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Abstract

Direct Preference Optimization (DPO) has be-001
come a prominent method for aligning Large002
Language Models (LLMs) with human pref-003
erences. While DPO has enabled significant004
progress in aligning English LLMs, multilin-005
gual preference alignment is hampered by data006
scarcity. To address this, we propose a novel ap-007
proach that captures learned preferences from008
well-aligned English models by implicit re-009
wards and transfers them to other languages010
through iterative training. Specifically, we de-011
rive an implicit reward model from the log-012
its of an English DPO-aligned model and its013
corresponding reference model. This reward014
model is then leveraged to annotate preference015
relations in cross-lingual instruction-response016
pairs, using English instructions to evaluate017
multilingual responses. The annotated data is018
subsequently used for multilingual DPO fine-019
tuning, facilitating preference knowledge trans-020
fer from English to other languages. Fine-021
tuning Llama3 for two iterations resulted in022
a 12.72% average improvement in Win Rate023
and a 5.97% increase in Length Control Win024
Rate across all training languages on the X-025
AlpacaEval leaderboard. Our findings demon-026
strate that leveraging existing English-aligned027
models can enable efficient and effective multi-028
lingual preference alignment, significantly re-029
ducing the need for extensive multilingual pref-030
erence data.031

1 Introduction032

Direct alignment algorithms (DAAs), such as033

DPO (Rafailov et al., 2024b) and its variants (Azar034

et al., 2024; Ethayarajh et al., 2024; Meng et al.,035

2024), renowned for their simplicity, efficiency036

and stability than Reinforcement Learning from037

Human Feedback (RLHF) (Ouyang et al., 2022),038

have emerged as valuable and widely adopted post-039

training techniques for aligning LLMs with human040

preferences. While English benefits from abundant041

high-quality preference datasets (Cui et al., 2024;042
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Figure 1: Iterative Preference Transfer and Improve-
ment with Implicit Cross-Lingual Rewarding based
on the English-aligned Llama3 model. Detailed results
are shown in Table 2.

Mukherjee et al., 2023) and has merged numer- 043

ous DAAs-aligned models, multilingual preference 044

alignment is challenged by data scarcity. 045

Existing approaches typically rely on expensive 046

human annotation or advanced multilingual pref- 047

erence alignment models (Ahmadian et al., 2024; 048

Dang et al., 2024) to annotate data for each lan- 049

guage, thereby constructing off-policy multilingual 050

preference datasets. However, this approach faces 051

significant challenges due to the scarcity and cost 052

of annotations, particularly for low-resource lan- 053

guages. Furthermore, translation-based methods 054

either translate English preference data into other 055

languages (Lai et al., 2023) or use translation to 056

derive reward signals to construct multilingual pref- 057

erence data (She et al., 2024; Yang et al., 2024c). 058

This methods can introduce artifacts and distort 059

preference signals, hindering effective multilingual 060

preference learning. 061

This work explores a novel perspective: leverag- 062

ing the preference knowledge embedded within ex- 063

isting English-aligned models to facilitate multilin- 064

gual preference alignment. Prior work (Chen et al., 065

2024a) has demonstrated that the implicit reward 066

model, derived from the logits of a well-aligned 067

English DPO model and its reference model, effec- 068

tively captures preferences over English instruc- 069
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Figure 2: Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment. Our method
consists of three steps: (i) Multilingual Responses Generation: Sampling multilingual responses from parallel
prompts with πt

θ, respectively. (ii) Implicit Cross-lingual Rewarding: Scoring these responses with cross-lingual
instruction-response pairs, where instructions are mapped into English via G(xℓ

i) (Eq. 8) and the pairs evaluated
with the implicit cross-lingual rewardRc (Eq. 9) (iii) Preference Transfer Training: Preference pairs are constructed
based on scores for DPO+NLL training, producing an improved model πt+1

θ . This process is repeated iteratively,
gradually enhancing the model’s multilingual preference alignment until optimization saturates.

tions. Building on this, we apply this implicit070

reward model to the multilingual setting, using071

it to label preference relations in cross-lingual072

instruction-response pairs. This ensures that mul-073

tilingual responses are evaluated based on their074

alignment with English instructions. We term Im-075

plicit Cross-Lingual Rewarding, which preserves076

reward signal fidelity by directly evaluating multi-077

lingual responses under English instructions, avoid-078

ing translation-induced distortions.079

As shown in Figure 2, our approach involves080

three key steps: (1) Multilingual response gener-081

ation: Starting from any multilingual model that082

is DPO-tuned on English preference data from an083

initial reference model. Responses are sampled084

by the model from multilingual prompts. (2) Im-085

plicit cross-lingual rewarding: Constructing cross-086

lingual instruction-response pairs by pairing En-087

glish instructions with sampled multilingual re-088

sponses. The implicit reward model then assigns089

preference scores to these responses, capturing the090

model’s learned preference knowledge. (3) Prefer-091

ence Transfer Training: Our approach adopts iter-092

ative DPO similar to previous works (Yuan et al.,093

2024; Yang et al., 2024c), incorporating a nega-094

tive log-likelihood (NLL) loss term to train on the095

multilingual preference data, thereby transferring096

preferences across languages.097

Our experiments start with the existing English-098

aligned Llama 3 model, followed by two iterations099

of our training process. Results (Figure 1) demon-100

strate that our approach not only transfers prefer-101

ence knowledge from English to other languages102

but also iteratively improves English alignment103

through implicit reward. This suggests that each it-104

eration inherently facilitates both preference trans- 105

fer and refinement within the multilingual LLM. 106

Notably, experiments with other DAAs-aligned 107

base models and lower-resource languages confirm 108

the broad applicability of implicit cross-lingual 109

rewarding, establishing it as an efficient and ro- 110

bust strategy for enhancing multilingual preference 111

alignment for any English-aligned model. 112

2 Preliminaries 113

This section introduces two prominent methods in 114

preference optimization, Reinforcement Learning 115

with Human Feedback (RLHF) and Direct Prefer- 116

ence Optimization (DPO), and derives the implicit 117

rewards of the DPO-tuned model. 118

In preference optimization, the preference data 119

typically takes the pairwise form, denoted as D = 120

{(x, yw, yl)}. Each prompt x is paired with two 121

possible responses, yw and yl, where yw is desig- 122

nated as the preferred response by human evalua- 123

tors. 124

2.1 Reinforcement Learning From Human 125

Feedback 126

RLHF uses human feedback to adjust a model’s be- 127

havior, typically by incorporating a reward model. 128

Since directly modeling pairwise preferences be- 129

tween yw and yl is difficult, a common approach 130

defines a reward function r(x, y), from which pref- 131

erences are inferred, often using the Bradley-Terry 132

model (Bradley and Terry, 1952) to represent such 133

preferences. 134

p(yw ≻ yl|x) =
exp(r(x, yw))

exp(r(x, yw)) + exp(r(x, yl))
(1)

135
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From this formulation, RLHF first trains a param-136

eterized reward model rϕ(x, y) using maximum137

likelihood:138

E(x,yw,yl)∼D [log σ(rϕ(x, yw)− rϕ(x, yl))] (2)139

Where σ is the logistic function, then the objec-140

tive of RLHF is to optimize the policy model πθ to141

maximize the expected value of the reward function.142

Given the pre-trained RM rϕ(x, y) and a reference143

model πref (typically an SFT model), the objec-144

tive is to find a new model πθ by maximizing the145

following expression.146

max
πθ

{
Ey∼πθ(·|x)[r(x,y)]− β log

πθ(y|x)
πref (y|x)

}
(3)

147

Where KL divergence (Kullback and Leibler, 1951)148

from the reference policy πref is usually incorpo-149

rated as a regularization to prevent the reward over-150

optimization of πθ, β controls the deviation from151

the base reference policy. The objective is then152

optimized using the RL algorithm, such as Proxi-153

mal Policy Optimization (PPO) (Schulman et al.,154

2017).155

2.2 Direct Preference Optimization156

Unlike RLHF, which learns a reward model before157

optimizing it via reinforcement learning, Direct158

Preference Optimization (DPO) leverages a reward159

model parameterization that allows for closed-form160

extraction of the optimal policy, eliminating the161

RL training loop. DPO’s key insight is to directly162

model pairwise preferences. Specifically, DPO163

models the probability of preferring response yw164

over response yl given prompt x as:165

pθ(yw ≻ yl|x) = σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
(4)166

Where σ is the sigmoid function. DPO then directly167

trains the optimal model on human feedback data168

D by maximizing the likelihood of these pairwise169

preferences using the following objective:170

L(πθ) = −E(x,yw,yl)∼D [log pθ(yw ≻ yl|x)] (5)171

Implicit Reward in DPO-tuned Model Thus,172

DPO directly implicitly learns the underlying re-173

ward function without a separate reward model174

training stage. The reward is parameterized in175

terms of the corresponding optimal policy πθ and a176

reference policy πref :177

r(x, y) = β log
πθ(y | x)
πref(y | x)

