

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EARLY LAYER READOUTS FOR ROBUST KNOWLEDGE DISTILLATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain generalization (DG) aims to learn a model that can generalize to unseen i.e. out-of-distribution (OOD) test domain. While large-capacity networks trained with sophisticated DG algorithms tend to achieve high robustness, they tend to be impractical in deployment. Typically, Knowledge distillation (KD) can alleviate this via an efficient transfer of knowledge from a robust teacher to a smaller student network. Throughout our experiments, we find that vanilla KD already provides strong OOD performance, often outperforming standalone DG algorithms. Motivated by this observation, we propose an adaptive distillation strategy that utilizes early layer predictions and uncertainty measures to learn a meta network that effectively rebalances supervised and distillation losses as per sample difficulty. Our method adds no inference overhead and consistently outperforms canonical ERM, vanilla KD, and competing DG algorithms across OOD generalization benchmarks.

1 INTRODUCTION

Deploying machine learning models in real-world scenarios requires robustness to distribution shifts (Koh et al., 2021; Huang et al., 2021), often referred to as domain generalization (DG) (Zhao et al., 2020; Robey et al., 2021) or out-of-distribution (OOD) generalization (Wald et al., 2021; Montasser et al., 2024). While high-capacity models trained with specialized DG algorithms (Gulrajani & Lopez-Paz, 2020) can achieve strong robustness, they are often prohibitively expensive in terms of computation and memory, making them impractical for deployment in resource-constrained environments.

Knowledge distillation (KD) (Hinton et al., 2015a;b; Lopes et al., 2017), has emerged as a standard approach for improving efficiency by transferring knowledge from a large teacher model to a compact student model. Beyond efficiency aspect of KD, it has recently been explored for improving OOD robustness, where vanilla KD, as shown in (Zhou et al., 2022; 2023; Huang et al., 2023) tends to yield better OOD performance compared to models trained solely with DG algorithms. However, there is still room for improvement, as KD typically treats all samples uniformly and often overrelies on the teacher’s dark knowledge, making it prone to teacher-specific biases. Moreover, existing works that adapt KD for domain generalization primarily focus on using adversarially trained teachers (Nasery et al., 2022), multimodal teacher networks for additional supervision Huang et al. (2023) or ensemble of domain-specific teachers Zhao et al. (2025), leaving the role of the student network underexplored.

To address these limitations, we propose an adaptive distillation framework that modulates distillation loss based on sample difficulty via with a lightweight *forecaster* meta-network. The forecaster leverages early layer representations and uncertainty measures to estimate sample difficulty and dynamically reweight the distillation loss. This enables the student to selectively trust the teacher where appropriate while emphasizing supervision from ground-truth labels for harder or biased samples. Crucially, our design introduces no additional inference-time overhead as the forecaster is discarded post-training, making it well-suited for practical deployment.

Our work makes the following contributions:

- We identify the limitations, and opportunities for improvement in standard KD under domain shifts, noting that uniform treatment of samples and blind reliance on the teacher hinder OOD robustness.

054

- We propose an adaptive distillation framework with a *forecaster* meta-network that leverages early readouts to dynamically assign instance-specific weights in the loss function based on sample difficulty.

055

- We show that our approach improves student robustness with affecting deployment efficiency: it adds no inference-time overhead while consistently improving OOD generalization across multiple benchmarks.

056

057

2 BACKGROUND AND RELATED WORK

058

059 **Instance-Specific Learning.** Prior works have explore instance-specific learning to improve neural network training under noisy conditions, via instance-specific parameters such as temperature, smoothing factors, or weights. [Saxena et al. \(2019\)](#); [Wang et al. \(2018\)](#); [Algan & Ulusoy \(2021\)](#) introduce learnable sample and class weights to control the importance of each sample in the learning process depending on sample reliability and label noise. [Ren et al. \(2019\)](#); [Shu et al. \(2019\)](#); [Raghu et al. \(2021\)](#); [Jain et al. \(2024\)](#) adopt meta-learning ([Finn et al., 2017](#)) using small unbiased meta-samples to learn weighing functions to obtain instance-specific weights to address class imbalance, label noise and robustness. In the context of knowledge distillation, [Zhao et al. \(2021\)](#) propose a curriculum-based distillation with instance-level sequence learning. [Iliopoulos et al. \(2022\)](#) presents reweighing strategy for the student loss in knowledge distillation with unlabeled data, to eliminate potential biases from the teacher network. [Sivasubramanian et al. \(2022\)](#) present a bi-level objective to learn instance-specific combination of teacher-matching and supervised objectives to learn student models that are more accurate. *In this work, we introduce a meta-network which guides the student via instance-specific weighing in the KD objective. Further, we interleave the training of the meta-network with the student, without requiring complex meta-learning.*

060

061 **Early Readouts.** Prior works on Early Readouts majorly focus on early-exiting ([Han et al., 2021](#); [Xu & McAuley, 2023](#); [Laskaridis et al., 2021](#); [Matsubara et al., 2022](#)) with the aim to reduce inference cost, allowing samples to "exit" at intermediate layers via auxiliary classifiers. These include dynamic early-exiting and static early-exiting mechanisms. Dynamic methods focus on balancing trade-off between speed and accuracy at inference, by early-exit mechanisms based on dynamics of internal classifiers, such as calibrated prediction confidence and entropy ([Xin et al., 2020](#); [Liu et al., 2020](#); [Schwartz et al., 2020](#); [Zhou et al., 2020](#)), class mean of sample predictions ([Görmez et al., 2022](#)). In contrast to dynamic mechanisms, [Sun et al. \(2022\)](#) propose a hash-based early exiting for sequence learning tasks, where tokens are assigned to fixed exiting layers using a hash function. In the context of KD, [Tiwari et al. \(2023\)](#) use early readout errors to detect spurious feature reliance, and propose a weighing scheme to reweigh the distillation loss to reduce feature-specific bias. *In this work, we re-purpose early readouts not for exiting, but as signals to guide our meta-network, *forecaster*, in assigning instance-specific weights in KD for OOD robustness, while avoiding the need for handcrafted weighing functions.*

062

063 **Distillation-based Domain Generalization.** Distillation has shown promise in OOD generalization by allowing knowledge transfer from a robust teacher network, as opposed to training student network solely on a DG Algorithm ([Wang et al., 2021](#); [Huang et al., 2023](#)). However, prior works on KD for Domain Generalization focus on teacher network or the teacher-student interaction. [Wang et al. \(2021\)](#) propose gradient based regularization to lower the mapping difficulty from the teacher to the student. [Nasery et al. \(2022\)](#) utilize adversarially fine-tuned teacher networks to improve knowledge transfer to student for OOD generalization. [Huang et al. \(2023\)](#) leverage CLIP teacher model along with a proposed text-based regularization scheme to enable better transfer from teacher. [Zhao et al. \(2025\)](#) leverage domain-specific teachers to improve student generalizability in an online KD setting. *In contrast to prior works, our method explores student-centric adaptation, leveraging early layer prediction confidences to navigate the distillation process.*

064

065

3 NOTATION AND PROBLEM SETUP

066

067 **Notations.** The first set of n natural numbers $\{1, 2, \dots, n\}$ is denoted by $[n]$. The n -dimensional real vector space is denoted by \mathbb{R}^n . Vectors are typeset in lowercase bold (e.g., \mathbf{x}); matrices are in uppercase bold (e.g., \mathbf{X}); and elements are referenced by subscripts (e.g., x_i , X_{ij}). When needed for clarity, elements will be referenced by subscripts on square brackets (e.g., $[x_1]_i$, $[X_2]_{ij}$). We denote the sigmoid function by $\sigma(x) = (1 + e^{-x})^{-1}$.

068

108 **Knowledge Distillation.** Knowledge distillation (Hinton et al., 2015b) provides an efficient frame-
 109 work for training compact models without the need to optimize over large-scale networks, thereby
 110 reducing both memory footprint and computational overhead. In this paradigm, the compact model
 111 (student) is trained to align with both the ground-truth labels and the predictive behavior of a larger
 112 reference model (teacher). Formally, the training objective for the student consists of two compo-
 113 nents:

- 114 1. **Supervised Loss** \mathcal{L}_{CE} , which measures the discrepancy between the student’s predictions
 115 and the ground-truth labels using cross-entropy.
- 116 2. **Distillation Loss** \mathcal{L}_{KD} , defined as the Kullback-Leibler divergence between the student’s
 117 and teacher’s output distributions. This term encourages the student to replicate the soft-
 118 ened predictive probabilities of the teacher, which encode richer information than hard
 119 labels alone and thus facilitate more effective knowledge transfer.

121 **Problem Setting.** Consider a standard supervised multi-classification setting with inputs $\mathbf{x} \in \mathcal{X}$,
 122 outputs $y \in \mathcal{Y}$, and the training data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ where $y_i \in [K]$, K denoting the total
 123 number of classes and $\mathbf{x}_i \in \mathbb{R}^d$ denoting the i -th input feature. Suppose, we train a student network
 124 $\mathcal{M}_{\theta^{(S)}}$ parameterized by $\theta^{(S)}$ and let the corresponding teacher network $\mathcal{M}_{\theta^{(T)}}$ parameterized by
 125 $\theta^{(T)}$ be used for teacher-student distillation. Let the student network consists of L layers, where the
 126 output representation for the ℓ -th layer $\ell \in L$ is given by $\mathbf{z}_{\theta^{(S)}}^{\ell} = h_{\theta^{(S)}}^{\ell}(\mathbf{x}_i) \in \mathbb{R}^{d_{\ell}}$ where d_{ℓ} denotes
 127 the ℓ -th layer dimension. The final layer output logits from student network corresponding to an
 128 input \mathbf{x}_i is denoted by $z_{\theta^{(S)}}^L := \mathcal{M}_{\theta^{(S)}}(\mathbf{x}_i)$.

129 **Loss Formulation.** In KD, the student network $\mathcal{M}_{\theta^{(S)}}$ is trained by minimizing the standard cross
 130 entropy loss between the model predictions and ground truth over the training data \mathcal{D} as per (1),
 131 while the teacher predictions are used to minimize the knowledge distillation term (2), defined as
 132 the KL divergence between teacher and student logits $\mathcal{M}_{\theta^{(T)}}(\mathbf{x}_i)$ and $\mathcal{M}_{\theta^{(S)}}(\mathbf{x}_i)$.

$$134 \mathcal{L}_{CE}^{(S)} = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^K \mathbf{1}_{(y_i=j)} \log p_{\theta^{(S)}}(\mathbf{x}_i)_j \quad (1) \quad \mathcal{L}_{KD} = -\tau^2 \frac{1}{N} \sum_{i=1}^N \mathbb{D}_{KL}(p_{\theta^{(T)}}(\mathbf{x}_i) \| p_{\theta^{(S)}}(\mathbf{x}_i)), \quad (2)$$

138 where $p_{\theta}(\mathbf{x}_i)_j = \frac{\exp(\mathcal{M}_{\theta}(\mathbf{x}_i)_j / \tau)}{\sum_{k=1}^K \exp(\mathcal{M}_{\theta}(\mathbf{x}_i)_k / \tau)}$ denotes j -th class probability where $j \in [K]$. Here, τ de-
 139 notes the temperature used to soften the output probabilities of both the student and the teacher.
 140 Generally, a higher temperature allows for smoother distributions, which capture richer inter-class
 141 relationship from the teacher (Hinton et al., 2015a). This allows the student to capture more nu-
 142 nanced relationships between classes rather than focusing on a single class representing the highest
 143 probability.

145 **Student Training Objective.** The student network’s loss is denoted by $\mathcal{L}_{\text{tot}}^{(S)}(\cdot, \cdot; \theta^{(S)})$, where

$$146 \mathcal{L}_{\text{tot}}^{(S)}(\mathcal{X}, \mathcal{Y}; \theta^{(S)}) = \alpha \cdot \mathcal{L}_{CE}^{(S)} + \beta \cdot \mathcal{L}_{KD} \quad (3)$$

148 Here, $\mathcal{L}_{\text{tot}}^{(S)}(\cdot, \cdot; \theta^{(S)})$ is expressed as a convex combination of $\mathcal{L}_{CE}^{(S)}$ and \mathcal{L}_{KD} , with $\alpha \in \mathbb{R}^+$ and
 149 $\beta \in \mathbb{R}^+$ being seen as two degrees of freedom, controlling the contribution of each loss component
 150 (Srivastava et al., 2015). The two degrees of freedom can be reduced to a single degree of freedom
 151 by bounding α and β with the condition: $\alpha + \beta = 1$.

153 Moreover, in the absence of labeled data to train the student model, the distillation reduces to a soft-
 154 distillation setting, where $\alpha = 0$. In this case, the soften teacher probabilities form the only source
 155 of supervision for the student model (Lopes et al., 2017).

156 **Student capacity limits and Teacher Confidence.** The student’s ability to learn the teacher’s
 157 deeper representational space is inherently bounded, and the student may fail to capture richer
 158 information beyond a threshold due to limited capacity. On the other hand, larger teachers are
 159 over-confident, yielding higher target logits and lower variance in predictions, resulting in less dis-
 160 tinctive incorrect-class softmax probabilities. In this case, if distillation temperature is increased,
 161 teacher guidance becomes weaker, smoothing strengthens due to the softened distribution, and class
 162 discriminability measured by variance of incorrect-class probability initially rises then falls off.

162 Together, both the student capacity and teacher confidence restrict the effectiveness of knowledge
 163 transfer (Li et al., 2022).

165 3.1 OOD GENERALIZATION IN DISTILLED MODELS

166 **Bottlenecks with Vanilla KD.** While distillation serves as a good approach for model compression,
 167 the student model can be interpreted as a small clone of the teacher over-fitted to the teacher’s learned
 168 patterns. The over-fitting and the student model’s limited capacity typically fails to generalize well
 169 with OOD samples at inference time (Yue et al., 2023). While there exist OOD generalization
 170 algorithms targeted towards OOD robustness in neural network (Gulrajani & Lopez-Paz, 2020),
 171 the lack of representation capacity affects the ability of the student to directly benefit from these
 172 algorithms.

