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Abstract

Discriminative approaches to classification often
learn shortcuts that hold in-distribution but fail
even under minor distribution shift. This failure
mode stems from an overreliance on features that
are spuriously correlated with the label. We show
that classifiers based on class-conditional genera-
tive models avoid this issue by modeling all fea-
tures, both causal and spurious, instead of mainly
spurious ones. These generative classifiers are
simple to train, avoiding the need for specialized
augmentations, strong regularization, extra hyper-
parameters, or knowledge of the specific spurious
correlations to avoid. We find that diffusion-based
and autoregressive generative classifiers achieve
state-of-the-art performance on standard image
and text distribution shift benchmarks and reduce
the impact of spurious correlations present in re-
alistic applications, such as satellite or medical
datasets. Finally, we carefully analyze a Gaus-
sian toy setting to understand the data properties
that affect when generative classifiers outperform
discriminative ones.

1. Introduction
Ever since AlexNet (Krizhevsky et al., 2012) jumpstarted
the field of deep learning, classification has mainly been
tackled with discriminative methods, which train networks
to learn pθ(y | x). This approach has scaled well for in-
distribution performance (He et al., 2016; Dosovitskiy et al.,
2020), but these methods are susceptible to shortcut learn-
ing (Geirhos et al., 2020), where they output solutions that
work well on the training distribution, but may not hold
even under minor distribution shift. The brittleness of these
models has been well-documented (Recht et al., 2019; Taori
et al., 2020), but beyond scaling up the diversity of the train-
ing data (Radford et al., 2021) so that everything becomes
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in-distribution, no approaches so far have made significant
progress in addressing this problem.

In this paper, we propose solving this issue with an alter-
native approach, called generative classifiers (Ng & Jordan,
2001; Yuille & Kersten, 2006). This method trains a class-
conditional generative model to learn pθ(x | y), and uses
Bayes’ rule at inference time to compute p(y | x) for classi-
fication. We hypothesize that generative classifiers may be
better at avoiding shortcut solutions because their objective
forces them to model the input x in its entirety. This means
that they cannot just learn spurious correlations the way
that discriminative models tend to do; they must eventually
model the causal features as well.

Generative classifiers are not new, and in fact date back
at least as far back as Fischer discriminant analysis in
1936 (Fisher, 1936). Generative classifiers like Naive Bayes
had well-documented learning advantages (Ng & Jordan,
2001) but were ultimately limited by the lack of good gener-
ative modeling techniques at the time. Nowadays, however,
we have extremely powerful generative models (Rombach
et al., 2022; Brown et al., 2020), and some work is beginning
to revisit generative classifiers with these new algorithms (Li
et al., 2023; Clark & Jaini, 2023). Li et al. (2023) in par-
ticular find that ImageNet-trained diffusion models exhibit
the first “effective robustness” (Taori et al., 2020) without
using extra data, which suggests that generative classifiers
are have fundamentally different (and perhaps better) induc-
tive biases. However, their analysis is limited to ImageNet
distribution shifts and does not provide any understanding.
Our paper focuses on carefully comparing deep genera-
tive classifiers against today’s discriminative methods on
a comprehensive set of distribution shift benchmarks. We
additionally conduct a thorough analysis of the reasons and
settings where they work. We list our contributions below:

• Show significant advantages of generative classi-
fiers on realistic benchmarks. Generative classifiers
are simple to train, avoid additional hyperparameters
or training stages, and do not require knowledge of
the spurious correlations to avoid. We run careful ex-
periments on standard distribution shift benchmarks
across image and text domains and find that genera-
tive classifiers consistently do significantly better under
distribution shift than discriminative approaches. We
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Figure 1: Generative classifiers. We repurpose today’s best generative modeling algorithms for classification. Generative
classifiers predict argmaxy pθ(x | y)p(y). We use diffusion-based generative classifiers on image tasks and autoregressive
generative classifiers on text tasks, and find that they scale better out-of-distribution than discriminative approaches.

also surprisingly find better in-distribution accuracy on
most datasets, which indicates that generative classi-
fiers are also less susceptible to overfitting.

