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ABSTRACT

Domain generalization (DG) aims to learn a model that can generalize to unseen
i.e. out-of-distribution (OOD) test domain. While large-capacity networks trained
with sophisticated DG algorithms tend to achieve high robustness, they tend to be
impractical in deployment. Typically, Knowledge distillation (KD) can alleviate
this via an efficient transfer of knowledge from a robust teacher to a smaller stu-
dent network. Throughout our experiments, we find that vanilla KD already pro-
vides strong OOD performance, often outperforming standalone DG algorithms.
Motivated by this observation, we propose an adaptive distillation strategy that
utilizes early layer predictions and uncertainty measures to learn a meta network
that effectively rebalances supervised and distillation losses as per sample dif-
ficulty. Our method adds no inference overhead and consistently outperforms
canonical ERM, vanilla KD, and competing DG algorithms across OOD general-
ization benchmarks.

1 INTRODUCTION

Deploying machine learning models in real-world scenarios requires robustness to distribution shifts
(Koh et al., 2021; Huang et al., 2021), often referred to as domain generalization (DG) (Zhao et al.,
2020; Robey et al., 2021) or out-of-distribution (OOD) generalization (Wald et al., 2021; Montasser
et al., 2024). While high-capacity models trained with specialized DG algorithms (Gulrajani &
Lopez-Paz, 2020) can achieve strong robustness, they are often prohibitively expensive in terms of
computation and memory, making them impractical for deployment in resource-constrained envi-
ronments.

Knowledge distillation (KD) (Hinton et al., 2015a;b; Lopes et al., 2017), has emerged as a standard
approach for improving efficiency by transferring knowledge from a large teacher model to a com-
pact student model. Beyond efficiency aspect of KD, it has recently been explored for improving
OOD robustness, where vanilla KD, as shown in (Zhou et al., 2022; 2023; Huang et al., 2023) tends
to yield better OOD performance compared to models trained solely with DG algorithms. However,
there is still room for improvement, as KD typically treats all samples uniformly and often overre-
lies on the teacher’s dark knowledge, making it prone to teacher-specific biases. Moreover, existing
works that adapt KD for domain generalization primarily focus on using adversarially trained teach-
ers (Nasery et al., 2022), multimodal teacher networks for additional supervision Huang et al. (2023)
or ensemble of domain-specific teachers Zhao et al. (2025), leaving the role of the student network
underexplored.

To address these limitations, we propose an adaptive distillation framework that modulates distilla-
tion loss based on sample difficulty via with a lightweight forecaster meta-network. The forecaster
leverages early layer representations and uncertainty measures to estimate sample difficulty and dy-
namically reweight the distillation loss. This enables the student to selectively trust the teacher where
appropriate while emphasizing supervision from ground-truth labels for harder or biased samples.
Crucially, our design introduces no additional inference-time overhead as the forecaster is discarded
post-training, making it well-suited for practical deployment.

Our work makes the following contributions:

• We identify the limitations, and opportunities for improvement in standard KD under do-
main shifts, noting that uniform treatment of samples and blind reliance on the teacher
hinder OOD robustness.
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• We propose an adaptive distillation framework with a forecaster meta-network that lever-
ages early readouts to dynamically assign instance-specific weights in the loss function
based on sample difficulty.

• We show that our approach improves student robustness with affecting deployment effi-
ciency: it adds no inference-time overhead while consistently improving OOD generaliza-
tion across multiple benchmarks.

2 BACKGROUND AND RELATED WORK

Instance-Specific Learning. Prior works have explore instance-specific learning to improve neu-
ral network training under noisy conditions, via instance-specific parameters such as temperature,
smoothing factors, or weights. Saxena et al. (2019); Wang et al. (2018); Algan & Ulusoy (2021) in-
troduce learnable sample and class weights to control the importance of each sample in the learning
process depending on sample reliability and label noise. Ren et al. (2019); Shu et al. (2019); Raghu
et al. (2021); Jain et al. (2024) adopt meta-learning (Finn et al., 2017) using small unbiased meta-
samples to learn weighing functions to obtain instance-specific weights to address class imbalance,
label noise and robustness. In the context of knowledge distillation, Zhao et al. (2021) propose a
curriculum-based distillation with instance-level sequence learning. Iliopoulos et al. (2022) presents
reweighing strategy for the student loss in knowledge distillation with unlabeled data, to eliminate
potential biases from the teacher network. Sivasubramanian et al. (2022) present a bi-level objec-
tive to learn instance-specific combination of teacher-matching and supervised objectives to learn
student models that are more accurate. In this work, we introduce a meta-network which guides the
student via instance-specific weighing in the KD objective. Further, we interleave the training of the
meta-network with the student, without requiring complex meta-learning.

Early Readouts. Prior works on Early Readouts majorly focus on early-exiting (Han et al., 2021;
Xu & McAuley, 2023; Laskaridis et al., 2021; Matsubara et al., 2022) with the aim to reduce infer-
ence cost, allowing samples to "exit" at intermediate layers via auxiliary classifiers. These include
dynamic early-exiting and static early-exiting mechanisms. Dynamic methods focus on balancing
trade-off between speed and accuracy at inference, by early-exit mechanisms based on dynamics of
internal classifiers, such as calibrated prediction confidence and entropy(Xin et al., 2020; Liu et al.,
2020; Schwartz et al., 2020; Zhou et al., 2020), class mean of sample predictions (Görmez et al.,
2022). In contrast to dynamic mechanisms, Sun et al. (2022) propose a hash-based early exiting for
sequence learning tasks, where tokens are assigned to fixed exiting layers using a hash function. In
the context of KD, Tiwari et al. (2023) use early readout errors to detect spurious feature reliance,
and propose a weighing scheme to reweigh the distillation loss to reduce feature-specific bias. In
this work, we re-purpose early readouts not for exiting, but as signals to guide our meta-network,
forecaster, in assigning instance-specific weights in KD for OOD robustness, while avoiding the
need for handcrafted weighing functions.

Distillation-based Domain Generalization. Distillation has shown promise in OOD generalization
by allowing knowledge transfer from a robust teacher network, as opposed to training student net-
work solely on a DG Algorithm (Wang et al., 2021; Huang et al., 2023). However, prior works on
KD for Domain Generalization focus on teacher network or the teacher-student interaction. Wang
et al. (2021) propose gradient based regularization to lower the mapping difficulty from the teacher
to the student. Nasery et al. (2022) utilize adversarially fine-tuned teacher networks to improve
knowledge transfer to student for OOD generalization. Huang et al. (2023) leverage CLIP teacher
model along with a proposed text-based regularization scheme to enable better transfer from teacher.
Zhao et al. (2025) leverage domain-specific teachers to improve student generalizability in an online
KD setting. In contrast to prior works, our method explores student-centric adaptation, leveraging
early layer prediction confidences to navigate the distillation process.

3 NOTATION AND PROBLEM SETUP

Notations. The first set of n natural numbers {1, 2, . . . , n} is denoted by [n]. The n-dimensional
real vector space is denoted by Rn. Vectors are typeset in lowercase bold (e.g., x); matrices are in
uppercase bold (e.g., X); and elements are referenced by subscripts (e.g., xi, Xij). When needed
for clarity, elements will be referenced by subscripts on square brackets (e.g., [x1]i, [X2]ij). We
denote the sigmoid function by σ(x) = (1 + e−x)−1.
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Knowledge Distillation. Knowledge distillation (Hinton et al., 2015b) provides an efficient frame-
work for training compact models without the need to optimize over large-scale networks, thereby
reducing both memory footprint and computational overhead. In this paradigm, the compact model
(student) is trained to align with both the ground-truth labels and the predictive behavior of a larger
reference model (teacher). Formally, the training objective for the student consists of two compo-
nents:

1. Supervised Loss LCE , which measures the discrepancy between the student’s predictions
and the ground-truth labels using cross-entropy.

2. Distillation Loss LKD, defined as the Kullback-Leibler divergence between the student’s
and teacher’s output distributions. This term encourages the student to replicate the soft-
ened predictive probabilities of the teacher, which encode richer information than hard
labels alone and thus facilitate more effective knowledge transfer.

Problem Setting. Consider a standard supervised multi-classification setting with inputs x ∈ X ,
outputs y ∈ Y , and the training data D = {(xi, yi)}Ni=1 where yi ∈ [K], K denoting the total
number of classes and xi ∈ Rd denoting the i-th input feature. Suppose, we train a student network
Mθ(S) parameterized by θ(S) and let the corresponding teacher networkMθ(T ) parameterized by
θ(T ) be used for teacher-student distillation. Let the student network consists of L layers, where the
output representation for the ℓ-th layer ℓ ∈ L is given by zℓ

θ(S) = hℓ
θ(S)(xi) ∈ Rdℓ where dℓ denotes

the ℓ-th layer dimension. The final layer output logits from student network corresponding to an
input xi is denoted by zL

θ(S) :=Mθ(S)(xi).

Loss Formulation. In KD, the student networkMθ(S) is trained by minimizing the standard cross
entropy loss between the model predictions and ground truth over the training data D as per (1),
while the teacher predictions are used to minimize the knowledge distillation term (2), defined as
the KL divergence between teacher and student logitsMθ(T )(xi) andMθ(S)(xi).

