∥∑
i∈Bt

[
∇Ṽi(w

t)−∇Vi(w
t)
]∥∥∥∥∥

2 ∣∣∣F t


+

2

B2
E

Ei

∥∥∥∥∥∑
i∈Bt

[
∇Vi(w

t)−∇V (wt)
]∥∥∥∥∥

2 ∣∣∣F t


(53)

≤ 2

B
E
[
Ei

∥∥∥∇Ṽi(w
t)−∇Vi(w

t)
∥∥∥2 ∣∣F t

]
+

2

B
E
[
Ei

∥∥∇Vi(w
t)−∇V (wt)

∥∥2 ∣∣F t
]

(54)

(22)
≤ 2

B
E
[
Ei

∥∥∇Ṽi(w
t)−∇Vi(w

t)
∥∥2︸ ︷︷ ︸

A5

∣∣F t
]
+

8Ĝ2

B
,

(55)

where (54) holds due to the conditional independency be-
tween the summation terms and (55) holds according to (22)
in Lemma 3.3. It is sufficient to show a bound for A5 using
techniques such as (44)-(48). Before showing the bound,
note that Fi(θi;w) is a (λ−L̂)-smooth function with respect
to the auxiliary parameter θi according to (Toghani et al.,
2022b; Dinh et al., 2020). Hence,

A5 = λ2
∥∥∥θ̃i(wt)− θ̂i(w

t)
∥∥∥2 (56)

smooth
≤ λ2

(λ−L̂)2
∥∥∥∇Fi

(
θ̃i(w

t);wt
)
−∇Fi

(
θ̂i(w

t);wt
)︸ ︷︷ ︸

=0

∥∥∥2
(57)

=
λ2

(λ−L̂)2
∥∥∥∇Fi

(
θ̃i(w

t);wt
)
−∇F̃i

(
Dt

i ; θ̃i(w
t), wt

)
+∇F̃i

(
Dt

i ; θ̃i(w
t), wt

)∥∥∥2 (58)

(24c)
≤ 2λ2

(λ−L̂)2

[∥∥∥∇Fi

(
θ̃i(w

t);wt
)
−∇F̃i

(
Dt

i ; θ̃i(w
t), wt

)∥∥∥2
+
∥∥∥∇F̃i

(
Dt

i ; θ̃i(w
t), wt

)∥∥∥2] (59)

=
2λ2

(λ−L̂)2

[∥∥∥∇Ji(θ̃i(wt)
)
−∇J̃i

(
Dt

i ; θ̃i(w
t)
)∥∥∥2︸ ︷︷ ︸

A6

+ν2

]
,

(60)

where due to the conditional independency between the

trajectories, we have

E[A6|F t] ≤ Ĝ2

D
. (61)

Therefore, from (50)-(61), we can conclude that

E
[
A2|F t

]
≤ 2E∥∇V (wt)∥2 + 8λ2Ĝ2

(λ−L̂)2BD

+
8λ2ν2

(λ−L̂)2B
+

8Ĝ2

B
. (62)

So finally, according to (37), (49), and (62), we have

−E
[
V (wt+1)|F t

]
≤ −V (wt)− α

2
(1−2αL̃)E∥∇V (wt)∥2

+
αλ2ν2

2(λ−L̂)2
+

4α2L̃λ2Ĝ2

(λ−L̂)2BD

+
4α2L̃λ2ν2

(λ−L̂)2B
+

4α2L̃Ĝ2

B
. (63)

Then, by taking an expectation from (65) and averaging the
inequality for t = 0, 1, . . . , T−1, under the assumption of
α ≤ 1

4L̃
, we have

1

T

T−1∑
t=0

E∥∇V (wt)∥2 ≤ 4

αT
E
[
V (wT )− V (w0)

]
+

λ2ν2

(λ−L̂)2
+

16αL̃λ2Ĝ2

(λ−L̂)2BD

+
16αL̃λ2ν2

(λ−L̂)2B
+

16αL̃Ĝ2

B
(64)

≤ 4R

αT (1−γ)
+

λ2ν2

(λ−L̂)2
+

16αL̃λ2Ĝ2

(λ−L̂)2BD

+
16αL̃λ2ν2

(λ−L̂)2B
+

16αL̃Ĝ2

B
, (65)

where (65) holds since the reward value is bounded between
0 and R. By setting α = 1