• Understand why generative classifiers work. We
test several hypotheses for why generative classifiers
do better. We conclude that the generative objective
p(x | y) provides more consistent learning signal by
forcing the model to learn all features of x.

• Provide insights from Gaussian data. We compare
generative (linear discriminant analysis) and discrimi-
native (logistic) classification methods on a simplified
Gaussian setting. We find the existence of “generaliza-
tion phases” that show which kind of approach does
better, depending on the strength of spurious corre-
lations and noisy features in the data. These phases
shed light on the data properties that determine when
generative classifiers have superior inductive bias.

2. Related Work
Learning in the presence of spurious features It has
been well-studied that deep networks trained by empirical
risk minimization (ERM) have a tendency to rely on spuri-
ous correlations to predict the label, such as the background
in an image or mentions of certain words in toxicity de-
tection (Beery et al., 2018; Ribeiro et al., 2016; Geirhos
et al., 2020; McCoy et al., 2019). Notably, overfitting to
these shortcuts causes a degradation in performance under
distribution shift (Hendrycks & Dietterich, 2019; Rosenfeld
et al., 2018; Taori et al., 2020). The performance on mi-
nority groups also tends to suffer (Dixon et al., 2018; Zhao
et al., 2017; Sagawa et al., 2019), and this imbalance is
aggravated in highly overparametrizated models (Sagawa
et al., 2020). Theoretical works attribute this problem to the
nature of max-margin classifiers, where fitting the spurious
feature can increase the margin even in circumstances where
it is not fully predictive like the causal feature (Nagarajan

et al., 2020). To address these failures in discriminative
models, people use objectives that try to balance learning
across different groups (Sagawa et al., 2019; Setlur et al.,
2023; Lee et al., 2023), or add data augmentation to smooth
out the spurious feature (Shen et al., 2022). However, these
methods still tend to fail at capturing the causal feature and
often lead to degradations in in-distribution performance.

Classification with Generative Models Few deep learn-
ing approaches have trained class-conditional generative
models and used them directly for classification, perhaps
due to the difficult task of modeling p(x | y) with weaker
generative models. However, recent generative models have
significantly improved, especially with better techniques in
diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), and deep generative classification methods
have recently been proposed (Li et al., 2023; Clark & Jaini,
2023). Li et al. (2023) showed that ImageNet-trained class-
conditional diffusion models are competitive with discrimi-
native classifiers and achieve the first nontrivial “effective
robustness” (Taori et al., 2020) on ImageNet-A (Hendrycks
et al., 2021) without using extra data. Prabhudesai et al.
(2023) show that a hybrid generative-discriminative classi-
fier can use test-time adaptation to improve performance on
several synthetic corruptions. Other work (Clark & Jaini,
2023; Jaini et al., 2023) has shown that large pretrained gen-
erative models are more biased towards shape features and
more robust to synthetic corruptions, but this may be due to
effect of pretraining on extra data. Overall, it still remains
unclear whether generative classifiers are more robust to the
spurious correlations seen in realistic distribution shifts.

3. Preliminaries
3.1. Types of Distribution Shift

We consider classification under two types of distribution
shift. In subpopulation shift, there are high-level spurious
features that are correlated with the label. For example,
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on CelebA (Liu et al., 2015), where the task is to predict
whether a person’s hair is blond or not blond, the spuriously
correlated feature is the gender. This occurs because there
are very few blond men in the dataset, so models typically
learn to use the “man” feature. The spurious feature deter-
mines groups: the majority group contains examples where
the spurious feature is correct, and the minority group con-
tains examples where the spurious feature is incorrect. We
also consider domain shift, where the test data comes from
a distribution related to the training domains. For example,
training images in Camelyon17-WILDS (Koh et al., 2021)
come from 3 hospitals, whereas the test images come from
a disjoint 4th hospital. This means that spurious features
that worked on the training distribution may not help after
distribution shift.