(6)178

3 Implicit Cross-Lingual Rewarding For 179

Efficient Multilingual Alignment 180

Our approach leverages an existing English 181

preference-aligned model and multilingual train- 182

ing prompts to iteratively improve preference align- 183

ment across all languages without external anno- 184

tations. By exploiting the model’s English prefer- 185

ence alignment capabilities, we use implicit cross- 186

lingual rewards to progressively enhance multilin- 187

gual alignment. For illustrative purposes, we begin 188

with DPO in our approach and then extend to other 189

DAA in our experiments. The outline is shown in 190

Figure 2, each iteration involves (1) sampling multi- 191

lingual responses, (2) scoring these responses with 192

implicit cross-lingual rewards, and (3) constructing 193

multilingual preference pairs for DPO training. 194

Initialization Given any multilingual LLM π0
θ , 195

that is DPO-tuned on English preference data from 196

an initial reference model πref , and a set of par- 197

allel multilingual instructions X , where X con- 198

sists of English and other language instructions 199

(xen, xes, . . . , xru). After T rounds training, the 200

model is represented as π1
θ , π

2
θ , . . . , π

T
θ . 201

Multilingual Responses Generation For each 202

round t ∈ {1, 2, . . . }, given input xℓi , we sample 203

N responses, yℓ1...N from the model πt
θ, where πt

θ 204

is the latest policy model. Note that ℓ refers to any 205

language supported by the model. 206

yℓ1...N ∼ πt
θ(x

ℓ
i) for all xℓi ∈ X (7) 207

Implicit Cross-Lingual Rewarding For any 208

LLM πθ that has undergone direct alignment opti- 209

mization in English, the resulting model implicitly 210

embodies a reward model. The implicit reward 211

model, denoted as r(x, y), can be expressed in 212

terms of πθ and its reference model πref , as shown 213

in Eq. (6). 214

To leverage the learned preference in πθ, we 215

introduce a cross-lingual reward mechanism to ef- 216

fectively annotate multilingual preference data us- 217

ing implicit rewards. For responses generated from 218

prompts in other languages, we create cross-lingual 219

instruction-response pairs using parallel English 220

prompts and leverage r(x, y) to score these pairs. 221

Specifically, we define a mapping function G : 222

Iℓ → Ien, where Iℓ represents the space of in- 223

structions in language ℓ, and Ien represents the 224

space of English instructions. Given an instruction 225

xℓi in language ℓ, we construct its corresponding 226
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English instruction G(xℓi), which is then used for227

reward scoring.228

G(xℓi) =

{
xen
i if ℓ = en,

P(ℓ) + xen
i if ℓ ̸= en.

(8)229

Cross-lingual Instruction Prefix P(ℓ)

Please answer the following instruction us-
ing only ℓ unless explicitly instructed to re-
spond in a different language.

230

In this formalization, when the target language ℓ231

is English (ℓ = en), the function returns the origi-232

nal instruction xeni . When the target language ℓ is233

not English (ℓ ̸= en), the function prepends a cross-234

lingual instruction prefix P(ℓ), to the parallel En-235

glish instruction xeni . This prefix P(ℓ) incorporates236

a language constraint, ensuring that the resulting237

instruction G(xℓi) is semantically aligned with the238

target language ℓ and compatible with the reward239

model.240

To mitigate length exploitation (Park et al.,241

2024), a phenomenon observed in preference learn-242

ing, we incorporate a length penalty used in RLH-243

Flow (Dong et al., 2024). The cross-lingual reward244

Rc is then calculated as:245

Rc = β log
πθ(y | G(xℓi))
πref (y | G(xℓi))

− α |y| (9)246

Preference Transfer Training For each input247

xℓi in language ℓ with its corresponding set of N248

generated responses {yℓi1, yℓi2, . . . , yℓiN}, we assign249

scores usingRc. The responses receiving the high-250

est and lowest scores are then selected to construct251

a preference tuple (xℓi , y
ℓ
i+ , y

ℓ
i−).252

The multilingual preference dataset, denoted as253

D, is constructed by aggregating all preference254

tuples across all languages:255

D =
⋃
ℓ,i

(xℓi , y
ℓ
i+ , y

ℓ
i−) (10)256

Finally, we employ a negative log-likelihood (NLL)257

loss term for the chosen labels in DPO loss in258

Eq. (5) to improve multilingual alignment perfor-259

mance. The resulting optimization objective is for-260

mulated as:261

LNLL
DPO(πθ) = −

log πθ(y
ℓ
i+ |x

ℓ
i)

|yℓ
i+
|

− log σ

(
β log

πθ(y
ℓ
i+ |x

ℓ
i)

πref(yℓ
i+
|xℓ

i)
− β log

πθ(y
ℓ
i− |xℓ

i)

πref(yℓ
i−

|xℓ
i)

) (11)262

After DPO training, the policy model πt
θ is updated 263

to πθ, which is then used to generate responses 264

and score data for the subsequent iteration. The 265

overall process of our approach is illustrated in 266

Algorithm 1 in Appendix A.2. 267

Extension to Other DAA KTO (Ethayarajh 268

et al., 2024), inspired by prospect theory, directly 269

optimizes generation utility, in contrast to DPO, 270

which relies on pairwise preferences. We use an 271

English KTO-aligned model as our base and apply 272

KTO iteratively to explore the generalizability of 273

our method beyond pairwise alignment. Details of 274

the KTO optimization process with our approach 275

can be found in Appendix A.6. 276

4 Discussion 277

In this section, we explore two key questions: 278

1. Is cross-lingual reward effective? 279

2. Are there alternative forms of implicit reward? 280

4.1 The Effectiveness of Cross-lingual Reward 281

To assess the effectiveness of the cross-lingual re- 282

ward, we sampled 100 pairs per language from the 283

preference pairs constructed byRc and evaluated 284

them using head-to-head comparisons with GPT- 285

4o, prompt is shown in E.3. Table 1 shows the 286

resulting reward accuracy, demonstrating a strong 287

positive signal across all languages. 288

Reward Accuracy (0-1)
en es ru de fr Avg

0.71 0.61 0.62 0.67 0.69 0.66

Table 1: The reward accuracy of preference pairs.

4.2 The Alternative Implicit Rewards 289

We designed alternative implicit rewards using a 290

DPO-tuned model under the same settings and com- 291

pared the effect of different rewards in Section 5.2 292

and Appendix C.4. 293

Prior work (Wu et al., 2024; Hong et al., 2024) 294

shows that reward models trained only on English 295

data can achieve zero-shot cross-lingual transfer. 296

Therefore, the most straightforward reward ap- 297

proach is the multilingual reward. Given prompt 298

xℓi and corresponding response y, the multilingual 299

rewardRm is then calculated as: 300

Rm = β log
πθ(y | xℓi)
πref (y | xℓi)

− α |y| (12) 301

The alternative reward function directly leverages 302

the English reward model by translating responses 303
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into English before applying the reward. Given304

prompt xℓi and corresponding response y, the305

Translate-to-English reward Rt is then calcu-306

lated as:307

Rt = β log
πθ(T (ℓ, y) | xeni )

πref (T (ℓ, y) | xeni )
− α |y| (13)308

where the mapping function T (ℓ, y) is defined as:309

T (ℓ, y) =

{
y if ℓ = en,
LLM-Translate(y) if ℓ ̸= en.