L(S)
CE = − 1

N

N∑
i=1

K∑
j=1

1(yi=j) log pθ(S)(xi)j (1) LKD = −τ2 1

N

N∑
i=1

DKL

(
pθ(T )(xi) ∥ pθ(S)(xi)

)
,

(2)

where pθ(xi)j =
exp(Mθ(xi)j/τ)∑K

k=1 exp(Mθ(xi)k/τ)
denotes j-th class probability where j ∈ [K]. Here, τ de-

notes the temperature used to soften the output probabilities of both the student and the teacher.
Generally, a higher temperature allows for smoother distributions, which capture richer inter-class
relationship from the teacher (Hinton et al., 2015a). This allows the student to capture more nu-
anced relationships between classes rather than focusing on a single class representing the highest
probability.

Student Training Objective. The student network’s loss is denoted by L(S)
tot (·, ·;θ(S)), where

L(S)
tot (X ,Y;θ(S)) = α · L(S)

CE + β · LKD (3)

Here, L(S)
tot (·, ·;θ(S)) is expressed as a convex combination of L(S)

CE and LKD, with α ∈ R+ and
β ∈ R+ being seen as two degrees of freedom, controlling the contribution of each loss component
(Srivastava et al., 2015). The two degrees of freedom can be reduced to a single degree of freedom
by bounding α and β with the condition: α+ β = 1.

Moreover, in the absence of labeled data to train the student model, the distillation reduces to a soft-
distillation setting, where α = 0 . In this case, the soften teacher probabilities form the only source
of supervision for the student model (Lopes et al., 2017).

Student capacity limits and Teacher Confidence. The student’s ability to learn the teacher’s
deeper representational space is inherently bounded, and the student may fail to capture richer
information beyond a threshold due to limited capacity. On the other hand, larger teachers are
over-confident, yielding higher target logits and lower variance in predictions, resulting in less dis-
tinctive incorrect-class softmax probabilities. In this case, if distillation temperature is increased,
teacher guidance becomes weaker, smoothing strengthens due to the softened distribution, and class
discriminability measured by variance of incorrect-class probability initially rises then falls off.

3
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Together, both the student capacity and teacher confidence restrict the effectiveness of knowledge
transfer (Li et al., 2022).

3.1 OOD GENERALIZATION IN DISTILLED MODELS

Bottlenecks with Vanilla KD. While distillation serves as a good approach for model compression,
the student model can be interpreted as a small clone of the teacher over-fitted to the teacher’s learned
patterns. The over-fitting and the student model’s limited capacity typically fails to generalize well
with OOD samples at inference time (Yue et al., 2023). While there exist OOD generalization
algorithms targeted towards OOD robustness in neural network (Gulrajani & Lopez-Paz, 2020),
the lack of representation capacity affects the ability of the student to directly benefit from these
algorithms.

A general solution to improve generalization ability of the student is to train the teacher network with
domain generalization (Gulrajani & Lopez-Paz, 2020) algorithms or adversarial training (?) (Nasery
et al., 2022) for OOD robustness. During distillation, the robust teacher can act as a “shortcut" that
helps the student model bypass the requirement of complex, robust training. The student model
inherits the teacher’s ability to produce well-calibrated outputs for seen and unseen input instances.
This helps the student to be robust to distribution shifts in a deployment environment.

3.2 EARLY READOUTS

Early-layer confidences in a neural network offer valuable insights about an input sample (Baldock
et al., 2021). Low confidences at these layers can suggest that the sample is complex or ambiguous,
potentially making it harder for the model to classify accurately. Conversely, higher early-layer
confidences indicate that the low-level representations align more closely with a particular class,
increasing the likelihood that the student network will classify it correctly. By providing additional
supervision, such as hard labels, for ambiguous samples, the model can improve its learning of
overlapping or confusing features across classes, ultimately enhancing overall performance. (Tiwari
et al., 2024) utilize early exit information from neural networks.

4 PROPOSED METHODOLOGY

Our overall architecture consists of the teacher-student setup, with alterations to the student network.
We incorporate auxillary networks (internal classifiers) on intermediate layers’ output representa-
tions, say denoted as E ⊆ [L], where L denotes the number of layers in the model.

Figure 1 provides a brief overview of our approach where we incorporate early-layer predictions and
uncertainty measures from the student model to dynamically weigh the individual loss components
of the distillation objective. In the sections to follow, we elaborate on the auxiliary networks and the
forecaster in detail.

4.1 AUXILIARY NETWORK: EARLY LAYER CONFIDENCE

Design of Auxiliary Networks. For each early layer ℓ ∈ E , we instantiate an auxiliary predictor
A

(ℓ)
aux( • ; φℓ) : Rdℓ → ∆K , with the ℓ-th auxiliary classifier parameterized by φℓ. The input

to A
(ℓ)
aux is the ℓ-th layer’s output representation zℓ

θ(S) . The role of the auxiliary classifier is to
encode how well the truncated feature stack up to layer ℓ differentiates among the label space Y ,
i.e., the extent to which intermediate layers capture discriminative information over class labels.
Such auxiliary predictors have been shown to be effective both for improving gradient flow and
feature discriminability during training (Szegedy et al., 2015; Lee et al., 2015), as well as for post-
hoc analysis of representation quality via probing (Alain & Bengio, 2016).

Training Objective of Auxiliary Networks. On the training split D, the objective of each auxiliary
encoder is to minimize the standard classification loss:

L(ℓ)
aux(z

ℓ
θ(S) ;φℓ) = −

N∑
i=1

K∑
j=1

1{yi=j} log
exp

(
A

(ℓ)
aux(zℓθ(S) ;φℓ)j

)∑K
k=1 exp

(
A

(ℓ)
aux(zℓθ(S) ;φℓ)k

) . (4)

4.2 FORECASTER META-NETWORK

Deep neural networks are prone to overfitting under label noise or class imbalance, where fixed
re-weighting schemes often fail due to their reliance on handcrafted weighting functions and hyper-
parameters. To address this, we introduce a forecaster module that adaptively maps sample-level

4
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Figure 1: Overview of adaptive knowledge distillation that leverages early layer readout predic-
tions and uncertainty measures to learn a meta-network forecaster which modulates contribution
of ground-truth supervision and teacher supervision in the distillation process at an instance level.
Here, the student network, early layer auxiliary networks and forecaster are trained in an interleaved
fashion. First, the student backbone and the auxiliary network are trained on the classification ob-
jective, while the forecaster remains frozen, for a fixed number of train minibatches. Next, for a
fixed number meta-validation set from the training domains is used to train the forecaster with the
objective to estimate student correctness. At test time, the forecaster and auxiliary networks are dis-
carded, resulting in our method requiring the same computational resources as a vanilla KD during
inference.

statistics to re-weigh the influence of the teacher network in the distillation process. Parameterized
as a lightweight neural network and optimized jointly with the model, the forecaster provides a flex-
ible data-driven mechanism that generalizes beyond handcrafted weighting rules. We denote the
forecaster as F(•;ψf ) defined as a meta-network parameterized by ψf .
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AUC=0.82
AUC=0.56
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Figure 2: ROC curves showcas-
ing the impact of incorporating
confidence margin (ε) and entropy
H(p) features from early layers
into the forecaster.

Confidence Margin The layer wise confidence margin of
the ℓ-th auxiliary network denoted by ε(ℓ) acts a good sig-
nal of uncertainty in the predictions at the early layers (Ti-
wari et al., 2024; Xin et al., 2020; Liu et al., 2020) where
pmax(φl) = max(p1(φl), p2(φl), . . . , pK(φl)) and pj(·) in-
dicates the probability of the auxiliary layer l’s output being
classified as the j-th label, ∀j ∈ [K].

ε(ℓ) = pmax(·)−max(pi(·) | i ̸= argmax(pi(·))) (5)

Particularly, forecaster is fed logits (z), Entropy {H(p)} and
Confidence Margin (ε) of the auxiliary network predictions as
uncertainty indicators of auxiliary network, highlighting pre-
diction confidence and randomness.

Training Forecaster F(•;ψf ) The Forecaster is trained in
conjunction to the student Mθ(S) and the auxiliary networks A

(ℓ)
aux( • ; φ) using a binary classifi-

cation objective. The binary classification task for the forecaster is to determine whether student
model correctly predicts an input instance. Higher output probability from the forecaster indicates
student is more likely to correctly classify the sample, indicating an easier sample. We utilize the
output probability of the forecaster directly to weigh the KL divergence between the student and
the teacher, forcing the student to mimic teacher for such samples and focus more on ground-truth
supervision when the forecaster output probability is smaller. To train the forecaster, we minimize
Lfocs(θ

(S);ψf ) on the validation split Dv ⊆ D

Lfocs(θ
(S),ψf ) = −

〈
yg
θ(S) , logwψf

〉
−

〈
1− yg

θ(S) , log(1−wψf
)
〉
, (6)

5
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Figure 3: Distribution of forecaster outputs at different training steps, comparing the unadjusted case
(top row) with post-hoc adjustment (bottom row). The rightmost plots summarize the deviations
across epochs. Post-hoc adjustment stabilizes the output distribution, negating drift towards skewed
values.

where yg
θ(S) ∈ {0, 1}N is the binary vector of ground-truth labels for the student model predictions,

with entries yg
θ(S),i

= 1(ŷi=yi) for each instance i ∈ [N ], and wψf
∈ (0, 1)N is the vector of

forecaster outputs parameterized by ψf . In a mini-batch setting (say batch size B), the forecaster
loss is averaged across all samples in the batch with wψf

∈ (0, 1)|B|.