3.2. Shortcomings of Discriminative Classifiers

Discriminative classifiers, which seek to maximize pθ(y |
x), can overly rely on the spurious features and fall victim
to shortcut solutions (Geirhos et al., 2020). This is because
they can use the spuriously correlated features to correctly
and confidently fit the majority group examples. After this
happens, the loss on these examples flattens out, and there
is less gradient signal available to encourage the model to
use causal features (Li et al., 2019; Pezeshki et al., 2021).
The model then overfits to the remaining minority examples
where the spurious correlation does not help (Sagawa et al.,
2020; Nagarajan et al., 2020). These shortcut solutions often
work in-distribution but can fail, sometimes catastrophically,
under even minor distribution shift. Significant effort has
been put into preventing this, mainly by rebalancing the data
so that the spurious correlation no longer holds (Sagawa
et al., 2019; Kirichenko et al., 2022; Liu et al., 2021; Setlur
et al., 2023). However, these methods all add additional
hyperparameters and complexity to the training process,
and often require knowledge of the exact distribution shift
to counteract, which is impractical for realistic problems
where there may be many spurious correlations.

4. Generative Classifiers
We now present generative classifiers, a simple approach
to classification with class-conditional generative models.
To classify an input x, generative classifiers first compute
pθ(x|y) with a class-conditional generative model and then
utilize Bayes’ theorem to obtain pθ(y|x). This approach had
been popular in machine learning with methods like linear
discriminant analysis and Naive Bayes (Ng & Jordan, 2001),
but has fallen out of favor in the modern era of deep learning.
We revisit this approach with deep learning architectures
and show its advantages for robustness to distribution shift
in Section 5. Algorithm 1 gives an overview of a generic
generative classification algorithm.

4.1. Intuition

Why could generative classifiers do better on these distribu-
tion shifts? In contrast to discriminative classifiers, which
can minimize their training objective using just a few spuri-
ous features, generative classifiers need to model the entire
input x. This means that they cannot stop at just the spurious
features; their training objective requires them to learn both
causal and spurious features. This should translate to better
training signal throughout the course of the training. We
confirm this in Section 5.3. Note that learning both types
of features does not mean that it uses them equally when
classifying an input. The generative classifier should learn
which type of features are more correlated with the label
and weight them accordingly. Section A demonstrates this
in a simple setting with Gaussian data.

4.2. Diffusion-based Generative Classifier

For image classification, we use diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), which are currently
the state-of-the-art approach for conditional image modeling.
Diffusion models are trained to iteratively denoise an image
and do not have an exact likelihood that can be computed
in a single forward pass. They are typically trained with a
reweighted variational lower bound of log pθ(x|y). To use
them in a generative classification framework, we use that
value to approximate log pθ(x | y):

log pθ(x | y) ≈ Eϵ,t[∥ϵθ(xt, y)− ϵ∥2] (1)

Training the class-conditional diffusion models is done as
normal. At inference time, we follow the Diffusion Clas-
sifier algorithm from (Li et al., 2023), which samples mul-
tiple noises ϵ, adds them to the image to obtain noised
xt =

√
ᾱtx+

√
1− ᾱtϵ, and does multiple forward passes

through the network to obtain a Monte Carlo estimate of
Eq. 1. This is done for each class, and the class with the
highest conditional likelihood log pθ(x | y), which corre-
sponds to the lowest denoising error, is returned.

4.3. Autoregressive Generative Classifier

For text classification, we introduce generative classifiers
built on autoregressive Transformer models, as they are the
dominant architecture for text modeling. Since we need to
now learn pθ(x | y), where x is a sequence of text tokens
and y is a label, we make a small modification to the training
procedure. Instead of starting each sequence of text tokens
with a “beginning of sequence” (BOS) token, we allocate
C special class tokens in our vocabulary, one per class,
and replace BOS with the desired class token. Obtaining
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Method Waterbirds CelebA Camelyon FMoW CivilComments

ID WG ID WG ID OOD ID OOD WG ID WG

ERM 88.8 32.2 92.4 50.5 95.2 78.3 51.1 27.5 90.6 53.3
LfF (Nam et al., 2020) 86.4 28.9 90.8 34.0 90.5 66.3 49.6 31.0 87.9 49.4
JTT (Liu et al., 2021) 88.1 32.9 91.9 42.1 88.1 65.8 52.1 31.8 89.2 55.6
RWY (Idrissi et al., 2022) 90.8 31.6 94.1 68.9 95.2 78.3 39.3 26.1 90.1 58.1
Generative (ours) 96.8 79.4 91.2 69.4 98.3 90.8 62.8 35.8 79.8 61.4