173 A general solution to improve generalization ability of the student is to train the teacher network with
 174 domain generalization (Gulrajani & Lopez-Paz, 2020) algorithms or adversarial training (?) (Nasery
 175 et al., 2022) for OOD robustness. During distillation, the robust teacher can act as a “shortcut” that
 176 helps the student model bypass the requirement of complex, robust training. The student model
 177 inherits the teacher’s ability to produce well-calibrated outputs for seen and unseen input instances.
 178 This helps the student to be robust to distribution shifts in a deployment environment.

179 3.2 EARLY READOUTS

180 Early-layer confidences in a neural network offer valuable insights about an input sample (Baldock
 181 et al., 2021). Low confidences at these layers can suggest that the sample is complex or ambiguous,
 182 potentially making it harder for the model to classify accurately. Conversely, higher early-layer
 183 confidences indicate that the low-level representations align more closely with a particular class,
 184 increasing the likelihood that the student network will classify it correctly. By providing additional
 185 supervision, such as hard labels, for ambiguous samples, the model can improve its learning of
 186 overlapping or confusing features across classes, ultimately enhancing overall performance. (Tiwari
 187 et al., 2024) utilize early exit information from neural networks.

188 4 PROPOSED METHODOLOGY

190 Our overall architecture consists of the teacher-student setup, with alterations to the student network.
 191 We incorporate auxiliary networks (internal classifiers) on intermediate layers’ output representations,
 192 say denoted as $\mathcal{E} \subseteq [L]$, where L denotes the number of layers in the model.

193 Figure 1 provides a brief overview of our approach where we incorporate early-layer predictions and
 194 uncertainty measures from the student model to dynamically weigh the individual loss components
 195 of the distillation objective. In the sections to follow, we elaborate on the auxiliary networks and the
 196 *forecaster* in detail.

197 4.1 AUXILIARY NETWORK: EARLY LAYER CONFIDENCE

198 **Design of Auxiliary Networks.** For each early layer $\ell \in \mathcal{E}$, we instantiate an auxiliary predictor
 $\mathbf{A}_{\text{aux}}^{(\ell)}(\bullet; \varphi_\ell) : \mathbb{R}^{d_\ell} \rightarrow \Delta^K$, with the ℓ -th auxiliary classifier parameterized by φ_ℓ . The input
 200 to $\mathbf{A}_{\text{aux}}^{(\ell)}$ is the ℓ -th layer’s output representation $\mathbf{z}_{\theta(S)}^\ell$. The role of the auxiliary classifier is to
 201 encode how well the truncated feature stack up to layer ℓ differentiates among the label space \mathcal{Y} ,
 202 i.e., the extent to which intermediate layers capture discriminative information over class labels.
 203 Such auxiliary predictors have been shown to be effective both for improving gradient flow and
 204 feature discriminability during training (Szegedy et al., 2015; Lee et al., 2015), as well as for post-
 205 hoc analysis of representation quality via probing (Alain & Bengio, 2016).

207 **Training Objective of Auxiliary Networks.** On the training split \mathcal{D} , the objective of each auxiliary
 208 encoder is to minimize the standard classification loss:

$$209 \mathcal{L}_{\text{aux}}^{(\ell)}(\mathbf{z}_{\theta(S)}^\ell; \varphi_\ell) = - \sum_{i=1}^N \sum_{j=1}^K \mathbf{1}_{\{y_i=j\}} \log \frac{\exp(\mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{z}_{\theta(S)}^\ell; \varphi_\ell)_j)}{\sum_{k=1}^K \exp(\mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{z}_{\theta(S)}^\ell; \varphi_\ell)_k)}. \quad (4)$$

212 4.2 FORECASTER META-NETWORK

214 Deep neural networks are prone to overfitting under label noise or class imbalance, where fixed
 215 re-weighting schemes often fail due to their reliance on handcrafted weighting functions and hyper-
 216 parameters. To address this, we introduce a *forecaster* module that adaptively maps sample-level

Figure 1: Overview of adaptive knowledge distillation that leverages early layer readout predictions and uncertainty measures to learn a meta-network *forecaster* which modulates contribution of ground-truth supervision and teacher supervision in the distillation process at an instance level. Here, the student network, early layer auxiliary networks and *forecaster* are trained in an interleaved fashion. First, the student backbone and the auxiliary network are trained on the classification objective, while the *forecaster* remains frozen, for a fixed number of train minibatches. Next, for a fixed number meta-validation set from the training domains is used to train the forecaster with the objective to estimate student correctness. At test time, the *forecaster* and auxiliary networks are discarded, resulting in our method requiring the same computational resources as a vanilla KD during inference.

statistics to re-weigh the influence of the teacher network in the distillation process. Parameterized as a lightweight neural network and optimized jointly with the model, the forecaster provides a flexible data-driven mechanism that generalizes beyond handcrafted weighting rules. We denote the forecaster as $\mathcal{F}(\bullet; \psi^f)$ defined as a meta-network parameterized by ψ^f .

Confidence Margin The layer wise confidence margin of the ℓ -th auxiliary network denoted by $\epsilon^{(\ell)}$ acts a good signal of uncertainty in the predictions at the early layers (Tiwari et al., 2024; Xin et al., 2020; Liu et al., 2020) where $p_{\max}(\varphi_i) = \max(p_1(\varphi_i), p_2(\varphi_i), \dots, p_K(\varphi_i))$ and $p_j(\cdot)$ indicates the probability of the auxiliary layer ℓ 's output being classified as the j -th label, $\forall j \in [K]$.

$$\epsilon^{(\ell)} = p_{\max}(\cdot) - \max(p_i(\cdot) \mid i \neq \arg \max(p_i(\cdot))) \quad (5)$$

Particularly, *forecaster* is fed logits (\mathbf{z}), Entropy $\{\mathcal{H}(p)\}$ and Confidence Margin (ϵ) of the auxiliary network predictions as uncertainty indicators of auxiliary network, highlighting prediction confidence and randomness.

Training Forecaster $\mathcal{F}(\bullet; \psi^f)$ The Forecaster is trained in conjunction to the student $\mathcal{M}_{\theta(S)}$ and the auxiliary networks $\mathbf{A}_{\text{aux}}^{(\ell)}(\bullet; \varphi)$ using a binary classification objective. The binary classification task for the forecaster is to determine whether student model correctly predicts an input instance. Higher output probability from the forecaster indicates student is more likely to correctly classify the sample, indicating an easier sample. We utilize the output probability of the forecaster directly to weigh the KL divergence between the student and the teacher, forcing the student to mimic teacher for such samples and focus more on ground-truth supervision when the forecaster output probability is smaller. To train the forecaster, we minimize $\mathcal{L}_{\text{focs}}(\theta^{(S)}; \psi^f)$ on the validation split $\mathcal{D}_v \subseteq \mathcal{D}$

$$\mathcal{L}_{\text{focs}}(\theta^{(S)}, \psi_f) = -\left\langle \mathbf{y}_{\theta^{(S)}}^g, \log \mathbf{w}_{\psi_f} \right\rangle - \left\langle \mathbf{1} - \mathbf{y}_{\theta^{(S)}}^g, \log(\mathbf{1} - \mathbf{w}_{\psi_f}) \right\rangle, \quad (6)$$

Figure 2: ROC curves showcasing the impact of incorporating confidence margin (ϵ) and entropy $\mathcal{H}(p)$ features from early layers into the forecaster.

Figure 3: Distribution of forecaster outputs at different training steps, comparing the unadjusted case (**top row**) with post-hoc adjustment (**bottom row**). The rightmost plots summarize the deviations across epochs. Post-hoc adjustment stabilizes the output distribution, negating drift towards skewed values.

where $\mathbf{y}_{\theta^{(S)}}^g \in \{0, 1\}^N$ is the binary vector of ground-truth labels for the student model predictions, with entries $y_{\theta^{(S)}, i}^g = \mathbf{1}_{(\hat{y}_i = y_i)}$ for each instance $i \in [N]$, and $\mathbf{w}_{\psi_f} \in (0, 1)^N$ is the vector of forecaster outputs parameterized by ψ_f . In a mini-batch setting (say batch size B), the forecaster loss is averaged across all samples in the batch with $\mathbf{w}_{\psi_f} \in (0, 1)^{|B|}$.

Design of Forecaster. The *forecaster* is implemented as a lightweight neural network comprising a 1D convolution on stacked intermediate logits obtained from auxiliary networks. The convolution operation integrates the logits across layers, one class at a time. To this representation, we append uncertainty measures: confidence margin and entropy of each Auxiliary Network prediction. Using a linear projection on this intermediate representation, the *forecaster* provides a scalar weight $w_{(\psi_f)} \in [0, 1]$ for each instance in the minibatch, which indicates the confidence of the *forecaster* in assessing whether the student network will correctly predict the input instance.

Post-hoc Adjustment of Forecaster Output. The forecaster $\mathcal{F}(z_f; \psi^f)$ outputs a weight $w_t \in [0, 1]$. For a batch of input instances, forecaster output distribution can be skewed, affecting the stability of student model training and individual loss component contributions. Therefore, for a batch of samples (B), we employ the following post-hoc adjustment on the forecaster output logits (z_f) before utilizing the output for training the student, $\mathbf{w}_{\psi_f}^{\text{adj}} = \sigma\left(\varsigma^* \left(\frac{z_f - \mu_B}{\varsigma_B} \right) + \mu^*\right)$, where μ^* and ς^* are hyperparameters. Ultimately, the student is trained by minimizing, $\mathcal{L}_{\text{tot}}^{(s)}(\mathcal{X}_B, \mathcal{Y}_B; \theta^{(S)}, \mathbf{w}_{\psi_f}) = \frac{1}{|B|} \sum_{j=1}^{|B|} (1 - \mathbf{w}_{\psi_f}^{\text{adj}}[j]) \cdot \ell_{\text{CE}}^{(s)}[j] + \mathbf{w}_{\psi_f}^{\text{adj}}[j] \cdot \ell_{\text{KD}}^{(s)}[j]$.

METHOD	A	C	P	R	AVG.
KD (Hinton et al., 2015b)	52.7	49.7	72.1	74.2	62.2
KD+F	54.3	50.2	70.5	72.5	61.9
KD+F+ADJ.	54.0	51.3	71.6	75.1	63.0

Table 1: **OOD classification accuracy (%) on the OfficeHome dataset.** KD denotes vanilla knowledge distillation, F incorporates the forecaster, and ADJ. further applies the proposed post-hoc adjustment to forecaster outputs. The adjustment ($\mu^* = 0.5$ and $\varsigma^* = 0.1$) consistently improves average performance across held-out domains.

5 BI-LEVEL OPTIMIZATION PROBLEM AND CONVERGENCE

The interleaved training schedule between the student network and the forecaster can be viewed as a bilevel optimization problem given by,

$$\arg \min_{\mathbf{w}_f} \mathcal{L}_{\text{focs}} \left(\underbrace{\arg \min_{\theta} \mathcal{L}_{\text{tot}}^{(s)}(\theta, \mathbf{w}_f), \mathcal{D}_v}_{\text{inner-level}} \right)$$

Starting at $\theta_0^{(S)}$ and \mathbf{w}_f^0 , a single gradient update can be written as,

324
 325 $\theta_t^{(S)} \leftarrow \theta_{t-1}^{(S)} - \eta_1 \nabla_{\theta_{t-1}^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\cdot; \theta_{t-1}^{(S)}, \mathbf{w}_f^t)$ (7)
 326
 327 where $\mathbf{w}_f^t \leftarrow \mathbf{w}_f^{t-1} - \eta_2 \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\theta_{t-1}^{(S)}, \mathbf{w}_f^{t-1})$ (8)
 328

329 **6 ALGORITHM**
 330

331 We outline the distillation process with an interleaved training process where the student model,
 332 auxiliary networks and the forecaster are trained in an alternating pattern. For pre-determined k
 333 steps, the primary student model and the auxiliary networks are trained on the training domains
 334 using the training split of the training domains. Here, the forecaster remains frozen, and is used
 335 to generate instance-level weights to guide the student training. Subsequently, for next k steps,
 336 the forecaster is trained on the on a held-out validation split from the training data of the training
 337 domain(s) with the lastest checkpoints of the student model and the auxiliary networks, which are
 338 frozen. This process continues until the exit criterion of the algorithm is satisfied. Refer Algorithm 1
 339 for an illustrated outline of the algorithm.
 340

