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ABSTRACT

VILA-U is a Unified foundation model that integrates Video, Image, Language
understanding and generation. Traditional visual language models (VLMs) use
separate modules for understanding and generating visual content, which can lead
to misalignment and increased complexity. In contrast, VILA-U employs a single
autoregressive next-token prediction framework for both tasks, eliminating the need
for additional components like diffusion models. This approach not only simplifies
the model but also achieves near state-of-the-art performance in visual language
understanding and generation. The success of VILA-U is attributed to two main
factors: the unified vision tower that aligns discrete visual tokens with textual
inputs during pretraining, which enhances visual perception, and autoregressive
image generation can achieve similar quality as diffusion models with high-quality
dataset. This allows VILA-U to perform comparably to more complex models
using a fully token-based autoregressive framework.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated superior capabilities in various
language tasks. Their appealing properties like instruction following, zero-shot generalization, and
few-shot in-context learning motivate researchers to combine them with vision models to build visual
language models (VLMs) for multi-modal tasks. Many efforts (Dai et al., 2024; Liu et al., 2024b; Lin
et al., 2023) in this field have achieved remarkable performance on visual language understanding.
In these works, visual inputs are projected onto LLMs’ semantic space through a vision model like
CLIP (Radford et al., 2021) to bridge two modalities by including text-image alignment objectives.

In addition to visual understanding, another essential research direction in combining visual and
language modalities is visual generation. There are two popular approaches for text-guided image
generation. One approach employs diffusion models (Rombach et al., 2022a), a powerful tool for
various generation tasks. The other line of work converts visual content into discrete tokens through
vector quantization (VQ) and then leveraging autoregressive transformers for high-quality and diverse
generation (Esser et al., 2021; Yu et al., 2021; Lee et al., 2022; Tian et al., 2024b; Sun et al., 2024).

Witnessing the rapid advancements in both visual understanding and generation, an emerging trend
is to unify these techniques into a single multi-modal framework. Prior to VILA-U, there are two
main approaches to achieving such unification: (1) One approach (Liu et al., 2024a; Yu et al., 2023a;
Xie et al., 2024) utilizes a VQGAN-based (Esser et al., 2021) tokenizer to convert visual inputs
into discrete tokens and leverages an autoregressive model for both understanding and generation.
However, (Xie et al., 2024) has shown that visual tokens from VQGAN-based encoder lack semantic
information and usually results in a severe performance drop in downstream visual understanding
tasks. (2) Another approach (Zhan et al., 2024; Ge et al., 2023b; Jin et al., 2023) utilizes a codebook
to quantize features produced by a pre-trained vision model like CLIP. Since CLIP features encode
rich semantic information, these approaches generally achieve significantly better performance on
understanding tasks. However, these tokenizers lack decoding capability, requiring an external
visual generation model, such as a diffusion model, to use the generated visual tokens as conditions
for producing visual outputs. This approach adds complexity to infrastructure design. Available
large-scale foundation model training pipelines and deployment systems have already been highly
optimized for language modeling with next-token prediction. Designing and maintaining an additional
stack to support diffusion models would incur significant engineering costs.
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In this work, we present VILA-U, an end-to-end autoregressive framework with a unified next-token
prediction objective for both visual and text inputs that can achieve competitive performance on both
visual language understanding and generation tasks, without the help of external components like
diffusion models. We identify two critical principles to unify vision and language modalities: (1)
Existing unified end-to-end autoregressive VLMs cannot achieve competitive visual understanding
performance because the discrete VQGAN tokens are trained solely on image reconstruction loss and
are not aligned with textual inputs. Therefore, it is crucial to introduce text alignment during VQ
vision tower pretraining to enhance perception capabilities. (2) Autoregressive image generation can
attain similar quality as diffusion models if trained on high-quality data with sufficient size. Guided
by these insights, VILA-U features a unified foundation vision tower that converts visual inputs
into discrete tokens through vector quantization and aligns these tokens with textual inputs using
contrastive learning. The multi-modal training of VILA-U takes advantage of a unified next-token
prediction objective for both visual and textual tokens on a small-size high-quality image-text corpus.

We evaluate VILA-U on common visual language tasks, including image-language understanding,
video-language understanding, image generation and video generation. VILA-U significantly nar-
rows the gap in visual understanding performance between end-to-end autoregressive models and
continuous-token VLMs, while introducing competitive native visual generation capabilities.

2 RELATED WORK

Large Language Models (LLMs). LLMs based on pre-trained large-scale transformers (Vaswani
et al., 2017) has drastically revolutionized natural language processing field. Featuring gigantic
model size and pre-training data corpus, LLM has achieved remarkable performance on various
linguistic tasks. The development of open-source LLMs such as LLaMA (Touvron et al., 2023a),
Mixtral (Jiang et al., 2024) and Vicuna (Chiang et al., 2023) has furthered nourished research on how
to adopt LLM for complex language tasks. Besides excellent zero-shot generalizability to diverse
domains, LLM is commonly finetuned on custom datasets for better performance on specific tasks.
Instruction tuning (OpenAI, 2023; Chung et al., 2024; Ouyang et al., 2022) also stands as a key step
for better outputs in applying LLMs. In this work, we adopt the LLaMA-2-7B(Touvron et al., 2023a)
model as our basic LLM.

