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ABSTRACT

Recently, it was proved that group equivariance emerges in ensembles of neural
networks as the result of full augmentation in the limit of infinitely wide neural
networks (neural tangent kernel limit). In this paper, we extend this result signif-
icantly. We provide a proof that this emergence does not depend on the neural
tangent kernel limit at all. We also consider stochastic settings, and furthermore
general architectures. For the latter, we provide a simple sufficient condition on
the relation between the architecture and the action of the group for our results to
hold. We validate our findings through simple numeric experiments.

1 INTRODUCTION

Consider a learning task with an inherent symmetry. As an illustrative example, we can think of
classifying images of, say, apples and pears. The classification should of course not change when
the image is rotated, meaning that the learning task is invariant to rotations. If we are segmenting
the image, the apple segmentation mask should instead rotate with the image – such tasks are called
equivariant. An a-priori known symmetry like this is a strong inductive bias, that should be used to
improve performance of the model.

There are essentially two ’meta-approaches’ to do the latter. The first one is to use data augmentation
to generate new data that respects the symmetry – in our example, to add all rotated versions of
the training images to the dataset. This is versatile, simple and effective. However, there are of
course no guarantees that the model after training exactly obeys the symmetry, in particular on
out-of distribution data. To solve this problem, one can use the second meta-approach, namely
to use a model that inherently respects the symmetry. Over the last half decade or so, an entire
framework concerning achieving this for neural network has emerged under the name of Geometric
Deep Learning (Bronstein et al., 2021).

The relations between these two approaches are, from a theoretical point of view, still unclear: there
is yet to emerge a definitive answer to the question if and when the augmentation strategy is guar-
anteed to yield an equivariant model after training. Recently, an interesting discovery in this regard
was made in Gerken & Kessel (2024). In this paper, it was shown that ensembles of infinitely wide
neural networks (in the neural tangent kernel limit Jacot et al. (2018)) are equivariant in mean, even
though individual members of them are not. See Figure 1 for an illustration. Although this asymp-
totic result is already interesting, it has some drawbacks. The proofs rely heavily on the simplified
dynamics of the NTKs, and therefore do not work at all for network of finite width. Furthermore,
the proof only works for finite groups, and is only formulated for the somewhat unrealistic gradient
flow training.

The main message of this paper is that the phenomenon of ensembles of neural networks being
equivariant in mean is much more general than Gerken & Kessel (2024) suggests. Our analysis
reveals that the equivariance has nothing to do with the neural tangent kernel limit. Instead, if the
geometry of the neural network architecture in a sense is not inherently biased against equivariance
(the technical condition is described in Definition 1), and the parameters of the ensemble are initial-
ized in a symmetric way (which can be achieved by Gaussian initialization), the ensemble mean will
automatically be equivariant at all points in the training.

Our proofs are non-asymptotic, work for any compact group, for stochastic gradient descent and
random augmentation, and apply to a wide range of neural network architectures. Consequently, the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A graphical explaination of our results. In the example,
the symmetry group is C2, acting on the parameter space through
reflection in the x-axis (this is the representation ρ we define be-
low). Parameters on the x-axis correspond to equivariant models.
We are shown snapshots of the parameters of ensemble members as
they are trained on symmetric data. Note that at all times, most in-
dividual ensemble members that do not lie on the line of symmetric
model. However, since they have been initialized with a symmetric
distribution, their distribution stays symmetric throughout training
– and therefore, their mean always corresponds to an equivariant
model.

analysis is different to the one in Gerken & Kessel (2024). We will in particular use recent results
from Nordenfors et al. (2024) about the dynamics of neural networks trained on symmetric data.

The paper outline is as follows: After a short literature review in Section 2, we need to spend
considerable time to properly present the framework and state our assumptions in Section 3. Then,
we state our main result, Theorem 4.2 in Section 4, and prove it in a simplified setting – the full
proof is given in the appendix. Finally, we perform some simple numerical experiments to showcase
our theory in Section 5.

2 LITERATURE REVIEW

To give a comprehensive overview of Geometric Deep Learning goes well beyond the scope of this
paper. We instead refer to the textbook (Bronstein et al., 2021).

The question of the effect of symmetries in the data on the training of neural networks has often
been understood as a comparison question: Is it better to train a non-equivariant architecture on
augmented (that is, artificially symmetric) data, or to use a manifestly equivariant architecture as
e.g. Cohen et al. (2019); Maron et al. (2019); Kondor & Trivedi (2018); Weiler & Cesa (2019);
Finzi et al. (2021); Fuchs et al. (2020)? Empirical comparisons between the two approaches as
part of experimental evaluations of manifestly equivariant architectures have been made more or
less since the invention of equivariant networks – more systematic investigations include Gandikota
et al. (2021); Gerken et al. (2022).

In Chen et al. (2020), a group theoretical framework for data augmentation was developed, which
has inspired many treatises of the question, including ours. Linear (i.e. kernel) models are studied in
Elesedy & Zaidi (2021); Mei et al. (2021); Dao et al. (2019). Lyle et al. (2019; 2020) study so-called
feature-averaged networks. So-called linear neural networks – i.e., neural networks with a linear
activation function – are studied in Chen & Zhu (2024). In these settings, equivalence between
augmenting the data and restricting the networks can be proven. The same has not been established
for ’bona-fide’ neural networks with non-linear activation functions – they are studied Nordenfors
et al. (2024), but there, only local guarantees are derived.

The work most tightly related to ours is Gerken & Kessel (2024). In there, it was realized that equiv-
ariance emerges from augmentation in ensembles, and not in individual networks. They provide
a formal explaination of this only in the so-called neural tangent kernel (NTK) limit (Jacot et al.,
2018). Importantly, the optimization dynamics of neural networks in the NTK-limit turn linear (Lee
et al., 2019), so that that setting is considerably simpler than the one we consider here.

Equivariant flows have been studied before in the context of generative models (Köhler et al., 2020;
Katsman et al., 2021; Satorras et al., 2021). In this paper, we use results from Köhler et al. (2020)
in a different context, namely to study the flow of the parameters of the network under (stochastic)
gradient flow (descent).
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3 PRELIMINARIES

3.1 PAPER SETTING

By and large, we adopt the framework from Nordenfors et al. (2024) – which in large is just a
particular formalization of the general geometric deep learning framework Bronstein et al. (2021).
Let (x, y) ∈ X × Y , where X and Y are (finite-dimensional) vector spaces. We are concerned with
neural networks ΦA : X → Y , that are defined as function of the form

x0 ∈ X, xi+1 = σi(Ai(xi)), ∀i ∈ {0, 1, . . . , N − 1}, ΦA(x0) = xN ∈ Y. (1)
Here, Ai are trainable linear maps, i.e. elements of Hom(Xi, Xi+1), and where σi are fixed non-
linearities. Following Nordenfors et al. (2024), we write H =

⊕N−1
i=0 Hom(Xi, Xi+1) for the

ambient space for the parameterA = (Ai)
N−1
i=0 . This is a faithful model for fully connected networks

without bias. As was realized in Nordenfors et al. (2024), we may include other architectures in the
framework (biases, CNN:s, RNN:s, transformers, . . . ) by confining the linear maps to an affine
subspace L ⊆ H. Let us present one example of this construction, that we in the following will use
as a running example.
Example 3.1. For some integers di, let Xi = (RN,N )di – we can and will interpret this as tuples
of images. We may define a convolutional operator between two such spaces as operators C of the
form

(Cx)k =
∑
ℓ∈[di]

ψkℓ ∗ xℓ,

where ψkℓ, k ∈ [di+1], ℓ ∈ [di] are filters. In the following, we denote this operator ⟨ψ⟩. The space
of all operators of this form, where the filters supports are all contained in a fixed set Ω, form a linear
subspace of H. In particular, they define an affine space L, and the corresponding architecture is a
CNN.

Common choices for Ω are 3× 3 or 5× 5 squares. Just as was done in Nordenfors et al. (2024), we
will here mainly consider the two non-canonical supports in Figure 2, since they illustrate important
aspects of our results. We call the left support the symmetric support, and the right the asymmetric
support, and denote the corresponding affine spaces Lsym and Las.

Figure 2: Left: symmetric filter. Right: asym-
metric filter. Grey indices correspond to indices
where the filter is supported.

