
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EARLY LAYER READOUTS FOR ROBUST KNOWLEDGE
DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Domain generalization (DG) aims to learn a model that can generalize to unseen
i.e. out-of-distribution (OOD) test domain. While large-capacity networks trained
with sophisticated DG algorithms tend to achieve high robustness, they tend to be
impractical in deployment. Typically, Knowledge distillation (KD) can alleviate
this via an efficient transfer of knowledge from a robust teacher to a smaller stu-
dent network. Throughout our experiments, we find that vanilla KD already pro-
vides strong OOD performance, often outperforming standalone DG algorithms.
Motivated by this observation, we propose an adaptive distillation strategy that
utilizes early layer predictions and uncertainty measures to learn a meta network
that effectively rebalances supervised and distillation losses as per sample dif-
ficulty. Our method adds no inference overhead and consistently outperforms
canonical ERM, vanilla KD, and competing DG algorithms across OOD general-
ization benchmarks.

1 INTRODUCTION

Deploying machine learning models in real-world scenarios requires robustness to distribution shifts
(Koh et al., 2021; Huang et al., 2021), often referred to as domain generalization (DG) (Zhao et al.,
2020; Robey et al., 2021) or out-of-distribution (OOD) generalization (Wald et al., 2021; Montasser
et al., 2024). While high-capacity models trained with specialized DG algorithms (Gulrajani &
Lopez-Paz, 2020) can achieve strong robustness, they are often prohibitively expensive in terms of
computation and memory, making them impractical for deployment in resource-constrained envi-
ronments.

Knowledge distillation (KD) (Hinton et al., 2015a;b; Lopes et al., 2017), has emerged as a standard
approach for improving efficiency by transferring knowledge from a large teacher model to a com-
pact student model. Beyond efficiency aspect of KD, it has recently been explored for improving
OOD robustness, where vanilla KD, as shown in (Zhou et al., 2022; 2023; Huang et al., 2023) tends
to yield better OOD performance compared to models trained solely with DG algorithms. However,
there is still room for improvement, as KD typically treats all samples uniformly and often overre-
lies on the teacher’s dark knowledge, making it prone to teacher-specific biases. Moreover, existing
works that adapt KD for domain generalization primarily focus on using adversarially trained teach-
ers (Nasery et al., 2022), multimodal teacher networks for additional supervision Huang et al. (2023)
or ensemble of domain-specific teachers Zhao et al. (2025), leaving the role of the student network
underexplored.

To address these limitations, we propose an adaptive distillation framework that modulates distilla-
tion loss based on sample difficulty via with a lightweight forecaster meta-network. The forecaster
leverages early layer representations and uncertainty measures to estimate sample difficulty and dy-
namically reweight the distillation loss. This enables the student to selectively trust the teacher where
appropriate while emphasizing supervision from ground-truth labels for harder or biased samples.
Crucially, our design introduces no additional inference-time overhead as the forecaster is discarded
post-training, making it well-suited for practical deployment.

Our work makes the following contributions:

• We identify the limitations, and opportunities for improvement in standard KD under do-
main shifts, noting that uniform treatment of samples and blind reliance on the teacher
hinder OOD robustness.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We propose an adaptive distillation framework with a forecaster meta-network that lever-
ages early readouts to dynamically assign instance-specific weights in the loss function
based on sample difficulty.

• We show that our approach improves student robustness with affecting deployment effi-
ciency: it adds no inference-time overhead while consistently improving OOD generaliza-
tion across multiple benchmarks.

2 BACKGROUND AND RELATED WORK

Instance-Specific Learning. Prior works have explore instance-specific learning to improve neu-
ral network training under noisy conditions, via instance-specific parameters such as temperature,
smoothing factors, or weights. Saxena et al. (2019); Wang et al. (2018); Algan & Ulusoy (2021) in-
troduce learnable sample and class weights to control the importance of each sample in the learning
process depending on sample reliability and label noise. Ren et al. (2019); Shu et al. (2019); Raghu
et al. (2021); Jain et al. (2024) adopt meta-learning (Finn et al., 2017) using small unbiased meta-
samples to learn weighing functions to obtain instance-specific weights to address class imbalance,
label noise and robustness. In the context of knowledge distillation, Zhao et al. (2021) propose a
curriculum-based distillation with instance-level sequence learning. Iliopoulos et al. (2022) presents
reweighing strategy for the student loss in knowledge distillation with unlabeled data, to eliminate
potential biases from the teacher network. Sivasubramanian et al. (2022) present a bi-level objec-
tive to learn instance-specific combination of teacher-matching and supervised objectives to learn
student models that are more accurate. In this work, we introduce a meta-network which guides the
student via instance-specific weighing in the KD objective. Further, we interleave the training of the
meta-network with the student, without requiring complex meta-learning.

Early Readouts. Prior works on Early Readouts majorly focus on early-exiting (Han et al., 2021;
Xu & McAuley, 2023; Laskaridis et al., 2021; Matsubara et al., 2022) with the aim to reduce infer-
ence cost, allowing samples to "exit" at intermediate layers via auxiliary classifiers. These include
dynamic early-exiting and static early-exiting mechanisms. Dynamic methods focus on balancing
trade-off between speed and accuracy at inference, by early-exit mechanisms based on dynamics of
internal classifiers, such as calibrated prediction confidence and entropy(Xin et al., 2020; Liu et al.,
2020; Schwartz et al., 2020; Zhou et al., 2020), class mean of sample predictions (Görmez et al.,
2022). In contrast to dynamic mechanisms, Sun et al. (2022) propose a hash-based early exiting for
sequence learning tasks, where tokens are assigned to fixed exiting layers using a hash function. In
the context of KD, Tiwari et al. (2023) use early readout errors to detect spurious feature reliance,
and propose a weighing scheme to reweigh the distillation loss to reduce feature-specific bias. In
this work, we re-purpose early readouts not for exiting, but as signals to guide our meta-network,
forecaster, in assigning instance-specific weights in KD for OOD robustness, while avoiding the
need for handcrafted weighing functions.

Distillation-based Domain Generalization. Distillation has shown promise in OOD generalization
by allowing knowledge transfer from a robust teacher network, as opposed to training student net-
work solely on a DG Algorithm (Wang et al., 2021; Huang et al., 2023). However, prior works on
KD for Domain Generalization focus on teacher network or the teacher-student interaction. Wang
et al. (2021) propose gradient based regularization to lower the mapping difficulty from the teacher
to the student. Nasery et al. (2022) utilize adversarially fine-tuned teacher networks to improve
knowledge transfer to student for OOD generalization. Huang et al. (2023) leverage CLIP teacher
model along with a proposed text-based regularization scheme to enable better transfer from teacher.
Zhao et al. (2025) leverage domain-specific teachers to improve student generalizability in an online
KD setting. In contrast to prior works, our method explores student-centric adaptation, leveraging
early layer prediction confidences to navigate the distillation process.

3 NOTATION AND PROBLEM SETUP

Notations. The first set of n natural numbers {1, 2, . . . , n} is denoted by [n]. The n-dimensional
real vector space is denoted by Rn. Vectors are typeset in lowercase bold (e.g., x); matrices are in
uppercase bold (e.g., X); and elements are referenced by subscripts (e.g., xi, Xij). When needed
for clarity, elements will be referenced by subscripts on square brackets (e.g., [x1]i, [X2]ij). We
denote the sigmoid function by σ(x) = (1 + e−x)−1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Knowledge Distillation. Knowledge distillation (Hinton et al., 2015b) provides an efficient frame-
work for training compact models without the need to optimize over large-scale networks, thereby
reducing both memory footprint and computational overhead. In this paradigm, the compact model
(student) is trained to align with both the ground-truth labels and the predictive behavior of a larger
reference model (teacher). Formally, the training objective for the student consists of two compo-
nents:

1. Supervised Loss LCE , which measures the discrepancy between the student’s predictions
and the ground-truth labels using cross-entropy.

2. Distillation Loss LKD, defined as the Kullback-Leibler divergence between the student’s
and teacher’s output distributions. This term encourages the student to replicate the soft-
ened predictive probabilities of the teacher, which encode richer information than hard
labels alone and thus facilitate more effective knowledge transfer.

Problem Setting. Consider a standard supervised multi-classification setting with inputs x ∈ X ,
outputs y ∈ Y , and the training data D = {(xi, yi)}Ni=1 where yi ∈ [K], K denoting the total
number of classes and xi ∈ Rd denoting the i-th input feature. Suppose, we train a student network
Mθ(S) parameterized by θ(S) and let the corresponding teacher networkMθ(T ) parameterized by
θ(T ) be used for teacher-student distillation. Let the student network consists of L layers, where the
output representation for the ℓ-th layer ℓ ∈ L is given by zℓ

θ(S) = hℓ
θ(S)(xi) ∈ Rdℓ where dℓ denotes

the ℓ-th layer dimension. The final layer output logits from student network corresponding to an
input xi is denoted by zL

θ(S) :=Mθ(S)(xi).

Loss Formulation. In KD, the student networkMθ(S) is trained by minimizing the standard cross
entropy loss between the model predictions and ground truth over the training data D as per (1),
while the teacher predictions are used to minimize the knowledge distillation term (2), defined as
the KL divergence between teacher and student logitsMθ(T )(xi) andMθ(S)(xi).

L(S)
CE = − 1

N

N∑
i=1

K∑
j=1

1(yi=j) log pθ(S)(xi)j (1) LKD = −τ2 1

N

N∑
i=1

DKL

(
pθ(T )(xi) ∥ pθ(S)(xi)

)
,

(2)

where pθ(xi)j =
exp(Mθ(xi)j/τ)∑K

k=1 exp(Mθ(xi)k/τ)
denotes j-th class probability where j ∈ [K]. Here, τ de-

notes the temperature used to soften the output probabilities of both the student and the teacher.
Generally, a higher temperature allows for smoother distributions, which capture richer inter-class
relationship from the teacher (Hinton et al., 2015a). This allows the student to capture more nu-
anced relationships between classes rather than focusing on a single class representing the highest
probability.

Student Training Objective. The student network’s loss is denoted by L(S)
tot (·, ·;θ(S)), where

L(S)
tot (X ,Y;θ(S)) = α · L(S)

CE + β · LKD (3)

Here, L(S)
tot (·, ·;θ(S)) is expressed as a convex combination of L(S)

CE and LKD, with α ∈ R+ and
β ∈ R+ being seen as two degrees of freedom, controlling the contribution of each loss component
(Srivastava et al., 2015). The two degrees of freedom can be reduced to a single degree of freedom
by bounding α and β with the condition: α+ β = 1.

Moreover, in the absence of labeled data to train the student model, the distillation reduces to a soft-
distillation setting, where α = 0 . In this case, the soften teacher probabilities form the only source
of supervision for the student model (Lopes et al., 2017).

Student capacity limits and Teacher Confidence. The student’s ability to learn the teacher’s
deeper representational space is inherently bounded, and the student may fail to capture richer
information beyond a threshold due to limited capacity. On the other hand, larger teachers are
over-confident, yielding higher target logits and lower variance in predictions, resulting in less dis-
tinctive incorrect-class softmax probabilities. In this case, if distillation temperature is increased,
teacher guidance becomes weaker, smoothing strengthens due to the softened distribution, and class
discriminability measured by variance of incorrect-class probability initially rises then falls off.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Together, both the student capacity and teacher confidence restrict the effectiveness of knowledge
transfer (Li et al., 2022).