Visual Language Models (VLMs). Combining computer vision and natural language processing
gives rise to VLM in this LLM era. In VLMs, researchers leverage vision foundation models such as
CLIP (Radford et al., 2021), BLIP (Li et al., 2022a) and CoCa (Yu et al., 2022) to extract visual fea-
tures, align with texts, and feed them into LLM to achieve the cross-modality understanding between
texts and visual content. Building upon such progress, many VLMs (Alayrac et al., 2022; Li et al.,
2023b; Liu et al., 2024b; Lin et al., 2023; Luo et al., 2024; Tian et al., 2024a) have been designed and
trained on extensive vision-language data to achieve remarkable performance on visual understanding
and reasoning tasks. VLMs are divided into two types. (1) BLIP-style VLMs (Awadalla et al.,
2023; Alayrac et al., 2022; Li et al., 2022b; 2023c; Dai et al., 2023; Hong et al., 2023) utilizes cross
attention mechanism to fuse language and visual information and optionally apply perceivers (Jaegle
et al., 2021) to downsample visual tokens. (2) LLaVA-style VLMs (Liu et al., 2023b; Driess et al.,
2023; Chen et al., 2023b; AI, 2023; Zhu et al., 2023; Ye et al., 2023; Bai et al., 2023; Aiello et al.,
2023; Chen et al., 2023c; Liu et al., 2023a; Lin et al., 2023; Zhang et al., 2023) converts visual inputs
to tokens (patches) and pass them through ViTs. The output of ViTs undergoes MLP layers and
gets aligned to the language space. In this work, we aim to develop a VLM with visual understanding
capacities comparable to prior works, while also possessing the new capacity of visual generation.

Unified Visual Language Models. Numerous efforts have been made to develop unified visual
language models capable of generating both text and visual content, including images and videos.
There are two mainstream methods to generate visual content in VLMs. Many works (Sun et al.,
2023b;a; Jin et al., 2023; Ge et al., 2023b; Li et al., 2023d; Ge et al., 2024; Jin et al., 2024; Ge
et al., 2023a) combine VLMs with diffusion models like Stable Diffusion (Rombach et al., 2022a)
for high-quality image generation. Other works (Liu et al., 2024a; Yu et al., 2023a; Lu et al., 2023;
Team, 2024; Xie et al., 2024) adopt VQGAN-based vision encoders to convert visual inputs into
discrete tokens and make LLMs learn to predict them. In this work, we design our framework based
on the autoregressive next-token prediction method for visual generation and make our VLM learn to
generate visual content effectively.
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Figure 1: An overview of our framework’s multi-modal training and inference process. Visual
inputs are tokenized into discrete tokens and concatenated with textual tokens to form a multi-modal
token sequence. All tokens are involved in our next-token prediction process, enabling a unified
training objective. During inference, the output tokens are decoded by our text detokenizer or vision
tower decoder to yield multi-modal content.

3 METHODS

This work proposes a multi-modal framework that aims to unify visual and language modalities
effectively. The key components enabling such unification are a unified foundation vision tower that
converts visual inputs into discrete tokens aligned with text, and a unified multi-modal generative
training procedure. An overview of the main multi-modal training and inference process within our
framework is depicted in Figure 1.

3.1 UNIFIED FOUNDATION VISION TOWER

To support diverse visual understanding and generation tasks, we first build a unified foundation
vision tower to provide appropriate visual features. We propose to include text-image contrastive loss
and VQ-based image reconstruction loss in our vision tower training, empowering the text alignment
and discrete tokenization abilities for our vision tower. As depicted in Figure 2, the features extracted
from images are primarily discretized through residual quantization. Then in one route, the discrete
visual features are fed into a decoder to reconstruct the image and compute the reconstruction loss;
on the other route, we compute the image-text contrastive loss between the discrete visual features
and the textual features provided by a text encoder. With this training procedure, the vision tower
learns to extract discrete features suitable for both understanding and generation in our VLM.

Unified Training Recipe. Training the unified vision tower with two objectives from scratch would
be difficult. This is because alignment and reconstruction tasks require high-level semantic and
low-level appearance features, respectively. Training the entire vision tower from scratch with both
objectives could induce conflicting goals. In practice, we observe that training the vector-quantized
vision tower from scratch with both image reconstruction and contrastive loss results in a mere 5%
Top-1 accuracy for zero-shot image classification on ImageNet (Deng et al., 2009a) after several
epochs of training.

To address this issue, we experiment with different training recipes and find the following solution to
be most effective. Instead of learning both objectives simultaneously, our training recipe suggests
first equipping the model with text-image alignment ability and then learning reconstruction while
maintaining alignment ability. We initialize the vision encoder and text encoder with pretrained
weights from the CLIP model to ensure good text-image alignment. Next, we freeze the text
encoder and keep all vision components trainable using both contrastive and reconstruction loss. The
contrastive loss maintains alignment ability, while the reconstruction loss develops reconstruction
ability. This training approach converges quickly and yields strong performance. The pre-trained
CLIP weights contain learned high-level priors, which are difficult and computationally expensive to
learn from scratch. Initializing with these weights enables the binding of low-level and high-level
features much faster and more tractably for the vision encoder. With this training recipe, we can
train a vision tower that exhibits both good text alignment and image reconstruction abilities. We use
weighted sum to combine the text-image contrastive loss and VQ-based image reconstruction loss:

Ltotal = wcontraLcontra + wreconLrecon (1)

3
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Figure 2: Overview of our unified foundation vision tower. Given input images the features
extracted by the vision encoder are discretized using residual quantization. Then the discrete vision
features are meanwhile put into the vision decoder to reconstruct images and used to perform the
text-image alignment. During this process, the reconstruction loss and contrastive loss are computed
to update the vision tower, endowing it to produce discrete visual features with text alignment.