Design of Forecaster. The forecaster is implemented as a lightweight neural network comprising a
1D convolution on stacked intermediate logits obtained from auxiliary networks. The convolution
operation integrates the logits across layers, one class at a time. To this representation, we append
uncertainty measures: confidence margin and entropy of each Auxiliary Network prediction. Using a
linear projection on this intermediate representation, the forecaster provides a scalar weight w(ψf ) ∈
[0, 1] for each instance in the minibatch, which indicates the confidence of the forecaster in assessing
whether the student network will correctly predict the input instance.

METHOD A C P R AVG.

KD (Hinton et al., 2015b) 52.7 49.7 72.1 74.2 62.2
KD+F 54.3 50.2 70.5 72.5 61.9
KD+F+ADJ. 54.0 51.3 71.6 75.1 63.0

Table 1: OOD classification accuracy (%) on the
OfficeHome dataset. KD denotes vanilla knowledge
distillation, F incorporates the forecaster, and ADJ.
further applies the proposed post-hoc adjustment to
forecaster outputs. The adjustment (µ∗ = 0.5 and
ς∗ = 0.1) consistently improves average performance
across held-out domains.

Post-hoc Adjustment of Forecaster Out-
put. The forecaster F(zf ;ψf ) outputs a
weight wt ∈ [0, 1]. For a batch of in-
put instances, forecaster output distribu-
tion can be skewed, affecting the stabil-
ity of student model training and individ-
ual loss component contributions. There-
fore, for a batch of samples (B), we em-
ploy the following post-hoc adjustment on
the forecaster output logits (zf ) before
utilizing the output for training the stu-
dent, wadj

ψf
= σ

(
ς∗

(
zf−µB

ςB

)
+ µ∗

)
,

where µ∗ and ς∗ are hyperparameters. Ul-
timately, the student is trained by minimiz-
ing, L(s)

tot(XB ,YB ;θ(S),wψf
) = 1

|B|
∑|B|

j=1(1−wadj
ψf

[j]) · ℓ(s)CE [j] +wadj
ψf

[j] · ℓ(s)KD[j].

5 BI-LEVEL OPTIMIZATION PROBLEM AND CONVERGENCE

The interleaved training schedule between the student network and the forecaster can be viewed as
a bilevel optimization problem given by,

outer-level︷ ︸︸ ︷
argmin

wf

Lfocs
(
argmin

θ
L(s)
tot(θ,wf ), Dv︸ ︷︷ ︸

inner-level

)

Starting at θ(S)
0 and w0

f , a single gradient update can be written as,

6
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θ
(S)
t ← θ

(S)
t−1 − η1∇θ(S)

t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (7)

where wt
f ← wt−1

f − η2∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ) (8)

6 ALGORITHM

We outline the distillation process with an interleaved training process where the student model,
auxiliary networks and the forecaster are trained in an alternating pattern. For pre-determined k
steps, the primary student model and the auxiliary networks are trained on the training domains
using the training split of the training domains. Here, the forecaster remains frozen, and is used
to generate instance-level weights to guide the student training. Subsequently, for next k steps,
the forecaster is trained on the on a held-out validation split from the training data of the training
domain(s) with the lastest checkpoints of the student model and the auxiliary networks, which are
frozen. This process continues until the exit criterion of the algorithm is satisfied. Refer Algorithm 1
for an illustrated outline of the algorithm.

Algorithm 1 Interleaved Training of Student and Forecaster

Require: Student Mθ(S) , Teacher Mθ(T ) , Forecaster F(ψf ); Btrain,Bval; Ts (student steps), Tf

(forecaster steps), N (total steps), L (number of layers), µ∗ (Adjustment mean), ς∗ (Adjustment
st. deviation)

1: Initialize θ(S)
0 ,θ

(T )
0 ,ψf

0 , [φ
(ℓ)
0 ]L−1

ℓ=1
2: for t = 1 to N do
3: if t mod (Ts + Tf ) < Ts then
4: ▶ Student and Auxiliary Network Update
5: SetMθ(S) ,Mθ(T ) ,F(ψf ), [A

(ℓ)
aux]

L−1
ℓ=1 to eval

6: X← concat(x | (x,y) ∈ Btrain)

7: [A
(ℓ)
aux(X; φ)]L−1

ℓ=1 , Ŷ ←Mθ(S)(X)

8: O← F([A(ℓ)
aux(X; φ)]L−1

ℓ=1 )
9: µB = O.mean(), ςB = O.std()

10: W = σ
(
ς∗

(
O−µB

ςB

)
+ µ∗

)
11: SetMθ(S) to train;
12: θ

(S)
t ← θ

(S)
t−1 −

η
|Btrain|

∑
x∈Btrain

L(s)
tot(x;θ

(S)
t−1,W)

13: for ℓ = 1 to L− 1 do
14: Set A(ℓ)

aux to train;
15: φ

(ℓ)
t = φ

(ℓ)
t−1 −

η
|Btrain|

∑
x∈Btrain

L(ℓ)
aux(A

(ℓ)
aux(x);φ

(ℓ)
t−1)

16: end for
17: else
18: ▶ Forecaster Update
19: Set F(ψf ) to train,Mθ(S) , [A

(ℓ)
aux( • ; φ)]L−1

ℓ=1 to eval
20: ψf

t ← ψf
t−1 −

ηf

|Bval|
∑

Bval
L(f)(θ(S),ψf

t−1)

21: end if
22: end for

7 EXPERIMENTS

Evaluation. For the image-classification experiments, we leverage the DomainBed Suite (Gulrajani
& Lopez-Paz, 2020). DomainBed provides a fair, standardized and reproducible setup for evaluat-
ing and comparing our method against best performing subset from a wide range of DG algorithms
including ERM (Vapnik, 1998), GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG
(Li et al., 2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al.,
2016) and C-DANN (Li et al., 2018b). For the text-classification experiments, we leverage repre-
sentative ID-OOD task pairs from GLUE-X (Yang et al., 2023). In the case of text-classification, we
compare our method against vanilla KD and ERM. We use classification accuracy as the primary
metric.
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DATASET DOMAINS INSTANCES LABELS

OFFICEHOME 4 15,588 65
PACS 4 9,991 7
VLCS 4 10,729 5
TERRAINCOGNITA 4 24,778 10

PARAPHRASE 2 44,118 2
NLI 2 402,517 3

Table 2: Dataset statistics.

Model Pool. In our KD experiments, we
distill from a robust teacher model. We ex-
periment with both ResNet (He et al., 2015)
and Vision Transformer (Dosovitskiy et al.,
2021) as the teacher network. Specifically, we
first identify the best-performing domain gen-
eralization algorithm at the teacher level per
dataset using ResNet-152 and ViT-L/16,
and use the best teacher network in the distil-
lation process. For the student network, we
select the smallest capacity model from the
ResNet family: ResNet-18. For transformer-based text experiments, we leverage Encoder-only
bert-base-uncased (Devlin et al., 2019) as the teacher network. In this case, the student net-
work is a 4-layer compact BERT variant: google/bert_uncased_L-4_H-256_A-4 (Turc
et al., 2019).

Datasets. We evaluate and compare our method on four benchmark datasets, including OfficeHome
(Venkateswara et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013) and TerraIncognita
(Beery et al., 2018). For text-based benchmarking, we choose the tasks of (1) paraphrase identifica-
tion with MPRC as ID split and QQP as OOD split, and (2) natural language inference (NLI) with
MNLI as ID split and MNLI-mismatched as OOD split. Table 2 provides the details of the domains,
instances, and label counts for each dataset.

Baselines. We compare our method against three baselines. We include the Empirical Risk Mini-
mization (ERM) (Vapnik, 1998) as a canonical domain generalization algorithm, supported by find-
ings in Gulrajani & Lopez-Paz (2020). Then, we select the best-performing OOD algorithm iden-
tified at the teacher level as the second baseline. In this case, we retrain the student model without
distillation. Finally, we include vanilla KD (Hinton et al., 2015b), where the student us trained to
mimic the logits of the teacher without any further modifications. In the case of text-classification,
we compare our method against vanilla KD and ERM.

Training Protocol. For a dataset comprising N domains, we adopt the leave-one-domain-out setup
where the network is trained on N − 1 domains and evaluated on the held-out domain. We reserve
20% from each of training domain as a validation set for model selection. In our method, remaining
80% training split is further divided, with 90% used to train the student backbone and auxiliary
networks, and 10% held out to train the forecaster. We leverage gold validation splits to train the
forecaster in our text-modality evaluations. Within the distillation setup, we choose temperature
τ = 2 in the KD loss formulation (Hinton et al., 2015a).

Auxiliary Network Design. For the ResNet student, each residual block (Total: 4) stage yields
feature maps that encode progressively abstract representations of the input (He et al., 2015). To
obtain class-wise representations from these intermediate features, we employ lightweight auxiliary
heads following the design principles of prior works on multi-layer feature supervision (Szegedy
et al., 2015; Lee et al., 2015) and early-exits (Xin et al., 2020; Liu et al., 2020). Each auxiliary head
comprises two components: (i) a pooling operation to reduce the spatial dimensionality, and (ii) a
feed-forward projection layer that maps the pooled features to a vector of dimension equal to the
number of target classes. For transformer-based BERT backbone, the auxiliary networks are simple
linear projections i.e. one layer feed-forward block.