(14)310

Here, T (ℓ, y) acts as an identity function when ℓ311

is English, returning y. Otherwise, T (ℓ, y) trans-312

lates the response y into English using the LLM’s313

translation capabilities, the prompt is shown in E.2.314

Critically, theRc andRt rewards are always con-315

ditioned on the English instructions, either G(xli)316

or xeni . This ensures that reward scoring across all317

languages is based on English instructions, keeping318

them within the reward model’s effective range.319

5 Experiments320

5.1 Experimental Setup321

Models While prior work (Meta, 2024; Yang322

et al., 2024a) offers numerous English DPO-tuned323

instruction-following models, their RLHF training324

details are often undisclosed. To ensure trans-325

parency, we use Llama-3-8B-SFT-DPO (Meng326

et al., 2024) as our initial English-aligned model.327

This model, derived from Meta-Llama-3-8B via328

SFT on UltraChat-200k (Ding et al., 2023) and329

DPO on UltraFeedback (Cui et al., 2024), follows330

the Zephyr training pipeline (Tunstall et al., 2023)331

using open-source data.332

Languages English serves as our core training333

language, enabling both cross-lingual preference334

transfer and iterative self-improvement. Our main335

experiments focus on Spanish (es), Russian (ru),336

German (de), and French (fr) to observe cross-337

lingual preference alignment. We also evaluate338

several low-resource languages, including Bengali339

(bn), Swahili (sw), and Thai (th), to assess perfor-340

mance in low-resource settings.341

Datasets UltraFeedback (Cui et al., 2024) is a342

large-scale, high-quality AI feedback dataset com-343

prising 60K preference samples closely aligned344

with human preferences. We randomly sampled 3K345

UltraFeedback’s prompts and translated them into346

other languages using the Google Translate API to347

create parallel multilingual prompts.348

Implementation Details We sample N = 10 349

responses per prompt using a temperature of 0.9 350

and top-p of 1.0 and optimized α to minimize the 351

length difference between the chosen and rejected 352

responses. See Appendix B.3 for further details. 353

Evaluation and Metrics We evaluated multilin- 354

gual preference alignment from three aspects: 355

(1) First, we used X-AlpacaEval Leaderboard 356

in Yang et al. (2024c), a multilingual extension of 357

AlpacaEval 2.0 (Li et al., 2023), to compare the 358

multilingual instruction-following abilities of vari- 359

ous models. To mitigate length bias in LLM prefer- 360

ences, we report both standard Win Rate (WR) and 361

length-controlled (LC) Win Rates. 362

(2) Second, we used Multilingual MT-Bench, a 363

multilingual adaptation of MT-Bench (Zheng et al., 364

2024a), which consists of open-ended questions 365

designed to assess conversational and instruction- 366

following skills. GPT-4o was used to score model 367

responses on a scale of 1 to 10. 368

(3) Finally, to assess the alignment tax, we eval- 369

uated our model on Multilingual NLP bench- 370

marks, including multilingual version of MMLU 371

(Hendrycks et al., 2020), HellaSwag (Zellers et al., 372

2019), ARC Challenge (Clark et al., 2018), and 373

TruthfulQA (Lin et al., 2021). 374

5.2 Main Results 375

X-AlpacaEval Leaderboard Table 2 shows that 376

implicit cross-lingual rewarding enables continu- 377

ous improvement in multilingual preference align- 378

ment across iterations. Average length-controlled 379

(LC) and standard win rates (WR) increased by 380

5.97% and 12.72%, respectively. Furthermore, 381

the English LC win rate steadily improves from 382

17.24% to 21.19%, confirming the effectiveness 383

of implicit preference rewarding for bootstrapping 384

English proficiency, as observed in (Kim et al., 385

2024; Chen et al., 2024a). This continuous im- 386

provement in English performance strengthens the 387

implicit cross-lingual reward, which is crucial for 388

our method’s iterative optimization. Remarkably, 389

our model, trained without any manually anno- 390

tated multilingual preference data, outperforms 391

similarly sized Instruct models, including Llama-3- 392

8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B- 393

Instruct-v0.3 (LC: 18.24% vs. 13.74%, 18.10%, 394

17.29%), all of which were trained with extensive 395

annotated preference data. 396

Multilingual MT-Bench The MT-Bench results 397

in Table 3 show a continual performance improve- 398
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Model en es ru de fr Avg
LC WR LC WR LC WR LC WR LC WR LC WR

Cross-lingual Implicit Rewarding
Llama-3-8B-SFT (πI ) 9.02 6.25 6.34 3.77 3.96 3.28 3.71 2.62 4.73 3.26 5.55 3.84
Llama-3-8B-SFT-DPO (π0

θ ) 17.24 17.35 11.32 12.41 11.05 13.82 10.17 11.87 11.56 13.09 12.27 13.71
Iteration 1 (π1

θ ) 20.46 26.40 14.52 19.49 16.00 22.50 14.54 19.69 17.08 21.20 16.52 21.86
Iteration 2 (π2

θ ) 21.19 31.38 16.88 23.37 18.11 25.76 17.92 26.27 17.12 25.35 18.24 26.43
Meta-Llama-3-8B-Instruct 23.48 24.90 17.52 18.08 6.37 7.81 7.74 8.65 13.58 14.18 13.74 14.72
Comparison: Language Imbalance Driven Rewarding (Yang et al., 2024c)
Best Model of Two Iterations 18.69 20.97 13.99 16.69 12.68 16.60 11.31 15.22 12.86 15.54 13.91 17.00
Extension to Other English DAA-aligned Model
Llama-3-8B-SFT-KTO (π0

θ ) 14.99 15.86 13.21 14.22 10.72 14.74 10.14 12.18 11.55 13.49 12.12 14.10
Iteration 1 (π1

θ ) 15.31 19.71 15.34 17.02 14.51 19.10 12.45 15.86 14.82 17.36 14.49 17.81
Iteration 2 (π2

θ ) 15.19 21.36 15.39 16.60 16.13 19.47 14.47 17.26 15.25 17.22 15.29 18.38

SOTA Multilingual Models
gpt-4o-mini 47.33 45.17 48.56 44.63 48.53 47.03 48.54 44.20 48.03 44.93 48.20 45.19
gpt-4-0613 28.86 15.61 35.08 18.18 30.37 16.82 29.10 16.00 25.44 15.23 29.77 16.37
gpt-3.5-turbo-0125 24.50 11.96 31.79 14.42 28.21 13.74 27.82 12.41 28.71 12.70 28.21 13.05
Qwen2-72B-Instruct 39.56 37.72 36.43 24.73 37.38 27.15 32.51 23.93 33.47 24.63 35.87 27.63
Meta-Llama-3-70B-Instruct 36.54 39.74 30.65 32.58 7.43 9.14 8.26 9.48 23.27 25.20 21.23 23.23
InternLM2.5-Chat-20B 28.08 31.77 13.98 16.62 9.42 11.10 9.08 11.56 10.98 13.61 14.31 16.93
Qwen2-7B-Instruct 22.84 24.39 17.55 13.89 18.16 14.33 12.90 11.45 19.04 15.97 18.10 16.01
Mistral-7B-Instruct-v0.3 25.13 21.46 16.30 13.36 14.16 13.75 14.48 11.91 16.37 13.28 17.29 14.75
Aya-23-8B 14.31 15.26 14.29 16.68 14.10 17.95 13.84 18.50 12.74 14.70 13.86 16.62

Table 2: The X-AlpacaEval Leaderboard. LC and WR denote length-controlled and standard win rate, respectively.
The best and second-best scores in Cross-lingual Implicit Rewarding are highlighted in “Green” and “Lightgreen” .
The X-AlpacaEval leaderboard was introduced by Yang et al. (2024c).

ment, increasing from 6.20 for π0
θ to 6.77 for π2

θ .399

This improvement stems from the strong reward400

signal provided by implicit cross-lingual rewarding.401

Because we use GPT-4o as the reference model, its402

advanced capabilities result in lower absolute MT-403

Bench scores compared to GPT-4 evaluation. How-404

ever, we focus on relative score changes during405

iterative training.406

Model Avg. Score (0-10) Avg
en es ru de fr

π0
θ 6.86 5.96 6.01 5.93 6.23 6.20

π1
θ 6.93 6.61 6.42 6.76 6.56 6.66

π2
θ 7.02 6.96 6.44 6.75 6.68 6.77

Table 3: The Multilingual MT-Bench Benchmark on
Llama-3-8B-SFT-DPO, judged with GPT-4o.