In our experiments, we pick wcontra = 1 and wrecon = 1.

Residual Vector Quantization. Our visual features are discretely quantized, so their representation
ability heavily depends on the code size used in our quantizer. Since we hope they contain both
high-level and low-level features, we need more capacities in their vector feature space, making a
larger code size necessary for good performance in downstream tasks. However, too many codes
for each image will result in too many tokens for LLM to produce in the visual generation process,
incurring much latency. So in an attempt to increase the vector feature capacity and meanwhile
maintain a reasonable number of tokens for LLM, we adopt a residual vector quantization method
following RQ-VAE (Lee et al., 2022) to discretize a vector z as D discrete codes:

RQ(z; C, D) = (k1, · · · , kD) ∈ [K]D, (2)

where C is the codebook, K = |C| and kd is the code of z at depth d. Starting with r0 = z, we
recursively perform vector quantization by

kd = Q (rd−1, C) ,
rd = rd−1 − e (kd) ,

(3)

for each depth d = 1, 2, · · · , D, where e is the codebook embedding table and Q is the standard
vector quantization:

Q(z; C) = argmin
k∈[K]

∥z− e(k)∥22. (4)

The quantized vector for z is the sum over the depth dim: ẑ =
∑D

i=1 e (ki). Intuitively, in each depth
we choose a code to reduce the quantization error. So compared to the standard vector quantization
methods, we have D codes to quantize one vector, allowing for finer approximation and larger feature
space. During multi-modal training and inference, LLM only needs to predict the code embedding,
with codes in different depth sequentially produced by a depth transformer taking the code embedding
as the initial input, as we will introduce in Section 3.2. So with this residual quantization, we can
enhance the representation capability of our vision tower while incurring little latency.

3.2 UNIFIED MULTI-MODAL GENERATIVE PRE-TRAINING

Figure 1 presents an overview of our unified multi-modal pre-training process. Our vision tower
encoder processes visual inputs sequentially, generating a 1D token sequence. This sequence is then
concatenated with text tokens to form a multi-modal sequence. To distinguish between modalities and
enable visual content generation, we insert special tokens: <image_start> and <image_end>
at the start and end of image tokens, and <video_start> and <video_end> at the start and
end of video tokens. Video tokens are the direct concatenation of multi-frame image tokens.

Pre-training data form. In terms of unified pre-training data, we leverage different concatenation
forms between text and visual tokens to facilitate both understanding and generation. We use
[image, text], [text, image], and [text, video] forms, with supervision loss added
only on the latter modality in each pair to avoid unconditional content generation and promote
modality alignment. We also employ an interleaved text and image concatenation form for enhanced
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understanding, with supervision loss applied solely to the text. Notably, we exclude the [video,
text] form during pre-training for efficiency reasons, as we find incorporating it during supervised
fine-tuning effectively yields excellent video understanding ability.

Training Objective. Since both visual tokens and text tokens are discrete, we can train our LLM with
the general language modeling next-token prediction objective. However, due to the use of residual
quantization for visual tokens, the training objectives for text and visual tokens differ slightly. For
text tokens, the negative log-likelihood loss is calculated as

Ltext = −
T∑

i=1

logPθ (yi|y<i) , (5)

where T is the length of the multi-modal sequence and i only counts when the text token appears at
position i. For visual tokens, residual quantization introduces a depth-stacked structure of codes at
each visual position j. To address this, we leverage the depth transformer introduced in RQ-VAE
(Lee et al., 2022). Specifically, given the code embedding hj generated by the LLM for visual
tokens at position j, the depth transformer autoregressively predicts D residual tokens (kj1, ..., kjD).
During training, the input of the depth transformer vjd at depth d is defined as the sum of the code
embeddings of up to depth d− 1 for d > 1 such that

vjd =

d−1∑
d′=1

e(kjd′), (6)

and vj1 = hj . Thus, the depth transformer predicts the next code for a finer estimation of the feature
ẑj based on the previous estimations up to d− 1. Then the negative log-likelihood loss for visual
tokens is

Lvisual = −
T∑

j=1

D∑
d=1

logPδ (kjd|kj,<d) , (7)

where T is the length of the multi-modal sequence and j only counts when a visual token appears at
position j. During the multi-modal pre-training, the weights of the depth transformer are randomly
initialized and updated together with the LLM.

4 EXPERIMENTS

In this section, we introduce comprehensive experiments to evaluate our method on various visual
understanding and generation tasks. Firstly, we outline our experimental setup, including the model
architecture, training datasets, and evaluation benchmarks. Subsequently, we evaluate the performance
of our unified foundation vision tower. Then, we compare our method with other popular VLMs on
various visual understanding and generation benchmarks. Finally, we give some qualitative results.