8 RESULTS

Table 3 reports the domain generalization performance across four benchmark datasets. Here, ERM
Vapnik (1998) corresponds to standard empirical risk minimization, where the network is trained
solely on ground-truth supervision. Similarly, DB. SOTA refers to the strongest domain generaliza-
tion algorithm among GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG (Li et al.,
2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al., 2016) and
C-DANN (Li et al., 2018b), selected as per findings described in Appendix D.1. In the KD (Hinton
et al., 2015a) setting, the student is trained with an additional supervision from a larger network
fine-tuned using the best-performing DG algorithm.

We observe that KD consistently outperforms both, the canonical empirical risk minimization
(ERM) and the dataset-specific best-performing DG algorithm. This highlights the effectiveness
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METHOD ARCH. OFFICEHOME PACS VLCS TERRA. AVG.
ERM (Vapnik, 1998) ResNet-18 58.4 79.6 71.6 43.4 63.3
DB. SOTA ResNet-18 60.2 80.1 71.9 42.6 63.7

TEACHER NETWORK: ResNet-152

KD (Hinton et al., 2015b) ResNet-18 62.2 82.4 73.5 43.6 65.4
KD+F+ADJ.(Ours) ResNet-18 63.0 82.8 74.7 45.1 66.4
TEACHER NETWORK: ViT-L/16

KD (Hinton et al., 2015b) ResNet-18 63.7 81.4 75.2 40.6 65.2
KD+F+ADJ. (Ours) ResNet-18 63.7 81.0 76.1 44.7 66.4

Table 3: Domain generalization accuracy (%) on four benchmark datasets. Best results are high-
lighted in bold and green. Here, DB. SOTA refers to the best-performing DG algorithm for the
dataset, selected according to the evaluation protocol described in Appendix D.1.

METHOD ARCH. PARAPHRASE NLI Avg.
ERM (Vapnik, 1998) bert_uncased_L-4_H-256_A-4 57.1 74.6 65.8

TEACHER NETWORK: bert-base-uncased

KD (Hinton et al., 2015b) bert_uncased_L-4_H-256_A-4 58.4 74.8 66.6
KD+F+ADJ. (Ours) bert_uncased_L-4_H-256_A-4 60.9 75.4 68.2

Table 4: OOD Classification accuracy (%) on (MPRC, QQP) and (MNLI, MNLI-mismatched) ID,
OOD pairs from GLUE-X benchmark. Prompt details present in Appendix A.2.

of knowledge transfer from a robust teacher network. Building on the strong KD baseline, we
evaluate our adaptive distillation setup, which augments KD with the forecaster meta-network that
utilizes early readout signals from the student network. Our method improves over KD under both,
a convolutional ResNet teacher and transformer based ViT teacher. With a robust ResNet-152
teacher, our approach achieves an average OOD accuracy of 66.4%, outperforming KD by +1.0%.
Similarly, with a robust ViT-L/16 teacher, our method surpasses KD by +1.2%. These consistent
improvements across datasets showcase our approach as a principled extention to the standard KD
problem for domain generalization.

Table 4 reports the domain generalization results in the text modality with a transformer-based stu-
dent architecture. Here, our method yields an average increase of 1.6% in accuracy, relative to the
standard KD, showcasing the generality of our work across modality and model architecture.

The Need For Post-hoc Adjustment. As shown in Table 1, in the absence output adjustment,
adaptive KD with forecaster yields lower OOD performance as compared to vanilla KD. This mo-
tivates us to understand why an unadjusted forecaster may fail. We therefore analyze the dynamics
of the forecaster outputs during the distillation process with and without post-hoc adjustment to the
forecaster outputs. Figure 3 showcases the change in forecaster outputs for a minibatch as training
progresses. Without any correction to the forecaster output, the distribution gradually drifts towards
extreme values close to 1. This drift can be attributed to the nature of the training of the forecaster.
The forecaster is trained as a binary classifier to predict correctness of student network based on
early readout predictions and uncertainty signals. Naturally, as the student improves, an increasing
fraction of samples become easy, pushing forecaster towards overconfident predictions. This causes
the weight to concentrate more to LKD as the training progresses, making model overfit to teacher’s
supervisory signals, affecting its generalizability.

The Role of Uncertainty Signals. We also analyze the impact of early layer uncertainty features
on forecaster quality. As shown in Figure 2, including entropy H(p) and confidence margin (ε)
from auxiliary predictions substantially improves the forecaster’s predictive ability to determine
easy and hard samples, with an increase in AUC by +26%. This demonstrates that early readouts
provide rich signals of sample ambiguity, which can be leveraged by the forecaster, to effectively
modulate the loss weighing. Together, these emipirical ablations on the forecaster confirm that both
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Figure 4: From left to right: Domain-wise OfficeHome OOD accuracies as a function of (a) inter-
leaved training schedule, (b) adjusted forecaster output mean (µ∗), (c) adjusted forecaster output
spread (ς∗) and (d) coefficient of KD loss in Vanilla KD.

post-hoc adjustment and statistical uncertainty-aware design choice is essential to the forecaster
meta-network.

Sensitivity Analysis. We chose µ∗ and ς to be 0.5 and 0.1 as pragmatic, dataset agnostic hyper-
parameters. µ* = 0.5 centers the post-hoc adjustment to allow equal contribution from teacher soft
predictions and ground-truth supervision. This allows the training signal to not be overly dominated
by the teacher or the ground-truth. ς = 0.1 allows a controlled spread around the center, allowing
an instance-based adjustment proposed by the forecaster without a strong drift in either direction.
We conduct sensitivity analysis by (1) varying µ∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} while keeping ς fixed
to 0.1 and (2) varying ς ∈ {0.01, 0.1, 0.5, 1.0} keeping µ∗ fixed to 0.5. As shown in Figure 4 OOD
performance does not degrade sharply across various choices of (µ∗, ς∗) pairs, suggesting that our
method is not sensitive to the hyperparameter choices of µ∗ and ς∗. While the hyperparameters can
be tuned per-dataset or per-domain within a dataset, we recommend the practical default choices
under compute constraints.

Similarly, we set the student model update frequency, Ts = 1 and forecaster update frequency,
Tf = 1 in our experiments. With Ts = 1 and Tf = 1, we simply ensure that the forecaster is
updated as frequently as the student, preventing the forecaster weights becoming stale as the student
representation evolves during training. To assess how the frequency of updates to the forecaster
affect the downstream OOD performance of the student network, we conduct a sensitivity analysis
by varying Ts and Tf across several configurations shown in Figure 4. As shown, we observe a
small but consistent drop in average OOD performance in these alternative configurations. These
observations suggest that the forecaster network is negatively affected in both cases of (1) infrequent
updates (Ts = 10, Tf = 1) where the forecaster is lagging behind current student configuration and
too frequent updates (Ts = 10, Tf = 10 or Ts = 1, Tf = 10) where the forecaster potentially
overfits to current student configuration.

9 CONCLUSION

In this work, we introduced a forecaster based re-weighing approach to standard offline knowledge
distillation setting, where the forecaster leverages early layer readouts from the student model to
adaptively modulate the distillation objective, resulting in an improved generalizability of the stu-
dent network as opposed to vanilla KD. Our experiments across multiple benchmarks spanning two
modalities: (1) vision and (2) text, demonstrate the efficacy of our approach in improving OOD
generalization of student network over vanilla KD baseline and canonical DG algorithms. Further,
we provide insights on critical design choices for the forecaster: (1) post-hoc adjustment, which
prevents forecaster collapse that results in overconfident predictions, and (2) Use of uncertainty
measures such as entropy and confidence margin, which significantly improve forecaster’s ability
to distinguish between easy and difficult samples. Together, we establish our framework as a novel
extension to standard offline KD, allowing robust generalization to unseen domains, from a student-
centric design choice.
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A IMPLEMENTATION AND HYPERPARAMETERS

A.1 SEED AND HYPERPARAMETER SELECTION

For a fair comparison and reproducibility, we follow the default hyperparameter settings reported in
Gulrajani & Lopez-Paz (2020) and use their released codebase as the foundation of our implemen-
tation.

A.2 PROMPT DETAILS FOR TEXT CLASSIFICATION

"""Paraphrase Identification: Train Prompt (MPRC)"""

Sentence 1: {{sentence1}}
Sentence 2: {{sentence2}}
Question: Do both sentences mean the same thing?
Answer:

"""Paraphrase Identification: Test Prompt (QQP)"""

Question 1: {{question1}}
Question 2: {{question2}}
Question: Do both questions ask the same thing?
Answer:

"""Natural Language Inference: Train/Test Prompt (MNLI)"""

{{premise}}
Question: {{hypothesis}} True, False or Neither?
Answer:

B THEORETICAL RESULTS

B.1 GENERALIZATION ERROR BOUNDS FOR OUR METHOD

We utilise the approach presented in (Ye et al., 2021) to calculate the generalization error bounds
incurred via our method.

Setup

Let ξall be the domain set we want to generalize to, and ξavail ⊆ ξall be the available domain set. We
denote (Xe, Y e) as the input-label pair from the data distribution of domain e ∈ ξavail.

For OOD generalization, the goal is to find a classifier f∗ such that it minimizes the worst-domain
loss on ξall

f∗ = argmin
f∈F

L(ξall, f),L(ξ, f) ≡ max
e∈ξ

E[ℓ(f(Xe), Y e)]

Definition 1 (Variation). The variation of a feature ϕ(·) across a domain set ξ is defined as

Vρ(ϕ, ξ) = max
y∈Y

sup
e,e′∈ξ

ρ(P (ϕe | y), P (ϕe′ | y)) . (9)

A feature ϕ(·) is said to be ε-invariant across E if ε ≥ V(ϕ, ξ). where ρ indicates any distribution
divergence metric. (We omit the subscript ρ when there is no ambiguity.)

