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Abstract

Saliency maps have become a widely used method to assess which areas of the input image
are most pertinent to the prediction of a trained neural network. However, in the context
of medical imaging, there is no study to our knowledge that has examined the efficacy of
these techniques and quantified them using overlap with ground truth bounding boxes. In
this work, we explored the credibility of the various existing saliency map methods on the
RSNA Pneumonia dataset. We found that GradCAM was the most sensitive to model
parameter and label randomization, and was highly agnostic to model architecture.
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1. Introduction

Saliency maps have become a popular approach for post-hoc interpretability of Convolu-
tional Neural Networks (CNNs). (Adebayo et al., 2018) These maps are designed to high-
light the salient components of the input images that are important to the model prediction.
As a result, many deep learning medical imaging studies have used saliency maps to ratio-
nalize model prediction and provide localization. (Rajpurkar et al., 2017; Bien et al., 2018;
Mitani et al., 2019) However, the validity of saliency maps has been called into question
in a recent study showing that many popular saliency map approaches are not sensitive to
model weight or label randomization for models evaluated on several datasets. (Adebayo
et al., 2018) In this study, we extend this work by evaluating popular saliency map methods
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both quantitatively and qualitatively for classification models trained on the RSNA Pneu-
monia dataset. (Shih et al., 2019) Specifically, we assess the performance of these methods
in localizing abnormalities in medical imaging by quantifying overlap with ground truth
bounding boxes. Furthermore, we assess the effect of model weight and label randomiza-
tion on localization performance. Lastly, we empirically study repeatability of the saliency
maps, both within the same model architecture and across different model architectures.

2. Methods and Results

2.1. Model and Data Randomization

The saliency methods examined in our experiments are Gradient Explanation (Simonyan
et al., 2013), Smoothgrad Integrated Gradients (IG) (Sundararajan et al., 2017), GradCAM
(Selvaraju et al., 2016), XRAI (Kapishnikov et al., 2019), and Smoothgrad (Smilkov et al.,
2017). Along with using Spearman rank correlation to compare maps before and after model
weight and label randomization, we leverage the ground-truth bounding box coordinates

Figure 1: a) Visualization of saliency maps under cascading randomization on InceptionV3
(performance before randomization: AUC=0.98, precision=0.92) (b) Dice scores under cas-
cading randomization (c) Spearman rank correlation under cascading randomization
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provided in the RSNA Pneumonia dataset to establish a quantitative baseline using the dice
metric. To investigate the sensitivity of saliency methods under changes to model parame-
ters, we employ cascading randomization. (Adebayo et al., 2018) We observed that among
these saliency techniques, GradCAM degraded with model randomization to a large degree
whereas the other methods did not (Fig 1). This is also verified in a label randomization
experiment shown in Fig 2(c) wherein we randomly flipped the labels and retrained the
model to observe the difference in the dice scores of the saliency maps. In both the tests, it
can be observed that gradient explanation, Smoothgrad IG, and XRAI do not degrade sig-
nificantly under randomization, suggesting an undesirable invariance to model parameters
and labels.

2.2. Repeatability and Reproducibility

We also conducted repeatability tests on these saliency methods by comparing maps from a)
models with the same architecture trained independently (intra-architecture repeatability)

Figure 2: (a) Visualizations from two independently trained InceptionV3 models (b) Visu-
alizations from an InceptionV3 model (top row) and a DenseNet121 model (bottom row)
(c) Comparison of dice score differences across saliency methods and architectures (d) Com-
parison of intra- vs. inter-architecture repeatability using Spearman rank correlation
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and b) models with different architectures (inter-architecture reproducibility). These exper-
iments are designed to test if these saliency methods produce similar maps with a different
set of weights and whether they are architecture agnostic. Fig 2(a) shows considerable dif-
ferences across all the different maps from two independently trained InceptionV3 models.
Furthermore, Fig 2(b) shows saliency maps differences between those produced from In-
ceptionV3 (top row) versus those from DenseNet121 (bottom row). Fig 2(d) demonstrates
that both the Smoothgrad and Smoothgrad IG yielded the most dissimilar maps across
architectures while GradCAM yielded maps that were most similar.

3. Discussion and Conclusion

In this study, we evaluated the performance of several popular saliency methods on the
RSNA Pneumonia Detection dataset in regards to their localization capabilities, robustness
to model parameter and label randomization, as well as repeatability and reproducibility
with model architectures. It was found that GradCAM showed superior sensitivity to model
parameter and label randomization, and was highly agnostic to model architecture. In future
studies, we will further examine the effect of different model architectures on saliency maps
and validate our findings on a separate medical imaging dataset.
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