4.1 EXPERIMENTAL SETUP

In our experiments, we employ LLaMA-2-7B (Touvron et al., 2023b) as our base language model.
For the vision tower, we choose SigLIP-Large-patch16-256 / SigLIP-SO400M-patch14-384 (Zhai
et al., 2023) as our vision encoder architecture, and adopt the residual quantizer, depth transformer
as well as the decoder architecture from RQ-VAE (Lee et al., 2022). The quantizer codebook size
is 16384. All images and videos are resized to a resolution of 256 × 256 / 384 × 384, with each
image or video frame converted into a 16 × 16 × 4 / 27 × 27 × 16 code with the residual depth
D = 4 / D = 16. We train our vision tower on COYO-700M (Byeon et al., 2022) and evaluate
it for zero-shot classification and reconstruction performance on ImageNet (Deng et al., 2009b).
For visual understanding, we leverage 1M [image, text] data from ShareGPT4V (Chen et al.,
2023a), 6M interleaved text and image data from MMC4 (Zhu et al., 2024). For visual generation,
we incorporate 15M high-quality [text, image] data curated from our internal dataset and 1M
[text, video] data from OpenVid (Nan et al., 2024) datasets. Classifier-free guidance (Ho &
Salimans, 2022) is employed for visual generation with a CFG value of 3.

For examining visual understanding ability, we evaluate our model on the widely adopted zero-shot
image-based visual-language benchmarks including VQAv2 (Goyal et al., 2017), GQA (Hudson &
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Manning, 2019), TextVQA (Singh et al., 2019), POPE (Li et al., 2023e), MME (Fu et al., 2024),
SEED (Li et al., 2023a), MM-Vet (Yu et al., 2023b) and video-based visual-language benchmarks
including ActivityNet (Caba Heilbron et al., 2015), MSVD (Chen & Dolan, 2011), MSRVTT (Xu
et al., 2017), TGIF (Li et al., 2016).

To evaluate the visual generation capability, we use MJHQ-30K (Li et al., 2024) and GenAI-Bench
(Lin et al., 2024) as our benchmarks. The former adopts the FID between generated images and 30K
high-quality images to reflect the overall capability of image generation. The latter is a challenging
image-to-text generation benchmark that reflects the comprehensive generative abilities of visual
generation models. This benchmark is divided into two categories of prompts: basic skills, which
include attribute, scene, and relation understanding in text inputs, and advanced skills, which
encompass counting, differentiation, comparison, and logical relation understanding in text inputs.

4.2 UNIFIED FOUNDATION VISION TOWER

We present the commonly used metrics reconstruction FID (rFID) and Top-1 accuracy for zero-shot
image classification on ImageNet to measure the reconstruction and text alignment capabilities of
the unified foundation vision tower in Table 1. Please refer to the Appendix A.1 for the qualitative
reconstruction results. Our model achieves significantly better reconstruction results than VQ-GAN.
Our rFID is slightly inferior to that of RQ-VAE when using the same code shape. This is expected as
the introduction of contrastive loss during training, aimed at enhancing image understanding, led to a
decrease in reconstruction quality. For the text alignment capability, our unified vision tower achieves
a Top-1 accuracy of 73.3 / 78.0 under 256 / 384 resolution. This demonstrates the exceptional text
alignment capability of our unified vision tower. However, it is worth noting that both the rFID
and Top-1 accuracy of the vision tower only serves as a medium indicator. As the unified vision
tower is an integral component of the entire autoregressive model, we believe that its performance on
downstream tasks, such as visual understanding and generation, holds greater significance.

Table 1: The reconstruction FID (rFID) and Top-1 accuracy for zero-shot image classification of our
unified vision tower on ImageNet.

Model Pretrained Weights Resolution Shape of Code rFID↓ Top-1 Accuracy↑
VQ-GAN – 256 × 256 16 × 16 4.98 –
RQ-VAE – 256 × 256 8 × 8 × 4 3.20 –
RQ-VAE – 256 × 256 16 × 16 × 4 1.30 –

Ours SigLIP-Large 256 × 256 16 × 16 × 4 1.80 73.3
Ours SigLIP-SO400M 384 × 384 27 × 27 × 16 1.25 78.0

4.3 QUANTITATIVE EVALUATION

Visual Understanding Tasks. Table 2 and Table 3 summarize the comparison between our method
and other leading VLMs on the image-language and video-language benchmarks respectively. Com-
pared to the mainstream choice of continuous visual tokens produced by foundation models like
CLIP, the VQGAN-based discrete visual tokens have less alignment with text, thus harming VLMs’
performance on visual understanding tasks. With our unified foundation vision tower, our model can
have a performance close to leading VLMs even with discrete visual tokens.

Method Type #Images FID↓
SD v2.1 Diffusion – 26.96
SD-XL Diffusion 2000M 9.55
PixArt Diffusion 25M 6.14
Playground v2.5 Diffusion – 4.48
LWM Autoregressive – 17.77
Show-o Autoregressive 36M 15.18

Ours (256) Autoregressive 15M 12.81
Ours (384) Autoregressive 15M 7.69

Table 4: Comparison with other visual generation methods
on MJHQ-30K evaluation benchmark.