2
√
T

, for T ≥ 4L̃2, we can guar-
antee α ≤ 1

4L̃
as well as

1

T

T−1∑
t=0

∥∇V (wt)∥2 ≤ 8R

(1−γ)
√
T

+
λ2ν2

(λ−L̂)2
+

8L̃Ĝ2

B
√
T

+
8L̃λ2ν2

(λ−L̂)2B
√
T

+
8αL̃λ2Ĝ2

(λ−L̂)2BD
√
T
,

(66)

which completes the proof of Theorem 3.4.
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Figure 1: The performance of our MEMRL algorithm on discrete 2D-navigation for |I|=3 tasks with different underlying
MDPs. (Left) The navigation map at iteration t = 0 starting from a random location (black triangle) on the grid. The stars
indicate the destination of each task i ∈ I. Pentagons indicate the end of a trajectory when it fails to reach its destination
(star). (Middle) The navigation map at iteration t = 120, where the adapted meta-policy for each task is optimal. (Right)
The evolution of individual reward functions given the adapted meta-policy on each task. Each curve is the empirical mean
of the reward obtain over 10 independent trajectories conditioned on the approximated policy parameter θ̃ti .

4. Numerical Experiment
In this section, we present numerical studies of our proposed
MEMRL algorithm. We consider a discrete variation of 2D-
navigation problem (Henderson et al., 2017; Fallah et al.,
2021; Rothfuss et al., 2018; Finn et al., 2017) over a square
grid, where the objective is to reach a specified destination
by taking valid actions. The MRL setup for this problem
narrates the scenario where the goal is to obtain a meta
policy that can be easily adapted to perform well for multiple
destinations.

Now, let us describe the problem setup. We consider a
group of |I| = 3 tasks where the objective of each task
i ∈ I is to navigate to some corresponding destination s⋆i =
{xi, yi} over an 11× 11 grid, {−5, . . . , 5} × {−5, . . . , 5},
starting from some random point. For example, check the
left subfigure in Figure 1, where each star represents the
destination locations for some task i ∈ [3]. The set of valid
actions is limited to left, right, down, up, and pause,

Ai = {(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0)}. (67)

The set of states Si = {−5, . . . , 5} × {−5, . . . , 5}. We de-
fine the reward function inversely proportional (Rothfuss
et al., 2018) to the ℓ1 distance of the agent’s next state to the
intended destination, i.e.,

ri(a
h
i |shi ) = exp(−∥sh+1

i − s⋆i ∥1), (68)

where sh+1
i is the next coordinate of the agent after taking

action ahi . Finally, we parameterize the policy with a two-
layer MLP network with softmax layer and 5 outputs by
taking a two-dimensional input, i.e., the state of the agent
yields a probability vector of the potential actions.

We implement Step 1 of Algorithm 1 via the first-order inex-
act optimizer which we described in Section 2 under fixed

inner loop with K=8 steps. Moreover, we select λ = 2,
α = 0.1, β = 0.02, γ = 0.99, B = 2, and D = 10. The
right subfigure of Figure 1 illustrates the performance of
MEMRL for the 2D-navigation problem. We plot the stochas-
tic reward function J̃i for each task across the optimization
runtime. Moreover, we show present the underlying naviga-
tion before and after training with out method respectively
in the left and middle subfigures of Figure 1.

5. Conclusions
We studied the Meta-Reinforcement Learning (MRL) prob-
lem and introduced MEMRL. This novel meta-reinforcement
learning algorithm leverages Moreau Envelopes to achieve
fast and stable policy adaptation with first-order optimiza-
tion. We proved the convergence of our algorithm under
non-convex policy gradient optimization and showed its per-
formance over a discrete 2D-navigation problem with no
need to second-order information. Our work opens up new
directions for applying Moreau Envelopes to other meta-
learning problems to resolve the scalability challenges for
Hessian computation. A thorough study of the Multi-Agent
MRL problem remains a future study for this work. We also
leave the extended analysis for infinite horizon MDPs to
future studies.
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