Multilingual NLP Benchmarks To assess the407

potential degradation of world knowledge and com-408

monsense reasoning during alignment, known as409

the “alignment tax”, Table 4 presents average re-410

sults across the five training languages on four411

benchmarks (detailed results in Appendix C.1).412

The benchmark results show no performance degra-413

dation compared to the base model, indicating that414

our method effectively avoids introducing the align- 415

ment tax during preference optimization. 416

Comparison Yang et al. (2024c) proposed Lan- 417

guage Imbalance Driven Rewarding, using lan- 418

guage imbalance as a reward signal. We compare 419

this approach to the same settings on X-AlpacaEval 420

(Table 2). Note that we report the best model perfor- 421

mance from two iterations, as we observed perfor- 422

mance degradation in most languages in the second 423

iteration of this approach. While it improves multi- 424

lingual alignment over π0
θ , its gains are significantly 425

smaller than ours. We attribute this to its reliance 426

on language imbalance and self-translation, limit- 427

ing its effectiveness. Moreover, it doesn’t address 428

length bias, resulting in limited LC gains. Further 429

analysis is provided in the Appendix A.5. 430

Extension to Other DAA We extend our ap- 431

proach beyond DPO-aligned models to other Di- 432

rect Alignment Algorithm (DAA), using an English 433

KTO-aligned model as the base and applying KTO 434

for iterative training. Results in Table 2 show our 435

approach generalizes well to KTO-aligned mod- 436

els, effectively leveraging KTO for iterative opti- 437

mization. A detailed analysis is provided in Ap- 438
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Model Multilingual Multilingual Multilingual Multilingual TruthfulQA
ARC challenge HellaSwag MMLU MC1 MC2

Llama-3-8B-SFT 0.4160±0.0143 0.4863±0.0051 0.5139±0.0043 0.2896±0.0161 0.4464±0.0152

Llama-3-8B-SFT-DPO (π0
θ ) 0.4546±0.0144 0.5109±0.0051 0.5255±0.0043 0.3494±0.0169 0.5100±0.0162

Iteration 1 (π1
θ ) 0.4584±0.0145 0.5138±0.0051 0.5257±0.0043 0.3495±0.0169 0.5120±0.0163

Iteration 2 (π2
θ ) 0.4580±0.0145 0.5140±0.0051 0.5263±0.0043 0.3505±0.0169 0.5120±0.0163

Meta-Llama-3-8B-Instruct 0.4228±0.0144 0.5666±0.0043 0.4724±0.0051 0.3417±0.0710 0.5076±0.0978

Table 4: The Multilingual NLP Benchmarks.

pendix A.6.439

Different Implicit Rewards To investigate the440

impact of implicit rewards on multilingual prefer-441

ence alignment, we compare the one-iteration per-442

formance of π1
θ trained with three different implicit443

reward models on X-AlpacaEval (Figure 3).444
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Figure 3: Improvement with different reward models.

The results reveal the following key findings:445

(1) The cross-lingual reward Rc yields the great-446

est improvement across all languages (3.20% to447

5.52% in Table 10). (2) The multilingual reward448

Rm is effective in most languages, suggesting zero-449

shot cross-lingual transfer of preference alignment.450

However, its effectiveness depends on initial lan-451

guage proficiency, diminishing as proficiency de-452

creases. (3) The translate-to-English reward, Rt,453

degrades performance in all languages except En-454

glish, suggesting that translating responses before455

reward evaluation is ineffective. We hypothesize456

that translation distorts meaning and context, lead-457

ing to inaccurate reward assignments. (4) While458

English preference data is constant, English per-459

formance is still influenced by the preference data460

of other languages, emphasizing the importance of461

high-quality preference data for each language.462

5.3 More Analysis463

Generalization to Lower-resource Languages464

The strong performance on four middle resource465

languages (es, ru, de, fr) naturally raises the ques-466

tion: Can our method generalize to lower-resource467

languages? Experiment with Bengali (bn), Swahili 468

(sw), Thai (th), and English (en) in Table 5 shows 469

the effectiveness of our approach in low-resource 470

settings, demonstrating iterative performance gains 471

across all languages. This is because implicit cross- 472

lingual rewarding leverages the preference knowl- 473

edge learned in English for direct (translation-free) 474

reward, providing a strong, information-preserving 475

reward signal for any language.

Model Win Rate Avg
en bn sw th

π0
θ 17.35 4.35 3.43 14.17 9.83

π1
θ 24.48 10.23 4.98 27.83 16.88

π2
θ 32.06 14.09 6.28 29.55 20.50

Table 5: The X-AplacaEval Leaderboard On Llama-3-
8B-SFT-DPO in Lower-resource languages.

476

Scaling the Number of Training Prompts Fig- 477

ure 4 presents the X-AlpacaEval results for π0
θ 478

with varying training prompts in each language, 479

demonstrating positive scaling with data volume. 480

Notably, substantial improvements occur with as 481

few as 1,000 prompts, a phenomenon aligned with 482

the superficial alignment hypotheis (Zhou et al., 483

2024). This highlights our method’s efficiency and 484

effective multilingual preference optimization with 485

minimal data. 486
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Figure 4: The average results for π0
θ with varying train-

ing prompts.
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Diving into Implicit Cross-Lingual Reward Ta-487

ble 6 investigates the impact of the cross-lingual488

reward defined in Eq. (9). (1) Effect of Length489

Penalty: By adding length penalty α|y| in re-490

ward, the generated responses became significantly491

shorter (2023.8 vs. 2474.4), while the LC win rate492

increased by 2.27%. While the standard win rate493

decreased, it is inherently susceptible to length bias.494

(2) Effect of Reference Model Selection: Compared495

to using the previous model π1
θ as the reference, fix-496

ing the reference model to πI improves the length-497

controlled (LC) win rate from 16.74% to 18.24%498

while maintaining the win rate. Using πI as the ref-499

erence ensures a more stable reward signal. When500

the previous model π1
θ is used, the reward signal501

can become susceptible to the evolving preferences502

of the model itself. This can lead to the model ex-503

ploiting spurious correlations, such as length bias,504

rather than focusing on genuine improvements in505

response quality. The stable reward signal from πI506

mitigates this issue, allowing the model to focus507

on generating higher-quality responses, reflected in508

the increased LC win rate.

Different Settings LC WR Len

Iteration 0: Initialization
Llama-3-8B-SFT (πI ) 5.55 3.84 897.6
Llama-3-8B-SFT-DPO (π0

θ ) 12.27 13.71 1695.2
Iteration 1: with / without Length Penalty α|y|
(π1

θ , Eq. (9) without α|y|) 14.25 23.07 2474.4
(π1

θ , Eq. (9) with α|y|) 16.52 21.86 2023.8
Iteration 2: with Different Reference Model
(π2

θ , Eq. (9) with π1
θ as πref ) 16.74 26.62 2371.2

(π2
θ , Eq. (9) with πI as πref ) 18.24 26.43 2254.6

Table 6: The Impact of Cross-lingual Reward.509

6 Related Work510

Implicit Rewarding Optimization Direct pref-511

erence optimization (DPO) (Rafailov et al., 2024b)512

directly optimizes LLM to align with human prefer-513

ence by producing the optimal policy to an implicit514

reward model fit to the preference data. Rafailov515

et al. (2024a) proposed DPO within the token-level516

MDP setting, showing that it implicitly learns a517

token-level reward function using binary prefer-518

ence feedback. Zhong et al. (2024) introduced Re-519

inforced Token Optimization (RTO) that performs520

PPO based on the implicit reward in DPO. Yang521

et al. (2024b); Chen et al. (2024b) use implicit522

reward margins predicted by DPO to efficiently523

annotate pairwise datasets. Chen et al. (2024a);524

Kim et al. (2024); Ko et al. (2024) utilized the525

implicit reward in the DPO-tuned model itself to 526

construct a preference dataset and then used it in 527

subsequent DPO rounds. Previous work has fo- 528

cused on using implicit rewards with English data 529

in DPO-tuned models for English preference selec- 530

tion. Our work introduces implicit cross-lingual 531

rewards, leveraging English DAAs-tuned models 532

to bootstrap capabilities across all languages. 533

Multilingual Preference Alignment Prior work 534

on multilingual rewarding (Wu et al., 2024; Hong 535

et al., 2024) has explored cross-lingual transfer in 536

reward model training using multilingual base mod- 537

els, showing zero-shot transfer capabilities. Due 538

to multilingual preference data scarcity, Ahmadian 539

et al. (2024); Dang et al. (2024) leveraged exter- 540

nal, more powerful multilingual LLMs and reward 541

models to construct multilingual preference data 542

and applied optimization algorithms for multilin- 543

gual alignment, incurring significant computational 544

cost. MAPO (She et al., 2024) uses an external 545

translation model as a reward model, aligning non- 546

dominant languages with dominant ones by assess- 547

ing consistency. However, the translator’s limited 548

context window may restrict it to other tasks. Yang 549

et al. (2024c) utilized the inherent language imbal- 550

ance within LLMs to generate rewards and self- 551

improve multilingual performance; however, this 552

approach yields relatively coarse reward signals. 553

Our work addresses these limitations by using im- 554

plicit cross-lingual rewards to create paired data for 555

self-iterative DPO training. 556

7 Conclusion 557

This paper proposes a simple yet effective frame- 558

work that leverages the implicit reward model of 559

English-aligned models as a fine-grained reward 560

signal to bootstrap multilingual LLM alignment 561

through a self-improving process. Our key insight 562

is to directly leverage English-aligned models and 563

introduce an implicit cross-lingual reward mecha- 564

nism to generate preference labels, thereby explic- 565

itly capturing preference knowledge from aligned 566

model. This labeled preference data is then used 567

to fine-tune the model itself via direct alignment 568

algorithms, enabling the transfer and refinement of 569

preferences from English to other languages. Ex- 570

perimental results based on Llama3 demonstrate 571

that our approach significantly improves multilin- 572

gual preference alignment without any annotation 573

data. This work offers a novel and efficient pathway 574

for multilingual preference alignment. 575
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Limitations576