Visual Generation Tasks. As shown in
Table 4, VILA-U can achieve a better FID
than other autoregressive methods and have
comparable performance with some diffu-
sion based methods. This result shows the
feasibility of our method for visual gener-
ation. Table 5 summarizes the quantitative
results of our method and other visual gener-
ation methods on GenAI-Bench. Although
Our method is inferior to diffusion-based
visual generation methods that have been
trained on billions-level image-text pairs,
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Table 2: Comparison with leading methods on image-based visual language benchmarks. Our
performance is close to leading VLMs, surpassing many methods by a large margin under the same
LLM size, even with a discrete visual token type. * indicates that images in the training split of these
datasets are observed during VLM training.

Method LLM Visual Token Res. VQAv2 GQA TextVQA POPE MME SEED MM-Vet
LLaVA-1.5 Vicuna-1.5-7B Continuous 336 78.5∗ 62.0∗ 58.2 85.9 1510.7 58.6 30.5
VILA LLaMA-2-7B Continuous 336 79.9∗ 62.3∗ 64.4 85.5 1533.0 61.1 34.9
Unified-IO 2 6.8B from scratch Continuous 384 79.4∗ – – 87.7 – 61.8 –
InstructBLIP Vicuna-7B Continuous 224 – 49.2 50.1 – – 53.4 26.2
IDEFICS-9B LLaMA-7B Continuous 224 50.9 38.4 25.9 – – – –
Emu LLaMA-13B Continuous 224 52.0 – – – – – –
LaVIT LLaMA-7B Continuous 224 66.0 46.8 – – – – –
DreamLLM Vicuna-7B Continuous 224 72.9∗ – 41.8 – – – 36.6
Video-LaVIT LLaMA-2-7B Continuous 224 80.2∗ 63.6∗ – – 1581.5 64.4 35.0
Emu2-Chat Emu2-37B Continuous 448 84.9∗ 65.1∗ 66.6∗ – – – –
MM-Interleaved Vicuna-13B Continuous 224 80.2∗ 60.5∗ 61.0 – – – –
DEEM Vicuna-7B Continuous 448 68.2∗ 55.7∗ – – – – 37.4
CM3Leon-7B 7B from scratch Discrete 256 47.6 – – – – – –
LWM LLaMA-2-7B Discrete 256 55.8 44.8 18.8 75.2 – – 9.6
Show-o Phi-1.5-1.3B Discrete 256 59.3∗ 48.7∗ – 73.8 948.4 – –
SEED-LLaMA Vicuna-7B Discrete 224 66.2 – – – – 51.5 –

Ours LLaMA-2-7B Discrete 256 75.3∗ 58.3∗ 48.3 83.9 1336.2 56.3 27.7
Ours LLaMA-2-7B Discrete 384 79.4∗ 60.8∗ 60.8 85.8 1401.8 59.0 33.5

Table 3: Comparison with leading methods on video-based visual language benchmarks. The
performance of our method is close to state-of-the-art VLMs, surpassing many methods under the
same LLM size, even with a discrete visual token type.

Method LLM Visual Token Res. MSVD-QA MSRVTT-QA TGIF-QA Activity Net-QA
Unified-IO 2 6.8B from scratch Continuous 384 52.1 42.5 – –
Emu LLaMA-13B Continuous 224 – 18.8 8.3 –
VideoChat Vicuna-7B Continuous 224 56.3 45 34.4 –
Video-LLaMA LLaMA-2-7B Continuous 224 51.6 29.6 – –
Video-ChatGPT LLaMA-2-7B Continuous 224 64.9 49.3 51.4 35.2
Video-LLava Vicuna-7B Continuous 224 70.7 59.2 70.0 45.3
Video-LaVIT LLaMA-2-7B Continuous 224 73.5 59.5 – 50.2
Emu2-Chat Emu2-37B Continuous 448 49.0 31.4 – –
LWM LLaMA-2-7B Discrete 256 55.9 44.1 40.9 –
SEED-LLaMA Vicuna-7B Discrete 224 40.9 30.8 – –

Ours LLaMA-2-7B Discrete 256 73.4 58.9 51.3 51.6
Ours LLaMA-2-7B Discrete 384 75.3 60.0 51.9 52.7

our method has comparable performance with SD v2.1 (Rombach et al., 2022b) and SD-XL (Podell
et al., 2023) on advanced prompts even trained with magnitude-level less data. This further shows
that VILA-U can learn the correlation among visual and textual modalities effectively with our unified
training framework. For video generation, we evaluate our method on VBench Huang et al. (2024)
and compare it against Open-Sora Zheng et al., CogVideo Hong et al. (2022), and CogVideoX Yang
et al. (2024). The results, presented in Table 6, demonstrate that our method achieves performance that
is better than CogVideo and comparable to Open-Sora, highlighting the effectiveness of our approach.

4.4 QUALITATIVE EVALUATION

Method Total Score↑ Quality Score↑ Semantic Score↑
Open-Sora 75.91 78.82 64.28
CogVideo 67.01 72.06 46.83
CogVideoX 81.61 82.75 77.04

Ours (256) 74.01 76.26 65.04

Table 6: Comparison with other visual generation methods on
VBench (Huang et al., 2024).