Table 1: Accuracy on distribution shift benchmarks. We show in-distribution (ID) and either worst-group (WG) or
out-of-distribution (OOD) accuracy, depending on the type of shift in each dataset. Our generative approach drastically
outperforms the discriminative baselines on each shift.

log pθ(x | y) can be done in a single forward pass:

log pθ(x | y) = log

(
n∏

i=1

pθ(xi | x<i, y)

)
(2)

=

n∑

i=1

log pθ(xi | x<i, y) (3)

We train our Transformer as usual using cross-entropy loss
over the entire sequence, with the ground truth label y∗ at
the beginning. To classify a text sequence at inference time,
we do C forward passes, one with each possible class token.
We then choose the class token with the lowest cross-entropy
loss over the entire sequence as our prediction. Figure 1
(middle) shows a diagram of this method.

Overall, generative classifiers can be easily trained using
existing generative modeling pipelines and do not require
any specialized architectures, extra hyperparameters, data
augmentation, multi-stage training, or knowledge of the
specific shortcuts to avoid.

5. Experiments
We now compare our generative classification approach to
discriminative methods that are commonly used today. We
aim to answer the following questions in this section. First,
do generative classifiers have better robustness to distribu-
tion shift? If so, why are they more robust than discrimi-
native methods? Finally, we study how much generative
abilities correlate with classification performance.

5.1. Setup

Benchmarks We use five standard benchmarks for distribu-
tion shift. Camelyon undergoes domain shift, so we report
its OOD accuracy on the test data. Waterbirds (Sagawa
et al., 2019), CelebA, and CivilComments (Koh et al., 2021)
undergo subpopulation shift, so we report worst group accu-
racy. FMoW (Koh et al., 2021) has both subpopulation shift
over regions and a domain shift across time, so we report
OOD worst group accuracy. The first four are image bench-

marks, while CivilComments is text classification. Water-
birds and CelebA are natural images, whereas Camelyon
contains whole-slide images of cells and FMoW contains
satellite images. In total, these benchmarks cover multiple
shift types, modalities, and styles.

Model Selection We believe that it is unrealistic to know
the exact distribution shift that will happen on the test set.
Thus, we do not use knowledge of the spurious correlation
or distribution shift when training or performing model
selection, and instead tune hyperparameters and perform
early stopping on the in-distribution validation accuracy, not
the worst-group accuracy. We use class-balanced accuracy
for selection as it uniformly improves performance on each
dataset for all methods (Idrissi et al., 2022).

Baselines We compare generative classifiers against sev-
eral discriminative baselines. ERM minimizes the average
cross-entropy loss of the training set and is the standard
method for training classifiers. We additionally evaluate sev-
eral methods designed to combat spurious features. Learn-
ing from Failure (LfF) (Nam et al., 2020) simultaneously
trains one network to be biased and uses it to identify sam-
ples that a second network should focus on. Just Train
Twice (JTT) (Liu et al., 2021) is a similar two-stage method
that first trains a standard ERM model for several epochs,
and then heuristically identifies worst-group examples as
training points with high loss under the first model. JTT
then upsamples these points and trains a second classifier.
Finally, RWY (Idrissi et al., 2022) samples data from each
class equally, which can help if there is class imbalance
related to the spurious correlation. For fairness, we train
all models, generative and discriminative, from scratch to
eliminate the effect of differing pre-training datasets.

5.2. Results on Distribution Shift Benchmarks

Main Results Table 1 compares generative classifiers
against discriminative baselines on the distribution shift
benchmarks. Compared to the discriminative baselines, gen-
erative classifiers have better worst-group or OOD accuracy
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Figure 2: In-distribution vs out-of-distribution accuracy for each dataset. Each point corresponds to a different model.
We observe better OOD scaling trends (i.e., effective robustness) for generative classifiers on CelebA, CivilComments,
and Camelyon17 (the red line in Camelyon17 denotes a linear fit for the relationship between ID and OOD accuracy for
discriminative models). On the remaining two datasets, they follow the same trend and do better both ID and OOD.

on all five datasets. Surpsingly, generative classifiers also
achieve significantly better in-distribution accuracy on three
of the five datasets, which indicates less overfitting. These
results suggest that generative classifiers may have an ad-
vantage in both (a) learning causal features that generalize
across distribution shifts, and (b) learning features that gen-
eralize from the training set to the ID test set.