Our work directly leverages the implicit cross-577

lingual reward derived from existing English-578

aligned models to iteratively improve the multi-579

lingual preference alignment of the model itself.580

The accuracy of the implicit cross-lingual reward581

significantly impacts the alignment effectiveness.582

If the reward signal is inaccurate or biased, it may583

lead to suboptimal preference optimization and hin-584

der multilingual preference alignment. However,585

this is a common challenge in preference optimiza-586

tion, as RLHF also faces similar issues when the587

reward model is not accurate. Another limitation588

is that our work focuses on general multilingual589

preference alignment. Developing more language-590

specific alignment, such as cultural alignment, is591

an area we plan to explore in future work.592

Ethical Considerations593

This work leverages the implicit reward model of594

English-aligned models as a fine-grained reward595

signal to bootstrap multilingual LLM alignment596

through a self-improving process, making a novel597

and significant contribution to multilingual pref-598

erence alignment. This work is dedicated to the599

field of efficient multilingual preference alignment,600

improving the alignment of large models with hu-601

man preferences in multiple languages, making602

them better used globally. Our contributions are603

entirely methodological. Therefore, this work does604

not have direct negative social impacts. In our605

experiments, we used publicly available datasets606

widely employed in prior research, containing no607

sensitive information to the best of our knowledge.608

The authors have followed ACL ethical guidelines,609

and the application of this work poses no apparent610

ethical risks.611
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A Implicit Cross-Lingual Rewarding853

A.1 Base Model Setup854

Prior work (Meta, 2024; Yang et al., 2024a) has855

provided numerous instruction-following models856

fine-tuned with DAAs on English preference data.857

However, the RLHF procedures for most of these858

models are not publicly disclosed, making it un-859

clear whether they were trained with preference860

data from other languages during the DPO stage.861

To thoroughly explore the effectiveness of our ap-862

proach, we choose Llama-3-8B-SFT-DPO1 pro-863

vided by Meng et al. (2024) as our initial English-864

aligned model. Meta-Llama-3-8B is fine-tuned865

on UltraChat-200k (Ding et al., 2023), resulting866

in Llama-3-8B-SFT2. This model is then further867

optimized using Direct Preference Optimization868

(DPO) on UltraFeedback (Cui et al., 2024), yield-869

ing the final model, Llama-3-8B-SFT-DPO. The870

training pipeline of Llama-3-8B-SFT-DPO follows871

the recipe of Zephyr (Tunstall et al., 2023) and is872

trained on open-resource data, ensuring a high level873

of transparency.874

Furthermore, Meng et al. (2024) provides mod-875

els optimized with other Direct Alignment Algo-876

rithm (DAA) under the same data and training877

recipe. We choose Llama-3-8B-SFT-KTO3 as the878

base policy model to extend our approach to other879

English DAA-aligned models.880

A.2 Algorithm Overview881

Algorithm 1 outlines our proposed Implicit Cross-882

lingual Rewarding framework. The algorithm takes883

as input an initial model (πI ), an English-aligned884

model (π0
θ ) trained with DPO using πI , the number885

of iterations (T ), and a set of parallel multilingual886

prompts (X ). The core idea is to iteratively re-887

fine the multilingual preference alignment of an888

existing English-aligned model by leveraging its889

inherent English preference alignment. In each it-890

eration t, preference data (Dt) is synthesized using891

the implicit cross-lingual rewardRc, derived from892

the previous iteration’s model (πt−1
θ ), the initial893

model (πI ). This data generation process involves894

calculating cross-lingual rewards (as detailed in895

Eq. 7, 9, and 10). Then, policy and reference896

1https://huggingface.co/princeton-nlp/
Llama-3-Base-8B-SFT-DPO

2https://huggingface.co/princeton-nlp/
Llama-3-Base-8B-SFT

3https://huggingface.co/princeton-nlp/
Llama-3-Base-8B-SFT-KTO

models are initialized. For each mini-batch sam- 897

pled from the preference data, a training loss based 898

on a refined DPO loss incorporating negative log- 899

likelihood (NLL) (Eq. 11) is calculated. The model 900

parameters are then updated using gradient descent. 901

After processing all mini-batches, the model for the 902

next iteration (πt
θ) is initialized with the updated 903

parameters. This process repeats for T iterations, 904

and the final multilingual aligned model (πT
θ ) is 905

returned. 906

A.3 Optimize the Length control α in reward 907

In our reward functionRc, we incorporate a length 908

penalty term, α|y|, to discourage the generation of 909

overly long outputs. Subtracting this term incen- 910

tivizes the model to produce concise and appro- 911

priately sized responses. The hyperparameter α 912

controls the strength of this penalty; larger values 913

of α impose stronger penalties for longer outputs. 914

Following the approach in Chen et al. (2024a),ine 915

extend it to the multilingual setting and optimize 916

α for each language ℓ by minimizing the expected 917

difference in length between preferred (yℓ+) and 918

dispreferred (yℓ−) responses within our dataset D: 919

α̂ℓ = argmin
a
|E(xℓ,yℓ+,yℓ−)∼D(|y

ℓ
+| − |yℓ−|)| (15) 920

This optimization aims to find the α that best bal- 921

ances response quality and length. 922

A.4 The Format of Different rewards 923

We present the data format for the cross-lingual 924

reward, multilingual reward, and Translate-to- 925

English reward in Figure 5, providing a detailed 926

breakdown of how each reward is structured and 927

utilized within our approach to facilitate multilin- 928

gual preference alignment. 929

A.5 Comparison with Language Imbalance 930

Driven Rewarding 931

Yang et al. (2024c) proposed Language Imbalance 932

Driven Rewarding for multilingual self-improving, 933

where the inherent language imbalance between 934

dominant and non-dominant languages within 935

LLMs is leveraged as a reward signal. Then, using 936

LLM itself mutually translates the dominant and 937

non-dominant language responses to construct mul- 938

tilingual preference data. While the premise of lan- 939

guage imbalance driven rewarding is compelling, 940

and its effectiveness was demonstrated with the 941

Llama-3-8B-Instruct model, this approach relies 942

on the model’s internal language imbalance and 943

translation capabilities. 944
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Algorithm 1 Implicit Cross-lingual Rewarding

Input: Initial model πI , π0
θ is English-aligned model using DPO with πI , Iterations T , Parallel

multilingual prompts X

for t = 1 to T do
Sampling responses Y with πt−1

θ and X (Eq. 7)
Synthesizing preference data Dt by score Y withRc, derived from πt−1

θ , πI (Eq. 7, 9 and 10)
Initialization of policy and reference models πθ ← πt−1

θ , πref ← πt−1
θ

for mini-batch B ∼ Dt do
Calculate training loss LNLL

DPO(πθ) with refined DPO loss incorporating NLL (Eq. 11)
Update model parameter: θ ← θ − η∇θLNLL

DPO(πθ)
end for
Initializing next iteration model πt

θ with the updated parameters θ
end for
return πT

θ

Первыми пятью президентами
Соединенных Штатов Америки
были:
1. Джордж Вашингтон (1789-1797)
2. Джон адамс (1797-1801)
3. Томас Джефферсон (1801-1809)
4. Мартин Ван Бурен (1837-1841)
5. Уильям Харрисон (1841 - в
должности только до смерти,
занимал пост 9 месяцев)

List the first five presidents of the United
States of America.

Please answer the following instruction
using only Russian, unless explicitly
instructed to respond in a different language.

List the first five presidents of the United
States of America.

The first five presidents of the United
States of America were: 
1. George Washington (1789-1797) 
2. John Adams (1797-1801) 
3. Thomas Jefferson (1801-1809)
4. Martin Van Buren (1837-1841) 
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only until his death, served for 9
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Соединённых Штатов Америки.
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2. Джон адамс (1797-1801)
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4. Мартин Ван Бурен (1837-1841)
5. Уильям Харрисон (1841 - в
должности только до смерти,
занимал пост 9 месяцев)

Translate

Cross-lingual Rewarding

Multilingual Rewarding

Parallel Multilingual Prompts

Translate-to-English Rewarding

List the first five presidents of the United
States of America.

Назовите первых пяти президентов
Соединённых Штатов Америки.

ResponsesResponses Responses Translated into English

Figure 5: The Format of Different Rewards.