Let the optimal weights learnt via the forecaster be denoted as wψ∗
f

. Post adjustment, let the optimal
adjusted weights be denoted as w∗

adj. The optimal weights are across all samples in the batch.

ℜ(ℓ)
aux(θ,φ

(ℓ); e) := E(Xe,Y e)[L(ℓ)
aux(A

(ℓ)
aux(hℓ(X

e;θ);φ(ℓ)), Y e)]

Assumption There exists a strictly increasing function δl : [0, 0.5]→ [0,∞) such that

ℜ(ℓ)
aux(θ,φ

(ℓ); e)−ℜ(ℓ)
aux(θ,φ

(ℓ)
∗ ; e) ≥ δl(∆

(l)(e))

16
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where ℜ(ℓ)
aux(θ,φ

(ℓ)
∗ ; e) indicates the Bayes risk on domain e and ∆(l)(e) is the average 0 − 1 error

of the auxiliary classifier at layer l.

Assumption (Lipschitz in feature space): We assume there exists Caux > 0 such that for all z1, z2
and labels y:

|L(ℓ)
aux(z

ℓ
1(θ

(S));φℓ)− L(ℓ)
aux(z

ℓ
2(θ

(S));φℓ)| ≤ Caux.
∥∥zℓ1(θ(S) − zℓ2(θ

(S)
∥∥
2

Domain Disagreement at layer ℓ

Given two distinct domains e1, e2 ∈ ξavail, we check how the difference in auxilliary classifier risks
relates to the induced feature distribution difference.

∆ℜ(ℓ)
aux(e1, e2) := |ℜ(ℓ)

aux(θ,φ
(ℓ); e1)−ℜ(ℓ)

aux(θ,φ
(ℓ); e2)|

Using Lipschitz assumption and total variation distance on Pℓ
e we have

∆ℜ(ℓ)
aux(e1, e2) ≤ Caux

∫ ∥∥z∥∥
2
|ple1(z, y)− ple2(z, y)|∂z∂y

Assuming we consider a bounded feature radius at layer ℓ:
∥∥z∥∥

2
≤ Rl, we have

∆ℜ(ℓ)
aux(e1, e2) ≤ CauxRl

∫
|ple1(z, y)− ple2(z, y)|∂z∂y = 2CauxRlρ(Pℓ

e1 ,P
ℓ
e2)

Thus,

ρ(Pℓ
e1 ,P

ℓ
e2) ≥

∆ℜ(ℓ)
aux(e1, e2)

2CauxRl

Remark 1. The above indicates that any variation in the auxillariy risks across domains is almost
surely upper bounded the TV(total variation) distance between feature label distributions for that
layer l.

Since by definition we know

V(β⊤hℓ, ξavail) := supe1,e2∈ξavail
ρ(P(β⊤hℓ(X

e1) | Y e1),P(β⊤hℓ(X
e2) | Y e2))

The second term on the RHS side is upper bounded by ρ(Pl
e1 ,P

l
e2)

hence, we overall have

V(β⊤hℓ, ξavail) ≤ supe1,e2∈ξavail
ρ(Pl

e1 ,P
l
e2)

C EFFECT OF AUXILIARY NETWORKS AND THE FORECASTER ON OOD
GENERALIZATION

We now theoretically establish that the proposed auxiliary networks together with the forecaster
reduce the cross-domain feature variation Vsup(hθ(S) , Eavail), and hence, by Theorem 4.1, yield a
smaller OOD generalization gap err(f) = L(Eall, f)− L(Eavail, f).

As per our previous notations, we know that the student network produces intermediate representa-
tions zℓ

θ(S)(x) ∈ Rdℓ at layer ℓ ∈ E . Each auxiliary classifier A(ℓ)
aux( · ;φℓ) : Rdℓ → ∆K produces

layer-wise predictive distributions p(ℓ)(x) = A
(ℓ)
aux

(
zℓ
θ(S)(x);φℓ

)
.
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For each auxiliary layer we compute the confidence margin, ε(ℓ)(x) := p
(ℓ)
max(x) −

max
j ̸=argmax p

(ℓ)
j (x)

p
(ℓ)
j (x), and the entropyH(p(ℓ)(x)). The forecaster is a meta-networkF(·;ψf )

receiving the stacked vector

u(x) :=
[
{zℓθ(S)(x)}ℓ∈E , {ε(ℓ)(x)}ℓ∈E , {H(p(ℓ)(x))}ℓ∈E

]⊤
and outputting a weight w(x) = F(u(x);ψf ) ∈ [0, 1]. This weight is then used to combine the
per-sample student CE loss and the distillation loss.

We measure cross-domain feature variation at representation level by

Vsup
(
hθ(S) , Eavail

)
:= sup

β∈Sd−1

sup
e,e′∈Eavail

ρ
(
β⊤hθ(S)(Xe), β⊤hθ(S)(Xe′)

)
,

where ρ is the total variation distance.

C.1 AUXILIARY NETWORKS CONTROL LAYER-WISE LOGIT VARIATION

Define the stacked logit–margin–entropy feature at layer ℓ:

ϕ(ℓ),e(x) :=
[
zℓ,e
θ(S)(x), ε

(ℓ),e(x), H(p(ℓ),e(x))
]⊤

.

Let
ϕe(x) :=

[
ϕ(ℓ),e(x)

]
ℓ∈E ∈ RD.

Each auxiliary predictor is trained to minimize L(ℓ)
aux, a strongly convex function in the probability

simplex. By standard stability results for cross-entropy, this implies a Lipschitz continuity property
for the mapping zℓ

θ(S) 7→ ϕ(ℓ).

Lemma 2 (Auxiliary Losses are Lipschitz). There exists Lϕ > 0 such that for all environments
e, e′ and all x, ∥∥ϕe(x)− ϕe′(x)

∥∥ ≤ Lϕ

∥∥zeθ(S)(x)− ze
′

θ(S)(x)
∥∥.

Proof. Each component of ϕ(ℓ) is a smooth mapping of zℓ: margins, entropies, and softmax proba-
bilities are Lipschitz on compact domains. Summing Lipschitz maps preserves Lipschitzness.

Thus the variation of ϕe is controlled by that of the intermediate logits.

Forecaster Convolution Contracts Variation

Let Aϕ denote the linear operator (e.g. a 1D convolution across layers) applied internally in the
forecaster before the MLP head. Define

ψe(x) := Aϕ ϕ
e(x).

Lemma 3 (Convolutional Contraction). If ∥Aϕ∥ ≤ 1 in operator norm, then for all e, e′ and x,∥∥ψe(x)−ψe′(x)
∥∥ ≤ ∥∥ϕe(x)− ϕe′(x)

∥∥.
Proof. Immediate from ∥Aϕv∥ ≤ ∥Aϕ∥∥v∥ with ∥Aϕ∥ ≤ 1.

Combining Lemma 2 and Lemma 3 gives∥∥ψe(x)−ψe′(x)
∥∥ ≤ Lϕ

∥∥ze(x)− ze
′
(x)

∥∥.
Finally, the forecaster head u 7→ w = σ(Wu+ b) is Lw-Lipschitz, so

Lemma 4 (Forecaster Stability). For all domains e, e′ and all inputs x,∣∣w(x, e)− w(x, e′)
∣∣ ≤ LwLϕ

∥∥ze(x)− ze
′
(x)

∥∥.
Thus the forecaster output varies smoothly across environments, with variation proportional to the
intrinsic logit variation.
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Contraction of Feature Variation

The student is trained with the forecaster-weighted loss

L(s)
tot(x, e) = (1− w(x, e))L(s)

CE(x, e) + w(x, e)L(s)
KD(x, e).

Because w(x, e) is stable across domains (Lemma 4), the gradients on hθ(S) differ only smoothly
across environments. Under standard smoothness assumptions, the expected feature update satisfies

EXe

[
β⊤h

θ
(S)
t+1

(Xe)
]
− EXe′

[
β⊤h

θ
(S)
t+1

(Xe′)
]
≤ (1− ηm)

(
EXe [β⊤h

θ
(S)
t

]− EXe′ [β⊤h
θ
(S)
t

]
)
,

for some m > 0 depending on the smoothness of the training loss. Thus the feature variation
contracts by a factor κ := 1− ηm ∈ (0, 1):

Vsup
(
hθ(S) , Eavail

)
≤ κVsup

(
hθ(N) , Eavail

)
,

where hθ(N) is the representation learned without the forecaster.

Forecaster Reduces OOD Generalization Error

By Theorem 4.1, the OOD generalization gap of any classifier f = g ◦ h satisfies

err(f) ≤ C s
(
Vsup(h, Eavail)

)
,

with s(·) monotone. Applying this to the forecaster-equipped student fS = gS ◦ hθ(S) yields

err(fS) ≤ C s
(
Vsup(hθ(S) , Eavail)

)
≤ C s

(
κVsup(hθ(N) , Eavail)

)
< C s

(
Vsup(hθ(N) , Eavail)

)
= err(fN ),

where the strict inequality follows from κ < 1. Hence, the auxiliary networks and the forecaster
jointly contract cross-domain variation, yielding provably smaller OOD generalization error.