Let us now bring equivariance in to the picture. We assume that a group G is acting on both in-
put, intermediate and output spaces by some unitary representations ρi (Fulton & Harris, 2004)
– i.e. maps ρi from the group G to the set of unitary matrices that respect the group ac-
tion: ρi(gh) = ρi(g)ρi(h). The representations on the spaces Xi yield representations ρ̂i on
Hom(Xi, Xi+1) through ρ̂i(g)(Ai) = ρi+1(g)◦Ai ◦ρi(g)−1, which in turn defines a representation
ρ on H by taking the direct product of the ρ̂i. We will refer to these as the lifted representations.
Example 3.2. The group C4, consisting of the four rotations in the plane of multiples of π/2, natu-
rally acts on tuples of images by rotating each image in the tuple. We will denote this representation
ρrot. The corresponding lifted representation has an important property in relation to the convolu-
tional operators as in Example 3.1: it acts by rotating each filter, ρ(g)⟨ψ⟩ = ⟨ρrot(g)ψ⟩. This is not
hard to show – a proof can for instance be found in Nordenfors et al. (2024).
Remark 1. While the representations on the input and output space are fixed – they are given by
the symmetries of the problem – the representations on the intermediate spaces are a priori free to
choose. This point has subtle but important consequences for the meaning of our main results – we
will discuss them when we present it.

We call a map f : X → Y equivariant if f ◦ ρ0(g) = ρN (g) ◦ f for all g. The space
of G-equivariant linear maps between Xi and Xi+1 is denoted HomG(Xi, Xi+1). We write
HG =

⊕
HomG(Xi, Xi+1), i.e., HG = {A ∈ H : ρ(g)A = A}.

Now let us record and discuss three global assumptions we want to make, which are similar to the
ones made in Nordenfors et al. (2024).
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Assumption 1. The non-linearities σi are all G-equivariant.
Assumption 2. The group G is compact.
Assumption 3. The space HG ∩ L is nonempty.

As for Assumption 1, note that without it, the common strategy to define equivariant neural networks
by restricting the linear layers to lie in this space will not work. Assumption 2 is needed to ensure that
the Haar measure of the group (Krantz & Parks, 2008) is (normalizeable to) a probability measure. It
should also be noted that whenG is compact, it is no true restriction to assume that the representation
is unitary – one can always ensure this via redefining the inner products on H. The assumption is
satisfied by all finite groups, but also groups like SO(n) and O(n) (albeit not the group of all rigid
motions SE(n).) As for Assumption 3, it ensures that there exists an admissible and G-equivariant
architecture. It also has a technical consequence that we will need: it lets us write the affine space
L = AL +TL, for an AL ∈ HG ∩ L, and TL the direction of L.

3.2 TRAINING ALGORITHMS

Let us now assume that we are given data (x, y) distributed according to some distribution onX×Y .
We let ℓ : Y × Y → R be an invariant loss function (ℓ(ρN (g)y, ρN (g)y′) = ℓ(y, y′) for all g ∈ G
and y, y′ ∈ Y ) , and define a nominal risk through

R(A) = ED(ℓ(ΦA(x), y)).

We can then train networks via minimizing A. Since A is confined to the affine space L, we thereby
technically do not changeA by applying e.g. gradient descent toR directly – instead, we parametrise
A = AL + Lc, where AL ∈ L and L : Rp → TL is a unitary (L∗L = id) parametrization of the
direction of L, and then update c via minimizing the loss R(c) = R(AL + Lc).

If the distribution D is biased, in the sense that (ρ(g)x, ρ(g)y) is not equally distributed to (x, y),
training the network with this risk will most likely not lead to an equivarant model. Instead, we need
to augment the data. We consider two strategies to do so.

(a) Gradient flow with full augmentation. Full augmentation refers to training the networks us-
ing data distributed according to (ρ(g)x, ρ(g)y), (x, y) ∼ D and g drawn according to the Haar
measure Krantz & Parks (2008). For a finite group, this corresponds to drawing an element uni-
formly at random – but it can also be defined on any compact group, such as SO(n), as the unique
invariant probability measure on G – i.e., if g ∼ µ, gh ∼ µ as well for any h ∈ G. This change can
mathematically be expressed as changing the loss function to the augmented loss

Raug(A) =

∫
G

ED(ℓ(ΦA(ρ0(g)x), ρN (g)y))dµ(g),

and similarly Raug(c) = Raug(AL + Lc). We consider the simplified setting of using an infinitese-
mal learning rate, e.g. training the network using gradient flow. The latter refers to let the param-
eters flow accoarding to ċt = −∇Raug(ct). Note that due to the chain rule and the unitarity of L,
At = AL + Lct will then follow the projected gradient flow

Ȧt = −ΠL∇Raug(At), (2)

where ΠL = LL∗ is the orthogonal projection onto TL, the direction of L. The differential equation
equation 2 induces a flow map F t : L → L: Every A ∈ L is mapped to the value at time t of the
solution of equation 2 initialized at A.

(b) SGD with random augmentation. In addition to the above model, we will also consider
training the networks on randomly augmented minibatches. This both escapes the assumption of
full augmentation (which is impractical for large, and impossible for infinite, groups) and includes
finite learning rates.

Just to fix notation, let us define the procedure formally. We define the partially augmented and
sampled risk as

Rg(A) =
1

s

s∑
k=1

ℓ(ΦA(ρ0(gk)xk), ρN (gk)yk),

4
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where (xk, yk) ∼ D are independent, both from each other as well as from the gk, which are drawn
i.i.d according to µ. Note that Rg is a random function. The sample size s is a parameter that is free
to chose.

Given a sequence of learning rates (γt)t≥0, we may now iteratively define a sequence of random
variables as follows

At+1 = At − γtΠL∇Rg(At).

Note that the projected descent emerges in the same way as above via updating the parametrizing
coefficients ct. Every realization of the process At corresponds to one run of the SGD.

3.3 ENSEMBLES

We define ensembles as in Gerken & Kessel (2024): For a distribution p on H, we consider the
distribution of parameters At implied by initalizing the parameters of a network according to p, and
then training the network for time t. The corresponding ensemble model at time t is then defined as

Φt(x) = Eπ[ΦAt(x)], (3)

i.e. the expecation over π, which denotes p in the deterministic gradient flow setting, and the product
of p with the random draw of the minibatches and group elements in the SGD setting. Note that this
function can be well approximated by drawing a sample mean, i.e. starting N neural networks
with i.i.d. initialisation (drawn according to p), training them, and then calculating the mean after t
points. This is the strategy we will follow in the experimental section. We will however only make
claims about the true mean, and leave the study of the effect of the approximation error to further
work. We will refer to such collections of N networks as an ensemble, and each individual network
an ensemble member.

4 THEORY

This section is devoted to proving the G-equivariance of ensembles (Theorem 4.2). Our result will
hold under a geometric condition on the space L. Let us present it and discuss it in some detail.

4.1 THE G-INVARIANCE CONDITION

Definition 1. We say that L is G-invariant if ρ(g)L ⊆ L for all g ∈ G.

It should be noted that the invariance of L depends on the representation ρ, and not just on G.
However, we find this terminology more intuitive, and we will make sure to point out the dependence
when it matters.

From the view of the neural network architectures, G-invariance can be interpreted as saying that
there is no inherent bias against being G-equivariant in the definition of your admissible layers. It
has the for us important consequence, which we prove in Appendix A.
Lemma 4.1. L is G-invariant if and only if ΠL is G-equivariant.

G-invariance is related to the so-called compatibility condition that was used in Nordenfors et al.
(2024) to prove statements about the stationary points of the augmented risk Raug: that the projec-
tion ΠL commutes with the orthogonal projection ΠG. In fact, the G-invariance was there argued
to be sufficient for the compatibility condition to hold. It was furthermore argued that G-invariance
is satisfied for essentially all commonly used architectures and reasonable representations, such as
fully connected ones with and without bias, RNNs, residual connections, etc. Let us here, again,
only discuss our running examples.
Example 4.1. In Example 3.1, it was argued that when using the canonical ρrot-representations on
all the intermediate layers, we have ρ(g)⟨ψ⟩ = ⟨ρ(g)ψ⟩. Consequently, a ⟨ψ⟩ ∈ Lsym will be
mapped by ρ onto a tuple of other symmetric filters, and hence Lsym is G-invariant. By the same
argument, Las is not.