In our experiments, we selected Llama-3-8B-945

SFT-DPO as the base model. As shown in Table 2,946

Llama-3-8B-SFT-DPO exhibits a more balanced947

capability across various languages compared to948

the Llama-3-8B-Instruct model. The inherent lan-949

guage imbalance in Llama-3-8B-SFT-DPO is min-950

imal, making it less suitable to leverage language951

imbalance as a reward for constructing preferences.952

Moreover, Llama-3-8B-SFT-DPO was only fine-953

tuned on UltraChat-200k (Ding et al., 2023) for954

SFT and UltraFeedback (Cui et al., 2024) for DPO,955

without specific fine-tuning for translation tasks.956

Its translation ability is far inferior to Llama-3-8B-957

Instruct. In Language Imbalance Driven Reward-958

ing, preference data construction relies on trans-959

lation. Thus, poor translation quality in Llama-3-960

8B-SFT-DPO would severely impact preference961

establishment. Consequently, as shown in Table 2,962

Language Imbalance Driven Rewarding yielded963

slight improvements.964

A.6 Extension to Other English DAA-aligned 965

Model 966

Ethayarajh et al. (2024) proposed KTO, inspired 967

by Kahneman and Tversky’s prospect theory (Tver- 968

sky and Kahneman, 1992), to directly maximize 969

the utility of LLM generations rather than the log- 970

likelihood of references. Unlike standard DPO 971

and its variants, KTO eliminates the need for pair- 972

wise preferences, requiring only a binary signal 973

indicating whether an output is desirable or unde- 974

sirable for a given input. Therefore, we use an 975

English KTO-aligned model as the base model and 976

apply KTO for iterative optimization to investigate 977

whether our method generalizes to non-pairwise 978

direct alignment algorithms. 979

The KTO training loss is provided in the follow- 980
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ing:981

L(πθ) = −E(x,y)∼D [λy − v(x, y)] ,

v(x, y) =

{
λwσ(β log πθ(yw|x)

πref (yw|x) − zref ), if y ∼ yw|x,
λlσ(zref − β log πθ(yw|x)

πref (yw|x) ), if y ∼ yl|x.

zref = KL(πθ(y|x)∥πref(y|x)).
(16)982

where λy denotes λw for desirable response and λl983

for undesirable response.984

The implicit reward in KTO is derived in985

Eq. (16):986

r(x, y) = log
πθ(yw|x)
πref (yw|x)

(17)987

The reward function r(x, y) derived in KTO is the988

same as that derived in DPO. Starting from Llama3-989

SFT-KTO, we use Algorithm 1, modifying the loss990

to the KTO loss, to perform iterative multilingual991

preference optimization based on the English KTO-992

aligned model.993

The results in Table 2 show that after two iter-994

ations, the model’s average Win Rate (WR) im-995

proved by 4.28%, and the average Length Con-996

trol (LC) win rate improved by 3.17%. These re-997

sults demonstrate the good generalization of our998

approach to other DAA-tuned models in English.999

While multilingual preference optimization per-1000

forms better starting from an English DPO-aligned1001

base model, due to differences in optimization al-1002

gorithm performance and initial policy model ca-1003

pabilities, the effectiveness observed with KTO1004

demonstrates that our approach can also achieve1005

gains with weaker-aligned models.1006

B Implementation Details1007

B.1 Evaluation Details1008

X-AlpacaEval Leaderboard (Zhang et al.,1009

2023) introduced the X-AlpacaEval benchmark,1010

translated into Chinese, Korean, Italian, and Span-1011

ish by professional translators. Yang et al. (2024c)1012

extended this benchmark to include German and1013

Russian, and introduced the X-AlpacaEval Leader-1014

board, thereby expanding the original English-only1015

AlpacaEval 2.0 (Li et al., 2023) into a multilin-1016

gual framework. We use the same prompts and1017

configurations from X-AlpacaEval, as described1018

in Yang et al. (2024c), to evaluate the multilingual1019

instruction-following capabilities of LLMs. To mit-1020

igate length bias in LLM preferences, we report1021

both standard and length-controlled (LC) win rates.1022

The LC win rate is calculated using a separate re- 1023

gression model that isolates the impact of response 1024

quality by discounting the influence of length. 1025

Multilingual MT-Bench (Zheng et al., 2024a) 1026

includes 80 open-ended questions that evaluate a 1027

chatbot’s multi-turn conversational and instruction- 1028

following ability with human preference. Specifi- 1029

cally, we collected MT-Bench datasets for German, 1030

French, and Russian4. Since no public Spanish 1031

MT-Bench is available, we translated the English 1032

version into Spanish using the Google Translate 1033

API5. We use GPT-4o-2024-08-06 as our judge 1034

model and to generate reference outputs due to its 1035

advanced multilingual capabilities, ensuring more 1036

accurate evaluations. Because we use GPT-4o as 1037

the reference model, its advanced capabilities re- 1038

sult in lower absolute MT-Bench scores compared 1039

to evaluations using GPT-4. However, our focus 1040

remains on the relative score changes observed 1041

throughout the iterative training process. 1042

Multilingual NLP Benchmark We used the 1043

lm-evaluation-harness framework (Gao et al., 1044

2024) to evaluate changes in world knowledge, 1045

commonsense reasoning, and honesty during 1046

the multilingual preference alignment iterations. 1047

Specifically, we chose the MMLU (Hendrycks 1048

et al., 2020)6, HellaSwag (Zellers et al., 2019)7, 1049

ARC Challenge (Clark et al., 2018)8 and Truth- 1050

fulQA (Lin et al., 2021)9 benchmarks, using the 1051

multilingual versions provided by Okapi (Lai et al., 1052

2023). These multilingual benchmarks were cre- 1053

ated by translating the original benchmarks using 1054

ChatGPT. We list the detailed information of the 1055

benchmarks as follows: 1056

MMLU (Massive Multitask Language Un- 1057

derstanding): This benchmark (Hendrycks et al., 1058

2020) comprises 57 tasks, ranging from elementary 1059

math to law and ethics, testing a model’s world 1060

knowledge and problem-solving abilities across di- 1061

verse domains. 1062

HellaSwag: HellaSwag (Zellers et al., 2019) is 1063

a challenging commonsense NLI benchmark fo- 1064

4https://github.com/lightblue-tech/
multilingual-mt-bench

5https://translate.google.com/
6https://huggingface.co/datasets/

alexandrainst/m_mmlu
7https://huggingface.co/datasets/

alexandrainst/m_hellaswag
8https://huggingface.co/datasets/

alexandrainst/m_arc
9https://huggingface.co/datasets/

alexandrainst/m_truthfulqa
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cused on sentence completion. It presents multiple-1065

choice questions where the plausible continuations1066

require human-level commonsense inference. It1067

is designed to be difficult for models relying on1068

superficial statistical cues.1069

The AI2 Reasoning Challenge (ARC) dataset:1070

The ARC dataset (Clark et al., 2018) focuses on1071

question answering that contains questions from1072

science exams from grade 3 to grade 9. It com-1073

prises two challenge sets: the Challenge Set, which1074

contains the more difficult questions that require1075

reasoning, and the Easy Set, which contains sim-1076

pler questions.1077

TruthfulQA: TruthfulQA (Lin et al., 2021) eval-1078

uates a model’s ability to measure whether a lan-1079

guage model is truthful in generating answers to1080

questions. It assesses whether a model can respond1081

truthfully even when presented with misleading or1082

deceptive information. Because evaluating truth-1083

fulness in generation tasks is difficult, the bench-1084

mark provides two multiple-choice formats, MC11085

(single-true) and MC2 (multi-true), which test the1086

model’s ability to identify true statements.1087

B.2 Experimental Environments1088

All experiments were conducted on 8 NVIDIA1089

A800 80G GPUs. Our code primarily relies on1090

Python 3.10 and PyTorch 2.3.0. Models were1091

fine-tuned with LLaMA-Factory (Zheng et al.,1092

2024b) and inference was performed with vLLM1093

0.6.1 (Kwon et al., 2023). Training for all models1094

was launched with the accelerate (Gugger et al.,1095

2022) library, utilizing DeepSpeed ZeRO Stage1096

2 (Rajbhandari et al., 2021).1097

B.3 Hyperparameters1098

For preference pair construction, we sample N =1099

10 responses per prompt using a temperature of 0.91100

and top-p of 1.0. During reward scoring, we opti-1101

mized α to minimize the length difference between1102

the chosen and rejected labels. For preference train-1103

ing, models are trained for one epoch per iteration1104

with a learning rate of 5e − 7 and a batch size of1105

16. The DPO hyperparameter β was set to a fixed1106

value of 0.1 for all training runs. We employed1107

the AdamW optimizer and a cosine learning rate1108

scheduler with a warm-up phase corresponding to1109

3% of the total training steps.1110

Experiments LR BS warm-up Epoch β

Cross-Lingual Rewarding
DPO-Tuned 5e-7 16 0.03 1 0.1
KTO-Tuned 5e-7 32 0.03 1 0.1