Assumption 2: The loss is Lipschitz-continuous with respect to the feature space

ℓ(p, y)− ℓ(q, y) ≤ Lℓd(p, q)

Theorem 1 (Generalization Error Student). Given the student model fS and teacher model
fT , the generalization error of the student model can be given as

err(Mθ(S)) ≤ err(Mθ(T )) + 2Lℓϵ

Proof. For any general domain set ξ, we have the following:

|L(ξ,Mθ(S))− L(ξ,Mθ(T ))| =
∣∣Ee∼ξE(Xe,Y e)[ℓ(Mθ(S)(Xe), Y e)− ℓ(Mθ(T )(Xe), Y e)]

∣∣
≤ Ee∼ξE(Xe,Y e)[|ℓ(Mθ(S)(Xe), Y e)− ℓ(Mθ(T )(Xe), Y e)|]

(assumption 2)
≤ CEe∼ξEXe [d(Mθ(S) ,Mθ(T ))]

≤ Cϵ

err(Mθ(S)) = L(ξall,Mθ(S))− L(ξavail,Mθ(S))

Adding and subtracting the teacher’s terms:

err(Mθ(S)) = [L(ξall,Mθ(S))− L(ξall,Mθ(T ))]

+[L(ξall,Mθ(T ))− L(ξavail,Mθ(T ))]

+[L(ξavail,Mθ(T ))− L(ξavail,Mθ(S))]

We can apply
err(Mθ(S)) ≤ err(Mθ(T )) + 2Cϵ (10)
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Remark 2. Using a teacher with strong OOD performance can reduce the err(Mθ(T )) and with a
strong distillation ϵ is small, thereby KD yielding a provably smaller OOD gap.

By Theorem 4.1, the OOD generalization gap of any classifier f = g ◦ h is controlled by its feature
variation Vsup(h, Eavail). We assume that the teacher fT has learned a more invariant representation
than the naive student fN , i.e.,

Vsup(hT , Eavail) ≤ Vsup(hN , Eavail)−∆, ∆ > 0. (11)

Since the expansion function s(·) is monotone, Theorem 4.1 implies

err(fT ) ≤ C s(Vsup(hT )) < C s(Vsup(hN )) ≈ err(fN ), (12)

i.e., the teacher’s OOD error is strictly smaller than that of the naive student.

Knowledge distillation further ensures that the student fS remains close to the low-variation teacher
fT , and therefore inherits its small OOD error up to a small approximation term.

We define the auxiliary risk as follows:

R(ℓ)
aux(θ

(S), ϕ(ℓ); e) := E(X e,Ye)

[
ℓaux

(
A(ℓ)

aux

(
hℓ(X e;θ(S));ϕ(ℓ)

)
,Ye

)]
C.2 CONVERGENCE ANALYSIS OF INTERLEAVING STUDENT FORECASTER TRAINING

The overall optimization problem can be reformulated as

outer-level︷ ︸︸ ︷
argmin

wf

Lfocs
(
argmin

θ
L(s)
tot(θ,wf ), Dv︸ ︷︷ ︸

inner-level

)

Theorem 2 (Forecaster Convergence Analysis). Considering the forecaster loss function
Lfocs is Lipschitz-smooth with constant µ and the gradient associated with L(s)

tot and Lfocs
have σ-bounded gradients w.r.t training point xi. Let the student model learning rate η satisfies
η = min{1, k

T } for some k > 0, such that k
T < 1, and ηw, 1 ≤ t ≤ N is a monotone de-

scent sequence, ηw = min{ 1µ ,
c

σ
√
T
} for some c > 0, such that σ

√
T

c ≥ µ and
∑∞

t=1 ηw ≤ ∞,∑∞
t=1 η

2
w ≤ ∞, then the forecaster can achieve E[

∥∥Lfocs(θ(S)
t (wt

f );Dv)
∥∥2
2
] ≤ ϵ in O( 1

ϵ2 ).

This can be reformulated further as min0≤t≤T E[
∥∥Lfocs(θ(S)

t (wt
f );Dv)

∥∥2
2
] ≤ O( C√

T
).

Starting at θ(S)
0 and w0

f , a single gradient update can be written as follows:

θ
(S)
t ← θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (13)

where wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ) (14)

The gradient update for the forecaster weights can be reformulated as:

wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv)

which can be rewritten as:

wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv) |Ξt

Given the minibatch Ξt is drawn uniformly from the entire data set, we can rewrite the update
equation as:

wt
f ← wt−1

f − ηw[∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv) + ε(t−1)] (15)
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where ε(t−1) = ∇wt−1
f
Lfocs(θ(S)

t−1,w
t−1
f ;Dv) |Ξt

−∇wt−1
f
Lfocs(θ(S)

t−1,w
t−1
f ;Dv).

Note that ε(t−1) are i.i.d random variable with finite variance, since Ξt are drawn i.i.d with a finite
number of samples. Also, since the samples are drawn uniformly at random, there is no introduced
bias, thereby E[ε(t−1)] = 0.

Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t−1
f );Dv) = {Lfocs(θ(S)

t (wt
f );Dv)− Lfocs(θ(S)

t−1(w
t
f );Dv)}
(16)

+{Lfocs(θ(S)
t−1(w

t
f );Dv)− Lfocs(θ(S)

t−1(w
t−1
f );Dv)}

(17)

Utilizing the property that the forecaster loss is Lipschitz smooth,

Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t
f );Dv) ≤ ⟨∇Lfocs(θ(S)

t−1(w
t
f )), (θ

(S)
t (wt

f )− θ
(S)
t−1(w

t
f ))⟩

+
µ

2

∥∥θ(S)
t (wt

f )− θ
(S)
t−1(w

t
f )

∥∥2
2

Since θ(S)
t (wt

f ) − θ
(S)
t−1(w

t
f ) = − η

n

∑n
i=1∇θ(S)

t
L(s)
tot(θ

(S)
t−1;w

t
f ) we have along with the gradient

bounds,

∥∥Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t−1
f );Dv)

∥∥ ≤ ησ2 +
µ

2
η2σ2 = ησ2(1 +

η

2
µ) (18)

Now, via utilizing Lipschitz continuity of∇Lfocs(θ(S)
t−1(w

t
f )), we have the following:

Lfocs
(
θ
(S)
t (wt

f );Dv

)
− Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
≤

〈
∇Lfocs

(
θ
(S)
t−1(w

t
f );V

)
,wt

f −wt−1
f

〉
+

µ

2

∥∥wt
f −wt−1

f

∥∥2
2

=
〈
∇Lfocs

(
θ
(S)
t−1(w

t
f );V

)
,−ηw

[
∇wt−1

f
Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
+ ε(t−1)

] 〉
+

µη2w
2

∥∥∥∇wt−1
f
Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
+ ε(t−1)

∥∥∥2
2

(from Eq. (15))

= −
(
η2w −

µη2w
2

)∥∥∥∇Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)∥∥∥2
2

+
µη2w
2

∥∥ε(t−1)
∥∥2
2
−
(
ηw − µη2w

) 〈
∇Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
, ε(t−1)

〉
.

Summing above inequalities and rearranging terms, we obtain

T∑
t=1−

(η2w −
µη2w
2

)
∥∥∇Lfocs(θ(S)

t−1(w
t−1
f );Dv)

∥∥2
2
≤ Lfocs(θ(S)

1 (w1
f );Dv))− Lfocs(θ(S)

T (wT
f );Dv))

(19)

+

T∑
t=1

ησ2(1 +
ηµ

2
)−

T∑
t=1

(ηw − µη2w)⟨∇Lfocs(θ(S)
1 (w1

f );Dv)⟩

(20)
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Taking expectations with respect to ε(N) on both sides of Eq. 32, we obtain:

T∑
t=1

(
ηw −

µη2w
2

)
Eε(N)

∥∥∥∇Lfocs(θ(S)
t (wt),Dv)

∥∥∥2
2
≤ Lfocs(θ(S)

1 (w1),Dv)+

T∑
t=1

ησ2(1+ηµ/2)+
Lσ2

2

T∑
t=1

η2w,

since
Eε(N)⟨∇Lmeta(Θ

(t)), ε(t)⟩ = 0, E∥ε(t)∥22 ≤ δ2.

Furthermore, we deduce:

min
t

E
[∥∥∥∇Lfocs(θ(S)

t (wt),Dv)
∥∥∥2
2

]
≤

∑T
t=1

(
ηw − µη2

w

2

)
Eε(N)

∥∥∥∇Lfocs(θ(S)
t (wt),Dv)

∥∥∥2
2∑T

t=1

(
ηw − µη2

w

2

)

≤ 1∑T
t=1(2ηw − µη2w)

[
2Lfocs(θ(S)

1 (w1),Dv) +

T∑
t=1

ησ2(2 + ηµ) + µδ2
T∑

t=1

η2w

]

≤ 1

Tηw

[
2Lfocs(θ(S)

1 (w1),Dv) + ησ2T (2 + µ) + µδ2
T∑

t=1

η2w

]

=
2Lfocs(θ(S)

1 (w1),Dv)

Tηw
+

2ησ2(2 + µ)

ηw
+ µδ2

1

T

T∑
t=1

ηw

≤ 2Lfocs(θ(S)
1 (w1),Dv)

Tηw
+

2ησ2(2 + µ)

ηw
+ µδ2ηw

=
Lfocs(θ(S)

1 (w1),Dv)

T
max

{
µ,

δ
√
T

c

}
+min

{
1,

k

T

}
max

{
µ,

δ
√
T

c

}
σ2(2+µ)+µδ2 min

{
1

µ
,

c

σ
√
T

}

≤ δLmeta(w
(1)(Θ(1)))

c
√
T

+
kδσ2(2 + µ)

c
√
T

+
µδc√
T

= O
(

1√
T

)
.

Theorem 3 (Forecaster Convergence Analysis). Considering the training loss function L(s)
tot

is Lipschitz-smooth with constant µ and the gradient associated with L(s)
tot and Lfocs have σ-

bounded gradients w.r.t training point xi. Let the student model learning rate η satisfies η =
min{1, k

T } for some k > 0, such that k
T < 1, and ηw, 1 ≤ t ≤ N is a monotone descent

sequence, ηw = min{ 1µ ,
c

σ
√
T
} for some c > 0, such that σ

√
T

c ≥ µ and
∑∞

t=1 ηw ≤ ∞,∑∞
t=1 η

2
w ≤ ∞, then limt→∞ E[∇L(s)

tot(·;θ
(S)
t−1,w

t
f )] = 0

Proof. The model parameter update can be written as

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (21)

Using different notation, we can rewrite it as follows:

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(θ

(S)
t−1(w

t
f )) (22)
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This can be further rewritten as:

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(θ

(S)
t−1(w

t
f )) |Ψt−1

(23)

where Ψt−1 is a mini-batch drawn uniformly at random we can rewrite the update equation as

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1

[L(s)
tot(θ

(S)
t−1(w

t
f )) + Ψt−1] (24)

Note that Ψt−1 is an i.i.d. random variable with finite variance, since each Ψt is drawn i.i.d. from a
finite sample set. Furthermore, E[Ψt−1] = 0 (sampling is uniform), and E[∥Ψt−1∥22] ≤ ρ2.

The inner student optimization L(s)
tot(θ

(S)(wf )) is Lipschitz–smooth with constant L and has
σ–bounded gradients. We analyze the difference

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)
.

We decompose this as

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(25)

= L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t (wt

f )
)

︸ ︷︷ ︸
(A) forecaster–update term

+L(s)
tot

(
θ
(S)
t (wt

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

︸ ︷︷ ︸
(B) student–update term

. (26)

Bounding Term (A) Using the update rule for forecaster weights wf and chain rule:

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t (wt

f )
)
= ηw

1

n

n∑
i=1

(
wt+1

f,i −wt
f,i

)
L(s)
toti(θ

(S)
t ) (27)

=
1

n

n∑
i=1

(
∇wf,i

Lfocs(θ
(S)
t ) + ε(t−1)

)
L(s)
i (θ

(S)
t ), (28)

where ε(t) is unbiased stochastic forecaster noise: E[ε(t)] = 0.

Bounding Term (B) By L-smoothness of L(s)
tot:

L(s)
tot

(
θ
(S)
t (wt

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(29)

≤
〈
∇L(s)

tot(θ
(S)
t−1),θ

(S)
t − θ(S)

t−1

〉
+

µ

2

∥∥θ(S)
t − θ(S)

t−1

∥∥2
2
. (30)

Using the student SGD update θ(S)
t = θ

(S)
t−1 − η

(
∇L(s)(θ

(S)
t−1) + Ψt−1

)
, we obtain

L(s)
tot

(
θ
(S)
t

)
− L(s)

tot

(
θ
(S)
t−1

)
(31)

= −
(
η − µη2

2

)∥∥∇L(s)
tot(θ

(S)
t−1)

∥∥2
2
+

µη2

2
∥Ψt−1∥22 − (η − µη2)

〈
∇L(s)

tot(θ
(S)
t−1),Ψt−1

〉
. (32)

Putting terms (A) and (B) together yields:

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(33)

≤ ηw
1

n

n∑
i=1

(
∇wf,i

Lfocs(θ
(S)
t ) + ε(t−1)

)
L(s)
toti(θ

(S)
t ) (34)

−
(
η − µη2

2

)∥∥∇L(s)
tot(θ

(S)
t−1)

∥∥2
2
+

µη2

2

∥∥Ψt−1

∥∥2
2
− (η − µη2)

〈
∇L(s)

tot(θ
(S)
t−1),Ψt−1

〉
. (35)
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Taking expectations and using E[εt] = 0, E[Ψt] = 0, E[∥Ψt∥22] ≤ ρ2, we obtain:

E
[
L(s)
tot

(
θ
(S)
t

)]
− E

[
L(s)
tot

(
θ
(S)
t−1

)]
(36)

≤ ηwE

[
1

n

n∑
i=1

∥∇wf,i
Lfocs∥ · ∥L(s)

toti(θ
(S)
t )∥

]
(37)

− η E
[
∥∇L(s)(θ

(S)
t−1)∥22

]
+

µη2

2
E
[
∥∇L(s)(θ

(S)
t−1)∥22 + ∥Ψt−1∥22

]
. (38)

Summing over t = 1 to∞ gives
∞∑
t=1

η E
[
∥∇L(s)(θ

(S)
t−1)∥22

]
≤

∞∑
t=1

µη2

2

(
σ2 + ρ2

)
+

∞∑
t=1

ηwσ2 <∞. (39)

The last inequality holds due to the fact that
∑∞

t=0 η
2 <∞ and

∑∞
t=0 ηw <∞.

Hence,

∞∑
t=1

ηE[
∥∥∇L(s)

tot(θ
(S)
t−1(w

t
f ))

∥∥2
2
] <∞ (40)

Considering the inequality

∣∣(∥x∥+ ∥y∥)(∥x∥ − ∥y∥)∣∣ ≤ ∥x+ y∥ ∥x− y∥,

∣∣∣E[∥∇L(s)
tot(θ

(S)
t (wt+1

f ))∥22
]
− E

[
∥∇L(s)

tot(θ
(S)
t−1(w

t
f ))∥22

]∣∣∣ (41)

=
∣∣∣E[(∥∇L(s)

tot(θ
(S)
t (wt+1

f ))∥22 + ∥∇L
(s)
tot(θ

(S)
t−1(w

t
f ))∥22

)
(42)

·
(
∥∇L(s)

tot(θ
(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

)]∣∣∣ (43)

≤ E
[∣∣∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∣∣ (44)

·
∣∣∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∣∣] (45)

≤ E
[∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

(46)

·
∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

]
(47)

≤ E
[(
∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

)
(48)

·
∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

]
(49)

≤ 2µσ E
[∥∥(θ(S)

t ,w t+1
f

)
−
(
θ
(S)
t−1,w

t
f

)∥∥
2

]
(50)

≤ 2Lσηηwf
E
[∥∥(∇L(s)

tot(θ
(S)
t ) + Ψt−1,∇Lfocs(θ(S)

t+1) + ε(t)
)∥∥

2

]
(51)

≤ 2Lσηηwf
E
[√
∥∇L(s)

tot(θ
(S)
t ) + Ψt−1∥22 +

√
∥∇Lfocs(θ(S)

t+1) + ε(t)∥22
]

(52)

≤ 2Lσηηwf

√
E
[
∥∇L(s)

tot(θ
(S)
t ) + Ψt−1∥22

]
+ E

[
∥∇Lfocs(θ(S)

t+1) + ε(t)∥22
]

(53)

≤ 2Lσηηwf

√
E
[
∥∇L(s)

tot(θ
(S)
t )∥22

]
+ E

[
∥Ψt−1∥22

]
+ E

[
∥ε(t)∥22

]
+ E

[
∥∇Lfocs(θ(S)

t+1)∥22
]

(54)

≤ 2Lσηηwf

√
2δ2 + 2σ2 (55)

≤ 2
√
2 (δ2 + σ2)Lσηηwf

, (56)
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where η and ηwf
are the step sizes for the student parameters θ(S) and forecaster weights wf ,

respectively, and δ2, σ2 bound the second moments of the corresponding gradients and noise terms.

C.3 TRAINING DYNAMICS OF INTERLEAVED SCHEDULE: AN EXAMPLE

As shown in Figure 5, In the early phase of the distillation process, forecaster’s predictive capability
starts at near random. However, forecaster predictions start to stabilize ≥ 60% within the first 1000
minibatches (Total: 7500) of training. The trend is reflected in the left hand side plot, where initially
our method performs slightly inferior to Vanilla KD for the initial 1000 steps of the training, but
surpasses Vanilla KD thereafter. The post-hoc adjustment to the forecaster outputs is a key aspect in
mitigating initial noise to a great extent. We believe that a warm-up phase for initial m% of training
steps, where forecaster weights are overridden by β can further stabilize early training.
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Figure 5: Training dynamics (accuracy plot) for one held-out domain of OfficeHome. The left plot
showcases OOD accuracy during a training run, comparing Vanilla KD with our method. Similarly,
the right plot showcases forecaster’s accuracy on its objective to predict whether the student’s pre-
diction is correct.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 SELECTION OF ROBUST DG ALGORITHM

ALGORITHM OFFICEHOME VLCS PACS TERRAINC. AVG.

ERM (Vapnik, 1998) 68.4 77.6 86.4 48.6 70.3
GROUPDRO (Sagawa et al., 2020) 68.6 78.0 87.0 46.7 70.1
MIXUP (Yan et al., 2020) 70.4 78.0 87.5 46.1 70.5
MLDG (Li et al., 2017b) 56.3 72.1 68.1 33.5 57.5
CORAL (Sun & Saenko, 2016) 68.6 77.1 87.7 48.4 70.5
MMD (Li et al., 2018a) 69.2 77.5 85.6 48.7 70.3
DANN (Ganin et al., 2016) 69.7 79.7 86.3 47.4 70.8
CDANN (Li et al., 2018b) 70.0 79.0 86.0 48.3 70.8

Table 5: Average OOD classification accuracies (%) for all datasets with ResNet-152. Model
selection: training-domain validation set.

D.2 DOMAIN-WISE RESULTS ON BENCHMARK DATASETS

Tables 7 – 14 report quantitative figures for domain generalization on the OfficeHome (Venkateswara
et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013), and TerraIncognita (Beery et al.,
2018) datasets. We use the ResNet-18 as the primary network in all experiments. Tables 7 –
10 use ResNet-152 as the teacher network, while Tables 11 – 14 use ViT-L/16 as the teacher
network. Each column in the table represents the held-out domain.

D.3 SENSITIVITY ANALYSIS ON HYPERPARAMETERS µ∗, ς∗, Ts, Tf AND β

Tables 15 – 17 report quantitative figures for domain generalization on the OfficeHome Dataset as
a function of various configurations of hyperparameters associated to our method: (1) forecaster
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ALGORITHM OFFICEHOME VLCS PACS TERRAINC. AVG.

ERM (Vapnik, 1998) 71.6 78.4 83.9 38.8 68.2
GROUPDRO (Sagawa et al., 2020) 71.5 77.3 80.3 33.7 65.7
MIXUP (Yan et al., 2020) 72.2 76.7 81.6 42.5 68.3
MLDG (Li et al., 2017b) 70.5 76.3 81.3 40.0 67.0
CORAL (Sun & Saenko, 2016) 71.9 78.2 84.4 40.8 68.8
MMD (Li et al., 2018a) 71.3 77.5 81.9 38.8 67.4
DANN (Ganin et al., 2016) 72.1 78.7 84.3 43.1 69.6
CDANN (Li et al., 2018b) 71.4 77.2 78.6 42.9 67.5

Table 6: Average OOD classification accuracies (%) for all datasets with ViT-L/16. Model selec-
tion: training-domain validation set.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 50.4 48.3 65.4 69.4 58.4
MIXUP (Yan et al., 2020) 51.5 48.6 70.3 70.2 60.2
KD (Hinton et al., 2015b) 52.7 49.7 72.1 74.2 62.2
KD+F+ADJ. 54.0 51.3 71.6 75.1 63.0

Table 7: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-
domain validation set. KD experiments use a ResNet-152 teacher network.

mean (µ∗) (2) forecaster std (ς∗) and (3) interleaved minibatch schedule (Ts, Tf ), in isolation.
Additionally, Table 18 reports the sensitivity in OOD performance on OfficeHome with change in
vanilla KD loss coefficient (β).

D.4 DOMAIN-WISE RESULTS ON COLOREDMNIST
Table 19 reports quantitative figures on ColoredMNIST (Arjovsky et al., 2020). We include Col-
oredMNIST to evaluate robustness under correlation shift. These results demonstrate that our pro-
posed adaptive KD method is not limited to benchmarks where domain shifts alter the image dis-
tribution, and not the underlying image to label mapping. It also extends to benchmarks like Col-
oredMNIST where domain changes influence the image to label mapping by introducing spurious
correlations between color and label. Here, OOD generalization is challenging for DG algorithms
as they can overfit to the spurious correlations (Gulrajani & Lopez-Paz, 2020).

D.5 DOMAIN GENERALIZATION ON LARGER STUDENT NETWORK

Table 20 presents OOD accuracies on OfficeHome with a ResNet-50 student. As the student
capacity increases, the gap in performance of vanilla KD and teacher network narrows down. This
makes the average performance gain achieved with adaptive KD relatively smaller as compared to a
small-capacity student.
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METHOD A C P S AVG.
ERM (Vapnik, 1998) 77.2 73.3 94.7 73.2 79.6
CORAL (Sun & Saenko, 2016) 77.3 73.9 94.7 74.5 80.1
KD (Hinton et al., 2015b) 82.4 76.4 95.0 75.9 82.4
KD+F+ADJ. 82.4 77.0 95.7 76.0 82.8

Table 8: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain
validation set. KD experiments use a ResNet-152 teacher network.

METHOD C S L V AVG.
ERM (Vapnik, 1998) 96.6 58.5 65.4 65.9 71.6
DANN (Ganin et al., 2016) 96.9 58.8 65.7 66.2 71.9
KD (Hinton et al., 2015b) 97.2 60.0 67.9 68.8 73.5
KD+F+ADJ. 98.3 61.3 69.8 69.2 74.7

Table 9: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain
validation set. KD experiments use a ResNet-152 teacher network.

METHOD L100 L38 L43 L46 AVG.

ERM (Vapnik, 1998) 53.2 33.0 51.4 35.9 43.4
MMD (Li et al., 2018a) 47.4 37.4 50.0 35.5 42.6
KD (Hinton et al., 2015b) 50.3 36.8 52.7 34.6 43.6
KD+F+ADJ. 56.7 33.6 54.4 35.5 45.1

Table 10: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-
domain validation set. KD experiments use a ResNet-152 teacher network.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 50.4 48.3 65.4 69.4 58.4
MIXUP (Yan et al., 2020) 51.5 48.6 70.3 70.2 60.2
KD (Hinton et al., 2015b) 55.4 53.0 72.6 74.0 63.7
KD+F+ADJ. 56.3 52.6 72.5 73.2 63.7

Table 11: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-
domain validation set. KD experiments use a ViT-L/16 teacher network.

METHOD A C P S AVG.
ERM (Vapnik, 1998) 77.2 73.3 94.7 73.2 79.6
CORAL (Sun & Saenko, 2016) 77.3 73.9 94.7 74.5 80.1
KD (Hinton et al., 2015b) 79.7 75.6 95.9 74.6 81.4
KD+F+ADJ. 78.3 74.7 95.9 75.0 81.0

Table 12: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain
validation set. KD experiments use a ViT-L/16 teacher network.
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METHOD C S L V AVG.
ERM (Vapnik, 1998) 96.6 58.5 65.4 65.9 71.6
DANN (Ganin et al., 2016) 96.9 58.8 65.7 66.2 71.9
KD (Hinton et al., 2015b) 95.9 61.5 69.7 73.6 75.2
KD+F+ADJ. 96.1 62.2 71.2 74.8 76.1

Table 13: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain
validation set. KD experiments use a ViT-L/16 teacher network.

METHOD L100 L38 L43 L46 AVG.

ERM (Vapnik, 1998) 53.2 33.0 51.4 35.9 43.4
MMD (Li et al., 2018a) 47.4 37.4 50.0 35.5 42.6
KD (Hinton et al., 2015b) 47.4 32.1 50.2 32.7 40.6
OURS 55.7 36.8 52.4 34.2 44.7

Table 14: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-
domain validation set. KD experiments use a ViT-L/16 teacher network.

(Ts, Tf ) A C P R AVG.

(1, 1) 54.0 51.3 71.6 75.1 63.0
(1, 10) 53.4 51.2 71.8 72.7 62.3
(10, 1) 53.0 51.5 71.3 72.7 62.2
(10, 10) 52.3 52.4 71.3 71.9 62.0

Table 15: OOD classification accuracy (%) on the OfficeHome dataset as a function of the inter-
leaved training schedule. Here, Ts refers to the number of minibatches the student network is trained
for, whereas Tf corresponds to the number of meta-minibatches, the forecaster is trained for in the
interleaved process.

µ∗ A C P R AVG.

0.1 52.2 51.8 69.9 71.9 61.5
0.3 53.6 51.6 70.7 72.3 62.1
0.5 54.0 51.3 71.6 75.1 63.0
0.7 52.9 51.1 71.6 72.2 62.0
0.9 53.0 51.0 71.3 72.1 61.9

Table 16: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch mean (µ∗). Here, the standard deviation of adjusted forecaster logits, ς∗ = 0.1.

ς∗ A C P R AVG.
0.01 52.5 51.5 71.5 72.4 62.0
0.1 54.0 51.3 71.6 75.1 63.0
0.5 53.6 52.0 71.9 72.3 62.5
1.0 54.7 51.2 72.0 73.0 62.8

Table 17: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch std (ς∗). For this analysis, the mean of adjusted forecaster logits, µ∗ = 0.5.
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µ∗ A C P R AVG.

0.1 53.6 52.5 69.8 72.2 62.1
0.3 53.3 51.8 71.3 72.5 62.2
0.5 52.7 49.7 72.1 74.2 62.2
0.7 53.5 51.7 71.6 72.5 62.3
0.9 53.3 51.6 72.4 72.3 62.4

Table 18: OOD classification accuracy (%) in Vanilla KD on the OfficeHome dataset as a function
of KD loss weight (β).

METHOD +90% +80% -90% AVG.
TEACHER 73.0 74.4 10.2 52.5

ERM (Vapnik, 1998) 71.6 72.9 9.9 51.5
KD (Hinton et al., 2015b) 72.7 72.2 10.1 51.6
OURS 72.5 73.8 10.3 52.2

Table 19: OOD classification accuracy (%) on the ColoredMNIST dataset. Model selection:
training-domain validation set. Model Architecture: CNN.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 59.0 49.9 73.2 75.4 64.4
MIXUP (Yan et al., 2020) 61.6 54.0 75.0 75.8 66.6
KD (Hinton et al., 2015b) 64.6 55.2 75.7 77.5 68.3
KD+F+ADJ. 62.0 56.9 76.7 78.8 68.6

Table 20: OOD classification accuracy (%) on the OfficeHome dataset with a ResNet-50 student.
Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher
network.
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