Visual Understanding. To validate
the effectiveness of VILA-U in
comprehensive visual understanding
tasks, we apply it in several under-
standing and reasoning tasks, as
some examples shown in Figure 3
and Figure 4. From the results, we
can see the versatility of VILA-U
in various tasks including visual
captioning and visual question
answering. Besides, our model has inherited some important capabilities from VILA (Lin et al.,
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Table 5: Comparison with other visual generation methods on GenAI-Bench (Lin et al., 2024).
The results show that our method outperforms previous autoregressive visual generation methods.
For advanced prompts that require better text following ability to generate, our method can have a
relatively small performance gap with diffusion-based methods, even with much less training data.

Method Type #Training Images Attribute↑ Scene↑ Relation↑ Overall↑
Spatial Action Part

SD v2.1 Diffusion 2000M 0.80 0.79 0.76 0.77 0.80 0.78
SD-XL Diffusion 2000M 0.84 0.84 0.82 0.83 0.89 0.83
Midjourney v6 Diffusion – 0.88 0.87 0.87 0.87 0.91 0.87
DALL-E 3 Diffusion – 0.91 0.90 0.92 0.89 0.91 0.90
LWM Autoregressive – 0.63 0.62 0.65 0.63 0.70 0.63
Show-o Autoregressive 36M 0.72 0.72 0.70 0.70 0.75 0.70

Ours (256) Autoregressive 15M 0.78 0.78 0.77 0.78 0.79 0.76
Ours (384) Autoregressive 15M 0.75 0.76 0.75 0.73 0.75 0.73

(a) VQAScores on basic prompts of GenAI-Bench

Method Type #Training Images Count↑ Differ↑ Compare↑ Logical↑ Overall↑
Negate Universal

SD v2.1 Diffusion 2000M 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL Diffusion 2000M 0.71 0.73 0.69 0.50 0.66 0.63
Midjourney v6 Diffusion – 0.78 0.78 0.79 0.50 0.76 0.69
DALL-E 3 Diffusion – 0.82 0.78 0.82 0.48 0.80 0.70
LWM Autoregressive – 0.59 0.58 0.54 0.49 0.52 0.53
Show-o Autoregressive 36M 0.70 0.62 0.71 0.51 0.65 0.60

Ours (256) Autoregressive 15M 0.70 0.71 0.74 0.53 0.66 0.64
Ours (384) Autoregressive 15M 0.68 0.67 0.71 0.51 0.64 0.61

(b) VQAScores on advanced prompts of GenAI-Bench

2023) including multi-image understanding, in-context learning, as shown in Figure 5 and Figure 6.
More visualizations can be found in the Appendix A.2.

Visual Generation. We present some examples of the visual generation results in Figure 7. Our model
can be employed in both image generation and video generation, even trained with a relatively small
data corpus. In the given examples, our method can generate nice-looking images and continuous
videos adhering to the user’s input. More visualizations can be found in the appendix A.3.

5 ABLATION STUDY

5.1 IMPACT OF CONTRASTIVE LOSS TO VISUAL UNDERSTANDING

We include contrastive loss in vision tower training, which endows it with the text alignment ability.
During our multi-modal training, such text alignment ability is crucial in enhancing modality fusion
and performance on downstream visual language tasks. We validate the importance of this alignment
by training the vision tower with and without the contrastive loss, evaluating its impact on visual
language understanding performance. For this ablation study, we randomly sample 25M data from

Prompt: <video>\n
Elaborate on the visual and narrative elements of the video in detail.
VILA-U(Ours): The video features a person wearing a blue t-shirt, khaki pants, and a cap, executing a series of breakdancing moves on 
a concrete road. The background includes a clear sky, a bridge, and a train passing by. The dancer's movements are dynamic, with spins, 
flips, and handstands. The lighting is bright, suggesting daytime, and the shadows indicate the sun is high. The dancer's attire is casual, 
and the setting appears to be a quiet road with minimal traffic.

Figure 3: VILA-U can correctly caption videos and cover all the details, thanks to the text alignment
of our vision encoder.
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Yes

Input image OutputQuestion

Is there water visible?

What are flying in the sky? Kites

2
How many motorcycles are 

in the picture?

How many people are on each 
motorcycle?

0

Figure 4: VILA-U has good visual question
answering capability. The images and questions
are from the test split of VQAv2 dataset.

is home to camels

is snowy

is sunny is rainy ?

Input few shot examples + target image

is home to polar bears is home to pandas ?

Output

Figure 5: VILA-U has good in-context learning
capability. We feed two image-text pairs and a third
image as the context to prompt the VLM.

Prompt: Image 1: <img1>\n Image 2: <img2>\n 
What is the common thing and the difference between image 1 and image 2?
VILA-U(Ours): The common thing in both images is the presence of a 
panda bear. However, the difference between image 1 and image 2 is that 
the panda bear in image 1 is lying down on a rock, while the panda bear in 
image 2 is lying down on a log.

Prompt: Image 1: <img1>\n Image 2: <img2>\n 
What is the common thing and the difference between image 1 and image 2?
VILA-U(Ours): The common thing in both images is the presence of trees, 
but the difference between the two images is the angle of the sunlight. In 
image 1, the sun is shining through the trees, creating a bright and lively 
atmosphere. In contrast, the sun is not visible in image 2, which shows a 
darker and more subdued forest scene.

Figure 6: VILA-U can correctly reason over multiple images.