Accuracy above the line Comparing the best generative
classifier against the best discriminative classifier provides
a one-dimensional understanding of each approach. To
provide a better sense of which method may scale better
in the future, Figure 2 plots the in-distribution and out-of-
distribution accuracies of each family of methods. We can
classify the benchmarks into two sets:

1. Generative classifiers are better both ID and OOD, and
lay on the same trend line as discriminative models.
This includes Waterbirds and FMoW.

2. Generative classifiers have a significantly better OOD
performance trend but are not better in-distribution.
This includes CelebA, Camelyon, and CivilComments.

The second case, where generative classifiers have better
OOD accuracy than discriminative classifiers at any ID accu-
racy, demonstrates “effective robustness” (Taori et al., 2020).
This suggests fundamentally better out-of-distribution be-
havior for generative classifiers in some scenarios and indi-
cates that they may be the right approach to classification
after further scaling. Section 6 examines a toy setting and
provides insights into this “effective robustness.”

5.3. Why Do Generative Classifiers Do Better?

We test several hypotheses for how generative classifiers
outperform the discriminative baselines.

Learning More from Majority Examples Our original
intuition is that the generative objective log pθ(x | y) pro-
vides more consistent learning signal across epochs. In

contrast, discriminative models may use spurious features
to make confident and correct predictions on the training
set and lose the gradient signal necessary to use the causal
features. We test this by measuring the gradient norm on ma-
jority and minority examples across epochs for each method.
Specifically, we compute the per-example gradient norm
∥∇θL(xi, yi)∥2 and average it over the majority and mi-
nority groups. We normalize this by the average majority
group gradient norm at epoch 5 in order to fairly compare
different architectures that have different loss landscapes.
Figure 3 shows these metrics on CivilComments with toxic
comments about the black demographic as the minority
group. For the discriminative model, the majority group
gradient quickly vanishes, and the minority group gradient
starts high but eventually decays. The generative classifier,
however, has very similar gradient norm across the majority
and minority groups, and the gradient norm actually slightly
increases over training. These results support our intuition
that the generative objective helps the model learn more
from examples with and without the spurious features.

Are Generative Classifiers Learning Better Features?
One hypothesis is that the generative classification objective
pθ(x | y) teaches the model better features in general, sim-
ilar to how generative pre-training methods (Devlin et al.,
2018; He et al., 2022) learn features that can be useful dur-
ing fine-tuning. We test this on CivilComments, as the
architecture makes it simple to add a generative objective
p(x). Instead of placing the class-specific token at the be-
ginning of the sequence, we place it at the end. Predicting
the text tokens of x now corresponds to predicting p(x), and
predicting the class-specific token at the end corresponds to
p(y | x). Table 2 shows that adding the unconditional gener-
ative objective p(x) to the discriminative objective p(y | x)
does not affect performance, so we reject this hypothesis.

Model Size On our image classification experiments, we
use a standard 395M parameter UNet (Rombach et al.,
2022), which is far more than the 26M parameters in the
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Train Objective ID WG

p(y | x) 91.4 35.7
p(x) and p(y | x) 91.7 35.4
p(x | y) (ours) 79.8 61.4

Table 2: Alternative training objec-
tives for an autoregressive model on
CivilComments. p(y | x) is a stan-
dard discriminative approach with cross-
entropy loss, and “p(y | x) and p(x)”
tests if adding an unconditional genera-
tive modeling improves performance.

standard ResNet-50 (He et al., 2016) that we use for these
experiments. Could the greater parameter count could be
responsible for the difference in performance and OOD be-
havior? We first note that the bidirectional Transformer
used for CivilComments in Table 1 contains 67M parame-
ters, which is more than the 42M parameters we use in our
autoregressive generative classifier. Furthermore, the archi-
tectures and parameter counts of the discriminative p(y | x)
and generative p(x | y) classifiers are exactly matched in
Table 2. On the image tasks, we test whether parameter
count matters by scaling the model from ResNet-50 all the
way up to ResNet-152 (He et al., 2016). Figure 4 shows
that this does not improve the scaling trend or performance.
Overall, parameter count does not seem to be responsible
for the performance of the generative classifier.