Table 7: The hyperparameters on various experiments.
‘LR’ refers to the Learning Rate, and ‘BS’ denotes the
Batch Size

C Detailed Results and Analysis Across 1111

Languages 1112

In this section, we provide more fine-grained re- 1113

sults and analyses from our experiments to facili- 1114

tate a clearer observation of each language’s per- 1115

formance. 1116

C.1 Multilingual NLP Benchmark 1117

Table 12 presents detailed results on four multilin- 1118

gual NLP benchmarks. These detailed results offer 1119

insights into our method’s performance across var- 1120

ious languages and tasks. The table demonstrates 1121

that our approach maintains performance compa- 1122

rable to the Llama-3-8B-SFT-DPO base model, ef- 1123

fectively avoiding the “alignment tax” — the phe- 1124

nomenon where aligning a model with human pref- 1125

erences can negatively impact its performance on 1126

multilingual NLP tasks. This indicates that our ap- 1127

proach successfully balances preference alignment 1128

with the preservation of general language under- 1129

standing capabilities. 1130

C.2 Generalization to Lower-resource 1131

Languages 1132

Table 8 presents performance results for lower- 1133

resource languages, including Bengali (bn), 1134

Swahili (sw), and Thai (th), which generally exhibit 1135

lower performance compared to middle-resource 1136

languages like Spanish, Russian, German, and 1137

French in Llama 3. While English saw a decline in 1138

length control win rate during the second iteration, 1139

possibly due to transferred length control prefer- 1140

ences from other languages not perfectly aligned 1141

with optimal English preferences, the consistent 1142

win rate improvements across the other languages 1143

demonstrate the effectiveness of our cross-lingual 1144

implicit rewarding approach. This suggests that our 1145

method successfully transfers learned knowledge 1146

and preferences, promoting strong generalization 1147

even in lower-resource settings. 1148
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Model en bn sw th Avg
LC WR LC WR LC WR LC WR LC WR

Cross-lingual Implicit Rewarding
Llama-3-8B-SFT-DPO (π0

θ ) 17.24 17.35 2.95 4.35 2.61 3.43 10.29 14.17 8.27 9.83
Iteration 1 (π1

θ ) 21.96 24.48 5.85 10.23 2.82 4.98 21.52 27.83 13.04 16.88
Iteration 2 (π2

θ ) 17.68 32.06 7.85 14.09 3.21 6.28 23.19 29.55 12.98 20.50

Table 8: The X-ApacaEval Leaderboard on lower resource languages. LC and WR denote length-controlled and
standard win rate, respectively.

C.3 Diving into Implicit Cross-Lingual1149

Reward1150

Table 9 analyzes the effects of Length Penalty and1151

Reference Model Selection.1152

To investigate the effect of Length Penalty, we1153

compare controlled experiments in Iteration 1. Us-1154

ing optimal length penalty α|y| in cross-lingual1155

rewarding minimizes the length difference between1156

chosen and rejected responses, thereby reducing1157

length bias in the preference data as much as pos-1158

sible. Compared to the setting without a length1159

penalty, applying a length penalty improves the1160

length control win rate across all languages. How-1161

ever, the shorter response length in the penalty set-1162

ting also results in a slight decrease in the win rate1163

across all languages except French.1164

Regarding reference model selection, using the1165

initial model, πI , as a fixed reference, instead of1166

the previous iteration’s model, π1
θ , further reduces1167

average generation length (from 2371.2 to 2254.6)1168

and consequently improves the length control (LC)1169

win rate across all languages. While French (fr)1170

and German (de) saw improvements in win rate, the1171

other three languages experienced a slight decrease.1172

Using the initial model (πI ) as a reference provides1173

a more stable reward signal. A moving reference1174

(like π1
θ ) can lead to the reward signal drifting to-1175

wards the model’s own evolving (and potentially1176

flawed) preferences, encouraging undesirable traits1177

like length bias. The stability of a fixed πI miti-1178

gates this, promoting higher-quality responses and1179

improving the length-controlled win rate.1180

C.4 Different Implicit Rewards1181

To investigate the impact of different reward model-1182

ing on multilingual preference alignment, we com-1183

pare the performance of π1
θ trained for one itera-1184

tion using three different types of implicit reward1185

models on X-AlpacaEval. Table 10 presents the1186

performance of π1
θ on X-AlpacaEval under three1187

reward modeling approaches: cross-lingual reward1188

(Rc), multilingual rewarding (Rm), and Translate- 1189

to-English reward (Rt). 1190

The results reveal the following key findings: 1191

(1) The cross-lingual rewardRc yields the great- 1192

est improvement in preference alignment across all 1193

languages, outperforming the other reward mod- 1194

els. Furthermore, by leveraging the initial model’s 1195

English-language reward capabilities,Rc confers 1196

substantial gains to π1
θ across all languages, rang- 1197

ing from 3.20% to 5.52% shown in Table 10. 1198

(2) The multilingual reward Rm demonstrates 1199

effectiveness across most languages, suggesting 1200

that preference alignment learned in English can be 1201

effectively transferred to other languages in a zero- 1202

shot manner, consistent with the findings of (Wu 1203

et al., 2024; Hong et al., 2024). However, the effec- 1204

tiveness of the multilingual reward is highly depen- 1205

dent on the model’s initial proficiency in a given 1206

language. As the model’s initial proficiency de- 1207

creases, the improvements conferred by the multi- 1208

lingual reward also diminish. As shown in Figure 3 1209

and Table 10, the improvement in π1
θ conferred 1210

by Rm decreases as the initial model π0
θ ’s align- 1211

ment capability diminishes across languages, from 1212

4.11% for French to near zero for German. 1213

(3) The Translate-to-English reward, Rt, leads 1214

to a performance decline in all languages except 1215

English, suggesting that translating responses into 1216

English before reward evaluation is ineffective. We 1217

hypothesize that this is because the implicit reward, 1218

derived from generation probabilities, is computed 1219

on parallel English data after translation. This trans- 1220

lation process may distort the original meaning and 1221

context of the response, leading to inaccurate re- 1222

ward assignments and, consequently, reduced per- 1223

formance in non-English languages. 1224

(4) While the English preference data remains 1225

consistent regardless of the reward model, perfor- 1226

mance differences arise during multilingual pref- 1227

erence optimization. Although bootstrapping En- 1228

glish preferences with implicit rewards is effective, 1229
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Model en es ru de fr Avg
LC WR LC WR LC WR LC WR LC WR LC WR Len

Llama-3-8B-SFT-DPO (π0
θ ) 17.24 17.35 11.32 12.41 11.05 13.82 10.17 11.87 11.56 13.09 12.27 13.71 1695.2

Iteration 1 (π1
θ ) 20.46 26.40 14.52 19.49 16.00 22.50 14.54 19.69 17.08 21.20 16.52 21.86 2023.8

Iteration 1: with / without Length Penalty α|y|
π1
θ , Eq. (9) without α|y| 16.78 27.05 13.98 21.12 15.04 24.95 12.76 21.45 12.70 20.78 14.25 23.07 2474.4

π1
θ , Eq. (9) with α|y| 20.46 26.40 14.52 19.49 16.00 22.50 14.54 19.69 17.08 21.20 16.52 21.86 2023.8

Iteration 2 with Different Reference Model
π2
θ , Eq. (9) with π1

θ as πref 18.19 32.79 16.64 25.03 16.76 26.21 15.20 24.50 16.92 24.58 16.74 26.62 2371.2
π2
θ , Eq. (9) with πI as πref 21.19 31.38 16.88 23.37 18.11 25.76 17.92 26.27 17.12 25.35 18.24 26.43 2254.6

Table 9: The X-AlpacaEval Leaderboard on the Analysis of Cross-Lingual Reward. Len denotes the average
character length of responses.