COYO-700M to train the vision tower. For multi-modal training, we use ShareGPT4V and MMC4
without text-image and text-video data. The results of the first two lines in Table 7 demonstrate the
crucial role of text alignment in achieving strong visual language understanding performance. Scaling
the dataset size from 25M to 700M further enhances performance, highlighting the importance of
learning text alignment on a large-scale dataset.

Table 7: Impact of contrastive loss to visual understanding.

Pretrained Weights Data size Loss Type Top-1 Accuracy VQAv2 POPE MME SEED MM-Vet
SigLIP-Large 25M Recon. – 57.7 75.1 937.7 38.7 15.3
SigLIP-Large 25M Recon. + Contra. 62.9 68.0 83.7 1219 50.4 20.8
SigLIP-Large 700M Recon. + Contra. 73.3 75.3 83.9 1336.2 56.3 27.7

5.2 IMPACT OF CONTRASTIVE LOSS TO VISUAL GENERATION

We conduct two experiments to demonstrate the influence of contrastive loss to generation perfor-
mance. For efficiency, we conduct only text-to-image pretraining and utilize Sheared-LLaMA-1.3B
(Xia et al., 2023) instead of LLaMA-2-7B as the LLM. In the first experiment, we use the RQ-VAE as
the vision tower, which has an rFID of 1.30. In the second experiment, we employ our unified vision
tower. Results are shown in Table 8. Our Unified Vision Tower yielded slightly worse FID results
than the RQ-VAE on MJHQ-30K, possibly due to its inferior rFID resulting from the contrastive loss.

Table 8: Impact of contrastive loss to visual generation.

Vision Tower LLM Resolution rFID ↓ FID ↓
RQ-VAE (Lee et al., 2022) Sheared-LLaMA-1.3B 256 × 256 1.30 12.0
Ours Sheared-LLaMA-1.3B 256 × 256 1.80 13.2

Table 9: Impact of CFG.

CFG Value FID ↓
1.0 14.1
2.0 13.0
3.0 12.8
5.0 13.2
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Happy dreamy owl monster sitting on a 
tree branch, colorful glittering particles, 

forest background, detailed feathers:
A black dog:

A cute orange kitten sliding down an aqua 
slide, happy excited. Vibrant colors, water 

splashing on the lens:

Selfie of a woman and her lion cub 
on the plains:

Crocodile in a sweater:

a handsome 24 years old boy in the 
middle with sky color background 

wearing eye glasses, it's super detailed 
with anime style:

A realistic landscape shot of the 
Northern Lights dancing over a 

snowy mountain range in Iceland:

A deep forest clearing with a 
mirrored pond reflecting a galaxy-

filled night sky:

Waves rolling on the sea:

Fireworks exploding in the sky:

Figure 7: VILA-U can generate high-quality images and videos given text input.

5.3 IMPACT OF CLASSIFIER-FREE GUIDANCE

We adopt classifier-free guidance during the visual content generation. We investigate the impact of
the CFG value on our 256-resolution model. Results presented in Table 9 indicate that a CFG value
of 3.0 yields the best FID score.

6 CONCLUSION AND LIMITATION

We present VILA-U, a novel and unified visual language model that integrates video, image and
language understanding and generation tasks into one autoregressive next-token prediction framework.
Our method is not only more concise than most VLMs that leverage additional components like
diffusion models for unifying visual generation and understanding, but also demonstrates that
autoregressive methods can achieve comparable performance to state-of-the-art VLMs. We believe
VILA-U can serve as a general-purpose framework for diverse visual language tasks.

As demonstrated in Section 5.2, the introduction of contrastive loss impacts the reconstruction ability
of the vision tower. Balancing these two capabilities within the unified vision tower presents an
interesting and complex challenge that requires further exploration. Additionally, we currently do
not observe significant synergy or mutual enhancement between understanding and generation tasks.
In the future, we aim to investigate and explore more effective methods to enable these tasks to
complement and reinforce each other, thereby fully realizing the untapped potential of a unified visual
language model.
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APPENDIX

A QUALITATIVE RESULTS

A.1 RECONSTRUCTION

Original Image

Reconstruction Image 
(256 resolution)

Reconstruction Image 
(384 resolution)

Figure 8: Visualization of the reconstruction results from text-aligned discrete visual tokens.

We present qualitative reconstruction results in Figure 8 for our 256 / 384 resolution vision tower.
These vision towers effectively reconstruct images in detail using text-aligned discrete visual tokens.

A.2 VISUAL UNDERSTANDING

Zebras

Input image OutputQuestion

What color are they? Black and white

Blue
What is the color of 
the far right board?

How many men are 
in the picture?

2

What animals are 
shown here?

YesIs she cooking bread?

What room is this? Kitchen

NoDid the man hit the bat?

Is the man's legs 
together or apart?

Apart

Figure 9: Image understanding results. Examples are taken from the test split of VQAv2 dataset.
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Prompt: <video>\n What do the drops do 5 times ?
VILA-U(Ours): The drops fall down the window 5 times, and each time they hit the window, they create a new set of drops.

Prompt: <video>\n how many guys are laughing ?
VILA-U(Ours): 2 guys are laughing.

Prompt: <video>\n where is the man running and then he fall ?
VILA-U(Ours): The man is running on a treadmill in a gym, and then he falls off the treadmill.

