
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VRPAGENT: LLM-DRIVEN DISCOVERY OF HEURIS-
TIC OPERATORS FOR VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing high-performing heuristics for vehicle routing problems (VRPs) is a
complex task that requires both intuition and deep domain knowledge. Large lan-
guage model (LLM)-based code generation has recently shown promise across
many domains, but it still falls short of producing heuristics that rival those crafted
by human experts. In this paper, we propose VRPAGENT, a framework that inte-
grates LLM-generated components into a metaheuristic and refines them through
a novel genetic search. By using the LLM to generate problem-specific operators,
embedded within a generic metaheuristic framework, VRPAGENT keeps tasks
manageable, guarantees correctness, and still enables the discovery of novel and
powerful strategies. Across multiple problems, including the capacitated VRP,
the VRP with time windows, and the prize-collecting VRP, our method discov-
ers heuristic operators that outperform handcrafted methods and recent learning-
based approaches while requiring only a single CPU core. To our knowledge,
VRPAGENT is among the first LLM-based paradigms to advance the state-of-the-
art in VRPs, highlighting a promising future for automated heuristics discovery.

1 INTRODUCTION

Solving combinatorial optimization problems requires sophisticated solution approaches. This is
especially true for vehicle routing problems (VRPs), where real-world instances often involve com-
plex constraints and a large number of customers. Over the past decades, operations researchers have
developed countless heuristics to address these problems (Konstantakopoulos et al., 2022). Design-
ing a new method that meaningfully improves upon the state of the art across multiple problems
is extremely challenging, requiring years of experience and a deep understanding of both general
heuristics and the specific problem at hand. Practitioners face similar challenges when applying
heuristics. Real-world applications often involve ever-changing requirements that are not supported
by existing solution methods. Adapting approaches from the literature to such requirements is a
time-consuming and challenging task, and is often considered impractical, even by large companies.

In recent years, neural combinatorial optimization (NCO) has garnered increasing attention due to
its potential to automate the discovery of effective heuristics (Bello et al., 2017; Bengio et al., 2021).
NCO approaches aim to solve optimization problems by training deep neural networks, typically
with reinforcement learning. While NCO methods have demonstrated the ability to learn powerful
solution strategies for various combinatorial problems, they also come with notable limitations.
First, they require expensive GPUs at test time, which restricts their practical deployment. Second,
scalability remains a major challenge as their reliance on attention mechanisms makes it difficult to
apply these models to problems that involve processing full distance matrices. Finally, the learned
strategies are often difficult for experts to interpret, which raises concerns about their safety and
reliability in real-world applications.

The recent advent of performant large language models (LLMs) has enabled new opportunities for
automation in general algorithmic design across domains ranging from code synthesis to symbolic
planning and mathematical discovery (Madaan et al., 2023). LLMs have proven to be promising ap-
proach for discovering new heuristics in combinatorial optimization problems: they can be used to
design new heuristics from scratch or adapt existing ones to real-world requirements, enabling cus-
tomized solutions at a fraction of the cost of an operations research (OR) expert. Among pioneering
works, Romera-Paredes et al. (2024); Liu et al. (2024a); Ye et al. (2024a) propose evolutionary

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

frameworks that iteratively evolve general CO problem heuristics. Recent research has focused on
increasingly sophisticated approaches for automating heuristic discovery (Dat et al., 2025; Zheng
et al., 2025; Yang et al., 2025b; Novikov et al., 2025; Liu et al., 2025). Although these works pro-
vide valuable contributions, the discovered heuristics still fall short of those designed by human
experts for VRPs. We identify key limitations in most of these works: design of end-to-end func-
tions, absence of correctness guardrails and overall solution frameworks, and inefficient exploration
of the search space, which leads to a failure in challenging the state-of-the-art.

We introduce VRPAGENT, a novel approach that uses LLMs to design heuristic operators for a large
neighborhood search (LNS). The high-level LNS is designed to be largely problem-agnostic, allow-
ing our framework to tackle new problems by creating new heuristic operators with minimal human
input. To discover strong operators for the LNS, we employ a genetic algorithm (GA) with elitism
and biased crossover that iteratively improves operator quality. By focusing on a metaheuristic
framework where only problem-specific operators are generated via LLMs, we keep the generation
task manageable and effective, while still enabling strong performance on complex problems. We
evaluate our method on the capacitated vehicle routing problem (CVRP), the vehicle routing prob-
lem with time windows (VRPTW), and the prize-collecting VRP (PCVRP). Our approach discovers
heuristic operators for all problems that significantly outperform those designed by human experts.

In summary, we make the following contributions with VRPAGENT:

• We propose an LNS-based metaheuristic in which the problem-specific heuristic operators
are generated by an LLM.

• We introduce a simple GA for heuristic discovery featuring elitism with biased crossover
for improved exploitation, and a code length penalty to reduce LLM inference costs.

• We show that VRPAGENT discovers strong heuristics across multiple tasks. To the best of
our knowledge, it is the first LLM-based approach to advance the state-of-the-art in VRPs.