3.1 OOD GENERALIZATION IN DISTILLED MODELS

Bottlenecks with Vanilla KD. While distillation serves as a good approach for model compression,
the student model can be interpreted as a small clone of the teacher over-fitted to the teacher’s learned
patterns. The over-fitting and the student model’s limited capacity typically fails to generalize well
with OOD samples at inference time (Yue et al., 2023). While there exist OOD generalization
algorithms targeted towards OOD robustness in neural network (Gulrajani & Lopez-Paz, 2020),
the lack of representation capacity affects the ability of the student to directly benefit from these
algorithms.

A general solution to improve generalization ability of the student is to train the teacher network with
domain generalization (Gulrajani & Lopez-Paz, 2020) algorithms or adversarial training (?) (Nasery
et al., 2022) for OOD robustness. During distillation, the robust teacher can act as a “shortcut" that
helps the student model bypass the requirement of complex, robust training. The student model
inherits the teacher’s ability to produce well-calibrated outputs for seen and unseen input instances.
This helps the student to be robust to distribution shifts in a deployment environment.

3.2 EARLY READOUTS

Early-layer confidences in a neural network offer valuable insights about an input sample (Baldock
et al., 2021). Low confidences at these layers can suggest that the sample is complex or ambiguous,
potentially making it harder for the model to classify accurately. Conversely, higher early-layer
confidences indicate that the low-level representations align more closely with a particular class,
increasing the likelihood that the student network will classify it correctly. By providing additional
supervision, such as hard labels, for ambiguous samples, the model can improve its learning of
overlapping or confusing features across classes, ultimately enhancing overall performance. (Tiwari
et al., 2024) utilize early exit information from neural networks.

4 PROPOSED METHODOLOGY

Our overall architecture consists of the teacher-student setup, with alterations to the student network.
We incorporate auxillary networks (internal classifiers) on intermediate layers’ output representa-
tions, say denoted as E ⊆ [L], where L denotes the number of layers in the model.

Figure 1 provides a brief overview of our approach where we incorporate early-layer predictions and
uncertainty measures from the student model to dynamically weigh the individual loss components
of the distillation objective. In the sections to follow, we elaborate on the auxiliary networks and the
forecaster in detail.

4.1 AUXILIARY NETWORK: EARLY LAYER CONFIDENCE

Design of Auxiliary Networks. For each early layer ℓ ∈ E , we instantiate an auxiliary predictor
A

(ℓ)
aux( • ; φℓ) : Rdℓ → ∆K , with the ℓ-th auxiliary classifier parameterized by φℓ. The input

to A
(ℓ)
aux is the ℓ-th layer’s output representation zℓ

θ(S) . The role of the auxiliary classifier is to
encode how well the truncated feature stack up to layer ℓ differentiates among the label space Y ,
i.e., the extent to which intermediate layers capture discriminative information over class labels.
Such auxiliary predictors have been shown to be effective both for improving gradient flow and
feature discriminability during training (Szegedy et al., 2015; Lee et al., 2015), as well as for post-
hoc analysis of representation quality via probing (Alain & Bengio, 2016).

Training Objective of Auxiliary Networks. On the training split D, the objective of each auxiliary
encoder is to minimize the standard classification loss:

L(ℓ)
aux(z

ℓ
θ(S) ;φℓ) = −

N∑
i=1

K∑
j=1

1{yi=j} log
exp

(
A

(ℓ)
aux(zℓθ(S) ;φℓ)j

)∑K
k=1 exp

(
A

(ℓ)
aux(zℓθ(S) ;φℓ)k

) . (4)

4.2 FORECASTER META-NETWORK

Deep neural networks are prone to overfitting under label noise or class imbalance, where fixed
re-weighting schemes often fail due to their reliance on handcrafted weighting functions and hyper-
parameters. To address this, we introduce a forecaster module that adaptively maps sample-level

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

🔥🔥🔥

🔥

❄️

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r N

🔥

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r N

(no backprop)

❄️

❄️ ❄️ ❄️

(no backprop)

🔥 ❄️

Figure 1: Overview of adaptive knowledge distillation that leverages early layer readout predic-
tions and uncertainty measures to learn a meta-network forecaster which modulates contribution
of ground-truth supervision and teacher supervision in the distillation process at an instance level.
Here, the student network, early layer auxiliary networks and forecaster are trained in an interleaved
fashion. First, the student backbone and the auxiliary network are trained on the classification ob-
jective, while the forecaster remains frozen, for a fixed number of train minibatches. Next, for a
fixed number meta-validation set from the training domains is used to train the forecaster with the
objective to estimate student correctness. At test time, the forecaster and auxiliary networks are dis-
carded, resulting in our method requiring the same computational resources as a vanilla KD during
inference.

statistics to re-weigh the influence of the teacher network in the distillation process. Parameterized
as a lightweight neural network and optimized jointly with the model, the forecaster provides a flex-
ible data-driven mechanism that generalizes beyond handcrafted weighting rules. We denote the
forecaster as F(•;ψf ) defined as a meta-network parameterized by ψf .

0.0 0.5 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

AUC=0.82
AUC=0.56

w/ c.m and entropy
w/o c.m and entropy

Figure 2: ROC curves showcas-
ing the impact of incorporating
confidence margin (ε) and entropy
H(p) features from early layers
into the forecaster.

Confidence Margin The layer wise confidence margin of
the ℓ-th auxiliary network denoted by ε(ℓ) acts a good sig-
nal of uncertainty in the predictions at the early layers (Ti-
wari et al., 2024; Xin et al., 2020; Liu et al., 2020) where
pmax(φl) = max(p1(φl), p2(φl), . . . , pK(φl)) and pj(·) in-
dicates the probability of the auxiliary layer l’s output being
classified as the j-th label, ∀j ∈ [K].

ε(ℓ) = pmax(·)−max(pi(·) | i ̸= argmax(pi(·))) (5)

Particularly, forecaster is fed logits (z), Entropy {H(p)} and
Confidence Margin (ε) of the auxiliary network predictions as
uncertainty indicators of auxiliary network, highlighting pre-
diction confidence and randomness.

Training Forecaster F(•;ψf ) The Forecaster is trained in
conjunction to the student Mθ(S) and the auxiliary networks A

(ℓ)
aux( • ; φ) using a binary classifi-

cation objective. The binary classification task for the forecaster is to determine whether student
model correctly predicts an input instance. Higher output probability from the forecaster indicates
student is more likely to correctly classify the sample, indicating an easier sample. We utilize the
output probability of the forecaster directly to weigh the KL divergence between the student and
the teacher, forcing the student to mimic teacher for such samples and focus more on ground-truth
supervision when the forecaster output probability is smaller. To train the forecaster, we minimize
Lfocs(θ

(S);ψf ) on the validation split Dv ⊆ D

Lfocs(θ
(S),ψf ) = −

〈
yg
θ(S) , logwψf

〉
−

〈
1− yg

θ(S) , log(1−wψf
)
〉
, (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.5475 0.5500 0.5525
0

10
W

ith
ou

t A
dj

. Step 300

0.70 0.71
0

25

Step 2400

0.6 0.8
0

10

Step 4800

2000 4000
0.6

0.8

Mean & Std Dev

0.5 0.6
0

10

W
ith

 A
dj

.

0.3 0.4 0.5
0

50

0.45 0.50 0.55
0

10

2000 4000
0.475

0.500

0.525

Figure 3: Distribution of forecaster outputs at different training steps, comparing the unadjusted case
(top row) with post-hoc adjustment (bottom row). The rightmost plots summarize the deviations
across epochs. Post-hoc adjustment stabilizes the output distribution, negating drift towards skewed
values.

where yg
θ(S) ∈ {0, 1}N is the binary vector of ground-truth labels for the student model predictions,

with entries yg
θ(S),i

= 1(ŷi=yi) for each instance i ∈ [N ], and wψf
∈ (0, 1)N is the vector of

forecaster outputs parameterized by ψf . In a mini-batch setting (say batch size B), the forecaster
loss is averaged across all samples in the batch with wψf

∈ (0, 1)|B|.

Design of Forecaster. The forecaster is implemented as a lightweight neural network comprising a
1D convolution on stacked intermediate logits obtained from auxiliary networks. The convolution
operation integrates the logits across layers, one class at a time. To this representation, we append
uncertainty measures: confidence margin and entropy of each Auxiliary Network prediction. Using a
linear projection on this intermediate representation, the forecaster provides a scalar weight w(ψf ) ∈
[0, 1] for each instance in the minibatch, which indicates the confidence of the forecaster in assessing
whether the student network will correctly predict the input instance.

METHOD A C P R AVG.

KD (Hinton et al., 2015b) 52.7 49.7 72.1 74.2 62.2
KD+F 54.3 50.2 70.5 72.5 61.9
KD+F+ADJ. 54.0 51.3 71.6 75.1 63.0

Table 1: OOD classification accuracy (%) on the
OfficeHome dataset. KD denotes vanilla knowledge
distillation, F incorporates the forecaster, and ADJ.
further applies the proposed post-hoc adjustment to
forecaster outputs. The adjustment (µ∗ = 0.5 and
ς∗ = 0.1) consistently improves average performance
across held-out domains.

Post-hoc Adjustment of Forecaster Out-
put. The forecaster F(zf ;ψf ) outputs a
weight wt ∈ [0, 1]. For a batch of in-
put instances, forecaster output distribu-
tion can be skewed, affecting the stabil-
ity of student model training and individ-
ual loss component contributions. There-
fore, for a batch of samples (B), we em-
ploy the following post-hoc adjustment on
the forecaster output logits (zf ) before
utilizing the output for training the stu-
dent, wadj

ψf
= σ

(
ς∗

(
zf−µB

ςB

)
+ µ∗

)
,

where µ∗ and ς∗ are hyperparameters. Ul-
timately, the student is trained by minimiz-
ing, L(s)

tot(XB ,YB ;θ(S),wψf
) = 1

|B|
∑|B|

j=1(1−wadj
ψf

[j]) · ℓ(s)CE [j] +wadj
ψf

[j] · ℓ(s)KD[j].

5 BI-LEVEL OPTIMIZATION PROBLEM AND CONVERGENCE

The interleaved training schedule between the student network and the forecaster can be viewed as
a bilevel optimization problem given by,

outer-level︷ ︸︸ ︷
argmin

wf

Lfocs
(
argmin

θ
L(s)
tot(θ,wf ), Dv︸ ︷︷ ︸

inner-level

)

Starting at θ(S)
0 and w0

f , a single gradient update can be written as,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

θ
(S)
t ← θ

(S)
t−1 − η1∇θ(S)

t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (7)

where wt
f ← wt−1

f − η2∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ) (8)

6 ALGORITHM

We outline the distillation process with an interleaved training process where the student model,
auxiliary networks and the forecaster are trained in an alternating pattern. For pre-determined k
steps, the primary student model and the auxiliary networks are trained on the training domains
using the training split of the training domains. Here, the forecaster remains frozen, and is used
to generate instance-level weights to guide the student training. Subsequently, for next k steps,
the forecaster is trained on the on a held-out validation split from the training data of the training
domain(s) with the lastest checkpoints of the student model and the auxiliary networks, which are
frozen. This process continues until the exit criterion of the algorithm is satisfied. Refer Algorithm 1
for an illustrated outline of the algorithm.