340 **Algorithm 1** Interleaved Training of Student and Forecaster

341 **Require:** Student $\mathcal{M}_{\theta^{(S)}}$, Teacher $\mathcal{M}_{\theta^{(T)}}$, Forecaster $\mathcal{F}(\psi_f)$; $\mathcal{B}_{\text{train}}, \mathcal{B}_{\text{val}}$; T_s (student steps), T_f
 342 (forecaster steps), N (total steps), L (number of layers), μ^* (Adjustment mean), ς^* (Adjustment
 343 st. deviation)
 344 1: Initialize $\theta_0^{(S)}, \theta_0^{(T)}, \psi_0^f, [\varphi_0^{(\ell)}]_{\ell=1}^{L-1}$
 345 2: **for** $t = 1$ to N **do**
 346 3: **if** $t \bmod (T_s + T_f) < T_s$ **then**
 347 4: ► *Student and Auxiliary Network Update*
 348 5: Set $\mathcal{M}_{\theta^{(S)}}, \mathcal{M}_{\theta^{(T)}}, \mathcal{F}(\psi_f), [\mathbf{A}_{\text{aux}}^{(\ell)}]_{\ell=1}^{L-1}$ to **eval**
 349 6: $\mathbf{X} \leftarrow \text{concat}(\mathbf{x} \mid (\mathbf{x}, \mathbf{y}) \in \mathcal{B}_{\text{train}})$
 350 7: $[\mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{X}; \varphi)]_{\ell=1}^{L-1}, \hat{\mathbf{Y}} \leftarrow \mathcal{M}_{\theta^{(S)}}(\mathbf{X})$
 351 8: $\mathbf{O} \leftarrow \mathcal{F}([\mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{X}; \varphi)]_{\ell=1}^{L-1})$
 352 9: $\mu_B = \mathbf{O}.\text{mean}(), \varsigma_B = \mathbf{O}.\text{std}()$
 353 10: $\mathbf{W} = \sigma\left(\varsigma^* \left(\frac{\mathbf{O} - \mu_B}{\varsigma_B}\right) + \mu^*\right)$
 354 11: Set $\mathcal{M}_{\theta^{(S)}}$ to **train**;
 355 12: $\theta_t^{(S)} \leftarrow \theta_{t-1}^{(S)} - \frac{\eta}{|\mathcal{B}_{\text{train}}|} \sum_{\mathbf{x} \in \mathcal{B}_{\text{train}}} \mathcal{L}_{\text{tot}}^{(s)}(\mathbf{x}; \theta_{t-1}^{(S)}, \mathbf{W})$
 356 13: **for** $\ell = 1$ to $L - 1$ **do**
 357 14: Set $\mathbf{A}_{\text{aux}}^{(\ell)}$ to **train**;
 358 15: $\varphi_t^{(\ell)} = \varphi_{t-1}^{(\ell)} - \frac{\eta}{|\mathcal{B}_{\text{train}}|} \sum_{\mathbf{x} \in \mathcal{B}_{\text{train}}} \mathcal{L}_{\text{aux}}^{(\ell)}(\mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{x}); \varphi_{t-1}^{(\ell)})$
 359 16: **end for**
 360 17: **else**
 361 18: ► *Forecaster Update*
 362 19: Set $\mathcal{F}(\psi_f)$ to **train**, $\mathcal{M}_{\theta^{(S)}}, [\mathbf{A}_{\text{aux}}^{(\ell)}(\bullet; \varphi)]_{\ell=1}^{L-1}$ to **eval**
 363 20: $\psi_t^f \leftarrow \psi_{t-1}^f - \frac{\eta_f}{|\mathcal{B}_{\text{val}}|} \sum_{\mathbf{x} \in \mathcal{B}_{\text{val}}} \mathcal{L}^{(f)}(\theta^{(S)}, \psi_{t-1}^f)$
 364 21: **end if**
 365 22: **end for**
 366

368 **7 EXPERIMENTS**
 369

370 **Evaluation.** For the image-classification experiments, we leverage the DomainBed Suite (Gulrajani
 371 & Lopez-Paz, 2020). DomainBed provides a fair, standardized and reproducible setup for evaluat-
 372 ing and comparing our method against best performing subset from a wide range of DG algorithms
 373 including ERM (Vapnik, 1998), GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG
 374 (Li et al., 2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al.,
 375 2016) and C-DANN (Li et al., 2018b). For the text-classification experiments, we leverage repre-
 376 sentative ID-OOD task pairs from GLUE-X (Yang et al., 2023). In the case of text-classification, we
 377 compare our method against vanilla KD and ERM. We use classification accuracy as the primary
 378 metric.

378 **Model Pool.** In our KD experiments, we
 379 distill from a robust teacher model. We ex-
 380 periment with both ResNet (He et al., 2015)
 381 and Vision Transformer (Dosovitskiy et al.,
 382 2021) as the teacher network. Specifically, we
 383 first identify the best-performing domain ge-
 384 neralization algorithm at the teacher level per
 385 dataset using ResNet-152 and ViT-L/16,
 386 and use the best teacher network in the distil-
 387 lation process. For the student network, we
 388 select the smallest capacity model from the
 389 ResNet family: ResNet-18. For transformer-based text experiments, we leverage Encoder-only
 390 bert-base-uncased (Devlin et al., 2019) as the teacher network. In this case, the student net-
 391 work is a 4-layer compact BERT variant: google/bert_uncased_L-4_H-256_A-4 (Turc
 392 et al., 2019).

393 **Datasets.** We evaluate and compare our method on four benchmark datasets, including OfficeHome
 394 (Venkateswara et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013) and TerraIncognita
 395 (Beery et al., 2018). For text-based benchmarking, we choose the tasks of (1) paraphrase identifica-
 396 tion with MPRC as ID split and QQP as OOD split, and (2) natural language inference (NLI) with
 397 MNLI as ID split and MNLI-mismatched as OOD split. Table 2 provides the details of the domains,
 398 instances, and label counts for each dataset.

399 **Baselines.** We compare our method against three baselines. We include the Empirical Risk Min-
 400 imization (ERM) (Vapnik, 1998) as a canonical domain generalization algorithm, supported by find-
 401 ings in Gulrajani & Lopez-Paz (2020). Then, we select the best-performing OOD algorithm iden-
 402 tified at the teacher level as the second baseline. In this case, we retrain the student model without
 403 distillation. Finally, we include vanilla KD (Hinton et al., 2015b), where the student is trained to
 404 mimic the logits of the teacher without any further modifications. In the case of text-classification,
 405 we compare our method against vanilla KD and ERM.

406 **Training Protocol.** For a dataset comprising N domains, we adopt the leave-one-domain-out setup
 407 where the network is trained on $N - 1$ domains and evaluated on the held-out domain. We reserve
 408 20% from each of training domain as a validation set for model selection. In our method, remaining
 409 80% training split is further divided, with 90% used to train the student backbone and auxiliary
 410 networks, and 10% held out to train the forecaster. We leverage gold validation splits to train the
 411 forecaster in our text-modality evaluations. Within the distillation setup, we choose temperature
 412 $\tau = 2$ in the KD loss formulation (Hinton et al., 2015a).

413 **Auxiliary Network Design.** For the ResNet student, each residual block (Total: 4) stage yields
 414 feature maps that encode progressively abstract representations of the input (He et al., 2015). To
 415 obtain class-wise representations from these intermediate features, we employ lightweight auxiliary
 416 heads following the design principles of prior works on multi-layer feature supervision (Szegedy
 417 et al., 2015; Lee et al., 2015) and early-exits (Xin et al., 2020; Liu et al., 2020). Each auxiliary head
 418 comprises two components: (i) a pooling operation to reduce the spatial dimensionality, and (ii) a
 419 feed-forward projection layer that maps the pooled features to a vector of dimension equal to the
 420 number of target classes. For transformer-based BERT backbone, the auxiliary networks are simple
 421 linear projections i.e. one layer feed-forward block.

422 8 RESULTS

423 Table 3 reports the domain generalization performance across four benchmark datasets. Here, ERM
 424 Vapnik (1998) corresponds to standard empirical risk minimization, where the network is trained
 425 solely on ground-truth supervision. Similarly, DB. SOTA refers to the strongest domain generaliza-
 426 tion algorithm among GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG (Li et al.,
 427 2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al., 2016) and
 428 C-DANN (Li et al., 2018b), selected as per findings described in Appendix D.1. In the KD (Hinton
 429 et al., 2015a) setting, the student is trained with an additional supervision from a larger network
 430 fine-tuned using the best-performing DG algorithm.

431 We observe that KD consistently outperforms both, the canonical empirical risk minimization
 432 (ERM) and the dataset-specific best-performing DG algorithm. This highlights the effectiveness

DATASET	DOMAINS	INSTANCES	LABELS
OFFICEHOME	4	15,588	65
PACS	4	9,991	7
VLCS	4	10,729	5
TERRAINCOGNITA	4	24,778	10
PARAPHRASE	2	44,118	2
NLI	2	402,517	3

Table 2: Dataset statistics.

METHOD	ARCH.	OFFICEHOME	PACS	VLCS	TERRA.	Avg.
ERM (Vapnik, 1998)	ResNet-18	58.4	79.6	71.6	43.4	63.3
DB. SOTA	ResNet-18	60.2	80.1	71.9	42.6	63.7
TEACHER NETWORK: ResNet-152						
KD (Hinton et al., 2015b)	ResNet-18	62.2	82.4	73.5	43.6	65.4
KD+F+ADJ. (Ours)	ResNet-18	63.0	82.8	74.7	45.1	66.4
TEACHER NETWORK: ViT-L/16						
KD (Hinton et al., 2015b)	ResNet-18	63.7	81.4	75.2	40.6	65.2
KD+F+ADJ. (Ours)	ResNet-18	63.7	81.0	76.1	44.7	66.4

Table 3: Domain generalization accuracy (%) on four benchmark datasets. Best results are highlighted in bold and green. Here, DB. SOTA refers to the best-performing DG algorithm for the dataset, selected according to the evaluation protocol described in Appendix D.1.

METHOD	ARCH.	PARAPHRASE	NLI	Avg.
ERM (Vapnik, 1998)	bert_uncased_L-4_H-256_A-4	57.1	74.6	65.8
TEACHER NETWORK: bert-base-uncased				
KD (Hinton et al., 2015b)	bert_uncased_L-4_H-256_A-4	58.4	74.8	66.6
KD+F+ADJ. (Ours)	bert_uncased_L-4_H-256_A-4	60.9	75.4	68.2

Table 4: OOD Classification accuracy (%) on (MPRC, QQP) and (MNLI, MNLI-mismatched) ID, OOD pairs from GLUE-X benchmark. Prompt details present in Appendix A.2.

of knowledge transfer from a robust teacher network. Building on the strong KD baseline, we evaluate our adaptive distillation setup, which augments KD with the forecaster meta-network that utilizes early readout signals from the student network. Our method improves over KD under both, a convolutional ResNet teacher and transformer based ViT teacher. With a robust ResNet-152 teacher, our approach achieves an average OOD accuracy of 66.4%, outperforming KD by +1.0%. Similarly, with a robust ViT-L/16 teacher, our method surpasses KD by +1.2%. These consistent improvements across datasets showcase our approach as a principled extention to the standard KD problem for domain generalization.

Table 4 reports the domain generalization results in the text modality with a transformer-based student architecture. Here, our method yields an average increase of 1.6% in accuracy, relative to the standard KD, showcasing the generality of our work across modality and model architecture.

The Need For Post-hoc Adjustment. As shown in Table 1, in the absence output adjustment, adaptive KD with forecaster yields lower OOD performance as compared to vanilla KD. This motivates us to understand why an unadjusted forecaster may fail. We therefore analyze the dynamics of the forecaster outputs during the distillation process with and without post-hoc adjustment to the forecaster outputs. Figure 3 showcases the change in forecaster outputs for a minibatch as training progresses. Without any correction to the forecaster output, the distribution gradually drifts towards extreme values close to 1. This drift can be attributed to the nature of the training of the forecaster. The forecaster is trained as a binary classifier to predict correctness of student network based on early readout predictions and uncertainty signals. Naturally, as the student improves, an increasing fraction of samples become easy, pushing forecaster towards overconfident predictions. This causes the weight to concentrate more to \mathcal{L}_{KD} as the training progresses, making model overfit to teacher’s supervisory signals, affecting its generalizability.

The Role of Uncertainty Signals. We also analyze the impact of early layer uncertainty features on forecaster quality. As shown in Figure 2, including entropy $\mathcal{H}(p)$ and confidence margin (ε) from auxiliary predictions substantially improves the forecaster’s predictive ability to determine easy and hard samples, with an increase in AUC by +26%. This demonstrates that early readouts provide rich signals of sample ambiguity, which can be leveraged by the forecaster, to effectively modulate the loss weighing. Together, these empirical ablations on the forecaster confirm that both

Figure 4: From left to right: Domain-wise OfficeHome OOD accuracies as a function of (a) interleaved training schedule, (b) adjusted forecaster output mean (μ^*), (c) adjusted forecaster output spread (ζ^*) and (d) coefficient of KD loss in Vanilla KD.

post-hoc adjustment and statistical uncertainty-aware design choice is essential to the forecaster meta-network.

Sensitivity Analysis. We chose μ^* and ζ to be 0.5 and 0.1 as pragmatic, dataset agnostic hyperparameters. $\mu^* = 0.5$ centers the post-hoc adjustment to allow equal contribution from teacher soft predictions and ground-truth supervision. This allows the training signal to not be overly dominated by the teacher or the ground-truth. $\zeta = 0.1$ allows a controlled spread around the center, allowing an instance-based adjustment proposed by the forecaster without a strong drift in either direction. We conduct sensitivity analysis by (1) varying $\mu^* \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$ while keeping ζ fixed to 0.1 and (2) varying $\zeta \in \{0.01, 0.1, 0.5, 1.0\}$ keeping μ^* fixed to 0.5. As shown in Figure 4 OOD performance does not degrade sharply across various choices of (μ^*, ζ) pairs, suggesting that our method is not sensitive to the hyperparameter choices of μ^* and ζ . While the hyperparameters can be tuned per-dataset or per-domain within a dataset, we recommend the practical default choices under compute constraints.

Similarly, we set the student model update frequency, $T_s = 1$ and forecaster update frequency, $T_f = 1$ in our experiments. With $T_s = 1$ and $T_f = 1$, we simply ensure that the forecaster is updated as frequently as the student, preventing the forecaster weights becoming stale as the student representation evolves during training. To assess how the frequency of updates to the forecaster affect the downstream OOD performance of the student network, we conduct a sensitivity analysis by varying T_s and T_f across several configurations shown in Figure 4. As shown, we observe a small but consistent drop in average OOD performance in these alternative configurations. These observations suggest that the forecaster network is negatively affected in both cases of (1) infrequent updates ($T_s = 10, T_f = 1$) where the forecaster is lagging behind current student configuration and too frequent updates ($T_s = 10, T_f = 10$ or $T_s = 1, T_f = 10$) where the forecaster potentially overfits to current student configuration.