As we previously remarked (Remark 1), there is no need to choose the ρrot-representations in the
intermediate layers. However, it turns out that there aren’t any representations on the intermediate
spaces which makes Las G-invariant. The somewhat involved proof for this is given in Appendix C.
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4.2 MAIN RESULT

Let us now state our main result.
Theorem 4.2. If (i) the parameters have a G-invariant distribution at initialization, ρ(g)A0 ∼ A0

(ii) the affine space L of the architecture is G-invariant, then the ensemble model trained with either
gradient flow with full augmentation or SGD with random augmentation will for all times t be G-
equivariant.
Remark 2. It is not hard fulfill condition (i) if L is G-invariant – simply choose the c-parameter as
a standard Gaussian vector. Then, A = AL + Lc will also be a Gaussian vector on the space L,
invariant to all the unitary transformations ρ(g). A detailed argument is given in Appendix A.1.
Remark 3. As we remarked in Remark 1, the representations on the intermediate spaces Xi are
free to choose. One should hence really interpret condition (ii) in Theorem 4.2 as that there exist
intermediate representations so that L is G-invariant with respect to the corresponding ρ.

We will here only prove Theorem 4.2 for the case of gradient flow. The proof in the stochastic
case in fact is essentially the same, but needs a little more tools from probability theory, whence we
postpone it to Appendix B.

To show that Φt(x) is equivariant, it is enough to prove an invariance result of the distribution of the
parameters At, as the following lemma shows.
Lemma 4.3. If the distribution of At on H is group invariant in the sense that ρ(g)At ∼ At for all
g ∈ G, then Φt is G-equivariant.

Proof. In the proof of Lemma 3.9 in Nordenfors et al. (2024), it is shown that ΦA(ρ0(g)x) =
ρN (g)Φρ(g−1)A(x), for g ∈ G and x ∈ X – we give the relevant part of the proof in Appendix A.
This formula allows us to argue that if At ∼ ρ(g)At, ∀g ∈ G, we have for any x

ΦAt(ρ0(g)x) = ρN (g)Φρ(g−1)At(x) ∼ ρN (g)ΦAt(x), ∀g ∈ G.

Taking the expectation over π now gives the claim.

We thus have the clear goal of finding reasonable assumptions under which the condition of Lemma
4.3 is fulfilled. Remember that gradient flow amounts to applying the flow map F t to the parameters
of each ensemle member. If that flow map is equivariant, it will keep an invariant initial distribution
of A invariant – this is the content of e.g. Theorem 1 from Köhler et al. (2020). Let us formulate
this as a lemma.
Lemma 4.4. If ρ(g)A ∼ A, ∀g ∈ G, and F t is G-equivariant, then ρ(g)F tA ∼ F tA, ∀g ∈ G.

Proof. Note that if ρ(g)A ∼ A, ∀g ∈ G, then F tρ(g)A ∼ F tA, since F t and ρ(g) are Borel
measureable, ∀g ∈ G. If we now assume that F t is G-equivariant, then ρ(g)F tA = F tρ(g)A ∼
F tA, ∀g ∈ G.

This means that we want to look for assumptions that guarantee F t is G-equivariant. Well, in
fact, Köhler et al. (2020) showed that the flow map given by a G-equivariant vector field is also
G-equivariant, the proof of which we include in Appendix A.
Lemma 4.5. The flow generated by a G-equivariant vector field is G-equivariant.

This means for us that we only have left to show that −ΠL∇Raug is G-equivariant, which is the
content of the following lemma.
Lemma 4.6. If L is G-invariant, then −ΠL∇Raug is G-equivariant.

Proof. Let L be G-invariant. Then by Lemma 4.1 it follows that ΠL is G-equivariant. Thus, since
the composition of G-equivariant maps is again G-equivariant, we only need to show that ∇Raug is
G-equivariant. To this end it suffices to show that Raug is G-invariant, since the G-equivariance of
the gradient then follows by the chain rule. To show this, we will use Lemma 3.9 from Nordenfors
et al. (2024), which states that

Raug(A) =

∫
G

R(ρ(g)A)dµ(g).

6
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Now the G-invariance of Raug is a straightforward matter. Utilizing that ρ is representation and the
invariance of the Haar measure, we obtain for every h ∈ G

Raug(ρ(h)A) =

∫
G

R(ρ(gh)A)dµ(g) =

∫
G

R(ρ(g)A)dµ(g) = Raug(A),

This concludes the proof.

Now, let us put all of this together to prove Theorem 4.2.

Proof of Theorem 4.2. Assume that ρ(g)A0 ∼ A0 and that L isG-invariant. By Lemma 4.6 we have
that −ΠL∇Raug is G-equivariant. Then Lemma 4.5 yields that Ft is G-equivariant, from which it
follows by Lemma 4.4 that ρ(g)FtA

0 ∼ FtA
0, ∀g ∈ G. Finally, it follows by Lemma 4.3 that Φt is

G-equivariant, since FtA
0 = At, which completes the proof.

This concludes the proof of Theorem 4.2 in the case of gradient flow and full augmentation.
Remark 4. As we have earlier noted, full group augmentation is practically impossible when dealing
with infinite groups. Theorem 4.2 is however still relevant for it. Namely, we could approximate
the full augmentations by just augmenting with finite subset H of G. Then, the risk we should
optimize is RH(A) = 1

|H|
∑

h∈H R(ρ(h)A). If H is a subgroup of G, this directly corresponds
to performing full augmentation with the smaller set H . For instance, one could approximate the
group of rotations SO(3) by the subgroup of order 60 of rotational symmetries of an icosahedron.
Our results then immediately imply that the ensemble models will be equivariant with respect to that
subgroup.

As stated earlier, in Appendix B we prove that Theorem 4.2 also holds for SGD with random aug-
mentation. The proof follows roughly the same idea as here: First, we show that the gradient field
∇Rg in a sense is equivariant. Importantly, it does not hold in the sense that ∇Rg for a fixed draw
of g is an equivariant vector field, but rather that ∇Rg(ρ(g)A) ∼ ρ(g)Rg(A), for every g and A
– i.e., that there holds an equivariance in distribution. We then show that the ’flow’ of the SGD
with respect to such an equivariant vector field will be equivariant, and thus transform G-invariantly
distributed parameters A0 to G-invariantly distributed parameters At after t steps.

5 EXPERIMENTS

We perform two small numerical experiments, to test the robustness of our theorems to using the
sample mean instead of the true expectation when creating the ensemble model and the necessity of
the assumptions that L is G-invariant and that the initial distribution of parameters is G-invariant.
The code, that relies heavily of the code made available from Nordenfors et al. (2024), can be found
in the supplementary materials, and additional technical details (such as specification of hardware)
in Appendix D.

We use two metrics to evaluate the invariance of the trained models. First, similarly as in
Gerken & Kessel (2024), we calculate the average orbit same prediction (OSP). That is, for
each test image, we test how many of the transformed versions of it are given the same pre-
diction as the untransformed one by the ensemble model. OSP lies between 1 and |G|, where
a value equal to the order of the group |G|. indicates perfect invariance. The second metric we cal-
culate is the average symmetric KL-divergence DKL between the class probabilities predicted on an
image with each of the transformed versions of it. Note that the class probabilities can vary quite
a lot but still yield the same prediction, whence this is a finer measure of invariance than the OSP.
Both metrics are evaluated both on the MNIST test set, as well the (out-of-distribution) CIFAR-10
(Krizhevsky, 2009) test set (reshaped and converted to grayscale).

5.1 EXPERIMENT 1: C4

We train ensembles of 1000 small CNNs of the same structure that is used in Nordenfors et al. (2024)
(see Figure 3 as well as Appendix D). We train nearly identical ensembles, the only difference being
that the support of the filters: the members of one ensemble have filters of symmetric support,
whereas those of the other have asymmetric support. The models are trained for 10 epochs on the
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X

ρrot

R1×28×28

tanh, LayerNorm

Conv, Pool,
X1

R16×14×14

tanh, LayerNorm

Conv, Pool,
X2

R16×7×7

tanh, LayerNorm

Conv,
X3

R16×7×7

Fully-Connected
Flatten,

Y

R10

ρtriv

Figure 3: The architecture used in our neural networks. The convolutions have filters with support
as in Figure 2 (left or right).