Algorithm 1 Interleaved Training of Student and Forecaster

Require: Student Mθ(S) , Teacher Mθ(T ) , Forecaster F(ψf ); Btrain,Bval; Ts (student steps), Tf

(forecaster steps), N (total steps), L (number of layers), µ∗ (Adjustment mean), ς∗ (Adjustment
st. deviation)

1: Initialize θ(S)
0 ,θ

(T )
0 ,ψf

0 , [φ
(ℓ)
0 ]L−1

ℓ=1
2: for t = 1 to N do
3: if t mod (Ts + Tf ) < Ts then
4: ▶ Student and Auxiliary Network Update
5: SetMθ(S) ,Mθ(T ) ,F(ψf ), [A

(ℓ)
aux]

L−1
ℓ=1 to eval

6: X← concat(x | (x,y) ∈ Btrain)

7: [A
(ℓ)
aux(X; φ)]L−1

ℓ=1 , Ŷ ←Mθ(S)(X)

8: O← F([A(ℓ)
aux(X; φ)]L−1

ℓ=1 )
9: µB = O.mean(), ςB = O.std()

10: W = σ
(
ς∗

(
O−µB

ςB

)
+ µ∗

)
11: SetMθ(S) to train;
12: θ

(S)
t ← θ

(S)
t−1 −

η
|Btrain|

∑
x∈Btrain

L(s)
tot(x;θ

(S)
t−1,W)

13: for ℓ = 1 to L− 1 do
14: Set A(ℓ)

aux to train;
15: φ

(ℓ)
t = φ

(ℓ)
t−1 −

η
|Btrain|

∑
x∈Btrain

L(ℓ)
aux(A

(ℓ)
aux(x);φ

(ℓ)
t−1)

16: end for
17: else
18: ▶ Forecaster Update
19: Set F(ψf ) to train,Mθ(S) , [A

(ℓ)
aux( • ; φ)]L−1

ℓ=1 to eval
20: ψf

t ← ψf
t−1 −

ηf

|Bval|
∑

Bval
L(f)(θ(S),ψf

t−1)

21: end if
22: end for

7 EXPERIMENTS

Evaluation. For the image-classification experiments, we leverage the DomainBed Suite (Gulrajani
& Lopez-Paz, 2020). DomainBed provides a fair, standardized and reproducible setup for evaluat-
ing and comparing our method against best performing subset from a wide range of DG algorithms
including ERM (Vapnik, 1998), GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG
(Li et al., 2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al.,
2016) and C-DANN (Li et al., 2018b). For the text-classification experiments, we leverage repre-
sentative ID-OOD task pairs from GLUE-X (Yang et al., 2023). In the case of text-classification, we
compare our method against vanilla KD and ERM. We use classification accuracy as the primary
metric.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DATASET DOMAINS INSTANCES LABELS

OFFICEHOME 4 15,588 65
PACS 4 9,991 7
VLCS 4 10,729 5
TERRAINCOGNITA 4 24,778 10

PARAPHRASE 2 44,118 2
NLI 2 402,517 3

Table 2: Dataset statistics.

Model Pool. In our KD experiments, we
distill from a robust teacher model. We ex-
periment with both ResNet (He et al., 2015)
and Vision Transformer (Dosovitskiy et al.,
2021) as the teacher network. Specifically, we
first identify the best-performing domain gen-
eralization algorithm at the teacher level per
dataset using ResNet-152 and ViT-L/16,
and use the best teacher network in the distil-
lation process. For the student network, we
select the smallest capacity model from the
ResNet family: ResNet-18. For transformer-based text experiments, we leverage Encoder-only
bert-base-uncased (Devlin et al., 2019) as the teacher network. In this case, the student net-
work is a 4-layer compact BERT variant: google/bert_uncased_L-4_H-256_A-4 (Turc
et al., 2019).

Datasets. We evaluate and compare our method on four benchmark datasets, including OfficeHome
(Venkateswara et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013) and TerraIncognita
(Beery et al., 2018). For text-based benchmarking, we choose the tasks of (1) paraphrase identifica-
tion with MPRC as ID split and QQP as OOD split, and (2) natural language inference (NLI) with
MNLI as ID split and MNLI-mismatched as OOD split. Table 2 provides the details of the domains,
instances, and label counts for each dataset.

Baselines. We compare our method against three baselines. We include the Empirical Risk Mini-
mization (ERM) (Vapnik, 1998) as a canonical domain generalization algorithm, supported by find-
ings in Gulrajani & Lopez-Paz (2020). Then, we select the best-performing OOD algorithm iden-
tified at the teacher level as the second baseline. In this case, we retrain the student model without
distillation. Finally, we include vanilla KD (Hinton et al., 2015b), where the student us trained to
mimic the logits of the teacher without any further modifications. In the case of text-classification,
we compare our method against vanilla KD and ERM.

Training Protocol. For a dataset comprising N domains, we adopt the leave-one-domain-out setup
where the network is trained on N − 1 domains and evaluated on the held-out domain. We reserve
20% from each of training domain as a validation set for model selection. In our method, remaining
80% training split is further divided, with 90% used to train the student backbone and auxiliary
networks, and 10% held out to train the forecaster. We leverage gold validation splits to train the
forecaster in our text-modality evaluations. Within the distillation setup, we choose temperature
τ = 2 in the KD loss formulation (Hinton et al., 2015a).

Auxiliary Network Design. For the ResNet student, each residual block (Total: 4) stage yields
feature maps that encode progressively abstract representations of the input (He et al., 2015). To
obtain class-wise representations from these intermediate features, we employ lightweight auxiliary
heads following the design principles of prior works on multi-layer feature supervision (Szegedy
et al., 2015; Lee et al., 2015) and early-exits (Xin et al., 2020; Liu et al., 2020). Each auxiliary head
comprises two components: (i) a pooling operation to reduce the spatial dimensionality, and (ii) a
feed-forward projection layer that maps the pooled features to a vector of dimension equal to the
number of target classes. For transformer-based BERT backbone, the auxiliary networks are simple
linear projections i.e. one layer feed-forward block.

8 RESULTS

Table 3 reports the domain generalization performance across four benchmark datasets. Here, ERM
Vapnik (1998) corresponds to standard empirical risk minimization, where the network is trained
solely on ground-truth supervision. Similarly, DB. SOTA refers to the strongest domain generaliza-
tion algorithm among GroupDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG (Li et al.,
2017b), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018a), DANN (Ganin et al., 2016) and
C-DANN (Li et al., 2018b), selected as per findings described in Appendix D.1. In the KD (Hinton
et al., 2015a) setting, the student is trained with an additional supervision from a larger network
fine-tuned using the best-performing DG algorithm.

We observe that KD consistently outperforms both, the canonical empirical risk minimization
(ERM) and the dataset-specific best-performing DG algorithm. This highlights the effectiveness

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

METHOD ARCH. OFFICEHOME PACS VLCS TERRA. AVG.
ERM (Vapnik, 1998) ResNet-18 58.4 79.6 71.6 43.4 63.3
DB. SOTA ResNet-18 60.2 80.1 71.9 42.6 63.7

TEACHER NETWORK: ResNet-152

KD (Hinton et al., 2015b) ResNet-18 62.2 82.4 73.5 43.6 65.4
KD+F+ADJ.(Ours) ResNet-18 63.0 82.8 74.7 45.1 66.4
TEACHER NETWORK: ViT-L/16

KD (Hinton et al., 2015b) ResNet-18 63.7 81.4 75.2 40.6 65.2
KD+F+ADJ. (Ours) ResNet-18 63.7 81.0 76.1 44.7 66.4

Table 3: Domain generalization accuracy (%) on four benchmark datasets. Best results are high-
lighted in bold and green. Here, DB. SOTA refers to the best-performing DG algorithm for the
dataset, selected according to the evaluation protocol described in Appendix D.1.

METHOD ARCH. PARAPHRASE NLI Avg.
ERM (Vapnik, 1998) bert_uncased_L-4_H-256_A-4 57.1 74.6 65.8

TEACHER NETWORK: bert-base-uncased

KD (Hinton et al., 2015b) bert_uncased_L-4_H-256_A-4 58.4 74.8 66.6
KD+F+ADJ. (Ours) bert_uncased_L-4_H-256_A-4 60.9 75.4 68.2

Table 4: OOD Classification accuracy (%) on (MPRC, QQP) and (MNLI, MNLI-mismatched) ID,
OOD pairs from GLUE-X benchmark. Prompt details present in Appendix A.2.

of knowledge transfer from a robust teacher network. Building on the strong KD baseline, we
evaluate our adaptive distillation setup, which augments KD with the forecaster meta-network that
utilizes early readout signals from the student network. Our method improves over KD under both,
a convolutional ResNet teacher and transformer based ViT teacher. With a robust ResNet-152
teacher, our approach achieves an average OOD accuracy of 66.4%, outperforming KD by +1.0%.
Similarly, with a robust ViT-L/16 teacher, our method surpasses KD by +1.2%. These consistent
improvements across datasets showcase our approach as a principled extention to the standard KD
problem for domain generalization.

Table 4 reports the domain generalization results in the text modality with a transformer-based stu-
dent architecture. Here, our method yields an average increase of 1.6% in accuracy, relative to the
standard KD, showcasing the generality of our work across modality and model architecture.

The Need For Post-hoc Adjustment. As shown in Table 1, in the absence output adjustment,
adaptive KD with forecaster yields lower OOD performance as compared to vanilla KD. This mo-
tivates us to understand why an unadjusted forecaster may fail. We therefore analyze the dynamics
of the forecaster outputs during the distillation process with and without post-hoc adjustment to the
forecaster outputs. Figure 3 showcases the change in forecaster outputs for a minibatch as training
progresses. Without any correction to the forecaster output, the distribution gradually drifts towards
extreme values close to 1. This drift can be attributed to the nature of the training of the forecaster.
The forecaster is trained as a binary classifier to predict correctness of student network based on
early readout predictions and uncertainty signals. Naturally, as the student improves, an increasing
fraction of samples become easy, pushing forecaster towards overconfident predictions. This causes
the weight to concentrate more to LKD as the training progresses, making model overfit to teacher’s
supervisory signals, affecting its generalizability.

The Role of Uncertainty Signals. We also analyze the impact of early layer uncertainty features
on forecaster quality. As shown in Figure 2, including entropy H(p) and confidence margin (ε)
from auxiliary predictions substantially improves the forecaster’s predictive ability to determine
easy and hard samples, with an increase in AUC by +26%. This demonstrates that early readouts
provide rich signals of sample ambiguity, which can be leveraged by the forecaster, to effectively
modulate the loss weighing. Together, these emipirical ablations on the forecaster confirm that both

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1:1 10:1 1:10 10:10

Steps (primary:forecaster)

50

60

70

0.1 0.3 0.5 0.7 0.9

*  (with * = 0.1)

0.01 0.1 0.5 1.0

*  (with * = 0.5)

0.1 0.3 0.5 0.7 0.9

  (with  +  = 1)

Ac
cu

ra
cy

 (%
)

Art Clipart Product Real-World

Figure 4: From left to right: Domain-wise OfficeHome OOD accuracies as a function of (a) inter-
leaved training schedule, (b) adjusted forecaster output mean (µ∗), (c) adjusted forecaster output
spread (ς∗) and (d) coefficient of KD loss in Vanilla KD.

post-hoc adjustment and statistical uncertainty-aware design choice is essential to the forecaster
meta-network.