9 CONCLUSION

In this work, we introduced a *forecaster* based re-weighing approach to standard offline knowledge distillation setting, where the *forecaster* leverages early layer readouts from the student model to adaptively modulate the distillation objective, resulting in an improved generalizability of the student network as opposed to vanilla KD. Our experiments across multiple benchmarks **spanning two modalities: (1) vision and (2) text**, demonstrate the efficacy of our approach in improving OOD generalization of student network over vanilla KD baseline and canonical DG algorithms. Further, we provide insights on critical design choices for the *forecaster*: (1) post-hoc adjustment, which prevents *forecaster* collapse that results in overconfident predictions, and (2) Use of uncertainty measures such as entropy and confidence margin, which significantly improve *forecaster*'s ability to distinguish between easy and difficult samples. Together, we establish our framework as a novel extension to standard offline KD, allowing robust generalization to unseen domains, from a student-centric design choice.

540 REFERENCES
541

542 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
543 probes. *arXiv preprint arXiv:1610.01644*, 2016.

544 Görkem Algan and Ilkay Ulusoy. Meta soft label generation for noisy labels, 2021. URL <https://arxiv.org/abs/2007.05836>.

545

546 Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
547 2020. URL <https://arxiv.org/abs/1907.02893>.

548

549 Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
550 example difficulty. *Advances in Neural Information Processing Systems*, 34:10876–10889, 2021.

551

552 Sara Beery, Grant van Horn, and Pietro Perona. Recognition in terra incognita, 2018. URL <https://arxiv.org/abs/1807.04975>.

553

554

555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
556 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

557

558 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
559 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
560 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
561 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

562

563 Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of
564 multiple datasets and web images for softening bias. In *2013 IEEE International Conference on
565 Computer Vision*, pp. 1657–1664, 2013. doi: 10.1109/ICCV.2013.208.

566

567 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
568 of deep networks, 2017. URL <https://arxiv.org/abs/1703.03400>.

569

570 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
571 Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
572 works, 2016. URL <https://arxiv.org/abs/1505.07818>.

573

574 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization, 2020. URL
<https://arxiv.org/abs/2007.01434>.

575

576 Alperen Görmez, Venkat R. Dasari, and Erdem Koyuncu. E2cm: Early exit via class means for
577 efficient supervised and unsupervised learning. In *2022 International Joint Conference on Neural
578 Networks (IJCNN)*, pp. 1–8, 2022. doi: 10.1109/IJCNN55064.2022.9891952.

579

580 Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
581 networks: A survey, 2021. URL <https://arxiv.org/abs/2102.04906>.

582

583 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
584 nition, 2015. URL <https://arxiv.org/abs/1512.03385>.

585

586 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
587 preprint arXiv:1503.02531*, 2015a.

588

589 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015b.
590 URL <https://arxiv.org/abs/1503.02531>.

591

592 Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distribu-
593 tional shifts in the wild. *Advances in Neural Information Processing Systems*, 34:677–689, 2021.

594

595 Zeyi Huang, Andy Zhou, Zijian Lin, Mu Cai, Haohan Wang, and Yong Jae Lee. A sentence speaks
596 a thousand images: Domain generalization through distilling clip with language guidance, 2023.
597 URL <https://arxiv.org/abs/2309.12530>.

594 Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa Trinh, and Erik Vee.
 595 Weighted distillation with unlabeled examples, 2022. URL <https://arxiv.org/abs/2210.06711>.
 596

597 Nishant Jain, Karthikeyan Shanmugam, and Pradeep Shenoy. Selective classification using a robust
 598 meta-learning approach, 2024. URL <https://arxiv.org/abs/2212.05987>.
 599

600 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 601 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 602 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*,
 603 pp. 5637–5664. PMLR, 2021.

604 Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adaptive inference through early-
 605 exit networks: Design, challenges and directions. In *Proceedings of the 5th International Work-
 606 shop on Embedded and Mobile Deep Learning*, MobiSys ’21, pp. 1–6. ACM, June 2021. doi:
 607 10.1145/3469116.3470012. URL <http://dx.doi.org/10.1145/3469116.3470012>.
 608

609 Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
 610 supervised nets. In *Artificial intelligence and statistics*, pp. 562–570. Pmlr, 2015.

611 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
 612 generalization, 2017a. URL <https://arxiv.org/abs/1710.03077>.
 613

614 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize:
 615 Meta-learning for domain generalization, 2017b. URL <https://arxiv.org/abs/1710.03463>.
 616

617 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain generalization with adversarial
 618 feature learning. In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 619 pp. 5400–5409, 2018a. doi: 10.1109/CVPR.2018.00566.

620 Xin-Chun Li, Wen-Shu Fan, Shaoming Song, Yinchuan Li, Shao Yunfeng, De-Chuan Zhan, et al.
 621 Asymmetric temperature scaling makes larger networks teach well again. *Advances in neural*
 622 *information processing systems*, 35:3830–3842, 2022.
 623

624 Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
 625 via conditional invariant representation, 2018b. URL <https://arxiv.org/abs/1807.08479>.
 626

627 Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju. FastBERT: a self-
 628 distilling BERT with adaptive inference time. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
 629 Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
 630 tational Linguistics*, pp. 6035–6044, Online, July 2020. Association for Computational Linguis-
 631 tics. doi: 10.18653/v1/2020.acl-main.537. URL <https://aclanthology.org/2020.acl-main.537>.
 632

633 Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
 634 neural networks, 2017. URL <https://arxiv.org/abs/1710.07535>.
 635

636 Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
 637 for deep learning applications: Survey and research challenges. *ACM Computing Surveys*, 55
 638 (5):1–30, December 2022. ISSN 1557-7341. doi: 10.1145/3527155. URL <http://dx.doi.org/10.1145/3527155>.
 639

640 Omar Montasser, Han Shao, and Emmanuel Abbe. Transformation-invariant learning and theore-
 641 tical guarantees for ood generalization. *Advances in Neural Information Processing Systems*, 37:
 642 108649–108673, 2024.

643 Anshul Nasery, Sravanti Addepalli, Praneeth Netrapalli, and Prateek Jain. Daft: Distilling adver-
 644 sarially fine-tuned models for better ood generalization, 2022. URL <https://arxiv.org/abs/2208.09139>.
 645

646 Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David Duvenaud, and Geoffrey Hinton. Teach-
 647 ing with commentaries, 2021. URL <https://arxiv.org/abs/2011.03037>.
 648

648 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 649 robust deep learning, 2019. URL <https://arxiv.org/abs/1803.09050>.

650

651 Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. *Ad-*
 652 *vances in Neural Information Processing Systems*, 34:20210–20229, 2021.

653 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 654 neural networks for group shifts: On the importance of regularization for worst-case generaliza-
 655 tion, 2020. URL <https://arxiv.org/abs/1911.08731>.

656

657 Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family of
 658 parameters for learning a differentiable curriculum. In H. Wallach, H. Larochelle,
 659 A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neu-*
 660 *ral Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL
 661 https://proceedings.neurips.cc/paper_files/paper/2019/file/926fffc0ca56636b9e73c565cf994ea5a-Paper.pdf.

662

663 Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A. Smith. The
 664 right tool for the job: Matching model and instance complexities. In Dan Jurafsky, Joyce Chai,
 665 Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association*
 666 *for Computational Linguistics*, pp. 6640–6651, Online, July 2020. Association for Computational
 667 Linguistics. doi: 10.18653/v1/2020.acl-main.593. URL <https://aclanthology.org/2020.acl-main.593>.

668

669 Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
 670 net: Learning an explicit mapping for sample weighting, 2019. URL <https://arxiv.org/abs/1902.07379>.

671

672 Durga Sivasubramanian, Ayush Maheshwari, Pradeep Shenoy, Prathosh AP, and Ganesh Ramakrishnan. Adaptive mixing of auxiliary losses in supervised learning, 2022. URL <https://arxiv.org/abs/2202.03250>.

673

674 Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. *Advances*
 675 *in neural information processing systems*, 28, 2015.

676

677 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation,
 678 2016. URL <https://arxiv.org/abs/1607.01719>.

679

680 Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, Yilong He, Yuan Ni, Guo-
 681 tong Xie, Xuanjing Huang, and Xipeng Qiu. A simple hash-based early exiting approach for
 682 language understanding and generation, 2022. URL <https://arxiv.org/abs/2203.01670>.

683

684 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
 685 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

686

687 Rishabh Tiwari, Durga Sivasubramanian, Anmol Mekala, Ganesh Ramakrishnan, and Pradeep
 688 Shenoy. Using early readouts to mediate featural bias in distillation, 2023. URL <https://arxiv.org/abs/2310.18590>.

689

690 Rishabh Tiwari, Durga Sivasubramanian, Anmol Mekala, Ganesh Ramakrishnan, and Pradeep
 691 Shenoy. Using early readouts to mediate featural bias in distillation. In *Proceedings of the*
 692 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 2638–2647, 2024.

693

694 Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
 695 On the importance of pre-training compact models, 2019. URL <https://arxiv.org/abs/1908.08962>.

696

697 V.N. Vapnik. *Statistical Learning Theory*. Adaptive and learning systems for signal processing,
 698 communications, and control. Wiley, 1998. ISBN 9788126528929. URL <https://books.google.co.in/books?id=RWrlkQEACAAJ>.

699

702 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 703 hashing network for unsupervised domain adaptation, 2017. URL <https://arxiv.org/abs/1706.07522>.

704

705 Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain gener-
 706 alization. *Advances in neural information processing systems*, 34:2215–2227, 2021.

707

708 Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia.
 709 Iterative learning with open-set noisy labels, 2018. URL <https://arxiv.org/abs/1804.00092>.

710

711 Yufei Wang, Haoliang Li, Lap pui Chau, and Alex C. Kot. Embracing the dark knowledge: Domain
 712 generalization using regularized knowledge distillation, 2021. URL <https://arxiv.org/abs/2107.02629>.

713

714

715 Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
 716 for accelerating BERT inference. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
 717 (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*,
 718 pp. 2246–2251, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
 2020.acl-main.204. URL <https://aclanthology.org/2020.acl-main.204/>.

719

720 Canwen Xu and Julian McAuley. A survey on dynamic neural networks for natural language pro-
 721 cessing, 2023. URL <https://arxiv.org/abs/2202.07101>.

722

723 Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
 724 adaptation with mixup training, 2020. URL <https://arxiv.org/abs/2001.00677>.

725

726 Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu, Jindong Wang, Xing
 727 Xie, and Yue Zhang. Glue-x: Evaluating natural language understanding models from an out-
 728 of-distribution generalization perspective, 2023. URL <https://arxiv.org/abs/2211.08073>.

729

730 Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
 731 theoretical framework of out-of-distribution generalization. *Advances in Neural Information Pro-
 732 cessing Systems*, 34:23519–23531, 2021.

733

734 Xinli Yue, Mou Ningping, Qian Wang, and Lingchen Zhao. Revisiting adversarial robustness dis-
 735 tillation from the perspective of robust fairness. *Advances in Neural Information Processing
 736 Systems*, 36:30390–30401, 2023.

737

738 Di Zhao, Jingfeng Zhang, Hongsheng Hu, Philippe Fournier-Viger, Gillian Dobbie, and Yun Sing
 739 Koh. Balancing invariant and specific knowledge for domain generalization with online knowl-
 740 edge distillation. In James Kwok (ed.), *Proceedings of the Thirty-Fourth International Joint
 741 Conference on Artificial Intelligence, IJCAI-25*, pp. 2440–2448. International Joint Confer-
 742 ences on Artificial Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/272. URL
 743 <https://doi.org/10.24963/ijcai.2025/272>. Main Track.

744

745 Haoran Zhao, Xin Sun, Junyu Dong, Zihe Dong, and Qiong Li. Knowledge distillation via instance-
 746 level sequence learning, 2021. URL <https://arxiv.org/abs/2106.10885>.

747

748 Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generaliza-
 749 tion via entropy regularization. *Advances in neural information processing systems*, 33:16096–
 750 16107, 2020.

751

752 Andy Zhou, Jindong Wang, Yu-Xiong Wang, and Haohan Wang. Distilling out-of-distribution ro-
 753 bustness from vision-language foundation models. *Advances in Neural Information Processing
 754 Systems*, 36:32938–32957, 2023.

755

756 Kaiyang Zhou, Yuanhan Zhang, Yuhang Zang, Jingkang Yang, Chen Change Loy, and Ziwei Liu.
 757 On-device domain generalization. *arXiv preprint arXiv:2209.07521*, 2022.

758

759 Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
 760 tience: Fast and robust inference with early exit, 2020. URL <https://arxiv.org/abs/2006.04152>.