Figure 4: Top: OSP for
ensembles with 1000
members.
(Higher is better)
The middle 95% of
individual ensemble
members are within the
shaded area.
Bottom: Logarithm of
symmetric Kullback–
Leibler Divergence for
ensembles with 1000
members.
(Lower is better).
Best viewed in color.

MNIST dataset (LeCun et al., 1998), using SGD with a constant learning rate of 0.01, a batch size
of 32, and cross entropy loss. Applying augmentations using C4-rotations randomly, as described
in Section 3.2. Since Lsym for this representation is G-invariant, but Las is not, we expect that the
former ensembles become equivariant, whereas the latter do not.

We initialize the ensembles by drawing the coefficients c from a standard normal distribution, as
in Remark 2. Since Las is not G-invariant, this does not yield an invariant initial distribution. We
can mitigate this by setting the ’corner pieces’ of all asymmetric filters equal to zero. We hence
get three ensembles: One symmetric, one asymmetric initialized G-invariantly, and one asymmetric
initialized ”naı̈vely”.

Results and discussion The evolution of the metrics along the training are shown in Figure 4.
We see that with respect to both metrics, the symmetric ensembles outperform the asymmetric ones
initialized invariantly, which in themselves outperform the naı̈vely initialized asymmetric ones. The
differences are more prominent on the OOD data, which is to be expected – the networks have
actually ’seen’ rotated nines in the MNIST data and can hence have learned to predict them correctly
even if the network is not inherently equivariant – the same is not true for rotated cars in the CIFAR10
set. We also give the metrics after epoch 10 in Table 5.1

MNIST CIFAR–10
Model OSP logDKL OSP logDKL

Lsym 3.97 −2.38 3.89 −1.50
Las, ρ(g)A ∼ A 3.96 −1.89 3.82 −0.97

Las 3.91 −1.29 3.66 −0.29

Table 1: Metrics after the
10th epoch of training for
full ensembles.

One should acknowledge that clearly, the ensembles, even the symmetric ones, are never truly in-
variant, in particular at initialization. This is not what Theorem 4.2 predicts – but note that it only
makes a claim about ensemble models defined as the true expectations over the distribution of pa-
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Figure 5: Metrics after the 10th epoch for different ensemble sizes for the C4 experiment (left)
and C16 experiment (right). Each datapoint is a mean of 30 bootstrapped examples – the errorbars
denotes one standard deviation of the bootstrap. The x-scale in the top plots are logarithmic, both
scales are logarithmic in the bottom plots. Best viewed in color.

rameters having the invariant property, whereas the ensembles we train here are finite. Note that it
is natural that this effect is especially prominent at initialization, since the networks at initialization
are entirely random, and small perturbations could yield different predictions. In fact, in our exper-
iments the OSP at initialization does not increase as ensemble size increases. However, the more
fine-grained logDKL-divergence measure decreases: It equals 1.13 for a random 10-member en-
semble, 0.58 for a random 100-member ensemble, and −0.17 for the full ensemble. This supports
that the non-perfect invariance of the ensembles can be mainly attributed to using a finite ensemble.

In Figure 5 (left), we make a more thorough investigation of the effect of using finite ensembles.
Shown are the value of the metrics for randomly chosen subensembles of different sizes at the final
epoch. We see that all ensembles become more equivariant as the ensemble size grows. We note
that even ensembles of such a moderate size as 50 have an OSP on out-of-distribution data of above
3.5. We also see that the symmetric ensembles outperform the asymmetric ones already for quite
moderate ensemble sizes. More details about the results are given in Appendix G.

One should also note that although the asymmetric ensembles are less invariant than the symmetric
ones, they are still remarkably close to being invariant. This cannot be completely explained by
our theory. Note that we assume G-invariance of L is order to achieve that ρ(g)ΠL = ΠLρ(g).
However, in our case, ρ(g)ΠL is still ”almost” equal to ΠLρ(g) for the asymetric filters – it only
differs for the non-zero corners. We investigate this point further in Appendix F. Our results there
support this hypothesis somewhat, but more work is needed in the future.

Now let us finally comment on the fact that even the non-invariantly initialized ensembles seem to
become more equivariant after training. Note that the main result of our paper can be interpreted as
a ’stationarity’ result – if we start invariantly distributed, we stay that way. Our experiment indicates
that the the invariant distributions even are attractors. If this is true, and if so how generally, is an
interesting direction of future work.

5.2 EXPERIMENT 2: C16

For the second experiment, we change the symmetry group to C16, i.e., the group of rotations of
multiples of 22.5 degrees. Since the standard pixel grid is not invariant to all such rotations, this
setting requires us to use interpolation. This causes the assumptions of our main result to be violated
in multiple ways. For one, the maps ρi : C16 → L(Xi, Xi+1) are formally no longer representations.
They also do not act by permuting pixels, so that the lifted representations no longer act directly on
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the filter (see Example 3.1 ). Even ignoring these aspects, both spaces Lsym and Lasym are far away
from being invariant – rotating a symmetric filter by 45 degrees will send it to a filter supported on
the corners of the 3 × 3 square. We therefore include a fourth model in these experiments, namely
a standard, full 3 × 3-support CNN. The Lcnn space is approximately invariant to C16, and should
therefore produce more equivariant models.

For these experiments, the batch size was put equal to 128, to speed up the training. Also, due to
technical issues, not all ensemble members finished training – 196 Lsym, 151 Lasym with symmetric
initialization and 120 Lasym with asymmetric initialization failed. The results presented below are
bootstrapped ensembles from the ones that finished training.
Remark 5. There are different ways choosing the interpolation. Here, we will present results for a
BILINEAR interpolation (as in the torchvision package) – in Appendix E, we present result
also for the NEAREST interpolation option.

Results and discussion The performance with respect to the different metrics for the four models
at epoch 10 is presented in Figure 5 (right). More details are again given in in the appendix. In
comparison to the the C4 experiment, all models fare much worse – notice here for instance that no
model comes close to the optimal OSP of 16. Note that is what to be expected from our theory –
the compatibility assumption is not fulfilled for any model. We also see that the standard CNN:s
outperform the other models vastly – which is also what could be expected, given that the 3 × 3-
square is closer to being an invariant support than are the symmetric and asymmetric supports.

6 CONCLUSION

The goal of this paper was to extend the results of Gerken & Kessel (2024), regardingG-equivariance
of ensembles of infinitely wide neural networks trained with gradient descent under full augmenta-
tion, to ensembles of finite–width neural networks trained with SGD and random augmentation.

We succeeded in our goal with Theorem 4.2, where we proved that, modulo an oft–satisfied G-
invariance condition on the network architecture, ensembles become G-equivariant when training
with SGD and random augmentation, assuming that the parameters of the network were distributed
G-invariantly to begin with (e.g., with Gaussian initialization). That is, we have shown that if
the goal is group equivariant model, it suffices to train a neural network ensemble model under
data augmentation. Our numerical experiments, while not conclusive, support these conclusions for
sample mean ensembles as well.

Limitations Theorem 4.2 gives a guarantee of G-equivariance for ’infinitely large’ ensembles. In
practice the expected value in Equation 3 would need to be estimated with a finite ensemble mean.
Furthermore, the G-invariance condition under which the result holds is only a sufficient condition.
The same is true of the assumption that the initial distribution of parameters is G-invariant.

Future Work Interesting directions for future work include bounding the error when using sample
mean ensembles, as well as investigating the necessity of the G-invariance condition. In addition
to this, it is an interesting question whether or not the initial distribution of parameters needs to be
G-invariant or if the ensemble will still be ’pulled into’ a G-equivariant state by the augmentation
process.

Reproducability statement We provide all the code used for the experiments in the supplemen-
tary material, along with detailed instructions to reproduce the experiments made in the paper.