5.4. Correlation between Generative and Discriminative
Performance

Finally, we take a careful look at how well generative capa-
bilities like validation likelihood and sample quality corre-
late with classification performance. Figure 5 shows how
these three metrics evolve over the course of training for a
diffusion-based generative classifier on CelebA.

We first find that the model does not need to generate good
samples in order to have high classification accuracy. The
first generation in Figure 5 has significant visual artifacts,
yet the generative classifier already achieves 90% class-
balanced accuracy. This makes sense: the classifier only
needs pθ(x | y∗) > pθ(x | y) for all y ̸= y∗, so pθ(x | y∗)
can be low as long as pθ(x | y ̸= y∗) is even lower. In fact,
given a generative classifier pθ(x | y), one can construct
another generative classifier p̃(x | y) = λpθ(x | y) + (1−
λ)pother(x), which has the same accuracy as pθ but generates
samples that look increasingly like pother as λ → 0+.

However, even though sample quality is not necessary for
high accuracy, we do find that validation diffusion loss cor-
relates well with class-balanced accuracy. As the loss de-

creases, class-balanced accuracy correspondingly increases.
Figure 9 shows how an increase in validation diffusion loss
due to overfitting translates to a corresponding decrease in
classification accuracy on Waterbirds.

Finally, Figure 5 shows how we can check the samples to
audit how the generative classifier models the spurious vs
causal features. The samples are generated deterministically
with DDIM (Song et al., 2020) from a fixed starting noise,
so the sample from the last checkpoint shows that the model
is increasing the probability of blond men (the minority
group in CelebA). This means that the model is modeling
less correlation between the hair color (causal for the blond
vs not blond label) and the gender (the shortcut feature).
This is one additional advantage of generative classifiers:
generating samples is a built-in interpretability method (Li
et al., 2023). Again, as we note above, generation of a
specific feature is sufficient but not necessary to show that
it is being used for classification.

6. Illustrative Setting
We now aim to gain insights about the fundamental out-
of-distribution behavior of generative classifiers in a sim-
plified setting. In particular, we find that linear generative
classifiers can also display robustness to distribution shift
compared to discriminative counterparts, in a certain regime
we characterize rigorously. Next, we connect our findings
back to practice, to explain the varying empirical behavior
for generative vs discriminative classifiers.

6.1. Data

Consider binary classification with label y ∈ {−1,+1}.
The features are x = (xcore, xspu, xnoise) ∈ Rd, where:

xcore | y = N (y, σ2) ∈ R (4)
xspu | y = yB w.p. ρ, else − yB ∈ R (5)

xnoise | y = N (0 , σ2
noise) ∈ Rd−2 (6)
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erative classifier correctly models less correlation between
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Figure 6: Visualization of features (noise dims not shown).

We set the spurious correlation ratio ρ = 0.9 and causal
feature standard deviation σ = 0.15, which is small enough
that the data can be perfectly classified by using only the
causal feature xcore and ignoring the remaining features.
Figure 6 shows a visualization of the causal and spurious
features. The majority groups consist of samples where the
spurious and causal features agree (top right and bottom
left of Fig. 6), and the minority groups consist of samples
where the spurious and causal features disagree (top left and
bottom right).

This synthetic dataset has previously been used to under-
stand the failure modes of discriminative classifiers in pre-
vious work (Sagawa et al., 2020; Idrissi et al., 2022; Setlur
et al., 2023) and is a natural simplified setting for us to study
the advantages of generative classifiers.

6.2. Algorithms

Discriminative We analyze unregularized logistic regres-
sion, as is done in previous work (Sagawa et al., 2020;
Nagarajan et al., 2020). Since the data is linearly separable
using the causal feature, logistic regression learns the max-
margin solution when trained via gradient descent (Soudry
et al., 2018).