756

757

758 **Supplementary Material: Early Layer Readouts for Robust Knowledge** 759 **Distillation**

760

761

762 CONTENTS

763

A	Implementation and Hyperparameters	16
A.1	Seed and Hyperparameter Selection	16
A.2	Prompt Details for Text Classification	16
B	Theoretical Results	16
B.1	Generalization Error Bounds for our method	16
C	Effect of Auxiliary Networks and the Forecaster on OOD Generalization	17
C.1	Auxiliary Networks Control Layer-Wise Logit Variation	18
C.2	Convergence Analysis of Interleaving Student Forecaster Training	20
C.3	Training Dynamics of Interleaved Schedule: An Example	25
D	Additional Experimental Results	25
D.1	Selection of Robust DG Algorithm	25
D.2	Domain-wise Results on Benchmark Datasets	25
D.3	Sensitivity Analysis on Hyperparameters $\mu^*, \varsigma^*, T_s, T_f$ and β	25
D.4	Domain-wise Results on ColoredMNIST	26
D.5	Domain Generalization on Larger Student Network	26

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A IMPLEMENTATION AND HYPERPARAMETERS
811

812 A.1 SEED AND HYPERPARAMETER SELECTION

813 For a fair comparison and reproducibility, we follow the **default** hyperparameter settings reported in
814 **Gulrajani & Lopez-Paz (2020)** and use their released codebase as the foundation of our implemen-
815 tation.816 A.2 PROMPT DETAILS FOR TEXT CLASSIFICATION
817

```
818 """Paraphrase Identification: Train Prompt (MPRC)"""
819
820 Sentence 1: {{sentence1}}
821 Sentence 2: {{sentence2}}
822 Question: Do both sentences mean the same thing?
823 Answer:
824
825 """Paraphrase Identification: Test Prompt (QQP)"""
826
827 Question 1: {{question1}}
828 Question 2: {{question2}}
829 Question: Do both questions ask the same thing?
830 Answer:
831
832 """Natural Language Inference: Train/Test Prompt (MNLI)"""
833
834
```

835 B THEORETICAL RESULTS
836

837 B.1 GENERALIZATION ERROR BOUNDS FOR OUR METHOD

838 We utilise the approach presented in (Ye et al., 2021) to calculate the generalization error bounds
839 incurred via our method.840 **Setup**
841842 Let ξ_{all} be the domain set we want to generalize to, and $\xi_{\text{avail}} \subseteq \xi_{\text{all}}$ be the available domain set. We
843 denote (X^e, Y^e) as the input-label pair from the data distribution of domain $e \in \xi_{\text{avail}}$.844 For OOD generalization, the goal is to find a classifier f^* such that it *minimizes* the *worst-domain*
845 loss on ξ_{all}

846
$$f^* = \arg \min_{f \in \mathcal{F}} \mathcal{L}(\xi_{\text{all}}, f), \mathcal{L}(\xi, f) \equiv \max_{e \in \xi} \mathbb{E}[\ell(f(X^e), Y^e)]$$
847

848 **Definition 1** (Variation). *The variation of a feature $\phi(\cdot)$ across a domain set ξ is defined as*

849
$$\mathcal{V}_\rho(\phi, \xi) = \max_{y \in Y} \sup_{e, e' \in \xi} \rho(P(\phi_e | y), P(\phi_{e'} | y)). \quad (9)$$
850

851 A feature $\phi(\cdot)$ is said to be ε -invariant across E if $\varepsilon \geq \mathcal{V}(\phi, \xi)$, where ρ indicates any distribution
852 divergence metric. (We omit the subscript ρ when there is no ambiguity.)853 Let the optimal weights learnt via the forecaster be denoted as $\mathbf{w}_{\psi_f^*}$. Post adjustment, let the optimal
854 adjusted weights be denoted as $\mathbf{w}_{\text{adj}}^*$. The optimal weights are across all samples in the batch.

855
$$\mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}^{(\ell)}; e) := \mathbb{E}_{(X^e, Y^e)} [\mathcal{L}_{\text{aux}}^{(\ell)}(A_{\text{aux}}^{(\ell)}(h_\ell(\mathbf{X}^e; \boldsymbol{\theta}); \boldsymbol{\varphi}^{(\ell)}), Y^e)]$$
856

857 **Assumption** There exists a strictly increasing function $\delta_l : [0, 0.5] \rightarrow [0, \infty)$ such that

858
$$\mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}^{(\ell)}; e) - \mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}_*^{(\ell)}; e) \geq \delta_l(\Delta^{(l)}(e))$$
859

864 where $\mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}_*^{(\ell)}; e)$ indicates the Bayes risk on domain e and $\Delta^{(l)}(e)$ is the average 0 – 1 error
 865 of the auxiliary classifier at layer l .

866
 867 **Assumption (Lipschitz in feature space):** We assume there exists $\mathbb{C}_{\text{aux}} > 0$ such that for all z_1, z_2
 868 and labels y :

$$870 \quad |\mathcal{L}_{\text{aux}}^{(\ell)}(\mathbf{z}_1^\ell(\boldsymbol{\theta}^{(S)}); \boldsymbol{\varphi}_\ell) - \mathcal{L}_{\text{aux}}^{(\ell)}(\mathbf{z}_2^\ell(\boldsymbol{\theta}^{(S)}); \boldsymbol{\varphi}_\ell)| \leq \mathbb{C}_{\text{aux}}. \|\mathbf{z}_1^\ell(\boldsymbol{\theta}^{(S)}) - \mathbf{z}_2^\ell(\boldsymbol{\theta}^{(S)})\|_2$$

871
Domain Disagreement at layer ℓ

872 Given two distinct domains $e_1, e_2 \in \xi_{\text{avail}}$, we check how the difference in auxilliary classifier risks
 873 relates to the induced feature distribution difference.

$$877 \quad \Delta \mathfrak{R}_{\text{aux}}^{(\ell)}(e_1, e_2) := |\mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}^{(\ell)}; e_1) - \mathfrak{R}_{\text{aux}}^{(\ell)}(\boldsymbol{\theta}, \boldsymbol{\varphi}^{(\ell)}; e_2)|$$

878
 879 Using Lipschitz assumption and total variation distance on \mathbb{P}_e^ℓ we have

$$881 \quad \Delta \mathfrak{R}_{\text{aux}}^{(\ell)}(e_1, e_2) \leq \mathbb{C}_{\text{aux}} \int \|\mathbf{z}\|_2 |p_{e_1}^l(\mathbf{z}, y) - p_{e_2}^l(\mathbf{z}, y)| \partial \mathbf{z} \partial y$$

884 Assuming we consider a bounded feature radius at layer ℓ : $\|\mathbf{z}\|_2 \leq R_l$, we have

$$887 \quad \Delta \mathfrak{R}_{\text{aux}}^{(\ell)}(e_1, e_2) \leq \mathbb{C}_{\text{aux}} R_l \int |p_{e_1}^l(\mathbf{z}, y) - p_{e_2}^l(\mathbf{z}, y)| \partial \mathbf{z} \partial y = 2\mathbb{C}_{\text{aux}} R_l \rho(\mathbb{P}_{e_1}^\ell, \mathbb{P}_{e_2}^\ell)$$

889
 890 Thus,

$$892 \quad \rho(\mathbb{P}_{e_1}^\ell, \mathbb{P}_{e_2}^\ell) \geq \frac{\Delta \mathfrak{R}_{\text{aux}}^{(\ell)}(e_1, e_2)}{2\mathbb{C}_{\text{aux}} R_l}$$

895 **Remark 1.** The above indicates that any variation in the auxillariy risks across domains is almost
 896 surely upper bounded the TV(total variation) distance between feature label distributions for that
 897 layer l .

898 Since by definition we know

$$901 \quad \mathcal{V}(\beta^\top h_\ell, \xi_{\text{avail}}) := \sup_{e_1, e_2 \in \xi_{\text{avail}}} \rho(\mathbb{P}(\beta^\top h_\ell(\mathbf{X}^{e_1}) \mid Y^{e_1}), \mathbb{P}(\beta^\top h_\ell(\mathbf{X}^{e_2}) \mid Y^{e_2}))$$

903 The second term on the RHS side is upper bounded by $\rho(\mathbb{P}_{e_1}^\ell, \mathbb{P}_{e_2}^\ell)$

904 hence, we overall have

$$907 \quad \mathcal{V}(\beta^\top h_\ell, \xi_{\text{avail}}) \leq \sup_{e_1, e_2 \in \xi_{\text{avail}}} \rho(\mathbb{P}_{e_1}^\ell, \mathbb{P}_{e_2}^\ell)$$

909
**C EFFECT OF AUXILIARY NETWORKS AND THE FORECASTER ON OOD
 910 GENERALIZATION**

912 We now theoretically establish that the proposed auxiliary networks together with the forecaster
 913 reduce the cross-domain feature variation $V_{\text{sup}}(h_{\boldsymbol{\theta}^{(S)}}, \mathcal{E}_{\text{avail}})$, and hence, by Theorem 4.1, yield a
 914 smaller OOD generalization gap $\text{err}(f) = L(\mathcal{E}_{\text{all}}, f) - L(\mathcal{E}_{\text{avail}}, f)$.

915 As per our previous notations, we know that the student network produces intermediate representations
 916 $\mathbf{z}_{\boldsymbol{\theta}^{(S)}}^\ell(x) \in \mathbb{R}^{d_\ell}$ at layer $\ell \in \mathcal{E}$. Each auxiliary classifier $\mathbf{A}_{\text{aux}}^{(\ell)}(\cdot; \boldsymbol{\varphi}_\ell) : \mathbb{R}^{d_\ell} \rightarrow \Delta^K$ produces
 917 layer-wise predictive distributions $p^{(\ell)}(x) = \mathbf{A}_{\text{aux}}^{(\ell)}(\mathbf{z}_{\boldsymbol{\theta}^{(S)}}^\ell(x); \boldsymbol{\varphi}_\ell)$.

918 For each auxiliary layer we compute the *confidence margin*, $\varepsilon^{(\ell)}(x) := p_{\max}^{(\ell)}(x) -$
 919 $\max_{j \neq \arg \max p_j^{(\ell)}(x)} p_j^{(\ell)}(x)$, and the entropy $\mathcal{H}(p^{(\ell)}(x))$. The forecaster is a meta-network $\mathcal{F}(\cdot; \psi^f)$
 920 receiving the stacked vector
 921

$$922 \quad 923 \quad \mathbf{u}(x) := \left[\{\mathbf{z}_{\theta(S)}^{\ell}(x)\}_{\ell \in \mathcal{E}}, \{\varepsilon^{(\ell)}(x)\}_{\ell \in \mathcal{E}}, \{\mathcal{H}(p^{(\ell)}(x))\}_{\ell \in \mathcal{E}} \right]^{\top}$$

924 and outputting a weight $w(x) = \mathcal{F}(\mathbf{u}(x); \psi^f) \in [0, 1]$. This weight is then used to combine the
 925 per-sample student CE loss and the distillation loss.
 926

927 We measure cross-domain feature variation at representation level by

$$928 \quad 929 \quad \mathcal{V}_{\text{sup}}(h_{\theta(S)}, \mathcal{E}_{\text{avail}}) := \sup_{\beta \in \mathbb{S}^{d-1}} \sup_{e, e' \in \mathcal{E}_{\text{avail}}} \rho\left(\beta^{\top} h_{\theta(S)}(X^e), \beta^{\top} h_{\theta(S)}(X^{e'})\right),$$

930 where ρ is the total variation distance.
 931

932 C.1 AUXILIARY NETWORKS CONTROL LAYER-WISE LOGIT VARIATION

933 Define the stacked logit–margin–entropy feature at layer ℓ :

$$934 \quad 935 \quad \phi^{(\ell), e}(x) := [\mathbf{z}_{\theta(S)}^{\ell, e}(x), \varepsilon^{(\ell), e}(x), \mathcal{H}(p^{(\ell), e}(x))]^{\top}.$$

936 Let

$$937 \quad 938 \quad \phi^e(x) := [\phi^{(\ell), e}(x)]_{\ell \in \mathcal{E}} \in \mathbb{R}^D.$$

939 Each auxiliary predictor is trained to minimize $\mathcal{L}_{\text{aux}}^{(\ell)}$, a strongly convex function in the probability
 940 simplex. By standard stability results for cross-entropy, this implies a Lipschitz continuity property
 941 for the mapping $\mathbf{z}_{\theta(S)}^{\ell} \mapsto \phi^{(\ell)}$.

942 **Lemma 2** (Auxiliary Losses are Lipschitz). *There exists $L_{\phi} > 0$ such that for all environments
 943 e, e' and all x ,*

$$944 \quad 945 \quad \|\phi^e(x) - \phi^{e'}(x)\| \leq L_{\phi} \|\mathbf{z}_{\theta(S)}^e(x) - \mathbf{z}_{\theta(S)}^{e'}(x)\|.$$

946 *Proof.* Each component of $\phi^{(\ell)}$ is a smooth mapping of \mathbf{z}^{ℓ} : margins, entropies, and softmax probabilities
 947 are Lipschitz on compact domains. Summing Lipschitz maps preserves Lipschitzness. \square

948 Thus the variation of ϕ^e is controlled by that of the intermediate logits.

949 Forecaster Convolution Contracts Variation

950 Let A_{ϕ} denote the linear operator (e.g. a 1D convolution across layers) applied internally in the
 951 forecaster before the MLP head. Define

$$952 \quad 953 \quad \psi^e(x) := A_{\phi} \phi^e(x).$$

954 **Lemma 3** (Convolutional Contraction). *If $\|A_{\phi}\| \leq 1$ in operator norm, then for all e, e' and x ,*

$$955 \quad 956 \quad \|\psi^e(x) - \psi^{e'}(x)\| \leq \|\phi^e(x) - \phi^{e'}(x)\|.$$

957 *Proof.* Immediate from $\|A_{\phi}v\| \leq \|A_{\phi}\| \|v\|$ with $\|A_{\phi}\| \leq 1$. \square

958 Combining Lemma 2 and Lemma 3 gives

$$959 \quad 960 \quad \|\psi^e(x) - \psi^{e'}(x)\| \leq L_{\phi} \|\mathbf{z}^e(x) - \mathbf{z}^{e'}(x)\|.$$

961 Finally, the forecaster head $u \mapsto w = \sigma(Wu + b)$ is L_w -Lipschitz, so

962 **Lemma 4** (Forecaster Stability). *For all domains e, e' and all inputs x ,*

$$963 \quad 964 \quad |w(x, e) - w(x, e')| \leq L_w L_{\phi} \|\mathbf{z}^e(x) - \mathbf{z}^{e'}(x)\|.$$

965 Thus the forecaster output varies smoothly across environments, with variation proportional to the
 966 intrinsic logit variation.