Prompt: <video>\n how many boy holds up the candy bar and opens mouth ?
VILA-U(Ours): The video shows one boy holding up the candy bar and opening his mouth.

Figure 10: Video understanding results. Examples are taken from the test split of TGIF dataset.

We provide more image understanding and video understanding examples in Figure 9 and Figure 10.
VILA-U successfully answers the questions accurately.

A.3 VISUAL GENERATION

A snowy mountain.:
An oil painting of a garden where every 

flower is in full bloom, showcasing a 
rainbow of colors.:

A cube made of denim:

An extreme close-up of an gray-
haired man with a beard in his 60s:

An elephant walking under 
The sea:

Knolling of a drawing tools for 
painter:

A man looks up at the starry sky, 
lonely and ethereal:

Drone view of waves crashing 
against the rugged cliffs in Big Sur.:

Figure 11: Image generation results. VILA-U can generate high-quality images given text input.
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Burning campfire in the forest:

Sunlight shining through leaves:

Figure 12: Video generation results. VILA-U can generate high-quality videos given text input.

We provide more image generation and video generation examples in Figure 11 and Figure 12.
VILA-U can generate high-quality images and videos given text input.

A.4 IN-CONTEXT LEARNING EXAMPLES

Input few images + target image Output

Underground Congress Soulomes

2+1=3 5+6=11 3x6=18

Romanticism Surrealism Impressionism

The company is 
famous for its 
search engine.

The company is 
famous for 
iPhone and Mac.

The company is 
famous for its graphics 
processing unit.

3 pandas 2 dogs 4 giraffes

Les sanglots longs 
l’automne blessent 
mon coeur d’une 
langueur monotone. 

Pour qui sont ces 
serpents qui sifflent 
sur vos têtes?

Les flamants se sont 
formés en un couple, les 
deux créatures se touchent 
de la tête à la tête, et leur 
tête est touchée.

Figure 13: In-context learning examples. We try all in-context learning examples in Lin et al. (2023).
The results demonstrate that VILA-U has inherited good in-context learning capabilties.

We provide more qualitative results to demonstrate in-context learning capabilities of VILA-U in
Figure 13. VILA-U exhibits good in-context learning capabilties.

B DIFFERENCE WITH RELATED WORKS

Prior to VILA-U, unified visual language models were dominated by two mainstream approaches:
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(1) Represented by LWM, CM3Leon and Show-o which utilizes a VQGAN-based tokenizer to
convert visual inputs into discrete tokens. However, as these tokenizers are trained solely with a
reconstruction objective, the resulting tokens lack rich semantic information. This limitation leads to
poor performance on multimodal understanding tasks. But it can easily support autoregressive visual
generation and the generated visual tokens can be seamlessly decoded into visual outputs using the
lightweight decoder of VQGAN.

(2) Represented by AnyGPT SEED-LLaMa and LaViT, which utilizes a codebook to quantize
features produced by a pre-trained ViT model like CLIP. Since CLIP features encode rich semantic
information, these approaches generally achieve significantly better performance on understanding
tasks compared to VQGAN-based tokenizers. However, these tokenizers lack decoding capability,
requiring an external visual generation model, such as a diffusion model, to use the generated visual
tokens as conditions for producing visual outputs.

Compared to these two mainstream approaches, VILA-U introduces a solution that addresses the
limitations of both. We design a unified vision tower that extracts features with rich semantic
information, similar to CLIP, while also supporting image reconstruction capabilities akin to VQGAN.
This is achieved by incorporating both reconstruction loss and contrastive loss into the autoencoder
training process, along with utilizing residual quantization to enhance the representation capability
of the visual features. Building on this foundation, we develop a single end-to-end autoregressive
framework that eliminates the need for external visual generation models required by approach 2 and
significantly outperforms the understanding results of methods in approach 1.

C FAILED TRAINING RECIPES.

We experiment with numerous training recipes and find none to be as effective as our final approach.
We list four alternative recipes and discuss their shortcomings compared to our final recipe: 1) Load
pre-trained CLIP weights into the text encoder only; 2) Load pre-trained RQ-VAE weights for the
vision encoder and decoder while training other parts from scratch; 3) Freeze the vision encoder; 4)
Make the text encoder trainable.

Recipes 1) and 2) fail due to the lack of pre-trained CLIP weights for the vision encoder. Training a
CLIP model from scratch typically requires numerous GPU days with a large global batch size (e.g.,
32k). However, VQ-based reconstruction training necessitates a relatively small global batch size
(e.g., 512) for steady improvement. With such a small batch size, training a text-aligned vision tower
from scratch would be prohibitively time-consuming and resource-intensive.

Recipe 3) fails because freezing the vision encoder prevents it from learning the low-level features
essential for reconstruction. In this case, the burden of reconstruction falls entirely on the vision
decoder, but it is impossible to reconstruct images well using only semantic features.

Recipe 4) fails because the quantized features are chaotic during the initial training steps, and the
contrastive loss disrupts the text encoder weights, slowing down the entire training process.

In contrast, our final training recipe leverages pre-trained CLIP weights for the vision encoder,
enabling it to maintain learned semantic features rather than grasping them from scratch. This allows
us to train with a small batch size while keeping the vision encoder trainable, facilitating the learning
of low-level features for reconstruction during training.
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