Generative We use unregularized linear discriminant anal-
ysis (LDA), a classic generative classification method that
models each class as a multivariate Gaussian. It fits separate
class means µ−1 and µ+1 but learns a shared covariance
matrix Σ for both classes. Assuming balanced classes, LDA
makes the prediction:

argmax
y

p(x | y) = sign
(
log

p(x | y = +1)

p(x | y = −1)

)
(7)

= sign
(
log

N (x | µ+1,Σ)

N (x | µ−1,Σ)

)
(8)

This corresponds to a linear decision boundary with coeffi-
cients wLDA = Σ−1(µ+1 − µ−1).

6.3. Generalization Phase Diagrams

The spurious feature scale B, noisy feature variance σ2
noise,

and feature dimension d influence the solutions that models
prefer to learn. Intuitively, the spurious feature scale B con-
trols the saliency of the shortcut feature, and larger B makes
it easier for the model to learn this shortcut. The noisy fea-
ture variance σ2

noise controls how easy it is for a model to
overfit to training examples (Nagarajan et al., 2020). Vary-
ing these properties of the data creates a family of datasets,
and we use them to understand when and why generative
classifiers outperform their discriminative counterparts.

Each plot in Figure 7 corresponds to varying B and σ2
noise,

for a given number of training examples n with d fixed
at 1024, and each plot is divided into regions depending
on which method does better ID or OOD for the given
(B, σ2

noise) at that location. We call this a generalization
phase diagram, since it resembles a phase diagram from
chemistry which shows the impact of pressure and tempera-
ture on the physical state of a substance. In our case, there
are four possible generalization phases:

1. The generative classifier is better both ID and OOD.
This typically happens at high σ2

noise, since the dis-
criminative model overfits using the noise features.

2. The discriminative classifier is better both ID and OOD.
This happens at low σ2

noise.

3. The discriminative classifier is better ID, but the gen-
erative classifier is better OOD. This is an intriguing
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Figure 7: Generalization phase diagrams. We vary the scale B of the spurious feature and the variance σ2
noise of the

noise features and evaluate their effect on the ID and OOD test accuracy of generative classifiers (LDA) vs discriminative
classifiers (logistic regression). Each plot corresponds to a different number n of training examples, and the color of each
pixel denotes which classifier does better for a particular combination of B and σ2

noise. We observe three main phases of
generalization: (1) discriminative has better ID and OOD accuracy, (2) generative has better ID and OOD accuracy, and (3)
discriminative does better ID and generative does better OOD.

phase that happens at a sweet spot of B and σ2
noise.

It happens when there is a moderate amount of noise
σ2
noise to overfit to, but the spurious feature is strong

enough to overcome the noise, which helps the discrim-
inative model to achieve decent ID accuracy. However,
since the discriminative model relies significantly on
the spurious feature, its OOD accuracy is low.

4. The generative classifier is better ID, but the discrimi-
native classifier is better OOD. This is exceedingly rare
(see the dark, unlabeled regions in Figure 7).

Notably, there is no free lunch. Even in this setting, neither
generative nor discriminative classifiers are uniformly better
than the other. However, we do note that B and σ2

noise

are unbounded above, and generative classifiers should do
comparatively better as the strength of shortcuts or noise
increases. Appendix A shows how generative classifiers rely
on the shortcut feature less than discriminative classifiers.

Finally, while it is hard to map B and σ2
noise directly onto a

realistic image or text dataset, they do offer insights on im-
portant properties of the data that determine which method
is suitable for a given task. Indeed, we can categorize the
distribution shift benchmarks into these phases based on
their generative vs discriminative behavior. Waterbirds and
FMoW fall in phase 1 (generative better ID and OOD),
CelebA and CivilComments fall in phase 3 (discriminative
better ID and generative better OOD), and Camelyon lies
on the transition boundary between phase 1 and 3, since the
generative classifier achieves better OOD and similar ID
accuracy compared to discriminative baselines.

7. Conclusion
Discriminative approaches to classification have been the
dominant paradigm since AlexNet jumpstarted the popular-
ity of deep learning. However, these methods may be stag-
nating and suffer from susceptibility to distribution shift and
an insatiable hunger for more data. In this paper, we present
a simple, alternative approach. We revisit the concept of
generative classifiers and show that they have significant
advantages in both in-distribution and out-of-distribution
performance on realistic distribution shift benchmarks. We
carefully analyze their behavior, and finally show insights
from an illustrative setting into when generative classifiers
can be expected to do better.