972 **Contraction of Feature Variation**

973 The student is trained with the forecaster-weighted loss

975
$$\mathcal{L}_{\text{tot}}^{(s)}(x, e) = (1 - w(x, e)) \mathcal{L}_{\text{CE}}^{(s)}(x, e) + w(x, e) \mathcal{L}_{\text{KD}}^{(s)}(x, e).$$
 976

977 Because $w(x, e)$ is stable across domains (Lemma 4), the gradients on $h_{\theta^{(S)}}$ differ only smoothly 978 across environments. Under standard smoothness assumptions, the expected feature update satisfies

979
$$\mathbb{E}_{X^e}[\beta^\top h_{\theta_{t+1}^{(S)}}(X^e)] - \mathbb{E}_{X^{e'}}[\beta^\top h_{\theta_{t+1}^{(S)}}(X^{e'})] \leq (1 - \eta m) \left(\mathbb{E}_{X^e}[\beta^\top h_{\theta_t^{(S)}}] - \mathbb{E}_{X^{e'}}[\beta^\top h_{\theta_t^{(S)}}] \right),$$
 980

981 for some $m > 0$ depending on the smoothness of the training loss. Thus the feature variation 982 contracts by a factor $\kappa := 1 - \eta m \in (0, 1)$:

983
$$\mathcal{V}_{\text{sup}}(h_{\theta^{(S)}}, \mathcal{E}_{\text{avail}}) \leq \kappa \mathcal{V}_{\text{sup}}(h_{\theta^{(N)}}, \mathcal{E}_{\text{avail}}),$$
 984

985 where $h_{\theta^{(N)}}$ is the representation learned without the forecaster.986 **Forecaster Reduces OOD Generalization Error**987 By Theorem 4.1, the OOD generalization gap of any classifier $f = g \circ h$ satisfies

988
$$\text{err}(f) \leq C s(\mathcal{V}_{\text{sup}}(h, \mathcal{E}_{\text{avail}})),$$
 989

990 with $s(\cdot)$ monotone. Applying this to the forecaster-equipped student $f_S = g_S \circ h_{\theta^{(S)}}$ yields

991
$$\text{err}(f_S) \leq C s(\mathcal{V}_{\text{sup}}(h_{\theta^{(S)}}, \mathcal{E}_{\text{avail}})) \leq C s(\kappa \mathcal{V}_{\text{sup}}(h_{\theta^{(N)}}, \mathcal{E}_{\text{avail}})) < C s(\mathcal{V}_{\text{sup}}(h_{\theta^{(N)}}, \mathcal{E}_{\text{avail}})) = \text{err}(f_N),$$
 992

993 where the strict inequality follows from $\kappa < 1$. Hence, the auxiliary networks and the forecaster 994 jointly contract cross-domain variation, yielding provably smaller OOD generalization error. 995996 **Assumption 2:** The loss is Lipschitz-continuous with respect to the feature space

997
$$\ell(p, y) - \ell(q, y) \leq L_{\ell d}(p, q)$$
 998

999 **Theorem 1 (Generalization Error Student).** *Given the student model f_S and teacher model 1000 f_T , the generalization error of the student model can be given as*

1001
$$\text{err}(\mathcal{M}_{\theta^{(S)}}) \leq \text{err}(\mathcal{M}_{\theta^{(T)}}) + 2L_{\ell d} \epsilon$$
 1002

1003 *Proof.* For any general domain set ξ , we have the following:

1004
$$\begin{aligned} |\mathcal{L}(\xi, \mathcal{M}_{\theta^{(S)}}) - \mathcal{L}(\xi, \mathcal{M}_{\theta^{(T)}})| &= \left| \mathbb{E}_{e \sim \xi} \mathbb{E}_{(\mathbf{X}^e, Y^e)} [\ell(\mathcal{M}_{\theta^{(S)}}(\mathbf{X}^e), Y^e) - \ell(\mathcal{M}_{\theta^{(T)}}(\mathbf{X}^e), Y^e)] \right| \\ &\leq \mathbb{E}_{e \sim \xi} \mathbb{E}_{(\mathbf{X}^e, Y^e)} [\|\ell(\mathcal{M}_{\theta^{(S)}}(\mathbf{X}^e), Y^e) - \ell(\mathcal{M}_{\theta^{(T)}}(\mathbf{X}^e), Y^e)\|] \\ &\stackrel{(\text{assumption 2})}{\leq} C \mathbb{E}_{e \sim \xi} \mathbb{E}_{\mathbf{X}^e} [d(\mathcal{M}_{\theta^{(S)}}, \mathcal{M}_{\theta^{(T)}})] \\ &\leq C \epsilon \end{aligned}$$
 1005

1014
$$\text{err}(\mathcal{M}_{\theta^{(S)}}) = \mathcal{L}(\xi_{\text{all}}, \mathcal{M}_{\theta^{(S)}}) - \mathcal{L}(\xi_{\text{avail}}, \mathcal{M}_{\theta^{(S)}})$$
 1015

1016 Adding and subtracting the teacher's terms:

1017
$$\begin{aligned} \text{err}(\mathcal{M}_{\theta^{(S)}}) &= [\mathcal{L}(\xi_{\text{all}}, \mathcal{M}_{\theta^{(S)}}) - \mathcal{L}(\xi_{\text{all}}, \mathcal{M}_{\theta^{(T)}})] \\ &\quad + [\mathcal{L}(\xi_{\text{all}}, \mathcal{M}_{\theta^{(T)}}) - \mathcal{L}(\xi_{\text{avail}}, \mathcal{M}_{\theta^{(T)}})] \\ &\quad + [\mathcal{L}(\xi_{\text{avail}}, \mathcal{M}_{\theta^{(T)}}) - \mathcal{L}(\xi_{\text{avail}}, \mathcal{M}_{\theta^{(S)}})] \end{aligned}$$
 1018

1019 We can apply

1020
$$\text{err}(\mathcal{M}_{\theta^{(S)}}) \leq \text{err}(\mathcal{M}_{\theta^{(T)}}) + 2C \epsilon \quad (10)$$
 1021

1022 \square

1026 **Remark 2.** Using a teacher with strong OOD performance can reduce the $\text{err}(\mathcal{M}_{\theta^{(T)}})$ and with a
 1027 strong distillation ϵ is small, thereby KD yielding a provably smaller OOD gap.
 1028

1029 By Theorem 4.1, the OOD generalization gap of any classifier $f = g \circ h$ is controlled by its feature
 1030 variation $V_{\text{sup}}(h, \mathcal{E}_{\text{avail}})$. We assume that the teacher f_T has learned a more invariant representation
 1031 than the naive student f_N , i.e.,

$$1032 \quad V_{\text{sup}}(h_T, \mathcal{E}_{\text{avail}}) \leq V_{\text{sup}}(h_N, \mathcal{E}_{\text{avail}}) - \Delta, \quad \Delta > 0. \quad (11)$$

1033 Since the expansion function $s(\cdot)$ is monotone, Theorem 4.1 implies
 1034

$$1035 \quad \text{err}(f_T) \leq C s(V_{\text{sup}}(h_T)) < C s(V_{\text{sup}}(h_N)) \approx \text{err}(f_N), \quad (12)$$

1036 i.e., the teacher’s OOD error is strictly smaller than that of the naive student.
 1037

1038 Knowledge distillation further ensures that the student f_S remains close to the low-variation teacher
 1039 f_T , and therefore inherits its small OOD error up to a small approximation term.
 1040

We define the auxiliary risk as follows:
 1041

$$1042 \quad R_{\text{aux}}^{(\ell)}(\theta^{(S)}, \phi^{(\ell)}; e) := \mathbb{E}_{(\mathcal{X}^e, \mathcal{Y}^e)} \left[\ell_{\text{aux}}(A_{\text{aux}}^{(\ell)}(h_{\ell}(\mathcal{X}^e; \theta^{(S)}); \phi^{(\ell)}), \mathcal{Y}^e) \right]$$

1044 C.2 CONVERGENCE ANALYSIS OF INTERLEAVING STUDENT FORECASTER TRAINING

1045 The overall optimization problem can be reformulated as
 1046

$$1047 \quad \overbrace{\arg \min_{\mathbf{w}_f} \mathcal{L}_{\text{focs}} \left(\underbrace{\arg \min_{\theta} \mathcal{L}_{\text{tot}}^{(s)}(\theta, \mathbf{w}_f), \mathcal{D}_v}_{\text{inner-level}} \right)}^{\text{outer-level}}$$

1052 **Theorem 2 (Forecaster Convergence Analysis).** Considering the forecaster loss function
 1053 $\mathcal{L}_{\text{focs}}$ is Lipschitz-smooth with constant μ and the gradient associated with $\mathcal{L}_{\text{tot}}^{(s)}$ and $\mathcal{L}_{\text{focs}}$
 1054 have σ -bounded gradients w.r.t training point \mathbf{x}_i . Let the student model learning rate η satisfies
 1055 $\eta = \min\{1, \frac{k}{T}\}$ for some $k > 0$, such that $\frac{k}{T} < 1$, and $\eta_{\mathbf{w}}, 1 \leq t \leq N$ is a monotone de-
 1056 scence sequence, $\eta_{\mathbf{w}} = \min\{\frac{1}{\mu}, \frac{c}{\sigma\sqrt{T}}\}$ for some $c > 0$, such that $\frac{\sigma\sqrt{T}}{c} \geq \mu$ and $\sum_{t=1}^{\infty} \eta_{\mathbf{w}} \leq \infty$,
 1057 $\sum_{t=1}^{\infty} \eta_{\mathbf{w}}^2 \leq \infty$, then the forecaster can achieve $\mathbb{E}[\|\mathcal{L}_{\text{focs}}(\theta_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v)\|_2^2] \leq \epsilon$ in $\mathcal{O}(\frac{1}{\epsilon^2})$.
 1058 This can be reformulated further as $\min_{0 \leq t \leq T} \mathbb{E}[\|\mathcal{L}_{\text{focs}}(\theta_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v)\|_2^2] \leq \mathcal{O}(\frac{C}{\sqrt{T}})$.
 1059

1060 Starting at $\theta_0^{(S)}$ and \mathbf{w}_f^0 , a single gradient update can be written as follows:
 1061

$$1064 \quad \theta_t^{(S)} \leftarrow \theta_{t-1}^{(S)} - \eta \nabla_{\theta_{t-1}^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\cdot; \theta_{t-1}^{(S)}, \mathbf{w}_f^t) \quad (13)$$

$$1066 \quad \text{where } \mathbf{w}_f^t \leftarrow \mathbf{w}_f^{t-1} - \eta_{\mathbf{w}} \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\theta_{t-1}^{(S)}, \mathbf{w}_f^{t-1}) \quad (14)$$

1068 The gradient update for the forecaster weights can be reformulated as:
 1069

$$1070 \quad \mathbf{w}_f^t \leftarrow \mathbf{w}_f^{t-1} - \eta_{\mathbf{w}} \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\theta_{t-1}^{(S)}, \mathbf{w}_f^{t-1}; \mathcal{D}_v)$$

1072 which can be rewritten as:
 1073

$$1074 \quad \mathbf{w}_f^t \leftarrow \mathbf{w}_f^{t-1} - \eta_{\mathbf{w}} \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\theta_{t-1}^{(S)}, \mathbf{w}_f^{t-1}; \mathcal{D}_v) |_{\Xi_t}$$

1076 Given the minibatch Ξ_t is drawn uniformly from the entire data set, we can rewrite the update
 1077 equation as:
 1078

$$1079 \quad \mathbf{w}_f^t \leftarrow \mathbf{w}_f^{t-1} - \eta_{\mathbf{w}} [\nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\theta_{t-1}^{(S)}, \mathbf{w}_f^{t-1}; \mathcal{D}_v) + \varepsilon^{(t-1)}] \quad (15)$$

1080 where $\varepsilon^{(t-1)} = \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}, \mathbf{w}_f^{t-1}; \mathcal{D}_v) |_{\Xi_t} - \nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}, \mathbf{w}_f^{t-1}; \mathcal{D}_v)$.
 1081

1082 Note that $\varepsilon^{(t-1)}$ are i.i.d random variable with finite variance, since Ξ_t are drawn i.i.d with a finite
 1083 number of samples. Also, since the samples are drawn uniformly at random, there is no introduced
 1084 bias, thereby $\mathbb{E}[\varepsilon^{(t-1)}] = 0$.
 1085

1086

$$\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v) = \{\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v)\} \quad (16)$$

1087

$$+ \{\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v)\} \quad (17)$$

1092 Utilizing the property that the forecaster loss is Lipschitz smooth,
 1093

1094

$$\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) \leq \langle \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t)), (\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t) - \boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t)) \rangle + \frac{\mu}{2} \|\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t) - \boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t)\|_2^2$$

1095

1100 Since $\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t) - \boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t) = -\frac{\eta}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\theta}_t^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}; \mathbf{w}_f^t)$ we have along with the gradient
 1101 bounds,
 1102

1103

$$\|\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v)\| \leq \eta \sigma^2 + \frac{\mu}{2} \eta^2 \sigma^2 = \eta \sigma^2 (1 + \frac{\eta}{2} \mu) \quad (18)$$

1104

1105 Now, via utilizing Lipschitz continuity of $\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))$, we have the following:
 1106

1107

$$\begin{aligned} & \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v) \\ & \leq \langle \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v), \mathbf{w}_f^t - \mathbf{w}_f^{t-1} \rangle + \frac{\mu}{2} \|\mathbf{w}_f^t - \mathbf{w}_f^{t-1}\|_2^2 \\ & = \langle \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t); \mathcal{D}_v), -\eta_{\mathbf{w}} [\nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v) + \varepsilon^{(t-1)}] \rangle \\ & \quad + \frac{\mu \eta_{\mathbf{w}}^2}{2} \|\nabla_{\mathbf{w}_f^{t-1}} \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v) + \varepsilon^{(t-1)}\|_2^2 \quad (\text{from Eq. (15)}) \\ & = - \left(\eta_{\mathbf{w}}^2 - \frac{\mu \eta_{\mathbf{w}}^2}{2} \right) \|\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v)\|_2^2 \\ & \quad + \frac{\mu \eta_{\mathbf{w}}^2}{2} \|\varepsilon^{(t-1)}\|_2^2 - (\eta_{\mathbf{w}} - \mu \eta_{\mathbf{w}}^2) \langle \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v), \varepsilon^{(t-1)} \rangle. \end{aligned}$$

1124 Summing above inequalities and rearranging terms, we obtain
 1125

1126

$$\sum_{t=1}^T \left(\eta_{\mathbf{w}}^2 - \frac{\mu \eta_{\mathbf{w}}^2}{2} \right) \|\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^{t-1}); \mathcal{D}_v)\|_2^2 \leq \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_f^1); \mathcal{D}_v) - \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_T^{(S)}(\mathbf{w}_f^T); \mathcal{D}_v) \quad (19)$$