Sensitivity Analysis. We chose µ∗ and ς to be 0.5 and 0.1 as pragmatic, dataset agnostic hyper-
parameters. µ* = 0.5 centers the post-hoc adjustment to allow equal contribution from teacher soft
predictions and ground-truth supervision. This allows the training signal to not be overly dominated
by the teacher or the ground-truth. ς = 0.1 allows a controlled spread around the center, allowing
an instance-based adjustment proposed by the forecaster without a strong drift in either direction.
We conduct sensitivity analysis by (1) varying µ∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} while keeping ς fixed
to 0.1 and (2) varying ς ∈ {0.01, 0.1, 0.5, 1.0} keeping µ∗ fixed to 0.5. As shown in Figure 4 OOD
performance does not degrade sharply across various choices of (µ∗, ς∗) pairs, suggesting that our
method is not sensitive to the hyperparameter choices of µ∗ and ς∗. While the hyperparameters can
be tuned per-dataset or per-domain within a dataset, we recommend the practical default choices
under compute constraints.

Similarly, we set the student model update frequency, Ts = 1 and forecaster update frequency,
Tf = 1 in our experiments. With Ts = 1 and Tf = 1, we simply ensure that the forecaster is
updated as frequently as the student, preventing the forecaster weights becoming stale as the student
representation evolves during training. To assess how the frequency of updates to the forecaster
affect the downstream OOD performance of the student network, we conduct a sensitivity analysis
by varying Ts and Tf across several configurations shown in Figure 4. As shown, we observe a
small but consistent drop in average OOD performance in these alternative configurations. These
observations suggest that the forecaster network is negatively affected in both cases of (1) infrequent
updates (Ts = 10, Tf = 1) where the forecaster is lagging behind current student configuration and
too frequent updates (Ts = 10, Tf = 10 or Ts = 1, Tf = 10) where the forecaster potentially
overfits to current student configuration.

9 CONCLUSION

In this work, we introduced a forecaster based re-weighing approach to standard offline knowledge
distillation setting, where the forecaster leverages early layer readouts from the student model to
adaptively modulate the distillation objective, resulting in an improved generalizability of the stu-
dent network as opposed to vanilla KD. Our experiments across multiple benchmarks spanning two
modalities: (1) vision and (2) text, demonstrate the efficacy of our approach in improving OOD
generalization of student network over vanilla KD baseline and canonical DG algorithms. Further,
we provide insights on critical design choices for the forecaster: (1) post-hoc adjustment, which
prevents forecaster collapse that results in overconfident predictions, and (2) Use of uncertainty
measures such as entropy and confidence margin, which significantly improve forecaster’s ability
to distinguish between easy and difficult samples. Together, we establish our framework as a novel
extension to standard offline KD, allowing robust generalization to unseen domains, from a student-
centric design choice.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Görkem Algan and Ilkay Ulusoy. Meta soft label generation for noisy labels, 2021. URL https:
//arxiv.org/abs/2007.05836.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2020. URL https://arxiv.org/abs/1907.02893.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

Sara Beery, Grant van Horn, and Pietro Perona. Recognition in terra incognita, 2018. URL https:
//arxiv.org/abs/1807.04975.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In 2013 IEEE International Conference on
Computer Vision, pp. 1657–1664, 2013. doi: 10.1109/ICCV.2013.208.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks, 2017. URL https://arxiv.org/abs/1703.03400.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works, 2016. URL https://arxiv.org/abs/1505.07818.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization, 2020. URL
https://arxiv.org/abs/2007.01434.

Alperen Görmez, Venkat R. Dasari, and Erdem Koyuncu. E2cm: Early exit via class means for
efficient supervised and unsupervised learning. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, 2022. doi: 10.1109/IJCNN55064.2022.9891952.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey, 2021. URL https://arxiv.org/abs/2102.04906.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015a.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015b.
URL https://arxiv.org/abs/1503.02531.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distribu-
tional shifts in the wild. Advances in Neural Information Processing Systems, 34:677–689, 2021.

Zeyi Huang, Andy Zhou, Zijian Lin, Mu Cai, Haohan Wang, and Yong Jae Lee. A sentence speaks
a thousand images: Domain generalization through distilling clip with language guidance, 2023.
URL https://arxiv.org/abs/2309.12530.

11

https://arxiv.org/abs/2007.05836
https://arxiv.org/abs/2007.05836
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1807.04975
https://arxiv.org/abs/1807.04975
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/2007.01434
https://arxiv.org/abs/2102.04906
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2309.12530


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa Trinh, and Erik Vee.
Weighted distillation with unlabeled examples, 2022. URL https://arxiv.org/abs/
2210.06711.

Nishant Jain, Karthikeyan Shanmugam, and Pradeep Shenoy. Selective classification using a robust
meta-learning approach, 2024. URL https://arxiv.org/abs/2212.05987.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pp. 5637–5664. PMLR, 2021.

Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adaptive inference through early-
exit networks: Design, challenges and directions. In Proceedings of the 5th International Work-
shop on Embedded and Mobile Deep Learning, MobiSys ’21, pp. 1–6. ACM, June 2021. doi:
10.1145/3469116.3470012. URL http://dx.doi.org/10.1145/3469116.3470012.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pp. 562–570. Pmlr, 2015.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization, 2017a. URL https://arxiv.org/abs/1710.03077.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize:
Meta-learning for domain generalization, 2017b. URL https://arxiv.org/abs/1710.
03463.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain generalization with adversarial
feature learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5400–5409, 2018a. doi: 10.1109/CVPR.2018.00566.

Xin-Chun Li, Wen-Shu Fan, Shaoming Song, Yinchuan Li, Shao Yunfeng, De-Chuan Zhan, et al.
Asymmetric temperature scaling makes larger networks teach well again. Advances in neural
information processing systems, 35:3830–3842, 2022.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
via conditional invariant representation, 2018b. URL https://arxiv.org/abs/1807.
08479.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju. FastBERT: a self-
distilling BERT with adaptive inference time. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 6035–6044, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.537. URL https://aclanthology.org/2020.
acl-main.537/.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks, 2017. URL https://arxiv.org/abs/1710.07535.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55
(5):1–30, December 2022. ISSN 1557-7341. doi: 10.1145/3527155. URL http://dx.doi.
org/10.1145/3527155.

Omar Montasser, Han Shao, and Emmanuel Abbe. Transformation-invariant learning and theoret-
ical guarantees for ood generalization. Advances in Neural Information Processing Systems, 37:
108649–108673, 2024.

Anshul Nasery, Sravanti Addepalli, Praneeth Netrapalli, and Prateek Jain. Daft: Distilling adver-
sarially fine-tuned models for better ood generalization, 2022. URL https://arxiv.org/
abs/2208.09139.

Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David Duvenaud, and Geoffrey Hinton. Teach-
ing with commentaries, 2021. URL https://arxiv.org/abs/2011.03037.

12

https://arxiv.org/abs/2210.06711
https://arxiv.org/abs/2210.06711
https://arxiv.org/abs/2212.05987
http://dx.doi.org/10.1145/3469116.3470012
https://arxiv.org/abs/1710.03077
https://arxiv.org/abs/1710.03463
https://arxiv.org/abs/1710.03463
https://arxiv.org/abs/1807.08479
https://arxiv.org/abs/1807.08479
https://aclanthology.org/2020.acl-main.537/
https://aclanthology.org/2020.acl-main.537/
https://arxiv.org/abs/1710.07535
http://dx.doi.org/10.1145/3527155
http://dx.doi.org/10.1145/3527155
https://arxiv.org/abs/2208.09139
https://arxiv.org/abs/2208.09139
https://arxiv.org/abs/2011.03037


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning, 2019. URL https://arxiv.org/abs/1803.09050.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. Ad-
vances in Neural Information Processing Systems, 34:20210–20229, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion, 2020. URL https://arxiv.org/abs/1911.08731.

Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family of
parameters for learning a differentiable curriculum. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper_files/paper/2019/file/
926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf.

Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A. Smith. The
right tool for the job: Matching model and instance complexities. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 6640–6651, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.593. URL https://aclanthology.
org/2020.acl-main.593/.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
net: Learning an explicit mapping for sample weighting, 2019. URL https://arxiv.org/
abs/1902.07379.

Durga Sivasubramanian, Ayush Maheshwari, Pradeep Shenoy, Prathosh AP, and Ganesh Ramakr-
ishnan. Adaptive mixing of auxiliary losses in supervised learning, 2022. URL https:
//arxiv.org/abs/2202.03250.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. Advances
in neural information processing systems, 28, 2015.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation,
2016. URL https://arxiv.org/abs/1607.01719.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, Yilong He, Yuan Ni, Guo-
tong Xie, Xuanjing Huang, and Xipeng Qiu. A simple hash-based early exiting approach for
language understanding and generation, 2022. URL https://arxiv.org/abs/2203.
01670.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Rishabh Tiwari, Durga Sivasubramanian, Anmol Mekala, Ganesh Ramakrishnan, and Pradeep
Shenoy. Using early readouts to mediate featural bias in distillation, 2023. URL https:
//arxiv.org/abs/2310.18590.

Rishabh Tiwari, Durga Sivasubramanian, Anmol Mekala, Ganesh Ramakrishnan, and Pradeep
Shenoy. Using early readouts to mediate featural bias in distillation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2638–2647, 2024.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models, 2019. URL https://arxiv.org/abs/
1908.08962.

V.N. Vapnik. Statistical Learning Theory. Adaptive and learning systems for signal processing,
communications, and control. Wiley, 1998. ISBN 9788126528929. URL https://books.
google.co.in/books?id=RWrlkQEACAAJ.

13

https://arxiv.org/abs/1803.09050
https://arxiv.org/abs/1911.08731
https://proceedings.neurips.cc/paper_files/paper/2019/file/926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf
https://aclanthology.org/2020.acl-main.593/
https://aclanthology.org/2020.acl-main.593/
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/2202.03250
https://arxiv.org/abs/2202.03250
https://arxiv.org/abs/1607.01719
https://arxiv.org/abs/2203.01670
https://arxiv.org/abs/2203.01670
https://arxiv.org/abs/2310.18590
https://arxiv.org/abs/2310.18590
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://books.google.co.in/books?id=RWrlkQEACAAJ
https://books.google.co.in/books?id=RWrlkQEACAAJ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation, 2017. URL https://arxiv.org/
abs/1706.07522.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain gener-
alization. Advances in neural information processing systems, 34:2215–2227, 2021.

Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia.
Iterative learning with open-set noisy labels, 2018. URL https://arxiv.org/abs/1804.
00092.

Yufei Wang, Haoliang Li, Lap pui Chau, and Alex C. Kot. Embracing the dark knowledge: Domain
generalization using regularized knowledge distillation, 2021. URL https://arxiv.org/
abs/2107.02629.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 2246–2251, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.204. URL https://aclanthology.org/2020.acl-main.204/.

Canwen Xu and Julian McAuley. A survey on dynamic neural networks for natural language pro-
cessing, 2023. URL https://arxiv.org/abs/2202.07101.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training, 2020. URL https://arxiv.org/abs/2001.00677.

Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu, Jindong Wang, Xing
Xie, and Yue Zhang. Glue-x: Evaluating natural language understanding models from an out-
of-distribution generalization perspective, 2023. URL https://arxiv.org/abs/2211.
08073.

Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization. Advances in Neural Information Pro-
cessing Systems, 34:23519–23531, 2021.