Ethics statement This work is of theoretical nature, and in particular do not involve human sub-
jects, and only publicly available datasets. We see no obvious societal impact, positive or negative,
in the short to middle term. The aim of the article is to provide new answers to the question when
equivariance of a neural network model can be guaranteed only from training it on augmented data.
This has relevance for the ongoing effort of providing more reliable and explainable AI. The authors
declare that they have no conflicts of interest, and that they have followed good research practice.
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A ASSORTED PROOFS

In this appendix we collect the proofs that we left out in the main test. Let us begin with the formula
ΦA(ρ0(g)x) = ρN (g)Φρ(g−1)A(x). Note that this proof is merely a reformulation of the one given
in Nordenfors et al. (2024) (see Lemma 3.9 of said article), and presented here only for convenience
of the reader.
Theorem A.1. Under the Assumption 1 that all non-linearities are equivariant, we have

ΦA(ρ0(g)x) = ρN (g)Φρ(g−1)A(x).

Proof. The proof is by induction on the number of layers N . Let ΦN
A be the network given by the

first N layers of ΦA. Let us start with the case N = 1. For N = 1 we have
ρ1(g)Φ

1
ρ(g−1)A(x) = ρ1(g)σ0(ρ1(g

−1)A0ρ0(g
−1)−1x) = σ0(ρ1(g)ρ1(g

−1)A0ρ0(g
−1)−1x)

= σ0(idA0ρ0(g)x) = Φ1
A(ρ0(g)x), ∀g ∈ G,

where the first equality is by definition of ρ(g), the second equality is by G-equivariance of σ0, and
the third equality follows since ρi(g) is a representation, ∀i ∈ {0, 1}, ∀g ∈ G.

Now, assume that ΦK
A (ρ0(g)x) = ρK(g)ΦK

ρ(g−1)A(x), ∀g ∈ G. We want to show that

ΦK+1
A (ρ0(g)x) = ρK+1(g)Φ

K+1
ρ(g−1)A(x), ∀g ∈ G. We have

ρK+1(g)Φ
K+1
ρ(g−1)A(x) = ρK+1(g)σK(ρ̂K(g−1)AKΦK

ρ(g−1)A(x))

= ρK+1(g)σK(ρK+1(g
−1)AKρK(g−1)−1ΦK

ρ(g−1)A(x))

= σK(ρK+1(g)ρK+1(g
−1)AKρK(g−1)−1ΦK

ρ(g−1)A(x))

= σK(idAKρK(g)ΦK
ρ(g−1)A(x))

= σK(AKΦK
A (ρ0(g)x)) = ΦK+1

A (ρ0(g)x), ∀g ∈ G,
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where the first equality is by the definition of ΦA, the second equality is by the definition of ρ̂K(g),
the third equality follows by G-equivariance of σK , the fourth equality follows since ρi(g) is a
representation, ∀i ∈ {K,K + 1}, ∀g ∈ G, the fifth equality follows by the inductive assumption,
and the final equality is just the definition of ΦK+1.

By induction ΦA(ρ0(g)x) = ρN (g)Φρ(g−1)A(x), ∀g ∈ G.

We move on to the fact thatG-invariant vector fields yield equivariant flows (Lemma 4.5), where we
again give a proof only out of convenience for the reader – it is a slight reformulation of the proof of
Theorem 2 in Köhler et al. (2020), but the statement should probably be well known to the experts.

Theorem A.2. Let V : RN → RN be a G-equivariant, Lipschitz continuous vector field. Then, the
flow Ft generated by V also is.

Proof. Let x0 ∈ RN be arbitrary. By definition of the flow, Ft(ρ(g)x0) is the value of the unique
solution xg to the initial value problem

ẋg(t) = V (xg(t)), xg(0) = ρ(g)x0. (4)

Now let x be the solution of

ẋ(t) = V (x), x(0) = x0.

Then, the function u(t) = ρ(g)x(t) solves equation 4, since u(0) = ρ(g)x(0) = ρ(g)x0, and

u̇(t) = ρ(g)ẋ(t) = ρ(g)V (x(t)) = V (ρ(g)x(t)) = V (u(t)),

where we used the equivariance of V in the penultimate step. Because of the uniqueness of the
solution, we must then have u(t) = xg(t), i.e.

Ft(ρ(g)x0) = u(t) = ρ(g)x(t) = ρ(g)Ft(x0),

which is what was to be shown.

We move on to the proof of Lemma 4.1 i.e. that L is G-invariant if and only if ΠL is equivariant.

Proof of Lemma 4.1. Let us begin by proving the only if part. Assume that ρ(g)L ⊆ L, ∀g ∈ G.
Clearly, if ∃B ∈ TL, ∃g ∈ G, such that ρ(g)B /∈ TL, then A = AL + B ∈ L, but ρ(g)A =
ρ(g)AL + ρ(g)B = AL + ρ(g)B /∈ L. By contraposition, we must have ρ(g)TL ⊆ TL, ∀g ∈ G,
since we have assumed that ρ(g)L ⊆ L, ∀g ∈ G. Now, suppose that x ∈ TL and y ∈ TL⊥. Then
we have

⟨ρ(g)y, x⟩ = ⟨y, ρ(g)∗x⟩ = ⟨y, ρ(g)−1x⟩ = ⟨y, ρ(g−1)x⟩ = 0, ∀g ∈ G,

where the second equality is by unitarity, the third equality is by definition of representations, and
the final equality follows from ρ(g)TL ⊆ TL, ∀g ∈ G. Thus, it holds that ρ(g)TL⊥ ⊆ TL⊥,
∀g ∈ G. We can decompose any z ∈ H as z = zTL + zTL⊥ , where zTL = ΠLz and zTL⊥ = Π⊥

Lz.
It follows that

ΠLρ(g)z = ΠLρ(g)(zTL + zTL⊥) = ΠLρ(g)zTL +ΠLρ(g)zTL⊥ = ρ(g)zTL = ρ(g)ΠLz,

∀g ∈ G, where the second equality is by linearity, the third equality follows by ρ(g)TL ⊆ TL and
ρ(g)TL⊥ ⊆ TL⊥, ∀g ∈ G, and the last equality is by definition of zTL. This concludes the only if
part of the proof.

Let us now prove the if part of the proof. Assume that ΠL is G-equivariant. Then we have for any
B ∈ TL that

ρ(g)B = ρ(g)ΠLB = ΠLρ(g)B ∈ TL, ∀g ∈ G,

since ΠL is a G-equivariant projection onto TL. Thus, we have for any A ∈ L that

ρ(g)A = ρ(g)(AL +B) = ρ(g)AL + ρ(g)B = AL + ρ(g)B ∈ L, ∀g ∈ G,

since L = AL +TL with ρ(g)AL = AL and ρ(g) is linear.
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A.1 G-INVARIANT INITIALIZATION OF THE NETWORK

Let us now, as advertised in the main paper, prove that a Gaussian initialization of the coefficients c
will, as soon as L is G-invariant, yield a G-invariant distributions of the parameters A,
Lemma A.3. Let L : Rp → L be a parametrization of L, L = AL +LRp, with AL ∈ HG. Then, if
c is a standard Gaussian vector (with i.i.d. entries), and L is G-invariant, A = AL + Lc will have
a G-invariant distribution.

Proof. Because c is standard Gaussian, A will also have a Gaussian distribution, with mean AL and
covariance matrix LL∗ = ΠL, where the latter follows from the fact that L is unitary. Now, by the
same argument, ρ(g)A = ρ(g)AL+ρ(g)Lc will be Gaussian with mean ρ(g)AL = AL – remember
that AL ∈ HG – and covariance ρ(g)L(ρ(g)L)∗. We may now argue

ρ(g)L(ρ(g)L)∗ = ρ(g)LL∗ρ(g)∗ = ρ(g)ΠLρ(g)
∗ = ΠLρ(g)ρ(g)

∗ = ΠL.

The penultimate step follows from the G-invariance of L, and the final one from the unitarity of
ρ(g). This shows that A and ρ(g)A both are Gaussians with mean AL and covariance ΠL, and we
are done.

A.2 A RESULT ABOUT THE GRADIENTS OF RANDOM FUNCTIONS

In preparation of our proof of the stochastical version of the main result, let us prove the following
very intuitive lemma about random functions: If two random functions, that almost surely are dif-
ferentiable, have the property that their pointwise distributions are equal, the same is true for their
gradients. For the proof, we will invoke the Cramér-Wold Theorem (Cramér & Wold, 1936).
Theorem A.4 (Cramér-Wold). A probability distribution p on Rd is uniquely determined by the set
of distributions p ◦ π−1

v on R, indexed by the unit vector v, where πv : Rd → R, x 7→ ⟨x, v⟩.