Model en es ru de fr Avg
LC WR LC WR LC WR LC WR LC WR LC WR Len

Llama-3-8B-SFT-DPO (π0
θ ) 17.24 17.35 11.32 12.41 11.05 13.82 10.17 11.87 11.56 13.09 13.23 13.37 1695.2

Iteration 1 with Different Reward Modeling
Translate-to-English Rt, Eq. (13) 18.37 24.95 8.69 12.56 7.44 12.01 6.09 10.33 7.11 12.63 12.41 13.78 2209.6
Multilingual Rm, Eq. (12) 19.87 26.86 12.59 17.79 11.54 18.86 10.12 17.33 15.67 20.58 17.09 18.21 2119.6
Cross-lingual Rc, Eq. (9) 20.46 26.40 14.52 19.49 16.00 22.50 14.54 19.69 17.08 21.20 18.92 20.25 2023.8

Table 10: The X-AlpacaEval Leaderboard on different Implicit Rewards.

as shown in prior work, our findings reveal that1230

English performance is still influenced by pref-1231

erence data from other languages. Specifically,1232

Rc achieves the best results, highlighting the im-1233

portance of preference data quality across all lan-1234

guages when training multilingual models.1235

C.5 Scaling the Number of Training Prompts1236

Table 11 shows the effect of training set size on mul-1237

tilingual preference alignment performance. We1238

can observe two points: (1) Increasing the train-1239

ing set size generally improved performance across1240

most languages, although French (fr) showed signs1241

of over-optimization when the number of training1242

prompts rose from 3000 to 5000. (2) As the number1243

of samples increases, the gain from the improve-1244

ment becomes smaller. Using only 1000 prompts1245

can improve LC and WR by 3.64% and 7.72%,1246

respectively, while from 1000 to 5000, it only im-1247

proves LC and WR by 1.83% and 1.24%. Our1248

approach demonstrates efficient multilingual pref-1249

erence alignment, achieving strong performance1250

with fewer training samples.1251

D Dataset License1252

All models and data in our work are open-sourced.1253

We utilize prompts from the UltraFeedback (Cui1254

et al., 2024) dataset for efficient multilingual align-1255

ment. We adhere to the corresponding guidelines 1256

within the data. 1257
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Model en es ru de fr Avg
LC WR LC WR LC WR LC WR LC WR LC WR Len

Llama-3-8B-SFT-DPO (π0
θ ) 17.24 17.35 11.32 12.41 11.05 13.82 10.17 11.87 11.56 13.09 13.23 13.37 1695.2

Iteration 1 with Different Training Prompts in Each language
Llama-3-8B-SFT-DPO (π0

θ ) 17.24 17.35 11.32 12.41 11.05 13.82 10.17 11.87 11.56 13.09 12.27 13.71 1695.2
π1
θ with 1000 prompts 19.93 23.74 15.27 20.71 14.19 20.82 13.84 19.91 16.34 21.96 15.91 21.43 2085.2

π1
θ with 3000 prompts 20.46 26.40 14.52 19.49 16.00 22.50 14.54 19.69 17.08 21.20 16.52 21.86 2023.8

π1
θ with 5000 prompts 24.19 26.96 16.71 21.09 16.24 22.49 16.55 21.75 15.01 21.05 17.74 22.67 2099.8

Table 11: The X-AlpacaEval results on Scaling the Number of Training Prompts.

Model Training Languages Avg
en es ru de fr

Multilingual ARC challenge, 0-shot
Llama-3-8B-SFT 0.5282±0.0146 0.4239±0.0145 0.3661±0.0141 0.3772±0.0142 0.4380±0.0145 0.4267±0.0144

Llama-3-8B-SFT-DPO (π0
θ ) 0.5819±0.0144 0.4598±0.0146 0.3995±0.0143 0.4140±0.0144 0.4713±0.0146 0.4653±0.0145

Iteration 1 (π1
θ ) 0.5742±0.0144 0.4684±0.0146 0.4021±0.0143 0.4234±0.0145 0.4713±0.0146 0.4679±0.0145

Iteration 2 (π2
θ ) 0.5785±0.0144 0.4624±0.0146 0.4089±0.0144 0.4183±0.0144 0.4688±0.0146 0.4674±0.0145

Multilingual HellaSwag, 0-shot
Llama-3-8B-SFT 0.6008±0.0049 0.4997±0.0052 0.4412±0.0052 0.4600±0.0051 0.4855±0.0052 0.4974±0.0051

Llama-3-8B-SFT-DPO (π0
θ ) 0.6292±0.0048 0.5270±0.0052 0.4624±0.0052 0.4864±0.0052 0.5104±0.0052 0.5231±0.0051

Iteration 1 (π1
θ ) 0.6301±0.0048 0.5304±0.0052 0.4655±0.0052 0.4899±0.0052 0.5114±0.0052 0.5255±0.0051

Iteration 2 (π2
θ ) 0.6295±0.0048 0.5306±0.0052 0.4655±0.0052 0.4922±0.0052 0.5105±0.0052 0.5257±0.0051

Multilingual MMLU, 5-shot
Llama-3-8B-SFT 0.6052±0.0039 0.5231±0.0043 0.4817±0.0044 0.4997±0.0043 0.5104±0.0044 0.5240±0.0043

Llama-3-8B-SFT-DPO (π0
θ ) 0.6232±0.0039 0.5301±0.0043 0.4883±0.0044 0.5108±0.0043 0.5223±0.0044 0.5349±0.0043

Iteration 1 (π1
θ ) 0.6236±0.0039 0.5293±0.0043 0.4853±0.0044 0.5103±0.0043 0.5297±0.0044 0.5356±0.0043

Iteration 2 (π2
θ ) 0.6295±0.0039 0.5285±0.0043 0.4843±0.0044 0.5108±0.0043 0.5291±0.0044 0.5364±0.0043

Multilingual TruthfulQA MC1, 0-shot
Llama-3-8B-SFT 0.3060±0.0161 0.2725±0.0159 0.2919±0.0162 0.2779±0.0160 0.3062±0.0164 0.2909±0.0161

Llama-3-8B-SFT-DPO (π0
θ ) 0.3856±0.0170 0.3232±0.0167 0.3452±0.0169 0.3363±0.0168 0.3494±0.0170 0.3479±0.0169

Iteration 1 (π1
θ ) 0.3966±0.0171 0.3321±0.0168 0.3363±0.0168 0.3350±0.0168 0.3443±0.0169 0.3489±0.0169

Iteration 2 (π2
θ ) 0.3896±0.0170 0.3370±0.0167 0.3378±0.0168 0.3385±0.0166 0.3433±0.0169 0.3492±0.0168

Multilingual TruthfulQA MC2, 0-shot
Llama-3-8B-SFT 0.4531±0.0147 0.4194±0.0150 0.4658±0.0157 0.4284±0.0150 0.4528±0.0152 0.4439±0.0151

Llama-3-8B-SFT-DPO (π0
θ ) 0.5354±0.0158 0.4811±0.0162 0.5173±0.0164 0.4913±0.0160 0.5146±0.0162 0.5079±0.0161

Iteration 1 (π1
θ ) 0.5460±0.0158 0.4848±0.0163 0.5163±0.0165 0.4931±0.0162 0.5094±0.0163 0.5099±0.0162

Iteration 2 (π2
θ ) 0.5443±0.0159 0.4773±0.0164 0.5187±0.0166 0.4955±0.0163 0.5102±0.0164 0.5092±0.0163

Table 12: The Detailed Results of Multilingual NLP Benchmarks.
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E Prompt Template1258

E.1 Cross-lingual Instruction Prefix P(ℓ) in mapping function G(xℓi)1259

Cross-lingual Instruction Prefix P(ℓ)

Please answer the following instruction using only ℓ, unless explicitly instructed to respond in a
different language.

1260

E.2 LLM-Translate(y) in mapping function T (ℓ, y)1261

Prompt in LLM-Translate(y)

Please translate the following sentences into English. The input sentences are wrapped by
<sentence> and </sentence>:

<sentence>
y (Response to xℓi)
</sentence>

1262

E.3 Reward Accuracy Judgement Prompt1263

Prompt for Judging Reward Accuracy

You are a helpful following assistant whose goal is to select the preferred (least wrong) output for
a given instruction in [LANGUAGE].

Which of the following answers is the best one for given instruction in [LANGUAGE].
A good answer should follow these rules:
1. It should be in [LANGUAGE], except when the instruction explicitly requests the answer in a
different language.
2. It should answer the request in the instruction.
3. It should be factually and semantically comprehensible.
4. It should be grammatically correct and fluent.

<instruction>
[INSTRUCTION]
</instruction>

<answer1>
[OUTPUT1]
</answer1>

<answer2>
[OUTPUT2]
</answer2>

FIRST, provide a one-sentence comparison of the two answers, explaining which you
prefer and why.
SECOND, on a new line, state only ‘answer1’ or ‘answer2’ to indicate your choice. If both
answers are equally good or bad, state ‘tie’. Your response should use the format:

1264
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Comparison: <one-sentence comparison and explanation>

Preferred: <‘answer1’ or ‘answer2’ or ‘tie’>
1265
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