1131

$$+ \sum_{t=1}^T \eta \sigma^2 (1 + \frac{\eta \mu}{2}) - \sum_{t=1}^T (\eta_{\mathbf{w}} - \mu \eta_{\mathbf{w}}^2) \langle \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_f^1); \mathcal{D}_v), \varepsilon^{(t-1)} \rangle \quad (20)$$

1134 Taking expectations with respect to $\varepsilon(N)$ on both sides of Eq. 32, we obtain:
1135

1136
$$\sum_{t=1}^T \left(\eta_{\mathbf{w}} - \frac{\mu \eta_{\mathbf{w}}^2}{2} \right) \mathbb{E}_{\varepsilon(N)} \left\| \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_t), \mathcal{D}_v) \right\|_2^2 \leq \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v) + \sum_{t=1}^T \eta \sigma^2 (1 + \eta \mu / 2) + \frac{L \sigma^2}{2} \sum_{t=1}^T \eta_{\mathbf{w}}^2,$$

1137
1138 since
1139
$$\mathbb{E}_{\varepsilon(N)} \langle \nabla L_{\text{meta}}(\Theta^{(t)}), \varepsilon^{(t)} \rangle = 0, \quad \mathbb{E} \|\varepsilon^{(t)}\|_2^2 \leq \delta^2.$$

1140
1141 Furthermore, we deduce:
1142
1143
$$\min_t \mathbb{E} \left[\left\| \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_t), \mathcal{D}_v) \right\|_2^2 \right] \leq \frac{\sum_{t=1}^T \left(\eta_{\mathbf{w}} - \frac{\mu \eta_{\mathbf{w}}^2}{2} \right) \mathbb{E}_{\varepsilon(N)} \left\| \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_t), \mathcal{D}_v) \right\|_2^2}{\sum_{t=1}^T \left(\eta_{\mathbf{w}} - \frac{\mu \eta_{\mathbf{w}}^2}{2} \right)}$$

1144
1145
$$\leq \frac{1}{\sum_{t=1}^T (2\eta_{\mathbf{w}} - \mu\eta_{\mathbf{w}}^2)} \left[2\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v) + \sum_{t=1}^T \eta \sigma^2 (2 + \eta \mu) + \mu \delta^2 \sum_{t=1}^T \eta_{\mathbf{w}}^2 \right]$$

1146
1147
$$\leq \frac{1}{T\eta_{\mathbf{w}}} \left[2\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v) + \eta \sigma^2 T (2 + \mu) + \mu \delta^2 \sum_{t=1}^T \eta_{\mathbf{w}}^2 \right]$$

1148
1149
$$= \frac{2\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v)}{T\eta_{\mathbf{w}}} + \frac{2\eta \sigma^2 (2 + \mu)}{\eta_{\mathbf{w}}} + \mu \delta^2 \frac{1}{T} \sum_{t=1}^T \eta_{\mathbf{w}}$$

1150
1151
$$\leq \frac{2\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v)}{T\eta_{\mathbf{w}}} + \frac{2\eta \sigma^2 (2 + \mu)}{\eta_{\mathbf{w}}} + \mu \delta^2 \eta_{\mathbf{w}}$$

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
$$= \frac{\mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_1^{(S)}(\mathbf{w}_1), \mathcal{D}_v)}{T} \max \left\{ \mu, \frac{\delta \sqrt{T}}{c} \right\} + \min \left\{ 1, \frac{k}{T} \right\} \max \left\{ \mu, \frac{\delta \sqrt{T}}{c} \right\} \sigma^2 (2 + \mu) + \mu \delta^2 \min \left\{ \frac{1}{\mu}, \frac{c}{\sigma \sqrt{T}} \right\}$$

1165
1166
1167
1168
$$\leq \frac{\delta L_{\text{meta}}(w^{(1)}(\Theta^{(1)}))}{c\sqrt{T}} + \frac{k\delta\sigma^2(2 + \mu)}{c\sqrt{T}} + \frac{\mu\delta c}{\sqrt{T}} = \mathcal{O} \left(\frac{1}{\sqrt{T}} \right).$$

1169
1170

1171 **Theorem 3 (Forecaster Convergence Analysis).** Considering the training loss function $\mathcal{L}_{\text{tot}}^{(s)}$
1172 is Lipschitz-smooth with constant μ and the gradient associated with $\mathcal{L}_{\text{tot}}^{(s)}$ and $\mathcal{L}_{\text{focs}}$ have σ -
1173 bounded gradients w.r.t training point \mathbf{x}_i . Let the student model learning rate η satisfies $\eta =$
1174 $\min\{1, \frac{k}{T}\}$ for some $k > 0$, such that $\frac{k}{T} < 1$, and $\eta_{\mathbf{w}}, 1 \leq t \leq N$ is a monotone descent
1175 sequence, $\eta_{\mathbf{w}} = \min\{\frac{1}{\mu}, \frac{c}{\sigma\sqrt{T}}\}$ for some $c > 0$, such that $\frac{\sigma\sqrt{T}}{c} \geq \mu$ and $\sum_{t=1}^{\infty} \eta_{\mathbf{w}} \leq \infty$,
1176 $\sum_{t=1}^{\infty} \eta_{\mathbf{w}}^2 \leq \infty$, then $\lim_{t \rightarrow \infty} \mathbb{E}[\nabla \mathcal{L}_{\text{tot}}^{(s)}(\cdot; \boldsymbol{\theta}_{t-1}^{(S)}, \mathbf{w}_f^t)] = 0$

1177
1178 *Proof.* The model parameter update can be written as
1179

$$\boldsymbol{\theta}_t^{(S)} = \boldsymbol{\theta}_{t-1}^{(S)} - \eta \nabla_{\boldsymbol{\theta}_{t-1}^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\cdot; \boldsymbol{\theta}_{t-1}^{(S)}, \mathbf{w}_f^t) \quad (21)$$

1180
1181 Using different notation, we can rewrite it as follows:
1182

$$\boldsymbol{\theta}_t^{(S)} = \boldsymbol{\theta}_{t-1}^{(S)} - \eta \nabla_{\boldsymbol{\theta}_{t-1}^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t)) \quad (22)$$

1183
1184 \square
1185

1188 This can be further rewritten as:
 1189

$$1190 \quad \theta_t^{(S)} = \theta_{t-1}^{(S)} - \eta \nabla_{\theta_{t-1}^{(S)}} \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)) \mid_{\Psi_{t-1}} \quad (23)$$

1193 where Ψ_{t-1} is a mini-batch drawn uniformly at random we can rewrite the update equation as
 1194

$$1195 \quad \theta_t^{(S)} = \theta_{t-1}^{(S)} - \eta \nabla_{\theta_{t-1}^{(S)}} [\mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)) + \Psi_{t-1}] \quad (24)$$

1197 Note that Ψ_{t-1} is an i.i.d. random variable with finite variance, since each Ψ_t is drawn i.i.d. from a
 1198 finite sample set. Furthermore, $\mathbb{E}[\Psi_{t-1}] = 0$ (sampling is uniform), and $\mathbb{E}[\|\Psi_{t-1}\|_2^2] \leq \rho^2$.
 1199

1200 The inner student optimization $\mathcal{L}_{\text{tot}}^{(s)}(\theta^{(S)}(\mathbf{w}_f))$ is Lipschitz-smooth with constant L and has
 1201 σ -bounded gradients. We analyze the difference

$$1202 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^{t+1})) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)).$$

1205 We decompose this as
 1206

$$1207 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^{t+1})) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)) \quad (25)$$

$$1208 \quad = \underbrace{\mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^{t+1})) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^t))}_{\text{(A) forecaster-update term}} + \underbrace{\mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^t)) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t))}_{\text{(B) student-update term}}. \quad (26)$$

1212 **Bounding Term (A)** Using the update rule for forecaster weights \mathbf{w}_f and chain rule:
 1213

$$1214 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^{t+1})) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^t)) = \eta_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^n (\mathbf{w}_{f,i}^{t+1} - \mathbf{w}_{f,i}^t) \mathcal{L}_{\text{tot},i}^{(s)}(\theta_t^{(S)}) \quad (27)$$

$$1217 \quad = \frac{1}{n} \sum_{i=1}^n (\nabla_{\mathbf{w}_{f,i}} \mathcal{L}_{\text{focs}}(\theta_t^{(S)}) + \varepsilon^{(t-1)}) \mathcal{L}_i^{(s)}(\theta_t^{(S)}), \quad (28)$$

1220 where $\varepsilon(t)$ is unbiased stochastic forecaster noise: $\mathbb{E}[\varepsilon(t)] = 0$.

1221 **Bounding Term (B)** By L -smoothness of $\mathcal{L}_{\text{tot}}^{(s)}$:

$$1223 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^t)) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)) \quad (29)$$

$$1225 \quad \leq \langle \nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}), \theta_t^{(S)} - \theta_{t-1}^{(S)} \rangle + \frac{\mu}{2} \|\theta_t^{(S)} - \theta_{t-1}^{(S)}\|_2^2. \quad (30)$$

1228 Using the student SGD update $\theta_t^{(S)} = \theta_{t-1}^{(S)} - \eta(\nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}) + \Psi_{t-1})$, we obtain
 1229

$$1230 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}) \quad (31)$$

$$1232 \quad = -(\eta - \frac{\mu\eta^2}{2}) \|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)})\|_2^2 + \frac{\mu\eta^2}{2} \|\Psi_{t-1}\|_2^2 - (\eta - \mu\eta^2) \langle \nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}), \Psi_{t-1} \rangle. \quad (32)$$

1234 Putting terms (A) and (B) together yields:
 1235

$$1236 \quad \mathcal{L}_{\text{tot}}^{(s)}(\theta_t^{(S)}(\mathbf{w}_f^{t+1})) - \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}(\mathbf{w}_f^t)) \quad (33)$$

$$1238 \quad \leq \eta_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^n (\nabla_{\mathbf{w}_{f,i}} \mathcal{L}_{\text{focs}}(\theta_t^{(S)}) + \varepsilon^{(t-1)}) \mathcal{L}_{\text{tot},i}^{(s)}(\theta_t^{(S)}) \quad (34)$$

$$1241 \quad - (\eta - \frac{\mu\eta^2}{2}) \|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)})\|_2^2 + \frac{\mu\eta^2}{2} \|\Psi_{t-1}\|_2^2 - (\eta - \mu\eta^2) \langle \nabla \mathcal{L}_{\text{tot}}^{(s)}(\theta_{t-1}^{(S)}), \Psi_{t-1} \rangle. \quad (35)$$

1242 Taking expectations and using $\mathbb{E}[\varepsilon^t] = 0$, $\mathbb{E}[\Psi_t] = 0$, $\mathbb{E}[\|\Psi_t\|_2^2] \leq \rho^2$, we obtain:

$$1244 \mathbb{E}[\mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)})] - \mathbb{E}[\mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)})] \quad (36)$$

$$1246 \leq \eta_{\mathbf{w}} \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \|\nabla_{\mathbf{w}_{f,i}} \mathcal{L}_{\text{focs}}\| \cdot \|\mathcal{L}_{\text{tot},i}^{(s)}(\boldsymbol{\theta}_t^{(S)})\| \right] \quad (37)$$

$$1249 - \eta \mathbb{E}[\|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)})\|_2^2] + \frac{\mu\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)})\|_2^2 + \|\Psi_{t-1}\|_2^2]. \quad (38)$$

1251 Summing over $t = 1$ to ∞ gives

$$1253 \sum_{t=1}^{\infty} \eta \mathbb{E}[\|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)})\|_2^2] \leq \sum_{t=1}^{\infty} \frac{\mu\eta^2}{2} (\sigma^2 + \rho^2) + \sum_{t=1}^{\infty} \eta_{\mathbf{w}} \sigma^2 < \infty. \quad (39)$$

1256 The last inequality holds due to the fact that $\sum_{t=0}^{\infty} \eta^2 < \infty$ and $\sum_{t=0}^{\infty} \eta_{\mathbf{w}} < \infty$.