Xinli Yue, Mou Ningping, Qian Wang, and Lingchen Zhao. Revisiting adversarial robustness dis-
tillation from the perspective of robust fairness. Advances in Neural Information Processing
Systems, 36:30390–30401, 2023.

Di Zhao, Jingfeng Zhang, Hongsheng Hu, Philippe Fournier-Viger, Gillian Dobbie, and Yun Sing
Koh. Balancing invariant and specific knowledge for domain generalization with online knowl-
edge distillation. In James Kwok (ed.), Proceedings of the Thirty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI-25, pp. 2440–2448. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/272. URL
https://doi.org/10.24963/ijcai.2025/272. Main Track.

Haoran Zhao, Xin Sun, Junyu Dong, Zihe Dong, and Qiong Li. Knowledge distillation via instance-
level sequence learning, 2021. URL https://arxiv.org/abs/2106.10885.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generaliza-
tion via entropy regularization. Advances in neural information processing systems, 33:16096–
16107, 2020.

Andy Zhou, Jindong Wang, Yu-Xiong Wang, and Haohan Wang. Distilling out-of-distribution ro-
bustness from vision-language foundation models. Advances in Neural Information Processing
Systems, 36:32938–32957, 2023.

Kaiyang Zhou, Yuanhan Zhang, Yuhang Zang, Jingkang Yang, Chen Change Loy, and Ziwei Liu.
On-device domain generalization. arXiv preprint arXiv:2209.07521, 2022.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit, 2020. URL https://arxiv.org/abs/
2006.04152.

14

https://arxiv.org/abs/1706.07522
https://arxiv.org/abs/1706.07522
https://arxiv.org/abs/1804.00092
https://arxiv.org/abs/1804.00092
https://arxiv.org/abs/2107.02629
https://arxiv.org/abs/2107.02629
https://aclanthology.org/2020.acl-main.204/
https://arxiv.org/abs/2202.07101
https://arxiv.org/abs/2001.00677
https://arxiv.org/abs/2211.08073
https://arxiv.org/abs/2211.08073
https://doi.org/10.24963/ijcai.2025/272
https://arxiv.org/abs/2106.10885
https://arxiv.org/abs/2006.04152
https://arxiv.org/abs/2006.04152


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Supplementary Material: Early Layer Readouts for Robust Knowledge
Distillation

CONTENTS

A Implementation and Hyperparameters 16
A.1 Seed and Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 Prompt Details for Text Classification . . . . . . . . . . . . . . . . . . . . . . . . 16

B Theoretical Results 16
B.1 Generalization Error Bounds for our method . . . . . . . . . . . . . . . . . . . . . 16

C Effect of Auxiliary Networks and the Forecaster on OOD Generalization 17
C.1 Auxiliary Networks Control Layer-Wise Logit Variation . . . . . . . . . . . . . . 18
C.2 Convergence Analysis of Interleaving Student Forecaster Training . . . . . . . . . 20
C.3 Training Dynamics of Interleaved Schedule: An Example . . . . . . . . . . . . . . 25

D Additional Experimental Results 25
D.1 Selection of Robust DG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.2 Domain-wise Results on Benchmark Datasets . . . . . . . . . . . . . . . . . . . . 25
D.3 Sensitivity Analysis on Hyperparameters µ∗, ς∗, Ts, Tf and β . . . . . . . . . . . . 25
D.4 Domain-wise Results on ColoredMNIST . . . . . . . . . . . . . . . . . . . . . . . 26
D.5 Domain Generalization on Larger Student Network . . . . . . . . . . . . . . . . . 26

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION AND HYPERPARAMETERS

A.1 SEED AND HYPERPARAMETER SELECTION

For a fair comparison and reproducibility, we follow the default hyperparameter settings reported in
Gulrajani & Lopez-Paz (2020) and use their released codebase as the foundation of our implemen-
tation.

A.2 PROMPT DETAILS FOR TEXT CLASSIFICATION

"""Paraphrase Identification: Train Prompt (MPRC)"""

Sentence 1: {{sentence1}}
Sentence 2: {{sentence2}}
Question: Do both sentences mean the same thing?
Answer:

"""Paraphrase Identification: Test Prompt (QQP)"""

Question 1: {{question1}}
Question 2: {{question2}}
Question: Do both questions ask the same thing?
Answer:

"""Natural Language Inference: Train/Test Prompt (MNLI)"""

{{premise}}
Question: {{hypothesis}} True, False or Neither?
Answer:

B THEORETICAL RESULTS

B.1 GENERALIZATION ERROR BOUNDS FOR OUR METHOD

We utilise the approach presented in (Ye et al., 2021) to calculate the generalization error bounds
incurred via our method.

Setup

Let ξall be the domain set we want to generalize to, and ξavail ⊆ ξall be the available domain set. We
denote (Xe, Y e) as the input-label pair from the data distribution of domain e ∈ ξavail.

For OOD generalization, the goal is to find a classifier f∗ such that it minimizes the worst-domain
loss on ξall

f∗ = argmin
f∈F

L(ξall, f),L(ξ, f) ≡ max
e∈ξ

E[ℓ(f(Xe), Y e)]

Definition 1 (Variation). The variation of a feature ϕ(·) across a domain set ξ is defined as

Vρ(ϕ, ξ) = max
y∈Y

sup
e,e′∈ξ

ρ(P (ϕe | y), P (ϕe′ | y)) . (9)

A feature ϕ(·) is said to be ε-invariant across E if ε ≥ V(ϕ, ξ). where ρ indicates any distribution
divergence metric. (We omit the subscript ρ when there is no ambiguity.)

Let the optimal weights learnt via the forecaster be denoted as wψ∗
f

. Post adjustment, let the optimal
adjusted weights be denoted as w∗

adj. The optimal weights are across all samples in the batch.

ℜ(ℓ)
aux(θ,φ

(ℓ); e) := E(Xe,Y e)[L(ℓ)
aux(A

(ℓ)
aux(hℓ(X

e;θ);φ(ℓ)), Y e)]

Assumption There exists a strictly increasing function δl : [0, 0.5]→ [0,∞) such that

ℜ(ℓ)
aux(θ,φ

(ℓ); e)−ℜ(ℓ)
aux(θ,φ

(ℓ)
∗ ; e) ≥ δl(∆

(l)(e))

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where ℜ(ℓ)
aux(θ,φ

(ℓ)
∗ ; e) indicates the Bayes risk on domain e and ∆(l)(e) is the average 0 − 1 error

of the auxiliary classifier at layer l.

Assumption (Lipschitz in feature space): We assume there exists Caux > 0 such that for all z1, z2
and labels y:

|L(ℓ)
aux(z

ℓ
1(θ

(S));φℓ)− L(ℓ)
aux(z

ℓ
2(θ

(S));φℓ)| ≤ Caux.
∥∥zℓ1(θ(S) − zℓ2(θ

(S)
∥∥
2

Domain Disagreement at layer ℓ

Given two distinct domains e1, e2 ∈ ξavail, we check how the difference in auxilliary classifier risks
relates to the induced feature distribution difference.

∆ℜ(ℓ)
aux(e1, e2) := |ℜ(ℓ)

aux(θ,φ
(ℓ); e1)−ℜ(ℓ)

aux(θ,φ
(ℓ); e2)|

Using Lipschitz assumption and total variation distance on Pℓ
e we have

∆ℜ(ℓ)
aux(e1, e2) ≤ Caux

∫ ∥∥z∥∥
2
|ple1(z, y)− ple2(z, y)|∂z∂y

Assuming we consider a bounded feature radius at layer ℓ:
∥∥z∥∥

2
≤ Rl, we have

∆ℜ(ℓ)
aux(e1, e2) ≤ CauxRl

∫
|ple1(z, y)− ple2(z, y)|∂z∂y = 2CauxRlρ(Pℓ

e1 ,P
ℓ
e2)

Thus,

ρ(Pℓ
e1 ,P

ℓ
e2) ≥

∆ℜ(ℓ)
aux(e1, e2)

2CauxRl

Remark 1. The above indicates that any variation in the auxillariy risks across domains is almost
surely upper bounded the TV(total variation) distance between feature label distributions for that
layer l.

Since by definition we know

V(β⊤hℓ, ξavail) := supe1,e2∈ξavail
ρ(P(β⊤hℓ(X

e1) | Y e1),P(β⊤hℓ(X
e2) | Y e2))

The second term on the RHS side is upper bounded by ρ(Pl
e1 ,P

l
e2)

hence, we overall have

V(β⊤hℓ, ξavail) ≤ supe1,e2∈ξavail
ρ(Pl

e1 ,P
l
e2)

C EFFECT OF AUXILIARY NETWORKS AND THE FORECASTER ON OOD
GENERALIZATION

We now theoretically establish that the proposed auxiliary networks together with the forecaster
reduce the cross-domain feature variation Vsup(hθ(S) , Eavail), and hence, by Theorem 4.1, yield a
smaller OOD generalization gap err(f) = L(Eall, f)− L(Eavail, f).

As per our previous notations, we know that the student network produces intermediate representa-
tions zℓ

θ(S)(x) ∈ Rdℓ at layer ℓ ∈ E . Each auxiliary classifier A(ℓ)
aux( · ;φℓ) : Rdℓ → ∆K produces

layer-wise predictive distributions p(ℓ)(x) = A
(ℓ)
aux

(
zℓ
θ(S)(x);φℓ

)
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For each auxiliary layer we compute the confidence margin, ε(ℓ)(x) := p
(ℓ)
max(x) −

max
j ̸=argmax p

(ℓ)
j (x)

p
(ℓ)
j (x), and the entropyH(p(ℓ)(x)). The forecaster is a meta-networkF(·;ψf )

receiving the stacked vector

u(x) :=
[
{zℓθ(S)(x)}ℓ∈E , {ε(ℓ)(x)}ℓ∈E , {H(p(ℓ)(x))}ℓ∈E

]⊤
and outputting a weight w(x) = F(u(x);ψf ) ∈ [0, 1]. This weight is then used to combine the
per-sample student CE loss and the distillation loss.

We measure cross-domain feature variation at representation level by

Vsup
(
hθ(S) , Eavail

)
:= sup

β∈Sd−1

sup
e,e′∈Eavail

ρ
(
β⊤hθ(S)(Xe), β⊤hθ(S)(Xe′)

)
,

where ρ is the total variation distance.

C.1 AUXILIARY NETWORKS CONTROL LAYER-WISE LOGIT VARIATION

Define the stacked logit–margin–entropy feature at layer ℓ:

ϕ(ℓ),e(x) :=
[
zℓ,e
θ(S)(x), ε

(ℓ),e(x), H(p(ℓ),e(x))
]⊤

.

Let
ϕe(x) :=

[
ϕ(ℓ),e(x)

]
ℓ∈E ∈ RD.

Each auxiliary predictor is trained to minimize L(ℓ)
aux, a strongly convex function in the probability

simplex. By standard stability results for cross-entropy, this implies a Lipschitz continuity property
for the mapping zℓ

θ(S) 7→ ϕ(ℓ).

Lemma 2 (Auxiliary Losses are Lipschitz). There exists Lϕ > 0 such that for all environments
e, e′ and all x, ∥∥ϕe(x)− ϕe′(x)

∥∥ ≤ Lϕ

∥∥zeθ(S)(x)− ze
′

θ(S)(x)
∥∥.