We now formulate and prove the statement.
Lemma A.5. Let f and g be random functions Rd → R that almost surely are C1. If for every
x ∈ Rd, f(x) ∼ g(x), then also ∇f(x) ∼ ∇g(x), for all x ∈ Rd.

Proof. Assume that f(x) ∼ g(x), for all x ∈ Rd. Then

Xn :=
f(x+ 1

nv)− f(x)
1
n

∼
g(x+ 1

nv)− g(x)
1
n

=: Yn, ∀x, v ∈ Rd, n ∈ Z+.

Now, for every x ∈ Rd and every v ∈ Sd−1, Xn → ⟨∇f(x), v⟩ and Yn → ⟨∇xg(x), v⟩ a.s. as
n→ ∞. Thus, the distributions of the limit random variables (i.e., the distributions of the directional
derivative in direction v) also agree. So that

⟨∇f(x), v⟩ ∼ ⟨∇g(x), v⟩, ∀x ∈ Rd, ∀v ∈ Sd−1.

Since this holds for every x ∈ Rd and every v ∈ Sd−1, we can apply the Cramér-Wold Theorem to
conclude that

∇f(x) ∼ ∇g(x), ∀x ∈ Rd.

B PROOF OF THEOREM 4.2 IN THE CASE OF SGD WITH RANDOM
AUGMENTATION

In this appendix we will prove the main result of this paper in the stochastic setting. We will proceed
by proving a few lemmas, and finally proving the main result.

In Section 4 we utilize the fact that a G-invariant function has a G-equivariant gradient. Now, Rg

is clearly not G-invariant for any fixed draw of the gk and xk, but as we will see, it is however in
a sense G-invariant in distribution. We will now prove that the implication holds for equality in
distribution for random functions.
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Lemma B.1. If f is a random function H → R that almost surely is C1 and satisfies f(A) ∼
(f ◦ ρ(g))(A), for every g ∈ G and every A ∈ H, then ∇f satisfies ∇f(ρ(g)A) ∼ ρ(g)∇f(A), for
every g ∈ G and every A ∈ H.

Proof. We have that

∇f(ρ(h)A) ∼ ∇(f ◦ ρ(g))(ρ(h)A)
= ρ(g)∗∇f(ρ(g)ρ(h)A)
= ρ(h)ρ(h)∗ρ(g)∗∇f(ρ(g)ρ(h)A)
= ρ(h)ρ(gh)∗∇f(ρ(gh)A)
= ρ(h)∇(f ◦ ρ(gh))(A) ∼ ρ(h)∇f(A), ∀h ∈ G,

where the first equality in distribution follows from Lemma A.5 with f = f and g = f ◦ ρ(g),
the second is simply the chain rule, the third follows because ρ(h) is assumed unitary so that
ρ(h)ρ(h)∗ = id, the fourth because ρ is a representation, the fifth is again simply the chain rule,
and since gh ∈ G, the final equality in distribution follows by Lemma A.5 with f = f and
g = f ◦ ρ(gh).

We will now show that Rg satisfies Rg(A) ∼ (Rg ◦ ρ(g))(A), for every g ∈ G and every A ∈ H,
and thus that the gradient of Rg satisfies ∇Rg(ρ(g)A) ∼ ρ(g)∇Rg(A), for every g ∈ G and every
A ∈ H. This is the counterpart of Lemma 4.6 for SGD with random augmentation.

Lemma B.2. The gradient ofRg satisfies ∇Rg(ρ(g)A) ∼ ρ(g)∇Rg(A), for every g ∈ G and every
A ∈ H.

Proof. We want to show that ∇Rg(ρ(g)A) ∼ ρ(g)∇Rg(A), for every g ∈ G and every A ∈ H. By
Lemma B.1 it suffices to show that Rg(A) ∼ (Rg ◦ ρ(g))(A), for every g ∈ G and every A ∈ H.
Applying Theorem A.1, we get that for every A ∈ H that

Rg(ρ(h)A) =
1

s

s∑
k=1

ℓ(Φρ(h)A(ρ0(gk)xk), ρN (gk)yk)

=
1

s

s∑
k=1

ℓ(ρN (h)ΦA(ρ0(h)
−1ρ0(gk)xk), ρN (gk)yk)

Invoking the G-invariance of ℓ and then that ρ is a representation, the above can be rewritten to

1

s

s∑
k=1

ℓ(ΦA(ρ0(h)
−1ρ0(gk)xk), ρN (h)−1ρN (gk)yk)

Now, by the invariance property of the Haar measure, the tuple of group elements g0, . . . gs−1 are
equidistributed with the tuple h−1g0, . . . h

−1gs−1. Since the data points (xk, yk) are inpendendent
of the draw of the gk, we can conclude that the above is equidistributed with

1

s

s∑
k=1

ℓ(ΦA(ρ0(gk)xk), ρN (gk)yk) = Rg(A),

which is what we wanted to show.

We need only prove one additional lemma before we can prove our main result. Namely, we need
to show that if we begin with G-invariantly distributed parameters A0, then SGD with random
augmentation will always lead to new parametersAt which areG-invariantly distributed. This is the
counterpart to Lemma 4.4 for the case of SGD with random augmentation.

Lemma B.3. If ρ(g)A0 ∼ A0, for every g ∈ G, and L is G-invariant, then ρ(g)At ∼ At, for every
g ∈ G, for all t.
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Proof. We proceed by induction. Assume that ρ(g)A0 ∼ A0 for every g ∈ G and L is G-invariant.
The base case thus follows by assumption, i.e., ρ(g)A0 ∼ A, for every g ∈ G. Let us now carry out
the inductive step. We have that if ρ(g)At ∼ At, for every g ∈ G, then

ρ(h)At+1 = ρ(h)(At − γtΠL∇Rg(At))

= ρ(h)At − γtρ(h)ΠL∇Rg(At))

= ρ(h)At − γtΠLρ(h)∇Rg(At))

∼ ρ(h)At − γtΠL∇Rg(ρ(h)At))

∼ At − γtΠL∇Rg(At)) = At+1, ∀h ∈ G,

where the first equality is by the recursion formula for SGD with random augmentation, the second
equality is by linearity of ρ(h), the third equality follows from Lemma 4.1 since we have assumed
that L isG-invariant, the fourth equality in distribution follows from Lemma B.2, the fifth equality in
distribution is by our inductive assumption, and the final equality is again by the recursion formula
for SGD with random augmentation. Thus, it follows by induction that ρ(g)At ∼ At, ∀g ∈ G,
∀t.

We may now prove the stochastic version of our main result.

Proof of Theorem 4.2 in the case of SGD with random augmentation. Assume that ρ(g)A0 ∼ A0

and ρ(g)L ⊆ L, ∀g ∈ G. Thus, by Lemma B.3 we have that ρ(g)At ∼ At, ∀g ∈ G, by which it
follows from Lemma 4.3 that Φt is G-equivariant.

C CONVOLUTIONS WITH ASYMMETRIC FILTERS AND C4-INVARIANCE

In the main paper, we have used Lsym and Las as running examples. We have argued that if the
canonical representation ρrot is used on all intermediate spaces, Lsym is invariant under all transfor-
mations ρ(g), whereas Las is not. However, as we remarked in Example 4.1, there is no inherent
reason why the actions on the intermediate spaces should always be ρrot. The purpose of this section
is to show that if we fix the representation ρrot on X , it is not. To do this, it is clearly enough to
focus on the space of convolutional maps between X0 = Rn,n and X1 = (Rn,n)d.

To make the case clear that this is an important and nontrivial point, let us first show that there are
representations other than ρrot on X1 which makes Lsym invariant. Let ρch be a representation of
C4 on Rd. Such exist: Note that C4 is isomorphic to Z4, the integers equipped with addition modulo
4, and Z4 naturally acts on the space R4 by shifting the entries, i.e (ϱ(k)v)ℓ = vℓ−k, which then
also does C4. In obvious ways, this can be extended to any Rd. For any representation ρch of C4 on
Rd, we can combine it with ρrot as follows:(

(ρch ⊙ ρrot)(g)x
)
k
=

( ∑
ℓ∈[d]

ρch(g)kℓρ
rot(g)xℓ

)
k

. (5)

In words, ρch⊙ ρrot first rotates each entry of a tuple x according to ρch(g), and then transforms the
d resulting RN,N -images by ρch as if they were entries in a Rd-vector. A straightforward calculation
now shows that the lifted representation ρ̂0(g) then maps ⟨ψ⟩ to

ρ̂0(g)⟨ψ⟩ = ⟨
(∑

ℓ

ρch(g)kℓρ
rot(g)ψℓ

)
k
⟩. (6)

Consequently, if the filters ψℓ are symmetric filters, the transformed ones are also. On the other
hand, if the ψ are supported on the asymmetric support, the linear combinations in equation 6 will in
general not be, and hence ρ(g)L ̸⊆ L also for intermediate representations of the form equation 5.

The last point opens up a route to prove that there are no representations ρ1 at all that makes Las

invariant under the corresponding lifted representation: If we show that if ρ1 is a representation
for which ρ(g)Las ⊆ Las for all g, then it must be as in equation 5, then we are by the previous
discussion done. This is the purpose of the following theorem.
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Theorem C.1. Let N ≥ 3, and let C4 act through ρrot on X . If ρ1 is a representation such
that Las is G-invariant under the lifted representation, it must be as in equation 5. Since no such
representations make Las G-invariant, there are no representations of C4 on X1 that make Las

G-invariant.

Proof. For any representation ρ1 on X1, we have

ρ(g)⟨φ⟩ = ρ1(g)⟨φ⟩ρrot(g)−1 = ρ1(g)ρ
rot(g)−1ρrot(g)⟨φ⟩ρrot(g)−1

= ρ1(g)ρ
rot(g)−1⟨ρrot(g)φ⟩.

Now, we assume that ρ1(g) is a representation for which ρ(g)L ⊆ L. Then, the above operator must
be of the form ⟨ψ⟩ for all φ and g. Since convolutions commute with any translation Tℓ, we can then
argue that

Tℓρ1(g)ρ
rot(g)−1⟨ρrot(g)φ⟩ = Tℓ⟨ψ⟩ = ⟨ψ⟩Tℓ = ρ1(g)ρ

rot(g)−1⟨ρrot(g)φ⟩Tℓ
= ρ1(g)ρ

rot(g)−1Tℓ⟨ρrot(g)φ⟩ (7)

where we again did not distinguish between translation representation on X and the direct product
of them on X1. Since this equality is true for any φ, this implies that

Tℓρ1(g)ρ
rot(g)−1 = ρ1(g)ρ

rot(g)−1Tℓ (8)

for all g and ℓ. A more technical argument goes as follows: By choosing φ equal to the tuple
with only a non-trivial filter in the i:th channel, that filter to have only one non-zero pixel, and
subsequently evaluating equation 7 on a basis of X , we get the desired equality of operators on a
basis of X1.

Now, equation 8 simply means that the operator ρ1(g)ρrot(g)−1 commutes with translations for
every g. It is well known that this is equivalent to ρ1(g)ρrot(g)−1 being a convolution operator
⟨χ(g)⟩ for some filters χkℓ(g), k, ℓ ∈ [d]. Inserting this form into the definition of ρ yields

ρ(g)⟨φ⟩ = ⟨χ⟩⟨ρrot(g)φ⟩ =
〈 ∑

ℓ∈[d]

χkℓ(g) ∗ (ρrot(g)φℓ)

〉
(9)

Now, suppose that any filter χkℓ(g) has a support of more than one pixel. Then, since N ≥ 3, we
can construct a filter φℓ supported on the asymmetric set so that the support of χkℓ(g) ∗ (ρrot(g)φℓ)
is not – essentially, the convolution by χkℓ(g) would spread out the support of φℓ. By letting all
other filters in a tuple be zero, we would conclude that the filter∑

ℓ∈[d]

χkℓ(g) ∗ (ρrot(g)φℓ)

has a support which is not contained in the asymmetric Ω0. Together with equation 9, this means that
ρ(g)⟨φ⟩ /∈ Las, which would be a contradiction. Hence, all ⟨χg⟩ must be multiples of the identity
for all g, which means that

[ρ1(g)v]k =
∑
ℓ∈[d]

ckℓ(g)ρ
rot(g)xℓ

for some numbers ckℓ(g). It is now only left to show that the ckℓ define a representation. We however
have for g, h ∈ C4 arbitrary

[ρ1(gh)x]k =
∑
ℓ∈[d]

ckℓ(gh)ρ
rot(gh)xℓ

[ρ1(g)ρ1(h)x]k =
∑
ℓ∈[d]

ckℓ(g)ρ
rot(g)(ρ1(g)x)ℓ =

∑
ℓ,m∈[d]

ckm(g)ρrot(g)cmℓ(h)ρ
rot(h)xℓ

Since ρ1 and ρrot are representations, the above expressions are equal for every x and g, which
means that

∀k, ℓ ∈ [d] : ckℓ(gh) =
∑
m∈[d]

ckm(g)cmℓ(h)

This is however only another way of saying that the matrices C(g) = (ckℓ(g))k,ℓ fulfill C(gh) =
C(g)C(h), which is what was to be shown.
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Figure 6: The effects of different types of interpolation on different types of filters. Filters in Lsym,
Las and Lcnn are rotated 45 degrees using the BILINEAR and NEAREST interpolations.

D EXPERIMENT DETAILS

D.1 HARDWARE

The C4-experiments were performed on a cluster using NVIDIA Tesla T4 GPUs with 16GB RAM
per unit. The total compute time for training all 3000 individual models for 10 epochs each is
estimated at ∼ 115 hours. The C16-experiments were made on the same cluster, but instead us-
ing NVIDIA Tesla A40 GPUs with 64GB RAM per unit. These experiments (BILINEAR and
NEAREST) used a total of ∼ 700 compute hours.

D.2 ARCHITECTURE

The architecture used for all three networks is the same with the exception of the support of the 3×3
filters. Namely, in the first layer we use a convolution with zero padding, with 1 channel in and 16
out, followed by an average pooling with a 2 × 2 window with a stride of 2, followed by a tanh
activation, followed by a layer normalization. The second layer is the same except the convolution
has 16 channels in instead of 1. The third layer is the same as the second, but without the average
pooling. The final layer flattens the image channels into a vector, followed by a linear transformation
into R10.

All of the nonlinearities involved here are equivariant to C4- rotations, and so do not interfere with
the equivariance/invariance of the network in that case. Due to interpolation effects, it is not equiv-
ariant to C16 – adding to the assumptions of our theorem that are violated in that case.

A prediction of the network is then the argmax of the output, which yields the predicted label as a
one-hot vector.

E C16 WITH NEAREST INTERPOLATION

We repeat the experiment in the main paper while using NEAREST interpolation scheme. The results
are given in Figure 7. Again, none of the models fare particularly well, as the theory suggests.
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Figure 7: Metrics after the 10th
epochs for different ensemble sizes
for the C16 experiment using the
NEAREST interpolation.
Each datapoint is a mean of 30
bootstrapped examples – the error-
bars denotes one standard devia-
tion of the bootstrap.
The x-scale in the top plots are log-
aritmic, both scales are logaritmic
in the bottom plots. Best viewed in
color.

Compared to the BILINEAR interpolation experiment, see Figure 5 (right), we see that the models
fare better on the MNIST data, but worse on the CIFAR data. We think that the reason for the
better performance of the indistribution data is that the NEAREST interpolation introduces fewer
’bluriness’ artefacts than the BILINEAR one – the former still operates by permuting pixels. This
means that the test set formed by applying BILINEAR-rotations to MNIST results in a more diverse
dataset – which makes it simpler to fit to it.

We speculate that the reason for the worse performance on the CIFAR data is that the the operators
ΠL and ρi(g) are even further from commuting in theC16 case compared to theC4 case – see Figure
6 .

F EXPERIMENT WITH LARGER FILTERS

We perform the same experiment as in Section 5 with convolution filters of size 5 × 5. The reason
for performing this experiment is to test whether the ’small’ error in the approximation ρ(g)ΠLA ≈
ΠLρ(g)A in the case of 3× 3-filters is responsible for the small difference in performance between
symmetric and asymmetric models. In a larger filter we can have more energy in the asymmetric
parts of the filter, so we want to see if this affects the results. We consider therefore two CNNs with
filters as in Figure 8.

Figure 8: Left: symmetric fil-
ter. Right: asymmetric filter.
Grey indices correspond to in-
dices where the filter is sup-
ported.

As before, we train under augmentation by multiples π/2 radian rotations of our input images, and
to keep the dimensions of input and output the same, we have to modify the convolution to have
2 rows of zero padding. The asymmetric filters are initialized with a G-invariant distribution by
setting the four indices in the top left corner to 0, in addition to initializing with a standard normal
distribution.

The results from this experiment can be seen in Figure 9 and Figure 10, where we show the results
of the experiment in Section 5 and the experiment in this section side-by-side. We also give the
metrics after epoch 10 in Table 2
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We can see that the difference in performance, with regards to the metrics of OSP and divergence,
between the symmetric and asymmetric models is larger in the case of the 5×5–filters, which is what
one would predict if the reason for the size of the discrepancy between symmetric and asymmetric
models is the size of the error when approximating ρ(g)ΠLA ≈ ΠLρ(g)A.

Figure 9: Top: OSP on MNIST test data for ensembles with 1000 members (higher is better). The
middle 95% of individual ensemble members are within the shaded area.
Bottom: OSP on CIFAR–10 test data for ensembles with 1000 members (higher is better). The
middle 95% of individual ensemble members are within the shaded area. Best viewed in color.

MNIST CIFAR–10
Model OSP logDKL OSP logDKL

Lsym 3.97 −2.35 3.90 −1.50
Las, ρ(g)A ∼ A 3.94 −1.54 3.76 −0.54

Table 2: Metrics after the 10th epoch of training for ensembles with 1000 members using 5 × 5-
filters. Standard deviations are over test data.

G DETAILED RESULTS FOR DIFFERENT ENSEMBLE SIZES

We here present our results in table form: the C4-experiments in Table 3, C16-experiments with
BILINEAR interpolation in Table 4 and C16-experiments with NEAREST interpolation in Table 5.
We indicate models that perform statistically significantly better than all others (according to a t-test
of the 30 bootstrapped examples) than all others of the experiments (p < .001) with bold font.
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Figure 10: Top: Kullback–Leibler divergence on MNIST test data for ensembles with 1000 members
(lower is better).
Bottom: Kullback–Leibler divergence on CIFAR–10 test data for ensembles with 1000 members
(lower is better). Best viewed in color.

Metric Model 5 10 25 50 75 100 250 500 1000

M
N

IS
T OSP

Lsym 3.587 3.722 3.830 3.879 3.902 3.914 3.944 3.957 3.964
Las, (s.in) 3.619 3.745 3.841 3.885 3.903 3.913 3.936 3.945 3.951

Las 3.589 3.714 3.811 3.854 3.870 3.879 3.897 3.904 3.907

logDKL

Lsym -0.31 -0.65 -1.06 -1.36 -1.53 -1.65 -1.99 -2.22 -2.39
Las, (s.in) -0.33 -0.67 -1.06 -1.34 -1.49 -1.58 -1.85 -1.98 -2.08

Las -0.29 -0.59 -0.94 -1.15 -1.26 -1.32 -1.45 -1.51 -1.54

C
IF

A
R

-1
0 OSP

Lsym 2.656 2.967 3.361 3.536 3.620 3.661 3.775 3.823 3.854
Las, (s.in) 2.707 3.019 3.382 3.548 3.614 3.652 3.746 3.778 3.800

Las 2.698 3.068 3.383 3.493 3.552 3.576 3.620 3.639 3.649

logDKL

Lsym 0.52 0.25 -0.17 -0.46 -0.64 -0.74 -1.10 -1.32 -1.49
Las, (s.in) 0.52 0.24 -0.17 -0.44 -0.58 -0.68 -0.96 -1.08 -1.16

Las 0.54 0.26 -0.09 -0.27 -0.37 -0.42 -0.51 -0.56 -0.58

Table 3: Results for theC4 experiment. Shown are the metrics measured for different ensemble sizes
at the last epoch of training. (s.in) refers to the symmetrical initialization. The numbers presented
are means of 30 bootstrapped ensembles of the respective sizes. Bold results that are significantly
better (as measured by a t-test, p < .001) than all other models at the respective metric and size.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Metric Model 5 10 25 50 75 100 250 500 1000
M

N
IS

T

OSP

Lsym 7.80 8.92 9.71 10.13 10.23 10.29 10.44 10.50 10.55
Las, (s.in) 8.64 9.64 10.51 11.01 11.11 11.26 11.35 11.44 11.47

Las 8.54 9.63 10.54 10.91 11.09 11.15 11.30 11.44 11.43
Lcnn 10.79 12.25 13.52 14.11 14.34 14.47 14.75 14.87 14.93

logDKL

Lsym 0.83 0.69 0.58 0.52 0.51 0.51 0.49 0.49 0.48
Las, (s.in) 0.70 0.55 0.43 0.36 0.34 0.32 0.31 0.30 0.30

Las 0.72 0.56 0.42 0.37 0.33 0.33 0.31 0.29 0.29
Lcnn 0.40 0.11 -0.25 -0.49 -0.59 -0.66 -0.82 -0.89 -0.93

C
IF

A
R

OSP

Lsym 5.30 6.20 6.72 7.19 7.21 7.29 7.40 7.56 7.52
Las, (s.in) 6.00 6.95 7.51 7.60 7.91 8.01 7.96 8.02 8.08

Las 5.79 6.73 7.60 7.88 7.88 8.02 8.07 8.12 8.18
Lcnn 8.09 9.88 11.46 12.49 12.68 12.80 13.17 13.20 13.28

logDKL

Lsym 1.04 0.91 0.81 0.76 0.76 0.74 0.73 0.72 0.72
Las, (s.in) 0.99 0.85 0.74 0.70 0.67 0.66 0.65 0.64 0.64

Las 1.00 0.86 0.73 0.68 0.67 0.65 0.64 0.63 0.63
Lcnn 0.87 0.67 0.47 0.34 0.32 0.31 0.26 0.26 0.25

Table 4: Results for the C16 experiment with BILINEAR interpolation. Shown are the metrics
measured for different ensemble sizes at the last epoch of training. (s.in) refers to the symmetrical
initialization. TThe numbers presented are means of 30 bootstrapped ensembles of the respective
sizes. Bold results that are significantly better (as measured by a t-test, p < .001) than all other
models at the respective metric and size

Metric Model 5 10 25 50 75 100 250 500 1000

M
N

IS
T OSP

Lsym 11.02 12.42 13.67 14.25 14.52 14.67 14.99 15.11 15.19
Las, (s.in) 11.15 12.50 13.68 14.24 14.46 14.57 14.83 14.93 14.98

Las 11.18 12.54 13.71 14.24 14.46 14.59 14.84 14.94 15.00

logDKL

Lsym 0.28 -0.02 -0.40 -0.66 -0.80 -0.89 -1.12 -1.24 -1.31
Las, (s.in) 0.29 -0.01 -0.37 -0.61 -0.73 -0.79 -0.97 -1.04 -1.08

Las 0.28 -0.01 -0.37 -0.61 -0.72 -0.80 -0.97 -1.05 -1.09

C
IF

A
R

-1
0 OSP

Lsym 4.76 5.24 5.14 5.32 5.41 5.32 5.47 5.48 5.50
Las, (s.in) 4.90 5.29 5.33 5.47 5.49 5.56 5.54 5.57 5.57

Las 4.76 5.07 5.51 5.56 5.55 5.57 5.60 5.59 5.62

logDKL

Lsym 1.11 1.02 0.98 0.94 0.92 0.93 0.91 0.91 0.91
Las, (s.in) 1.09 0.99 0.93 0.90 0.88 0.87 0.86 0.86 0.86

Las 1.10 1.01 0.91 0.88 0.88 0.86 0.85 0.85 0.85

Table 5: Results for the C16 experiment with NEAREST interpolation. Shown are the metrics mea-
sured for different ensemble sizes at the last epoch of training. The numbers presented are means
of 30 bootstrapped ensembles of the respective sizes. Bold results that are significantly better (as
measured by a t-test, p < .001) than all other models at the respective metric and size.
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