1257 Hence,

$$1260 \sum_{t=1}^{\infty} \eta \mathbb{E}[\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2] < \infty \quad (40)$$

1262 Considering the inequality

$$1265 |\|(x\| + \|y\|)(\|x\| - \|y\|)\| \leq \|x + y\| \|x - y\|,$$

$$1268 \left| \mathbb{E}[\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2] - \mathbb{E}[\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2] \right| \quad (41)$$

$$1270 = \left| \mathbb{E} \left[(\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 + \|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2) \right. \right. \quad (42)$$

$$1272 \quad \left. \left. - (\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 - \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2) \right] \right| \quad (43)$$

$$1273 \leq \mathbb{E} \left[\|\|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 + \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2 \right] \quad (44)$$

$$1275 \quad \cdot \left| \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 - \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2 \right| \quad (45)$$

$$1277 \leq \mathbb{E} \left[\left| \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 + \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2 \right|_2 \right] \quad (46)$$

$$1279 \quad \cdot \left| \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 - \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2 \right|_2 \quad (47)$$

$$1281 \leq \mathbb{E} \left[(\|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 + \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2) \right. \quad (48)$$

$$1283 \quad \left. \cdot \left| \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_t^{(S)}(\mathbf{w}_f^{t+1}))\|_2^2 - \|\nabla \mathcal{L}^{(s)}(\boldsymbol{\theta}_{t-1}^{(S)}(\mathbf{w}_f^t))\|_2^2 \right|_2 \right] \quad (49)$$

$$1284 \leq 2\mu\sigma \mathbb{E} \left[\left| (\boldsymbol{\theta}_t^{(S)}, \mathbf{w}_f^{t+1}) - (\boldsymbol{\theta}_{t-1}^{(S)}, \mathbf{w}_f^t) \right|_2 \right] \quad (50)$$

$$1286 \leq 2L\sigma\eta\eta_{\mathbf{w}_f} \mathbb{E} \left[\left| (\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}) + \Psi_{t-1}, \nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t+1}^{(S)}) + \varepsilon^{(t)}) \right|_2 \right] \quad (51)$$

$$1288 \leq 2L\sigma\eta\eta_{\mathbf{w}_f} \mathbb{E} \left[\sqrt{\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}) + \Psi_{t-1}\|_2^2} + \sqrt{\|\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t+1}^{(S)}) + \varepsilon^{(t)}\|_2^2} \right] \quad (52)$$

$$1290 \leq 2L\sigma\eta\eta_{\mathbf{w}_f} \sqrt{\mathbb{E}[\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)}) + \Psi_{t-1}\|_2^2] + \mathbb{E}[\|\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t+1}^{(S)}) + \varepsilon^{(t)}\|_2^2]} \quad (53)$$

$$1292 \leq 2L\sigma\eta\eta_{\mathbf{w}_f} \sqrt{\mathbb{E}[\|\nabla \mathcal{L}_{\text{tot}}^{(s)}(\boldsymbol{\theta}_t^{(S)})\|_2^2] + \mathbb{E}[\|\Psi_{t-1}\|_2^2] + \mathbb{E}[\|\varepsilon^{(t)}\|_2^2] + \mathbb{E}[\|\nabla \mathcal{L}_{\text{focs}}(\boldsymbol{\theta}_{t+1}^{(S)})\|_2^2]} \quad (54)$$

$$1294 \leq 2L\sigma\eta\eta_{\mathbf{w}_f} \sqrt{2\delta^2 + 2\sigma^2} \quad (55)$$

$$1295 \leq 2\sqrt{2}(\delta^2 + \sigma^2) L\sigma\eta\eta_{\mathbf{w}_f}, \quad (56)$$

1296 where η and η_{w_f} are the step sizes for the student parameters $\theta^{(S)}$ and forecaster weights w_f ,
 1297 respectively, and δ^2, σ^2 bound the second moments of the corresponding gradients and noise terms.
 1298

1299 C.3 TRAINING DYNAMICS OF INTERLEAVED SCHEDULE: AN EXAMPLE

1300 As shown in Figure 5, In the early phase of the distillation process, forecaster’s predictive capability
 1301 starts at near random. However, forecaster predictions start to stabilize $\geq 60\%$ within the first 1000
 1302 minibatches (Total: 7500) of training. The trend is reflected in the left hand side plot, where initially
 1303 our method performs slightly inferior to Vanilla KD for the initial 1000 steps of the training, but
 1304 surpasses Vanilla KD thereafter. The post-hoc adjustment to the forecaster outputs is a key aspect in
 1305 mitigating initial noise to a great extent. We believe that a warm-up phase for initial $m\%$ of training
 1306 steps, where forecaster weights are overridden by β can further stabilize early training.
 1307

1320 Figure 5: Training dynamics (accuracy plot) for one held-out domain of OfficeHome. The left plot
 1321 showcases OOD accuracy during a training run, comparing Vanilla KD with our method. Similarly,
 1322 the right plot showcases forecaster’s accuracy on its objective to predict whether the student’s pre-
 1323 diction is correct.

1324 D ADDITIONAL EXPERIMENTAL RESULTS

1325 D.1 SELECTION OF ROBUST DG ALGORITHM

ALGORITHM	OFFICEHOME	VLCS	PACS	TERRAINC.	AVG.
ERM (Vapnik, 1998)	68.4	77.6	86.4	48.6	70.3
GROUPDRO (Sagawa et al., 2020)	68.6	78.0	87.0	46.7	70.1
MIXUP (Yan et al., 2020)	70.4	78.0	87.5	46.1	70.5
MLDG (Li et al., 2017b)	56.3	72.1	68.1	33.5	57.5
CORAL (Sun & Saenko, 2016)	68.6	77.1	87.7	48.4	70.5
MMD (Li et al., 2018a)	69.2	77.5	85.6	48.7	70.3
DANN (Ganin et al., 2016)	69.7	79.7	86.3	47.4	70.8
CDANN (Li et al., 2018b)	70.0	79.0	86.0	48.3	70.8

1338 Table 5: Average OOD classification accuracies (%) for all datasets with ResNet-152. Model
 1339 selection: training-domain validation set.
 140

1341 D.2 DOMAIN-WISE RESULTS ON BENCHMARK DATASETS

1342 Tables 7 – 14 report quantitative figures for domain generalization on the OfficeHome (Venkateswara
 1343 et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013), and TerraIncognita (Beery et al.,
 1344 2018) datasets. We use the ResNet-18 as the primary network in all experiments. Tables 7 –
 1345 10 use ResNet-152 as the teacher network, while Tables 11 – 14 use ViT-L/16 as the teacher
 1346 network. Each column in the table represents the held-out domain.

1347 D.3 SENSITIVITY ANALYSIS ON HYPERPARAMETERS $\mu^*, \varsigma^*, T_s, T_f$ AND β

1348 Tables 15 – 17 report quantitative figures for domain generalization on the OfficeHome Dataset as
 1349 a function of various configurations of hyperparameters associated to our method: (1) forecaster

ALGORITHM	OFFICEHOME	VLCS	PACS	TERRAINC.	AVG.
ERM (Vapnik, 1998)	71.6	78.4	83.9	38.8	68.2
GROUPDRO (Sagawa et al., 2020)	71.5	77.3	80.3	33.7	65.7
MIXUP (Yan et al., 2020)	72.2	76.7	81.6	42.5	68.3
MLDG (Li et al., 2017b)	70.5	76.3	81.3	40.0	67.0
CORAL (Sun & Saenko, 2016)	71.9	78.2	84.4	40.8	68.8
MMD (Li et al., 2018a)	71.3	77.5	81.9	38.8	67.4
DANN (Ganin et al., 2016)	72.1	78.7	84.3	43.1	69.6
CDANN (Li et al., 2018b)	71.4	77.2	78.6	42.9	67.5

Table 6: Average OOD classification accuracies (%) for all datasets with ViT-L/16. Model selection: training-domain validation set.

METHOD	A	C	P	R	Avg.
ERM (Vapnik, 1998)	50.4	48.3	65.4	69.4	58.4
MIXUP (Yan et al., 2020)	51.5	48.6	70.3	70.2	60.2
KD (Hinton et al., 2015b)	52.7	49.7	72.1	74.2	62.2
KD+F+ADJ.	54.0	51.3	71.6	75.1	63.0

Table 7: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher network.

mean (μ^*) (2) forecaster std (ς^*) and (3) interleaved minibatch schedule (T_s, T_f), in isolation. Additionally, Table 18 reports the sensitivity in OOD performance on OfficeHome with change in vanilla KD loss coefficient (β).

D.4 DOMAIN-WISE RESULTS ON COLOREDMNIST

Table 19 reports quantitative figures on ColoredMNIST (Arjovsky et al., 2020). We include ColoredMNIST to evaluate robustness under correlation shift. These results demonstrate that our proposed adaptive KD method is not limited to benchmarks where domain shifts alter the image distribution, and not the underlying image to label mapping. It also extends to benchmarks like ColoredMNIST where domain changes influence the image to label mapping by introducing spurious correlations between color and label. Here, OOD generalization is challenging for DG algorithms as they can overfit to the spurious correlations (Gulrajani & Lopez-Paz, 2020).

D.5 DOMAIN GENERALIZATION ON LARGER STUDENT NETWORK

Table 20 presents OOD accuracies on OfficeHome with a ResNet-50 student. As the student capacity increases, the gap in performance of vanilla KD and teacher network narrows down. This makes the average performance gain achieved with adaptive KD relatively smaller as compared to a small-capacity student.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

METHOD	A	C	P	S	Avg.
ERM (Vapnik, 1998)	77.2	73.3	94.7	73.2	79.6
CORAL (Sun & Saenko, 2016)	77.3	73.9	94.7	74.5	80.1
KD (Hinton et al., 2015b)	82.4	76.4	95.0	75.9	82.4
KD _{+F+ADJ.}	82.4	77.0	95.7	76.0	82.8

Table 8: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher network.

METHOD	C	S	L	V	Avg.
ERM (Vapnik, 1998)	96.6	58.5	65.4	65.9	71.6
DANN (Ganin et al., 2016)	96.9	58.8	65.7	66.2	71.9
KD (Hinton et al., 2015b)	97.2	60.0	67.9	68.8	73.5
KD _{+F+ADJ.}	98.3	61.3	69.8	69.2	74.7

Table 9: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher network.

METHOD	L100	L38	L43	L46	Avg.
ERM (Vapnik, 1998)	53.2	33.0	51.4	35.9	43.4
MMD (Li et al., 2018a)	47.4	37.4	50.0	35.5	42.6
KD (Hinton et al., 2015b)	50.3	36.8	52.7	34.6	43.6
KD _{+F+ADJ.}	56.7	33.6	54.4	35.5	45.1

Table 10: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher network.

METHOD	A	C	P	R	Avg.
ERM (Vapnik, 1998)	50.4	48.3	65.4	69.4	58.4
MIXUP (Yan et al., 2020)	51.5	48.6	70.3	70.2	60.2
KD (Hinton et al., 2015b)	55.4	53.0	72.6	74.0	63.7
KD _{+F+ADJ.}	56.3	52.6	72.5	73.2	63.7

Table 11: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-domain validation set. KD experiments use a ViT-L/16 teacher network.

METHOD	A	C	P	S	Avg.
ERM (Vapnik, 1998)	77.2	73.3	94.7	73.2	79.6
CORAL (Sun & Saenko, 2016)	77.3	73.9	94.7	74.5	80.1
KD (Hinton et al., 2015b)	79.7	75.6	95.9	74.6	81.4
KD _{+F+ADJ.}	78.3	74.7	95.9	75.0	81.0

Table 12: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain validation set. KD experiments use a ViT-L/16 teacher network.

1458
1459
1460
1461
1462
1463
1464

METHOD	C	S	L	V	AVG.
ERM (Vapnik, 1998)	96.6	58.5	65.4	65.9	71.6
DANN (Ganin et al., 2016)	96.9	58.8	65.7	66.2	71.9
KD (Hinton et al., 2015b)	95.9	61.5	69.7	73.6	75.2
KD _{F+ADJ.}	96.1	62.2	71.2	74.8	76.1

1465
1466
1467
Table 13: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain
validation set. KD experiments use a ViT-L/16 teacher network.1468
1469
1470
1471
1472
1473
1474
1475

METHOD	L100	L38	L43	L46	AVG.
ERM (Vapnik, 1998)	53.2	33.0	51.4	35.9	43.4
MMD (Li et al., 2018a)	47.4	37.4	50.0	35.5	42.6
KD (Hinton et al., 2015b)	47.4	32.1	50.2	32.7	40.6
OURS	55.7	36.8	52.4	34.2	44.7

1476
1477
Table 14: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-
domain validation set. KD experiments use a ViT-L/16 teacher network.1478
1479
1480
1481
1482
1483
1484
1485

(T_s, T_f)	A	C	P	R	Avg.
(1, 1)	54.0	51.3	71.6	75.1	63.0
(1, 10)	53.4	51.2	71.8	72.7	62.3
(10, 1)	53.0	51.5	71.3	72.7	62.2
(10, 10)	52.3	52.4	71.3	71.9	62.0

1486
1487
1488
1489
Table 15: OOD classification accuracy (%) on the OfficeHome dataset as a function of the interleaved
training schedule. Here, T_s refers to the number of minibatches the student network is trained
for, whereas T_f corresponds to the number of meta-minibatches, the forecaster is trained for in the
interleaved process.1490
1491
1492
1493
1494
1495
1496
1497
1498

μ^*	A	C	P	R	Avg.
0.1	52.2	51.8	69.9	71.9	61.5
0.3	53.6	51.6	70.7	72.3	62.1
0.5	54.0	51.3	71.6	75.1	63.0
0.7	52.9	51.1	71.6	72.2	62.0
0.9	53.0	51.0	71.3	72.1	61.9

1499
1500
1501
Table 16: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch mean (μ^*). Here, the standard deviation of adjusted forecaster logits, $\varsigma^* = 0.1$.1502
1503
1504
1505
1506
1507
1508
1509

ς^*	A	C	P	R	Avg.
0.01	52.5	51.5	71.5	72.4	62.0
0.1	54.0	51.3	71.6	75.1	63.0
0.5	53.6	52.0	71.9	72.3	62.5
1.0	54.7	51.2	72.0	73.0	62.8

1510
1511
Table 17: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch std (ς^*). For this analysis, the mean of adjusted forecaster logits, $\mu^* = 0.5$.

μ^*	A	C	P	R	Avg.
0.1	53.6	52.5	69.8	72.2	62.1
0.3	53.3	51.8	71.3	72.5	62.2
0.5	52.7	49.7	72.1	74.2	62.2
0.7	53.5	51.7	71.6	72.5	62.3
0.9	53.3	51.6	72.4	72.3	62.4

Table 18: OOD classification accuracy (%) in Vanilla KD on the OfficeHome dataset as a function of KD loss weight (β).

METHOD	+90 %	+80 %	-90 %	Avg.
TEACHER	73.0	74.4	10.2	52.5
ERM (Vapnik, 1998)	71.6	72.9	9.9	51.5
KD (Hinton et al., 2015b)	72.7	72.2	10.1	51.6
OURS	72.5	73.8	10.3	52.2

Table 19: OOD classification accuracy (%) on the ColoredMNIST dataset. Model selection: training-domain validation set. Model Architecture: CNN.

METHOD	A	C	P	R	Avg.
ERM (Vapnik, 1998)	59.0	49.9	73.2	75.4	64.4
MIXUP (Yan et al., 2020)	61.6	54.0	75.0	75.8	66.6
KD (Hinton et al., 2015b)	64.6	55.2	75.7	77.5	68.3
KD _{+F+ADJ.}	62.0	56.9	76.7	78.8	68.6

Table 20: OOD classification accuracy (%) on the OfficeHome dataset with a ResNet-50 student. Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher network.