Proof. Each component of ϕ(ℓ) is a smooth mapping of zℓ: margins, entropies, and softmax proba-
bilities are Lipschitz on compact domains. Summing Lipschitz maps preserves Lipschitzness.

Thus the variation of ϕe is controlled by that of the intermediate logits.

Forecaster Convolution Contracts Variation

Let Aϕ denote the linear operator (e.g. a 1D convolution across layers) applied internally in the
forecaster before the MLP head. Define

ψe(x) := Aϕ ϕ
e(x).

Lemma 3 (Convolutional Contraction). If ∥Aϕ∥ ≤ 1 in operator norm, then for all e, e′ and x,∥∥ψe(x)−ψe′(x)
∥∥ ≤ ∥∥ϕe(x)− ϕe′(x)

∥∥.
Proof. Immediate from ∥Aϕv∥ ≤ ∥Aϕ∥∥v∥ with ∥Aϕ∥ ≤ 1.

Combining Lemma 2 and Lemma 3 gives∥∥ψe(x)−ψe′(x)
∥∥ ≤ Lϕ

∥∥ze(x)− ze
′
(x)

∥∥.
Finally, the forecaster head u 7→ w = σ(Wu+ b) is Lw-Lipschitz, so

Lemma 4 (Forecaster Stability). For all domains e, e′ and all inputs x,∣∣w(x, e)− w(x, e′)
∣∣ ≤ LwLϕ

∥∥ze(x)− ze
′
(x)

∥∥.
Thus the forecaster output varies smoothly across environments, with variation proportional to the
intrinsic logit variation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Contraction of Feature Variation

The student is trained with the forecaster-weighted loss

L(s)
tot(x, e) = (1− w(x, e))L(s)

CE(x, e) + w(x, e)L(s)
KD(x, e).

Because w(x, e) is stable across domains (Lemma 4), the gradients on hθ(S) differ only smoothly
across environments. Under standard smoothness assumptions, the expected feature update satisfies

EXe

[
β⊤h

θ
(S)
t+1

(Xe)
]
− EXe′

[
β⊤h

θ
(S)
t+1

(Xe′)
]
≤ (1− ηm)

(
EXe [β⊤h

θ
(S)
t

]− EXe′ [β⊤h
θ
(S)
t

]
)
,

for some m > 0 depending on the smoothness of the training loss. Thus the feature variation
contracts by a factor κ := 1− ηm ∈ (0, 1):

Vsup
(
hθ(S) , Eavail

)
≤ κVsup

(
hθ(N) , Eavail

)
,

where hθ(N) is the representation learned without the forecaster.

Forecaster Reduces OOD Generalization Error

By Theorem 4.1, the OOD generalization gap of any classifier f = g ◦ h satisfies

err(f) ≤ C s
(
Vsup(h, Eavail)

)
,

with s(·) monotone. Applying this to the forecaster-equipped student fS = gS ◦ hθ(S) yields

err(fS) ≤ C s
(
Vsup(hθ(S) , Eavail)

)
≤ C s

(
κVsup(hθ(N) , Eavail)

)
< C s

(
Vsup(hθ(N) , Eavail)

)
= err(fN ),

where the strict inequality follows from κ < 1. Hence, the auxiliary networks and the forecaster
jointly contract cross-domain variation, yielding provably smaller OOD generalization error.

Assumption 2: The loss is Lipschitz-continuous with respect to the feature space

ℓ(p, y)− ℓ(q, y) ≤ Lℓd(p, q)

Theorem 1 (Generalization Error Student). Given the student model fS and teacher model
fT , the generalization error of the student model can be given as

err(Mθ(S)) ≤ err(Mθ(T )) + 2Lℓϵ

Proof. For any general domain set ξ, we have the following:

|L(ξ,Mθ(S))− L(ξ,Mθ(T ))| =
∣∣Ee∼ξE(Xe,Y e)[ℓ(Mθ(S)(Xe), Y e)− ℓ(Mθ(T )(Xe), Y e)]

∣∣
≤ Ee∼ξE(Xe,Y e)[|ℓ(Mθ(S)(Xe), Y e)− ℓ(Mθ(T )(Xe), Y e)|]

(assumption 2)
≤ CEe∼ξEXe [d(Mθ(S) ,Mθ(T ))]

≤ Cϵ

err(Mθ(S)) = L(ξall,Mθ(S))− L(ξavail,Mθ(S))

Adding and subtracting the teacher’s terms:

err(Mθ(S)) = [L(ξall,Mθ(S))− L(ξall,Mθ(T ))]

+[L(ξall,Mθ(T ))− L(ξavail,Mθ(T ))]

+[L(ξavail,Mθ(T ))− L(ξavail,Mθ(S))]

We can apply
err(Mθ(S)) ≤ err(Mθ(T )) + 2Cϵ (10)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Remark 2. Using a teacher with strong OOD performance can reduce the err(Mθ(T )) and with a
strong distillation ϵ is small, thereby KD yielding a provably smaller OOD gap.

By Theorem 4.1, the OOD generalization gap of any classifier f = g ◦ h is controlled by its feature
variation Vsup(h, Eavail). We assume that the teacher fT has learned a more invariant representation
than the naive student fN , i.e.,

Vsup(hT , Eavail) ≤ Vsup(hN , Eavail)−∆, ∆ > 0. (11)

Since the expansion function s(·) is monotone, Theorem 4.1 implies

err(fT ) ≤ C s(Vsup(hT )) < C s(Vsup(hN )) ≈ err(fN ), (12)

i.e., the teacher’s OOD error is strictly smaller than that of the naive student.

Knowledge distillation further ensures that the student fS remains close to the low-variation teacher
fT , and therefore inherits its small OOD error up to a small approximation term.

We define the auxiliary risk as follows:

R(ℓ)
aux(θ

(S), ϕ(ℓ); e) := E(X e,Ye)

[
ℓaux

(
A(ℓ)

aux

(
hℓ(X e;θ(S));ϕ(ℓ)

)
,Ye

)]
C.2 CONVERGENCE ANALYSIS OF INTERLEAVING STUDENT FORECASTER TRAINING

The overall optimization problem can be reformulated as

outer-level︷ ︸︸ ︷
argmin

wf

Lfocs
(
argmin

θ
L(s)
tot(θ,wf ), Dv︸ ︷︷ ︸

inner-level

)

Theorem 2 (Forecaster Convergence Analysis). Considering the forecaster loss function
Lfocs is Lipschitz-smooth with constant µ and the gradient associated with L(s)

tot and Lfocs
have σ-bounded gradients w.r.t training point xi. Let the student model learning rate η satisfies
η = min{1, k

T } for some k > 0, such that k
T < 1, and ηw, 1 ≤ t ≤ N is a monotone de-

scent sequence, ηw = min{ 1µ ,
c

σ
√
T
} for some c > 0, such that σ

√
T

c ≥ µ and
∑∞

t=1 ηw ≤ ∞,∑∞
t=1 η

2
w ≤ ∞, then the forecaster can achieve E[

∥∥Lfocs(θ(S)
t (wt

f );Dv)
∥∥2
2
] ≤ ϵ in O( 1

ϵ2 ).

This can be reformulated further as min0≤t≤T E[
∥∥Lfocs(θ(S)

t (wt
f );Dv)

∥∥2
2
] ≤ O( C√

T
).

Starting at θ(S)
0 and w0

f , a single gradient update can be written as follows:

θ
(S)
t ← θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (13)

where wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ) (14)

The gradient update for the forecaster weights can be reformulated as:

wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv)

which can be rewritten as:

wt
f ← wt−1

f − ηw∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv) |Ξt

Given the minibatch Ξt is drawn uniformly from the entire data set, we can rewrite the update
equation as:

wt
f ← wt−1

f − ηw[∇wt−1
f
Lfocs(θ

(S)
t−1,w

t−1
f ;Dv) + ε(t−1)] (15)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where ε(t−1) = ∇wt−1
f
Lfocs(θ(S)

t−1,w
t−1
f ;Dv) |Ξt

−∇wt−1
f
Lfocs(θ(S)

t−1,w
t−1
f ;Dv).

Note that ε(t−1) are i.i.d random variable with finite variance, since Ξt are drawn i.i.d with a finite
number of samples. Also, since the samples are drawn uniformly at random, there is no introduced
bias, thereby E[ε(t−1)] = 0.

Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t−1
f );Dv) = {Lfocs(θ(S)

t (wt
f );Dv)− Lfocs(θ(S)

t−1(w
t
f );Dv)}
(16)

+{Lfocs(θ(S)
t−1(w

t
f );Dv)− Lfocs(θ(S)

t−1(w
t−1
f );Dv)}

(17)

Utilizing the property that the forecaster loss is Lipschitz smooth,

Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t
f );Dv) ≤ ⟨∇Lfocs(θ(S)

t−1(w
t
f )), (θ

(S)
t (wt

f )− θ
(S)
t−1(w

t
f ))⟩

+
µ

2

∥∥θ(S)
t (wt

f )− θ
(S)
t−1(w

t
f )

∥∥2
2

Since θ(S)
t (wt

f ) − θ
(S)
t−1(w

t
f ) = − η

n

∑n
i=1∇θ(S)

t
L(s)
tot(θ

(S)
t−1;w

t
f ) we have along with the gradient

bounds,

∥∥Lfocs(θ(S)
t (wt

f );Dv)− Lfocs(θ(S)
t−1(w

t−1
f );Dv)

∥∥ ≤ ησ2 +
µ

2
η2σ2 = ησ2(1 +

η

2
µ) (18)

Now, via utilizing Lipschitz continuity of∇Lfocs(θ(S)
t−1(w

t
f )), we have the following:

Lfocs
(
θ
(S)
t (wt

f );Dv

)
− Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
≤

〈
∇Lfocs

(
θ
(S)
t−1(w

t
f );V

)
,wt

f −wt−1
f

〉
+

µ

2

∥∥wt
f −wt−1

f

∥∥2
2

=
〈
∇Lfocs

(
θ
(S)
t−1(w

t
f );V

)
,−ηw

[
∇wt−1

f
Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
+ ε(t−1)

] 〉
+

µη2w
2

∥∥∥∇wt−1
f
Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
+ ε(t−1)

∥∥∥2
2

(from Eq. (15))

= −
(
η2w −

µη2w
2

)∥∥∥∇Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)∥∥∥2
2

+
µη2w
2

∥∥ε(t−1)
∥∥2
2
−
(
ηw − µη2w

) 〈
∇Lfocs

(
θ
(S)
t−1(w

t−1
f );Dv

)
, ε(t−1)

〉
.

Summing above inequalities and rearranging terms, we obtain

T∑
t=1−

(η2w −
µη2w
2

)
∥∥∇Lfocs(θ(S)

t−1(w
t−1
f );Dv)

∥∥2
2
≤ Lfocs(θ(S)

1 (w1
f );Dv))− Lfocs(θ(S)

T (wT
f );Dv))

(19)

+

T∑
t=1

ησ2(1 +
ηµ

2
)−

T∑
t=1

(ηw − µη2w)⟨∇Lfocs(θ(S)
1 (w1

f );Dv)⟩

(20)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Taking expectations with respect to ε(N) on both sides of Eq. 32, we obtain:

T∑
t=1

(
ηw −

µη2w
2

)
Eε(N)

∥∥∥∇Lfocs(θ(S)
t (wt),Dv)

∥∥∥2
2
≤ Lfocs(θ(S)

1 (w1),Dv)+

T∑
t=1

ησ2(1+ηµ/2)+
Lσ2

2

T∑
t=1

η2w,

since
Eε(N)⟨∇Lmeta(Θ

(t)), ε(t)⟩ = 0, E∥ε(t)∥22 ≤ δ2.