2 RELATED WORK

Traditional Heuristics VRPs are ubiquitous problems in logistics that have been studied for
decades. Large and richly constrained instances remain difficult to solve to optimality within a
practical time frame, and thus heuristics are commonly used in real-world settings (Santini et al.,
2023). LNS and its adaptive variants are particularly influential, iteratively destroying and repairing
parts of a solution (Shaw, 1998; Schrimpf et al., 2000; Christiaens & Vanden Berghe, 2020). Other
well-known approaches include LKH3 (Helsgaun, 2017) and hybrid genetic search (HGS) (Vidal,
2022; Wouda et al., 2024). While capable of producing high-quality solutions, these approaches
take significant expertise to design and implement, motivating the need for automating their design.

Neural Combinatorial Optimization NCO aims to automate heuristic design by training neu-
ral networks from data or via reinforcement learning (Bengio et al., 2021; Berto et al., 2025a; Li
et al., 2025b). Approaches can be broadly divided into construction and improvement methods.
Construction methods, such as pointer networks (Vinyals et al., 2015; Bello et al., 2017) and sub-
sequent attention-based models for VRPs (Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022;
Berto et al., 2025b; Huang et al., 2025a), generate complete solutions quickly in an autoregressive
fashion. Further works include enhancements for diversity (Grinsztajn et al., 2023; Hottung et al.,
2025a) and out-of-distribution robustness (Drakulic et al., 2023; Luo et al., 2023). Improvement
methods instead refine existing solutions at test time, for example, by learning local edits (Ma et al.,
2021), guiding k-opt moves (Wu et al., 2019; da Costa et al., 2020; Ma et al., 2023), or integrating
with metaheuristic approaches as LNS (Hottung & Tierney, 2020) or ant colony optimization (Ye
et al., 2023; Kim et al., 2025). Divide-and-conquer frameworks further extend scalability to large
instances (Kim et al., 2021; Li et al., 2021; Ye et al., 2024b; Ouyang et al., 2025). Hottung et al.
(2025b) adopts a LNS approach with learned heuristics for deconstruction and ordering VRP nodes,
showing competitive results against state-of-the-art solvers. Despite continuous progress, most NCO
work still falls short of state-of-the-art handcrafted solvers and requires expensive GPU resources,
motivating our use of LLM-generated operators as a lightweight alternative.

Automated Heuristic Discovery The goal of automatically discovering high-performing heuris-
tics is a long-standing challenge in optimization (Muth, 1963). Early works include genetic pro-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gramming and hyper-heuristics, which construct new solution methods by combining or tuning a
set of low-level heuristic components (Burke et al., 2006; 2013) and grammar-based generation
(Mascia et al., 2014). The recent advent of LLMs has enabled a new wave of automation for algo-
rithmic design across domains ranging from code synthesis to symbolic planning and mathematical
discovery (Madaan et al., 2023; Shinn et al., 2023; Novikov et al., 2025). Early works in heuristic
discovery with LLMs including Romera-Paredes et al. (2024); Liu et al. (2024a) employ evolution-
ary approaches that generate heuristic code snippets for simple heuristics in combinatorial problems,
including VRPs, packing, and scheduling. Building on this trend, reflection-augmented evolution
has been shown to discover more sophisticated heuristics during the refinement process (Ye et al.,
2024a). Orthogonal search strategies further expand the design space: diversity-driven evolution
(Dat et al., 2025), Monte Carlo tree search (Zheng et al., 2025), ensembling of different LLMs
(Novikov et al., 2025), meta-prompt optimization (Shi et al., 2025), and portfolio-style discovery of
sets of complementary heuristics (Yang et al., 2025b; Liu et al., 2025). More specifically for VRPs,
Tran et al. (2025) design heuristics to enhance NCO model decoding. In parallel, finetuning and in-
struction specialization of LLMs for algorithmic synthesis have been proposed to improve reliability
and sample efficiency (Šurina et al., 2025; Huang et al., 2025b; Chen et al., 2025b), and benchmark
suites have begun to standardize evaluation protocols for LLM-driven heuristics (Liu et al., 2024b;
Sun et al., 2025; Feng et al., 2025; Li et al., 2025a; Chen et al., 2025a).

Despite encouraging progress, LLM-generated heuristics still lag behind traditional solvers and
NCO methods alike on VRPs, especially under tight time budgets and realistic constraints. We
identify three recurring limitations: (i) weak “agentic playground” formulations that ask LLMs to
design small heuristic snippets without an overall solution framework; (ii) weak or absent correct-
ness guards around generated code; and (iii) inefficient exploration that drifts toward verbose, brittle
implementations. Our approach follows the principle of keeping AI agents on a leash: we constrain
the search to problem-specific operators nested within a robust, correctness-enforcing metaheuristic.
VRPAGENT’s design keeps the synthesis task tractable, preserves feasibility, and still enables the
discovery of novel operators that can advance the state-of-the-art for VRP solving.