As deep generative classifiers have not been well-explored,
there is significant room for future work. The inference cost
of these generative classifiers, especially diffusion-based,
is impractically high. It is also unclear how well common
techniques, such as large-scale pre-training or complex aug-
mentations, fit with generative classifiers. Finally, the ideas
from this work may be useful in other contexts, such as lan-
guage modeling. Tasks like sentiment analysis or code com-
pletion are currently being done in a more discriminative
approach: given a context x, predict the correct sentiment
or code snippet y by sampling from pθ(y | x). Improv-
ing the performance and out-of-distribution robustness of
these models by doing a generative approach would be a
particularly exciting direction.
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A. Additional Analysis in Illustrative Setting
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Figure 8: Illustrative setting for shortcut learning. Left: in-distribution accuracies are roughly the same between
generative (LDA) and discriminative (logistic regression) methods, but LDA achieves much higher minority group accuracy.
Middle: the difference between the majority and minority test accuracies as a function of the number of training examples.
The generative method displays better robustness to the spurious correlation. Right: the ratio between the weight on the
spurious feature wspu and the weight on the causal feature wcore. LDA puts much less weight on the spurious feature, even
with very little training data. Shaded regions denote ±1 standard deviation over 25 seeds.

We carefully examine a setting where the generative approach outperforms the discriminative approach on the worst group
(OOD). Figure 8 compares the behavior of LDA and logistic regression on toy data with data dimension d = 1026 and noise
variance σ2

noise = 0.36. We find that both methods have similar in-distribution accuracies, but LDA does significantly better
on the minority group. In fact, Figure 8 (middle) shows that LDA has essentially no performance gap between the majority
and minority groups, which indicates that it does not use the spurious feature at all. In contrast, logistic regression has
a large performance gap between the groups. This can be explained by looking at the linear coefficients learned by both
methods. Figure 8 (right) shows the ratio |wspu|/|wcore| between the weights on the shortcut and causal features. Ideally,
this ratio goes to 0 as fast as possible as the model sees more data. Logistic regression, however, places significant weight on
the spurious feature until it gets thousands of training examples. LDA is far more data-efficient and places almost no weight
on the spurious feature with as few as 16 training examples.

B. Additional Figures

Algorithm 1 Generative Classifier

1: Input: Training set D = {(xi, yi)}Ni=1

2: Training model pθ(x|y):
3: Minimize E(x,y)∼D[− log pθ(x|y)]
4: Classification of test input x:
5: for class yi ∈ Y do
6: Compute pθ(x|yi)
7: end for
8: Return argmaxyi

pθ(x|yi)p(yi)
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Figure 9: Overfitting in diffusion loss on Waterbirds directly translates to overfitting in classification accuracy. We smooth
the loss for better visual clarity.

C. Experimental Details
C.1. Image-based Experiments

C.1.1. DIFFUSION-BASED GENERATIVE CLASSIFIER

We train diffusion models from scratch in a lower-dimensional latent space (Rombach et al., 2022). We use the default
395M parameter class-conditional UNet architecture and train it from scratch with AdamW (Loshchilov & Hutter, 2017)
with a constant base learning rate of 1e-6 and no weight decay or dropout. We did not tune diffusion model hyperparameters
and simply used the default settings for conditional image generation. Each diffusion model requires about 3 A6000 days
to train. For inference on Waterbirds, CelebA, and Camelyon, we sample 100 noises ϵ and use them with each of the two
classes. For FMoW, we use the adaptive strategy from Diffusion Classifier (Li et al., 2023) that uses 100 samples per class,
then does an additional 400 samples for the top 5 remaining classes.

C.1.2. DISCRIMINATIVE BASELINES

C.2. Autoregressive Generative Classifier

For training, we pad shorter sequences to a length of a 512 and only compute loss for non-padded tokens. We find that
this works better than sequence packing. We use a Llama-style architecture (Touvron et al., 2023) and train 15M and 42M
parameter models from scratch. We train for up to 200k iterations, which can take 2 A6000 days.
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