Furthermore, we deduce:

min
t

E
[∥∥∥∇Lfocs(θ(S)

t (wt),Dv)
∥∥∥2
2

]
≤

∑T
t=1

(
ηw − µη2

w

2

)
Eε(N)

∥∥∥∇Lfocs(θ(S)
t (wt),Dv)

∥∥∥2
2∑T

t=1

(
ηw − µη2

w

2

)

≤ 1∑T
t=1(2ηw − µη2w)

[
2Lfocs(θ(S)

1 (w1),Dv) +

T∑
t=1

ησ2(2 + ηµ) + µδ2
T∑

t=1

η2w

]

≤ 1

Tηw

[
2Lfocs(θ(S)

1 (w1),Dv) + ησ2T (2 + µ) + µδ2
T∑

t=1

η2w

]

=
2Lfocs(θ(S)

1 (w1),Dv)

Tηw
+

2ησ2(2 + µ)

ηw
+ µδ2

1

T

T∑
t=1

ηw

≤ 2Lfocs(θ(S)
1 (w1),Dv)

Tηw
+

2ησ2(2 + µ)

ηw
+ µδ2ηw

=
Lfocs(θ(S)

1 (w1),Dv)

T
max

{
µ,

δ
√
T

c

}
+min

{
1,

k

T

}
max

{
µ,

δ
√
T

c

}
σ2(2+µ)+µδ2 min

{
1

µ
,

c

σ
√
T

}

≤ δLmeta(w
(1)(Θ(1)))

c
√
T

+
kδσ2(2 + µ)

c
√
T

+
µδc√
T

= O
(

1√
T

)
.

Theorem 3 (Forecaster Convergence Analysis). Considering the training loss function L(s)
tot

is Lipschitz-smooth with constant µ and the gradient associated with L(s)
tot and Lfocs have σ-

bounded gradients w.r.t training point xi. Let the student model learning rate η satisfies η =
min{1, k

T } for some k > 0, such that k
T < 1, and ηw, 1 ≤ t ≤ N is a monotone descent

sequence, ηw = min{ 1µ ,
c

σ
√
T
} for some c > 0, such that σ

√
T

c ≥ µ and
∑∞

t=1 ηw ≤ ∞,∑∞
t=1 η

2
w ≤ ∞, then limt→∞ E[∇L(s)

tot(·;θ
(S)
t−1,w

t
f )] = 0

Proof. The model parameter update can be written as

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(·;θ

(S)
t−1,w

t
f ) (21)

Using different notation, we can rewrite it as follows:

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(θ

(S)
t−1(w

t
f )) (22)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

This can be further rewritten as:

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1
L(s)
tot(θ

(S)
t−1(w

t
f )) |Ψt−1

(23)

where Ψt−1 is a mini-batch drawn uniformly at random we can rewrite the update equation as

θ
(S)
t = θ

(S)
t−1 − η∇

θ
(S)
t−1

[L(s)
tot(θ

(S)
t−1(w

t
f )) + Ψt−1] (24)

Note that Ψt−1 is an i.i.d. random variable with finite variance, since each Ψt is drawn i.i.d. from a
finite sample set. Furthermore, E[Ψt−1] = 0 (sampling is uniform), and E[∥Ψt−1∥22] ≤ ρ2.

The inner student optimization L(s)
tot(θ

(S)(wf )) is Lipschitz–smooth with constant L and has
σ–bounded gradients. We analyze the difference

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)
.

We decompose this as

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(25)

= L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t (wt

f )
)

︸ ︷︷ ︸
(A) forecaster–update term

+L(s)
tot

(
θ
(S)
t (wt

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

︸ ︷︷ ︸
(B) student–update term

. (26)

Bounding Term (A) Using the update rule for forecaster weights wf and chain rule:

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t (wt

f )
)
= ηw

1

n

n∑
i=1

(
wt+1

f,i −wt
f,i

)
L(s)
toti(θ

(S)
t ) (27)

=
1

n

n∑
i=1

(
∇wf,i

Lfocs(θ
(S)
t ) + ε(t−1)

)
L(s)
i (θ

(S)
t ), (28)

where ε(t) is unbiased stochastic forecaster noise: E[ε(t)] = 0.

Bounding Term (B) By L-smoothness of L(s)
tot:

L(s)
tot

(
θ
(S)
t (wt

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(29)

≤
〈
∇L(s)

tot(θ
(S)
t−1),θ

(S)
t − θ(S)

t−1

〉
+

µ

2

∥∥θ(S)
t − θ(S)

t−1

∥∥2
2
. (30)

Using the student SGD update θ(S)
t = θ

(S)
t−1 − η

(
∇L(s)(θ

(S)
t−1) + Ψt−1

)
, we obtain

L(s)
tot

(
θ
(S)
t

)
− L(s)

tot

(
θ
(S)
t−1

)
(31)

= −
(
η − µη2

2

)∥∥∇L(s)
tot(θ

(S)
t−1)

∥∥2
2
+

µη2

2
∥Ψt−1∥22 − (η − µη2)

〈
∇L(s)

tot(θ
(S)
t−1),Ψt−1

〉
. (32)

Putting terms (A) and (B) together yields:

L(s)
tot

(
θ
(S)
t (wt+1

f )
)
− L(s)

tot

(
θ
(S)
t−1(w

t
f )
)

(33)

≤ ηw
1

n

n∑
i=1

(
∇wf,i

Lfocs(θ
(S)
t ) + ε(t−1)

)
L(s)
toti(θ

(S)
t ) (34)

−
(
η − µη2

2

)∥∥∇L(s)
tot(θ

(S)
t−1)

∥∥2
2
+

µη2

2

∥∥Ψt−1

∥∥2
2
− (η − µη2)

〈
∇L(s)

tot(θ
(S)
t−1),Ψt−1

〉
. (35)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Taking expectations and using E[εt] = 0, E[Ψt] = 0, E[∥Ψt∥22] ≤ ρ2, we obtain:

E
[
L(s)
tot

(
θ
(S)
t

)]
− E

[
L(s)
tot

(
θ
(S)
t−1

)]
(36)

≤ ηwE

[
1

n

n∑
i=1

∥∇wf,i
Lfocs∥ · ∥L(s)

toti(θ
(S)
t )∥

]
(37)

− η E
[
∥∇L(s)(θ

(S)
t−1)∥22

]
+

µη2

2
E
[
∥∇L(s)(θ

(S)
t−1)∥22 + ∥Ψt−1∥22

]
. (38)

Summing over t = 1 to∞ gives
∞∑
t=1

η E
[
∥∇L(s)(θ

(S)
t−1)∥22

]
≤

∞∑
t=1

µη2

2

(
σ2 + ρ2

)
+

∞∑
t=1

ηwσ2 <∞. (39)

The last inequality holds due to the fact that
∑∞

t=0 η
2 <∞ and

∑∞
t=0 ηw <∞.

Hence,

∞∑
t=1

ηE[
∥∥∇L(s)

tot(θ
(S)
t−1(w

t
f ))

∥∥2
2
] <∞ (40)

Considering the inequality

∣∣(∥x∥+ ∥y∥)(∥x∥ − ∥y∥)∣∣ ≤ ∥x+ y∥ ∥x− y∥,

∣∣∣E[∥∇L(s)
tot(θ

(S)
t (wt+1

f ))∥22
]
− E

[
∥∇L(s)

tot(θ
(S)
t−1(w

t
f ))∥22

]∣∣∣ (41)

=
∣∣∣E[(∥∇L(s)

tot(θ
(S)
t (wt+1

f ))∥22 + ∥∇L
(s)
tot(θ

(S)
t−1(w

t
f ))∥22

)
(42)

·
(
∥∇L(s)

tot(θ
(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

)]∣∣∣ (43)

≤ E
[∣∣∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∣∣ (44)

·
∣∣∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∣∣] (45)

≤ E
[∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

(46)

·
∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

]
(47)

≤ E
[(
∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 + ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

)
(48)

·
∥∥∥∇L(s)(θ

(S)
t (wt+1

f ))∥22 − ∥∇L(s)(θ
(S)
t−1(w

t
f ))∥22

∥∥
2

]
(49)

≤ 2µσ E
[∥∥(θ(S)

t ,w t+1
f

)
−
(
θ
(S)
t−1,w

t
f

)∥∥
2

]
(50)

≤ 2Lσηηwf
E
[∥∥(∇L(s)

tot(θ
(S)
t ) + Ψt−1,∇Lfocs(θ(S)

t+1) + ε(t)
)∥∥

2

]
(51)

≤ 2Lσηηwf
E
[√
∥∇L(s)

tot(θ
(S)
t ) + Ψt−1∥22 +

√
∥∇Lfocs(θ(S)

t+1) + ε(t)∥22
]

(52)

≤ 2Lσηηwf

√
E
[
∥∇L(s)

tot(θ
(S)
t ) + Ψt−1∥22

]
+ E

[
∥∇Lfocs(θ(S)

t+1) + ε(t)∥22
]

(53)

≤ 2Lσηηwf

√
E
[
∥∇L(s)

tot(θ
(S)
t )∥22

]
+ E

[
∥Ψt−1∥22

]
+ E

[
∥ε(t)∥22

]
+ E

[
∥∇Lfocs(θ(S)

t+1)∥22
]

(54)

≤ 2Lσηηwf

√
2δ2 + 2σ2 (55)

≤ 2
√
2 (δ2 + σ2)Lσηηwf

, (56)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where η and ηwf
are the step sizes for the student parameters θ(S) and forecaster weights wf ,

respectively, and δ2, σ2 bound the second moments of the corresponding gradients and noise terms.

C.3 TRAINING DYNAMICS OF INTERLEAVED SCHEDULE: AN EXAMPLE

As shown in Figure 5, In the early phase of the distillation process, forecaster’s predictive capability
starts at near random. However, forecaster predictions start to stabilize ≥ 60% within the first 1000
minibatches (Total: 7500) of training. The trend is reflected in the left hand side plot, where initially
our method performs slightly inferior to Vanilla KD for the initial 1000 steps of the training, but
surpasses Vanilla KD thereafter. The post-hoc adjustment to the forecaster outputs is a key aspect in
mitigating initial noise to a great extent. We believe that a warm-up phase for initial m% of training
steps, where forecaster weights are overridden by β can further stabilize early training.

0 2000 4000 6000
Step

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

Vanilla KD
Ours

0 2000 4000 6000
Step

40

45

50

55

60

65

Forecaster

Figure 5: Training dynamics (accuracy plot) for one held-out domain of OfficeHome. The left plot
showcases OOD accuracy during a training run, comparing Vanilla KD with our method. Similarly,
the right plot showcases forecaster’s accuracy on its objective to predict whether the student’s pre-
diction is correct.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 SELECTION OF ROBUST DG ALGORITHM

ALGORITHM OFFICEHOME VLCS PACS TERRAINC. AVG.

ERM (Vapnik, 1998) 68.4 77.6 86.4 48.6 70.3
GROUPDRO (Sagawa et al., 2020) 68.6 78.0 87.0 46.7 70.1
MIXUP (Yan et al., 2020) 70.4 78.0 87.5 46.1 70.5
MLDG (Li et al., 2017b) 56.3 72.1 68.1 33.5 57.5
CORAL (Sun & Saenko, 2016) 68.6 77.1 87.7 48.4 70.5
MMD (Li et al., 2018a) 69.2 77.5 85.6 48.7 70.3
DANN (Ganin et al., 2016) 69.7 79.7 86.3 47.4 70.8
CDANN (Li et al., 2018b) 70.0 79.0 86.0 48.3 70.8

Table 5: Average OOD classification accuracies (%) for all datasets with ResNet-152. Model
selection: training-domain validation set.

D.2 DOMAIN-WISE RESULTS ON BENCHMARK DATASETS

Tables 7 – 14 report quantitative figures for domain generalization on the OfficeHome (Venkateswara
et al., 2017), PACS (Li et al., 2017a), VLCS (Fang et al., 2013), and TerraIncognita (Beery et al.,
2018) datasets. We use the ResNet-18 as the primary network in all experiments. Tables 7 –
10 use ResNet-152 as the teacher network, while Tables 11 – 14 use ViT-L/16 as the teacher
network. Each column in the table represents the held-out domain.

D.3 SENSITIVITY ANALYSIS ON HYPERPARAMETERS µ∗, ς∗, Ts, Tf AND β

Tables 15 – 17 report quantitative figures for domain generalization on the OfficeHome Dataset as
a function of various configurations of hyperparameters associated to our method: (1) forecaster

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ALGORITHM OFFICEHOME VLCS PACS TERRAINC. AVG.

ERM (Vapnik, 1998) 71.6 78.4 83.9 38.8 68.2
GROUPDRO (Sagawa et al., 2020) 71.5 77.3 80.3 33.7 65.7
MIXUP (Yan et al., 2020) 72.2 76.7 81.6 42.5 68.3
MLDG (Li et al., 2017b) 70.5 76.3 81.3 40.0 67.0
CORAL (Sun & Saenko, 2016) 71.9 78.2 84.4 40.8 68.8
MMD (Li et al., 2018a) 71.3 77.5 81.9 38.8 67.4
DANN (Ganin et al., 2016) 72.1 78.7 84.3 43.1 69.6
CDANN (Li et al., 2018b) 71.4 77.2 78.6 42.9 67.5

Table 6: Average OOD classification accuracies (%) for all datasets with ViT-L/16. Model selec-
tion: training-domain validation set.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 50.4 48.3 65.4 69.4 58.4
MIXUP (Yan et al., 2020) 51.5 48.6 70.3 70.2 60.2
KD (Hinton et al., 2015b) 52.7 49.7 72.1 74.2 62.2
KD+F+ADJ. 54.0 51.3 71.6 75.1 63.0

Table 7: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-
domain validation set. KD experiments use a ResNet-152 teacher network.

mean (µ∗) (2) forecaster std (ς∗) and (3) interleaved minibatch schedule (Ts, Tf ), in isolation.
Additionally, Table 18 reports the sensitivity in OOD performance on OfficeHome with change in
vanilla KD loss coefficient (β).

D.4 DOMAIN-WISE RESULTS ON COLOREDMNIST
Table 19 reports quantitative figures on ColoredMNIST (Arjovsky et al., 2020). We include Col-
oredMNIST to evaluate robustness under correlation shift. These results demonstrate that our pro-
posed adaptive KD method is not limited to benchmarks where domain shifts alter the image dis-
tribution, and not the underlying image to label mapping. It also extends to benchmarks like Col-
oredMNIST where domain changes influence the image to label mapping by introducing spurious
correlations between color and label. Here, OOD generalization is challenging for DG algorithms
as they can overfit to the spurious correlations (Gulrajani & Lopez-Paz, 2020).

D.5 DOMAIN GENERALIZATION ON LARGER STUDENT NETWORK

Table 20 presents OOD accuracies on OfficeHome with a ResNet-50 student. As the student
capacity increases, the gap in performance of vanilla KD and teacher network narrows down. This
makes the average performance gain achieved with adaptive KD relatively smaller as compared to a
small-capacity student.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

METHOD A C P S AVG.
ERM (Vapnik, 1998) 77.2 73.3 94.7 73.2 79.6
CORAL (Sun & Saenko, 2016) 77.3 73.9 94.7 74.5 80.1
KD (Hinton et al., 2015b) 82.4 76.4 95.0 75.9 82.4
KD+F+ADJ. 82.4 77.0 95.7 76.0 82.8

Table 8: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain
validation set. KD experiments use a ResNet-152 teacher network.

METHOD C S L V AVG.
ERM (Vapnik, 1998) 96.6 58.5 65.4 65.9 71.6
DANN (Ganin et al., 2016) 96.9 58.8 65.7 66.2 71.9
KD (Hinton et al., 2015b) 97.2 60.0 67.9 68.8 73.5
KD+F+ADJ. 98.3 61.3 69.8 69.2 74.7

Table 9: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain
validation set. KD experiments use a ResNet-152 teacher network.

METHOD L100 L38 L43 L46 AVG.

ERM (Vapnik, 1998) 53.2 33.0 51.4 35.9 43.4
MMD (Li et al., 2018a) 47.4 37.4 50.0 35.5 42.6
KD (Hinton et al., 2015b) 50.3 36.8 52.7 34.6 43.6
KD+F+ADJ. 56.7 33.6 54.4 35.5 45.1

Table 10: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-
domain validation set. KD experiments use a ResNet-152 teacher network.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 50.4 48.3 65.4 69.4 58.4
MIXUP (Yan et al., 2020) 51.5 48.6 70.3 70.2 60.2
KD (Hinton et al., 2015b) 55.4 53.0 72.6 74.0 63.7
KD+F+ADJ. 56.3 52.6 72.5 73.2 63.7

Table 11: OOD classification accuracy (%) on the OfficeHome dataset. Model selection: training-
domain validation set. KD experiments use a ViT-L/16 teacher network.

METHOD A C P S AVG.
ERM (Vapnik, 1998) 77.2 73.3 94.7 73.2 79.6
CORAL (Sun & Saenko, 2016) 77.3 73.9 94.7 74.5 80.1
KD (Hinton et al., 2015b) 79.7 75.6 95.9 74.6 81.4
KD+F+ADJ. 78.3 74.7 95.9 75.0 81.0

Table 12: OOD classification accuracy (%) on the PACS dataset. Model selection: training-domain
validation set. KD experiments use a ViT-L/16 teacher network.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

METHOD C S L V AVG.
ERM (Vapnik, 1998) 96.6 58.5 65.4 65.9 71.6
DANN (Ganin et al., 2016) 96.9 58.8 65.7 66.2 71.9
KD (Hinton et al., 2015b) 95.9 61.5 69.7 73.6 75.2
KD+F+ADJ. 96.1 62.2 71.2 74.8 76.1

Table 13: OOD classification accuracy (%) on the VLCS dataset. Model selection: training-domain
validation set. KD experiments use a ViT-L/16 teacher network.

METHOD L100 L38 L43 L46 AVG.

ERM (Vapnik, 1998) 53.2 33.0 51.4 35.9 43.4
MMD (Li et al., 2018a) 47.4 37.4 50.0 35.5 42.6
KD (Hinton et al., 2015b) 47.4 32.1 50.2 32.7 40.6
OURS 55.7 36.8 52.4 34.2 44.7

Table 14: OOD classification accuracy (%) on the TerraIncognita dataset. Model selection: training-
domain validation set. KD experiments use a ViT-L/16 teacher network.

(Ts, Tf ) A C P R AVG.

(1, 1) 54.0 51.3 71.6 75.1 63.0
(1, 10) 53.4 51.2 71.8 72.7 62.3
(10, 1) 53.0 51.5 71.3 72.7 62.2
(10, 10) 52.3 52.4 71.3 71.9 62.0

Table 15: OOD classification accuracy (%) on the OfficeHome dataset as a function of the inter-
leaved training schedule. Here, Ts refers to the number of minibatches the student network is trained
for, whereas Tf corresponds to the number of meta-minibatches, the forecaster is trained for in the
interleaved process.

µ∗ A C P R AVG.

0.1 52.2 51.8 69.9 71.9 61.5
0.3 53.6 51.6 70.7 72.3 62.1
0.5 54.0 51.3 71.6 75.1 63.0
0.7 52.9 51.1 71.6 72.2 62.0
0.9 53.0 51.0 71.3 72.1 61.9

Table 16: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch mean (µ∗). Here, the standard deviation of adjusted forecaster logits, ς∗ = 0.1.

ς∗ A C P R AVG.
0.01 52.5 51.5 71.5 72.4 62.0
0.1 54.0 51.3 71.6 75.1 63.0
0.5 53.6 52.0 71.9 72.3 62.5
1.0 54.7 51.2 72.0 73.0 62.8

Table 17: OOD classification accuracy (%) on the OfficeHome dataset as a function of the adjusted
forecaster batch std (ς∗). For this analysis, the mean of adjusted forecaster logits, µ∗ = 0.5.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

µ∗ A C P R AVG.

0.1 53.6 52.5 69.8 72.2 62.1
0.3 53.3 51.8 71.3 72.5 62.2
0.5 52.7 49.7 72.1 74.2 62.2
0.7 53.5 51.7 71.6 72.5 62.3
0.9 53.3 51.6 72.4 72.3 62.4

Table 18: OOD classification accuracy (%) in Vanilla KD on the OfficeHome dataset as a function
of KD loss weight (β).

METHOD +90% +80% -90% AVG.
TEACHER 73.0 74.4 10.2 52.5

ERM (Vapnik, 1998) 71.6 72.9 9.9 51.5
KD (Hinton et al., 2015b) 72.7 72.2 10.1 51.6
OURS 72.5 73.8 10.3 52.2

Table 19: OOD classification accuracy (%) on the ColoredMNIST dataset. Model selection:
training-domain validation set. Model Architecture: CNN.

METHOD A C P R AVG.
ERM (Vapnik, 1998) 59.0 49.9 73.2 75.4 64.4
MIXUP (Yan et al., 2020) 61.6 54.0 75.0 75.8 66.6
KD (Hinton et al., 2015b) 64.6 55.2 75.7 77.5 68.3
KD+F+ADJ. 62.0 56.9 76.7 78.8 68.6

Table 20: OOD classification accuracy (%) on the OfficeHome dataset with a ResNet-50 student.
Model selection: training-domain validation set. KD experiments use a ResNet-152 teacher
network.

29


	Introduction
	BackGround and Related Work
	Notation and Problem Setup
	OOD Generalization in Distilled Models
	Early Readouts

	Proposed Methodology
	Auxiliary Network: Early Layer Confidence
	Forecaster Meta-Network

	Bi-level optimization problem and Convergence
	Algorithm
	Experiments
	Results
	Conclusion
	Implementation and Hyperparameters
	Seed and Hyperparameter Selection
	Prompt Details for Text Classification

	Theoretical Results
	Generalization Error Bounds for our method

	Effect of Auxiliary Networks and the Forecaster on OOD Generalization
	 Auxiliary Networks Control Layer-Wise Logit Variation
	Convergence Analysis of Interleaving Student Forecaster Training
	Training Dynamics of Interleaved Schedule: An Example

	Additional Experimental Results
	Selection of Robust DG Algorithm
	Domain-wise Results on Benchmark Datasets
	Sensitivity Analysis on Hyperparameters *, *, Ts, Tf  and  
	Domain-wise Results on ColoredMNIST
	Domain Generalization on Larger Student Network