3 VEHICLE ROUTING PROBLEMS

VRPs are a fundamental class of combinatorial optimization problems with the aim to minimize
travel costs while respecting some constraints. Travel cost is usually measured by the total distance
traveled. Formally, a VRP is defined on a graph G = (V,E), where each node i ∈ V denotes a
customer and each edge (i, j) ∈ E models traveling from i to j with an associated cost, e.g., the
distance between i and j. All routes originate from and end at the depot node 0. In the CVRP, vehi-
cles performing the routes have a limited capacity. The total demand on any route cannot exceed the
vehicle’s capacity C at any time, and every customer is served exactly once. The VRPTW extends
this setting, assigning a service time si and a time window [tli, t

r
i] to each customer i. The service to

any customer must start within their time window, i.e., if a vehicle arrives before a customer’s time
window starts, it has to wait until tli. The PCVRP relaxes the requirement of visiting all customers.
Servicing a customer i is associated with a prize pi. The objective is to maximize the total collected
prize while minimizing travel cost.

4 VRPAGENT

VRPAGENT is a framework for solving VRPs that automatically discovers strong heuristic opera-
tors using LLMs. It is built on two main components. The first (Section 4.1) is an LNS (Shaw, 1998)
variant for VRPs, which relies on heuristic operators to improve solutions iteratively. At test time,
this LNS produces solutions for VRP instances on a single CPU core. The second component (Sec-
tion 4.2) is a GA used in a discovery phase to generate these heuristic operators. In the discovery
phase, operator implementations are iteratively created, modified, and refined with the help of an
LLM. Classic genetic operations such as crossover and mutation are applied to operator implemen-
tations, with the LLM carrying out these transformations. Each generated operator is evaluated by
inserting it into the LNS and testing the resulting search performance on a set of training instances.
The performance on these instances defines the fitness value of the individual. Over successive
generations, the GA produces increasingly effective heuristic operators. Fig. 1 shows a high-level
overview of VRPAGENT.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

! ✏

Init
Generation

.h

</>

#

Task Description

Seed Code

Lib. Header

</>

</>

</>
......

Population

......

Performance

Instance Init. Solution

</>
Destroy

Heuristic

Destroyed Solution

</>
Ordering
Heuristic

Greedy
Insertion

Candidate Solution
Final Solution
Performance

</>
......

Elites

</>
......

Non-elites

! ✏

Biased
Crossover

! ✏

Mutation

Updated Elites

</>
......

Children

</>

</>
......

Next Generation

Evaluation

</>
......

Population

Large Neighborhood Search

</>

Figure 1: VRPAGENT overview.

4.1 LARGE NEIGHBORHOOD SEARCH WITH LLM-GENERATED OPERATORS

VRPAGENT employs an LNS with LLM-generated operators to find solutions for VRPs. The high-
level LNS guides the search process and ensures feasibility by acting as a safeguard around the
LLM-generated code. In short, the LNS works by repeatedly removing a set of customers from
their tours, ordering the removed customers, and reinserting them one by one at their locally optimal
positions. The removal and ordering strategies are defined by LLM-written heuristic operators.

Algorithm 1 presents the pseudocode of our LNS. The algorithm begins by generating an initial
solution s for a given instance l. For all routing problems, this initial solution is constructed with one
tour per customer. The solution is then iteratively improved until a termination criterion is met. In
each iteration, s is first destroyed by removing customers from their tours using the LLM-generated
removal operator fREMOVE. This yields an incomplete solution s′ in which the removed customers
are unassigned. Next, the removed customers are ordered by the LLM-generated operator fORDER.
They are then reinserted one by one in that order, always placed at the locally best position. That is,
the insertion that increases the objective value as little as possible. Finally, an acceptance decision
is made: s′ may replace s only if it is better, or it may be accepted under a simulated annealing rule.
After all iterations, the algorithm returns the best solution s.

Algorithm 1 VRPAGENT-LNS
Input: CVRP Instance l, Destroy Operator fREMOVE, Ordering Operator fORDER

1: function LNS(l, fREMOVE, fORDER)
2: s← GENERATESTARTSOLUTION(l)
3: while termination criteria not reached do
4: s′ ← fREMOVE(l, s) ▷ Remove some customers from their tours (LLM-Operator)
5: insertionOrder ← fORDER(l, s

′) ▷ Order the removed customers (LLM-Operator)
6: for c in insertionOrder do ▷ Reinsert removed customers one by one
7: Insert customer c at their locally optimal position in s′

8: end for
9: s← ACCEPT(s, s′)

10: end while
11: return s
12: end function

4.2 HEURISTIC DISCOVERY

VRPAGENT discovers heuristic operators using a simple GA that is strongly geared toward ex-
ploitation. Given the very large search space and limited search budget, this bias toward exploitation
proves highly beneficial, leading to significant improvements in our experiment. Each individual in
our GA represents an implementation of the operator pair (fREMOVE, fORDER) as C++ code. During

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the discovery phase, new individuals are created through the means of mutation and crossover. To
evaluate an individual, we run VRPAGENT-LNS using its operator pair on a set of training instances.

Algorithm 2 outlines the core logic of our GA. It takes as input the initial population size M init, the
number of elites ME, and the number of offspring MC generated in each iteration. The algorithm
begins by creating an initial population (i.e., a set) of heuristic operators and then enters the main
evolutionary loop, which runs until a termination criterion is reached. At the start of each iteration,
all individuals are evaluated, and the top ME are placed in the set of elites PE , and the reminder in
the set of non-elites PNE . Next, MC offspring are created by pairing one elite with one non-elite
individual and combining them using biased crossover. This crossover favors the elite parent while
still injecting diversity from the non-elite.

Algorithm 2 VRPAGENT-GA
Input: Initial population size M init, number of elites ME, number of offspring MC

1: function GA(M init,ME,MC)
2: P ← GENERATESTARTPOP(M init) ▷ Initialize population
3: while termination criteria not reached do
4: (PE ,PNE)← TOP-K-ELITE(P,ME) ▷ Rank heuristics and take the top ME as elite
5: C ← ∅
6: while |C| < MC do
7: pe ← RANDOM(PE) ▷ Select random elite
8: pne ← RANDOM(PNE) ▷ Select random non-elite
9: pc ← BIASED-CROSSOVER(pe, pne) ▷ Generate new heuristic via crossover

10: C ← C ∪ {pc}
11: end while
12: for all pe ∈ PE do ▷ Improve each elite via mutation
13: pm ← MUTATION(pe) ▷ Modify heuristic using mutation prompt
14: if FIT(pm) < FIT(pe) then ▷ Replace elite if improved
15: pe ← pm
16: end if
17: end for
18: P ← PE ∪ C ▷ Create next generation
19: end while
20: return BEST(P)
21: end function

Each elite is refined through mutation. Unlike standard GAs, where mutation is typically applied to
offspring to promote exploration, we apply it directly to elites. These mutations are small, making
the procedure more exploitation-focused. If a mutated elite achieves better fitness, it replaces the
original; otherwise, the original is kept. This replacement rule ensures that mutated elites do not
accumulate in the population, thereby preventing premature convergence. Finally, the next gener-
ation is formed by combining the elites with the newly generated offspring. The process repeats
until termination, after which the best heuristic operator discovered is returned. We describe the
initialization, crossover, mutation, and fitness evaluation steps in the following paragraphs.

Initial Population Generation The initial population is created by prompting the LLM to gener-
ate implementations of the two operators. For this, the LLM is provided with a global system context
that explains the overall problem and the LNS, a trivial example implementation of both operators,
and technical details of the LNS implementation in the form of C++ header files that allow operators
to access shared variables and methods efficiently (see Prompts 1, 2 and 9 in Appendix A).

Biased Crossover The offspring are produced by combining two parents through crossover. We
use biased crossover, which pairs an elite individual with a non-elite one. The LLM is given both
their implementations and is prompted to take most ideas and concepts from the implementation of
the elite individuals and only a predefined % from the implementation of the non-elite individual.
This adaptation of standard crossover significantly increases exploitation. The complete crossover
instruction provided to the LLM corresponds to Prompts 1 and 3 in Appendix A.

Mutation VRPAGENT uses mutation to slightly modify elite implementations. Following Liu
et al. (2024a), we implement multiple mutation prompts that focus on different areas of improvement

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for better exploration. More precisely, the LLM is given the implementation that should be modified
together with one randomly selected mutation prompt (Prompts 4 to 7 in Appendix A) and the
global system context Prompt 1. The four supported mutations include Ablation (i.e., removing
a random mechanic), Extend (i.e., adding a new mechanic), Adjust-Parameters (i.e., changing the
hyperparameter settings), and Refactor (i.e, modify the code so that the runtime is improved).

Fitness Function with Code Length Penalty We evaluate an individual i by running VRPA-
GENT-LNS with the operator pair defined by i on a set of training instances I train. The resulting
solutions are then used to compute the fitness value. Specifically, the fitness of i is defined as the
average objective value across all training instances, plus a penalty proportional to the length (i.e.,
number of lines) of the corresponding implementation Ci:

Fit(i) =
1

|I train|
∑

j∈I train

Obj(si,j) + λ · Len(Ci), (1)

where si,j is the solution obtained by applying VRPAGENT-LNS with the operators of individual i
to training instance j, and λ controls the strength of the code length penalty.

The penalty helps prevent uncontrolled growth in implementation size, which we observed when
no regularization was applied. More compact implementations are also easier for humans to inter-
pret and maintain, making the generated heuristics more useful in practice. Finally, a shorter code
reduces the number of tokens processed by the LLM during generation, which in our experiments
lowers token usage by more than 50%, and thus significantly reduces generation costs and latency.

5 EXPERIMENTS

We evaluate VRPAGENT on three vehicle routing problems: the CVRP, the VRPTW, and the
PCVRP. The best discovered heuristics are made publicly available in our online repository at
https://anonymous.4open.science/r/vrpagent-submission.

VRPAGENT Hyperparameters During the discovery phase we use the following parameters un-
less stated otherwise: elite size ME = 10, offspring size MC = 30, an initial population size of
Minit = 100. The code length penalty factor is set to λ = 2 · 10−4 and the discovery phase is ter-
minated after 40 iterations. Individuals are evaluated with VRPAGENT-LNS on a training set of 64
instances, each with 500 customers, using a runtime limit of 20s per instance. We employ Gemini
2.5 Flash (Comanici et al., 2025) as the LLM.

5.1 COMPARISON TO STATE-OF-THE-ART

Benchmark Setup We evaluate all methods on the three problems using instance sets of 500,
1000, and 2000 customers. To ensure consistency, we adopt the same test instances and baseline
configurations as described in Hottung et al. (2025b) using a single core of an AMD Milan 7763
processor and an additional single NVIDIA A100 for approaches that require a GPU. For a fair
comparison, we limit the search by runtime when possible. The operators used by VRPAGENT are
obtained from 10 discovery runs per problem (conducted on instances of size 500 only), with the
best operator selected based on performance on a separate validation set. Additionally, we provide
an evaluation of VRPAGENT on the more realistic X instances in Appendix C, which better reflect
the properties encountered in real-world scenarios.

Baselines We compare VRPAGENT to several established operations research solvers: HGS (Vi-
dal, 2022), SISRs (Christiaens & Vanden Berghe, 2020), LKH3 (Helsgaun, 2017), and Gurobi
(Gurobi Optimization, LLC, 2024). We also include PyVRP (Wouda et al., 2024) (version 0.9.0),
an open-source extension of HGS that supports additional VRP variants, and the recent GPU-based
NVIDIA cuOpt (NVIDIA Corporation, 2025). For the CVRP, we further consider learning-based
approaches that require GPUs at test time: BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023),
UDC (Zheng et al., 2024b), and NDS (Hottung et al., 2025b). In addition, we compare against
LLM-based methods that learn a construction heuristic, including EoH (Liu et al., 2024a), MCTS-
AHD (Zheng et al., 2024a), and ReEvo (Ye et al., 2024a). These approaches only generate a single

6

https://anonymous.4open.science/r/vrpagent-submission

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

solution with runtime values <1 second and do not benefit from additional search budget. We fur-
ther compare against three stronger LLM-based baselines that leverage search: ReEvo-ACO, which
combines LLM-generated heuristics with the Ant Colony Optimization (ACO) metaheuristic, NCO-
LLM (Tran et al., 2025), which enhances LEHD by automating the design of logit reshaping during
search, and LLM-LNS (Ye et al., 2025), a recent method using LLMs to design search heuristics.

Results Table 1 presents the results of our experiments. On instances with 1000 and 2000
customers, VRPAGENT outperforms all other methods across all problem types, achieving
gaps of around −0.30% relative to the state-of-the-art SISRs. This represents a substan-
tial improvement that can translate into significant savings in large-scale, real-world scenarios.

Figure 2: Ablation results.

On smaller instances, VRPAGENT approaches the
performance of NDS, which relies on an expensive
GPU at test time and is trained specifically for each
instance size. Compared to other LLM-based meth-
ods, VRPAGENT consistently demonstrates signif-
icantly better performance across all test cases. It is
also noteworthy that VRPAGENT performs well on
all problem sizes, despite being trained only on in-
stances with 500 customers. This strong generaliza-
tion performance stems from the algorithmic oper-
ators. These usually do not rely on scale-dependent
neural representations, which are poisoned to im-
plicitly encode all characteristics of the training distribution, including unwanted characteristics like
node count and spatial density.

5.2 ANALYSES

Ablation Studies We analyze the contribution of key components in our GA by disabling or re-
placing them. Specifically, we test three variants: (i) replacing our biased crossover with a standard
crossover, where the LLM is instructed to take roughly half the elements from each parent, (ii)
removing mutation while increasing offspring size to maintain a comparable population, and (iii)
replacing our entire GA with the GA of ReEvo (Ye et al., 2024a), which uses a reflection mech-
anism. Each variant is tested on the CVRP 10 times, and results are averaged. Fig. 2 reports
performance on the training set during the discovery phase. Across all cases, modifications lead to
reduced performance. Biased crossover is particularly important: by favoring elite solutions while
still incorporating elements from weaker parents, it balances exploitation and exploration and drives
faster convergence. Removing mutation lowers final solution quality, and replacing our GA with
ReEvo’s yields the weakest results, confirming that our combination of elitism, biased crossover,
and mutation is essential for discovering high-quality heuristics.

Performance Across Different LLMs We study the performance of VRPAGENT when paired
with different LLMs. We conduct discovery runs of 20 iterations each for the CVRP using six
models. We access Gemini 2.0 Flash and Gemini 2.5 Flash (Comanici et al., 2025) via API, while
Qwen3 (Yang et al., 2025a), Llama 3.3 (Grattafiori et al., 2024), Gemma 3 (Team et al., 2025),
and gpt-oss (Agarwal et al., 2025) are served locally via vLLM (Kwon et al., 2023). Fig. 3 reports
the average objective value on the training set during discovery (left) and the total computational
cost per run (right). All tested models substantially improve the heuristic operators throughout the
discovery process. Gemini 2.5 Flash and gpt-oss both discover heuristics that outperform the state-
of-the-art baseline. Gemini 2.5 Flash achieves the best overall results, but at a cost of nearly $20 per
run. In contrast, the open-source gpt-oss model, run on two NVIDIA A100 (40GB) GPUs, achieves
nearly the same performance under $2 per run.

Performance Over the Discovery Process We analyze the convergence rate of the discovery pro-
cess with Gemini 2.5 Flash on all three problems across 40 iterations. As a baseline, we report the
performance of VRPAGENT-LNS when used in combination with handcrafted operators. Specifi-
cally, we reimplement the operators from SISRs (Christiaens & Vanden Berghe, 2020), which rep-
resent the state of the art in LNS-based routing methods. As shown in Fig. 4, VRPAGENT produces
heuristics that outperform the state-of-the-art (SOTA) handcrafted operators. In Appendix D, we ad-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance on test data. The gap is calculated relative to SISRs. Runtime is reported on a per-
instance basis in seconds. The best results (i.e., those with the lowest objective function value) are shown in
bold, and the second-best are underlined. * Indicates that a feasible solution was not found for all instances.
OOM indicates that the corresponding solver yielded an out-of-memory error. VRPAGENT demonstrates state-
of-the-art results among heuristics and NCO solvers at larger scales.

Method N=500 N=1000 N=2000

Obj.↓ Gap↓ Time Obj.↓ Gap↓ Time Obj.↓ Gap↓ Time

C
V

R
P

SISRs CPU 36.65 - 60 41.14 - 120 56.04 - 240
HGS CPU 36.66 0.00% 60 41.51 0.84% 121 57.38 2.33% 241
LKH3 CPU 37.25 1.66% 174 42.16 2.46% 408 58.12 3.70% 1448
NVIDIA cuOpt CPU+GPU 37.38 1.98% 60 42.71 3.78% 121 59.22 5.66% 241
Gurobi CPU 47.85 30.53% 60 87.36 111.88% 120 - OOM -

BQ (BS64) CPU+GPU 37.51 2.34% 23 43.32 5.30% 164 - - -
LEHD (RRC) CPU+GPU 37.04 1.06% 60 42.47 3.25% 121 60.11 7.25% 246
UDC CPU+GPU 37.63 2.69% 60 42.65 3.68% 121 - - -
NDS CPU+GPU 36.57 -0.20% 60 41.11 -0.07% 120 56.00 -0.07% 240

EoH CPU 45.89 25.21% <1 52.42 27.42% <1 71.21 27.07% <1
MCTS-AHD CPU 45.51 24.17% <1 52.49 27.59% <1 71.15 26.96% <1
ReEvo CPU 44.21 20.63% <1 52.23 26.96% <1 70.01 24.93% <1
ReEvo-ACO CPU 40.25 9.83% 60 46.22 12.34% 120 63.76 13.77% 240
NCO-LLM CPU+GPU 36.93 0.76% 60 41.96 1.99% 121 59.43 6.05% 246
LLM-LNS CPU 38.99 6.38% 60 45.00 9.38% 120 62.28 11.13% 240

VRPAGENT CPU 36.60 -0.12% 60 41.06 -0.19% 120 55.98 -0.11% 240

V
R

PT
W

SISRs CPU 48.09 - 60 87.68 - 120 167.49 - 240
PyVRP-HGS CPU 49.01 1.91% 60 90.35 3.08% 120 173.46 3.62% 240
NVIDIA cuOpt CPU+GPU 49.30 2.60% 61 90.31 3.11% 121 173.52 3.85%* 243
Gurobi CPU 69.01 43.83% 60 148.45 71.46% 120 - OOM -

NDS CPU+GPU 47.94 -0.30% 60 87.54 -0.16% 120 167.48 -0.00% 240

EoH CPU 60.40 25.60% <1 118.80 35.49% <1 245.70 46.70% <1
MCTS-AHD CPU 58.31 21.25% <1 113.72 29.70% <1 231.11 37.98% <1
ReEvo CPU 58.01 20.63% <1 110.55 26.08% <1 218.90 30.69% <1
ReEvo-ACO CPU 52.91 10.03% 60 97.39 11.07% 120 193.13 15.31% 240

VRPAGENT CPU 47.97 -0.24% 60 87.40 -0.33% 120 166.96 -0.33% 240

PC
V

R
P

SISRs CPU 43.22 - 60 81.12 - 120 158.17 - 240
PyVRP-HGS CPU 44.97 4.10% 60 84.91 4.81% 120 165.56 4.78% 240
NVIDIA cuOpt CPU+GPU 43.34 0.19% 60 81.89 0.84% 121 160.33 1.22% 241
Gurobi CPU 71.58 68.23% 60 147.08 86.03% 120 - OOM -

NDS CPU+GPU 43.12 -0.23% 60 80.99 -0.17% 121 158.09 -0.06% 241

VRPAGENT CPU 43.18 -0.09% 60 80.95 -0.21% 120 157.69 -0.32% 240

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5 10 15 20
GA Iteration

36.50

36.60

36.70

36.80

36.90

O
b

je
ct

iv
e

GA Performance Over Iterations

0.5 1.0 5.0 10.0 20.0
Computing Cost per Run in USD (Log Scale)

36.45

36.50

36.55

36.60

F
in

al
O

b
je

ct
iv

e
V

al
u

e

SOTA Operators

Performance vs Cost

LLM

gemma 3 (27B)

Llama 3.3 (70B)

Qwen3 (30B)

Gemini 2.0 Flash

gpt-oss (120B)

Gemini 2.5 Flash

Figure 3: Performance on the CVRP for different LLMs. Detailed cost calculations are provided in Section B.1.

0 10 20 30 40
GA Iteration

36.45

36.50

36.55

O
b

je
ct

iv
e

SOTA Operators

CVRP

0 10 20 30 40
GA Iteration

48.20

48.25

48.30

48.35

SOTA Operators

VRPTW

0 10 20 30 40
GA Iteration

43.40

43.50

43.60

SOTA Operators

PCVRP

Figure 4: Performance over the course of the discovery process.

ditionally report the percentage of operators that compile successfully and produce valid solutions
(success rate) throughout the runs.

Crossover Bias and Elite Size We evaluate the effect of the crossover bias and elite size ME

on the performance of our GA. As shown in Fig. 5a, elite sizes between 5 and 15 yield strong
performance, whereas an elite size of 1 leads to drastically worse results by making the search
overly greedy. Regarding the crossover bias, a strong preference for the better-performing operator
is clearly beneficial, with an operator bias of 80% achieving the best results.

Code Length Penalty We investigate the impact of the code length penalty factor λ on both the
quality and length of the discovered heuristics. Several discovery runs with varying λ values reveal
that the penalty strongly controls implementation size without substantially degrading performance.
For instance, increasing λ to 4 · 10−4 reduces the average length of generated heuristics by roughly
50%, while only causing a marginal drop in objective value (Fig. 5b). These results highlight sev-
eral key insights. First, the penalty effectively discourages overly long implementations, producing
heuristics that are easier for humans to read and maintain. Second, higher penalties reduce token
usage during LLM generation, improving efficiency and lowering computational costs. Third, the
fact that performance remains largely unaffected even for strong penalties demonstrates that simple,
concise heuristics can perform just as well as more complex ones.

1 5 10 15
Number of Elites

36.42

36.44

36.46

36.48

O
b

je
ct

iv
e

50 60 70 80 90
Crossover Bias in %

36.41

36.42

36.43

36.44

(a) GA parameters

0 10 20
GA Iteration

36.45

36.50

36.55

O
b

je
ct

iv
e

0 10 20
GA Iteration

100

200

300

400

A
vg

.
C

od
e

L
en

gt
h Penalty

0

1e-4

2e-4

3e-4

4e-4

6e-4

(b) Code length penalty

Figure 5: Results of the sensitivity analyses.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Warm-starting Heuristic Discovery We analyze whether heuristics discovered for one problem
can be adapted to others via warm-starts. Specifically, we initialize the discovery process for the
VRPTW and PCVRP using the best CVRP heuristic and task the model with adapting it to the
new problem. Warm-starting consistently accelerates convergence and improves final performance
compared to cold-start runs, making this approach promising for real-world settings where related
problems need to be solved efficiently. Detailed results and analyses are provided in Appendix E.

6 DISCOVERED HEURISTIC OPERATORS

A key advantage of LLM-driven heuristic discovery over deep learning–based approaches is that the
resulting strategies can be directly inspected and interpreted by human experts. To further facilitate
such analysis, we introduce a post-processing stage in which an LLM is used to improve the code
quality and readability of the generated implementations. This stage is necessary because code
quality is not considered during the discovery process itself: the fitness functions focus solely on
performance, and we explicitly instruct the LLMs not to include comments during search. While this
reduces interpretability, it substantially lowers token usage and accelerates the discovery procedure.

Code quality improvement To refine the quality of the discovered heuristics, we pass each im-
plementation to an LLM together with a prompt specifying the desired improvements. The returned
code is then evaluated on the validation instances to verify that performance remains unchanged.
We repeat this refinement–evaluation loop until we obtain an improved version that matches the
original performance. The improvement prompt emphasizes (1) adding comments that explain both
high-level heuristic logic and low-level implementation details, (2) restructuring code into clearer
functional units, (3) and eliminating unnecessarily convoluted uses of random numbers.

Analysis We give the task of analyzing the best discovered heuristic operators for each problem
to three coauthors of this paper who have years of experience writing OR heuristics in routing and
related fields. The goal of our analysis is to assess the (1) readability, (2) coherence and soundness,
(3) maintainability, (4) interpretability, (5) and novelty of the generated heuristic operators. We note
that our assessment of the heuristics is not meant to be a thorough scientific analysis that generalizes
to other LLMs or optimization problems. We offer a detailed analysis in Appendix F.

The removal and sorting mechanisms of all three analyzed heuristics can be described as ensem-
ble approaches that use random numbers to choose different (combinations of) heuristics in each
iteration. Given the popularity and success of such ensembles in well-known metaheuristics (e.g.,
adaptive LNS (Pisinger & Ropke, 2018)), it is perhaps not a surprise that we encounter ensembles in
the discovered heuristics. Overall, we find the generated heuristics to be relatively easy to interpret
and structurally coherent. The comments introduced during post-processing substantially enhance
comprehensibility, and the decomposition of the code into functions further improves readability.

All of the heuristics generated can be said to be novel. We are not aware of any heuristics in the
literature exactly matching these algorithms, however we note that the heuristics mainly consist of
recombinations of ideas existing in the literature, e.g., SISRs or simple greedy criteria related to
distance/demand/time/prizes. Given the complexity of the ensembles, with some having up to nine
different component heuristics, a detailed ablation study would be necessary to try to find out which
components or combinations of components lead to good performance.

7 CONCLUSION

In this work, we introduced VRPAGENT, a metaheuristic framework in which LLMs generate
problem-specific operators for a LNS. By focusing on operator generation rather than end-to-end
heuristics, VRPAGENT makes the discovery task more manageable while achieving strong perfor-
mance. Using a GA with elitism and biased crossover for algorithm discovery, VRPAGENT con-
sistently finds heuristic operators that outperform human-designed approaches on a range of vehicle
routing problems. Our results highlight a promising future for automated heuristic discovery, sug-
gesting that LLMs could play a key role in designing efficient and adaptable optimization methods
for complex, real-world problems. For future work, we will investigate how to further simplify the
generated heuristics to help increase the ease of using VRPAGENT generated code in practice.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Detailed descriptions of
configurations, prompts, the discovery pipeline, and overall experimental setups are provided in
both the main paper and the appendix to enable independent reproducibility. All code to reproduce
the experiments will be made open-source upon acceptance.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025. URL https://arxiv.org/abs/2508.10925.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combina-
torial Optimization with Reinforcement Learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=Bk9mxlSFx.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: A methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063. URL https:
//www.sciencedirect.com/science/article/pii/S0377221720306895.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun
Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combina-
torial Optimization Benchmark. In Proceedings of the 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, 2025a. URL https://github.com/ai4co/rl4co.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Jun-
young Park, Kevin Tierney, and Jinkyoo Park. RouteFinder: Towards Foundation Models for
Vehicle Routing Problems. Transactions on Machine Learning Research, 2025b. ISSN 2835-
8856. URL https://openreview.net/forum?id=QzGLoaOPiY.

Edmund K Burke, Matthew R Hyde, and Graham Kendall. Evolving bin packing heuristics with
genetic programming. In International Conference on Parallel Problem Solving from Nature, pp.
860–869. Springer, 2006.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Öz-
can, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society, 64(12):1695–1724, 2013.

Hongzheng Chen, Yingheng Wang, Yaohui Cai, Hins Hu, Jiajie Li, Shirley Huang, Chenhui Deng,
Rongjian Liang, Shufeng Kong, Haoxing Ren, Samitha Samaranayake, Carla P. Gomes, and Zhiru
Zhang. Heurigym: An agentic benchmark for LLM-crafted heuristics in combinatorial optimiza-
tion. arXiv preprint arXiv:2506.07972, 2025a. URL https://arxiv.org/abs/2506.
07972.

Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-informed RL: Grounding
large language models for authentic optimization modeling. In Advances in Neural Information
Processing Systems, 2025b.

Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417–433, 2020.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

11

https://arxiv.org/abs/2508.10925
https://openreview.net/forum?id=Bk9mxlSFx
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://github.com/ai4co/rl4co
https://openreview.net/forum?id=QzGLoaOPiY
https://arxiv.org/abs/2506.07972
https://arxiv.org/abs/2506.07972

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Eren Akçay. Learning 2-opt Heuris-
tics for the Traveling Salesman Problem via Deep Reinforcement Learning. In Asian Conference
on Machine Learning, 2020.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. Hsevo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using llms. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 26931–26938, 2025. https:
//github.com/datphamvn/HSEvo.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-
NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 77416–77429. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf.

Shengyu Feng, Weiwei Sun, Shanda Li, Ameet Talwalkar, and Yiming Yang. A comprehen-
sive evaluation of contemporary ML-based solvers for combinatorial optimization. ArXiv,
abs/2505.16952, 2025. URL https://arxiv.org/abs/2505.16952.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner Takes It All: Training Performant RL Populations for Combinatorial Optimization. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 48485–48509. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/97b983c974551153d20ddfabb62a5203-Paper-Conference.pdf.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung and Kevin Tierney. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. In European Conference on Artificial Intelligence, pp. 443–450, 2020.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies
for neural combinatorial optimization. In International Conference on Learning Representations,
2025a.

André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle
routing problems. Transactions on Machine Learning Research, 2025b. ISSN 2835-8856. URL
https://openreview.net/forum?id=bCmEP1Ltwq.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin Xu. Rethinking light decoder-based solvers
for vehicle routing problems. In The Thirteenth International Conference on Learning Represen-
tations, 2025a. URL https://openreview.net/forum?id=4pRwkYpa2u.

Ziyao Huang, Weiwei Wu, Kui Wu, Jianping Wang, and Wei-Bin Lee. