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ABSTRACT

Multiscale approaches are crucial for advancing our understanding of material
properties, particularly in the search for novel solid electrolytes essential for solid-
state batteries. Estimating ionic conductivity through traditional molecular dy-
namics (MD) simulations is computationally intensive, requiring significant time
to capture macro-scale behavior from micro-scale interatomic interactions. This
work addresses the challenge of connecting micro-scale interatomic potentials
with macro-scale conductivity measurements. We propose using equivariant graph
neural networks to develop a faster mapping between these scales, significantly
enhancing the efficiency of ionic diffusion predictions. This proof-of-concept
demonstrates the potential to accelerate material discovery for solid electrolytes,
addressing a critical need in energy storage technology.

1 INTRODUCTION

Understanding material properties across different scales is fundamental to advancing the devel-
opment of solid electrolytes for solid-state batteries (Kim et al., 2015). These materials require
high ionic conductivity, which is typically estimated through molecular dynamics (MD) simulations
for the computational screening of superionic candidates (Kahle et al., 2020). However, the com-
putational demands of MD—often requiring extensive time to capture the necessary macro-scale1

behavior from micro-scale2 interactions—pose significant challenges.

MD simulations require the repeated steps for integrating the equations of motion, which can be
slow and impractical for large-scale materials screening. The interatomic potentials that drive these
equations of motion can be derived from first-principles density functional theory (DFT) methods,
which are reliable but also computationally expensive. In contrast, machine-learned and classical
potentials offer faster computations but may sacrifice accuracy. Importantly, the mapping from
interatomic potentials to diffusivity values remains consistent across these approaches. Thus, by
learning this mapping using the more cost-effective methods, we can possibly generalize the solution
to DFT calculations without extensive retraining.

To address this, we propose using equivariant graph neural networks to establish an efficient map-
ping between micro-scale interatomic potentials and macro-scale ionic conductivity predictions. By

∗A.U. also affiliated with Constructor University, Bremen, Campus Ring 1, 28759, Germany
1ranging up to hours and centimeters (Takai et al., 2004)
2of the order of angstroms and picoseconds
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utilizing the inherent symmetry properties of atomic interactions, these networks should be able to
capture the relationships that influence ionic diffusion. The proof-of-concept approach outlined in
this work illustrates the feasibility of this method and its promise for advancing the discovery of
novel solid electrolytes.

2 METHODOLOGY

We use MD trajectories for the 179 lithium-containing materials from the Materials Project
database (Jain et al., 2013) simulated by Maevskiy et al. (2024) with the SevenNet universal po-
tential (Park et al., 2024) at a temperature of 1000 K. The slopes of the mean squared displacement
(MSD) as a function of time, d

dtMSD, served as ground-truth labels for the training process. These
slopes determine the ion diffusivity and are related to the ionic conductivity via the Nernst-Einstein
equation. Since these values span over several orders of magnitude, we take base-10 logarithm of
d
dtMSD measured in Å2 / ps as the prediction target.

To numerically represent the interatomic potential, which, for N atoms, is a R3×N → R function,
we evaluate it at various randomized structural configurations. The optimal randomization strategy
remains to be determined; however, in this proof-of-concept, we employ a simple Gaussian smearing
of atomic coordinates around their equilibrium positions, introducing a noise power of 0.1 Å. To
maintain consistency with the integration of the equations of motion, we make our approach agnostic
to atomic types by providing only the accelerations of the atoms as input to our model.

We define a multi-layer message passing architecture using E3 equivariant primitives from the e3nn
library (Geiger & Smidt, 2022), where E3 refers to the three-dimensional Euclidean group that
encompasses transformations such as rotations, translations, and reflections. This design enables
the model to respect the inherent symmetries of the physical system. The input graph representation
consists of atoms as nodes, with edges established between nodes if their interatomic distance is
less than 5 Å. For each material, we sample multiple smeared atomic configurations and predict the
MSD slope logarithm independently for each of them. The final slope prediction for each material is
taken as the average over these samplings. The model is trained to minimize the mean squared error
(MSE) loss. These architectural and training configuration choices were motivated by the need for
a straightforward proof-of-concept implementation, acknowledging that this may limit the model’s
complexity and generalizability.

3 RESULTS

The architecture and training procedure described in Section 2 yield a model, referred to as the
baseline model, that achieves the coefficient of determination value, R2, of approximately 0.5 for
the validation sample. While this R2 value is relatively modest, it indicates that the model possesses
predictive power. We present the learning curves and sample predictions for this model in Fig. 1.

One of the challenges that we face is that there is no guarantee that the model extracts the relevant
information from the force field rather than from the atomic environment. In fact, we observe that
the same architecture and training procedure lead to a comparable level of model performance when
substituting the true atomic accelerations in the node features with random vectors. This can be
addressed by restricting the model, which comes at the cost of reduced prediction quality. Namely,
reducing the hidden representation size by a factor of 3/5 and increasing the number of samplings
per single prediction by a factor of 5 allows us to obtain a positive R2 value of approximately
0.25 with SevenNet accelerations, while that value with randomized accelerations is just 0.06. We
demonstrate the learning curves and predictions for these restricted models in Fig. 2.

We observe in our exploration, that sampling strategy plays an important role in achieving better
performance. A sampling technique that we try, as an alternative to the Gaussian smearing described
in Section 2, is to take the structural configurations from an actual MD trajectory. Obviously, if we
were able to sample the same set of structural configurations that appear during an MD simulation,
we could make an ideal prediction by simply calculating MSD analytically. We note, however, that
using force-field evaluations from even a few frames of an actual MD trajectory results in better
performance. For our best such model, referred to as the trajectory-based model, we achieve a
validation R2 value of 0.72.
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Figure 1: (Left) Learning curves for the baseline model displaying the MSE loss (top panel) and R2

metric (bottom panel) as functions of epoch number, with training and validation values indicated.
(Right) Scatter plot of predicted versus ground truth MSD slope values for the baseline model, where
ground truth values clipped from below at 10−4 Å2 / ps are represented by triangles. The dashed line
indicates the line of equality (X = Y ) for reference.
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(a) SevenNet accelerations
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(b) Random accelerations

Figure 2: Learning curves and prediction versus ground truth label scatter plots for the restricted
models (see main text) with (a) SevenNet accelerations and (b) random accelerations used as node
features. For each subplot, left panels contain the MSE loss (top) and R2 metric (bottom) as a
function of epoch number, while right panels show the scatter plots of predicted versus ground truth
MSD slope values. The ground truth MSD slopes are clipped from below at 10−2 Å2 / ps in these
experiments.

4 DISCUSSION AND SUMMARY

Our model achieves a coefficient of determination value, R2, of approximately 0.5 for the valida-
tion sample, indicating its predictive power despite the modest performance. We hypothesize that
improving this result involves further tuning of the architecture. However, a major challenge in
improving this result and achieving generalizability to arbitrary potentials lies in ensuring that the
model extracts relevant information from the force field rather than relying solely on atomic envi-
ronment and structural information. We observe that our best architecture is capable of achieving
a comparable level of performance even when random vectors are assigned to the graph nodes in-
stead of true atomic accelerations. We can mitigate this by restricting the model, but it comes at the
cost of reduced prediction quality. Overall, this indicates that, to improve the model’s robustness, a
larger dataset is required and, possibly, a more suitable inductive bias for the architecture needs to
be identified.
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Figure 3: (Left) Learning curves for the trajectory-based model displaying the MSE loss (top panel)
and R2 metric (bottom panel) as functions of epoch number, with training and validation values
indicated. (Right) Scatter plot of predicted versus ground truth MSD slope values for the trajectory-
based model, where ground truth values clipped from below at 10−2 Å2 / ps are represented by tri-
angles. The dashed line indicates the line of equality (X = Y ) for reference.

In our exploration, we also find that using structural configurations from actual MD trajectories,
rather than Gaussian smearing, improves performance, achieving a validation R2 value of 0.72.
This suggests that a more sophisticated sampling strategy could further enhance predictive power.
Alternatively, a hybrid setting could be implemented where a short true MD trajectory is used to
make the diffusivity prediction.

Building on these findings, our results demonstrate the feasibility of connecting micro-scale inter-
atomic potential description to macro-scale material properties like diffusivity. Once fully devel-
oped, this approach can facilitate a more efficient search for novel solid-state battery materials by
providing insights that help identify and optimize materials with improved ionic conductivity.
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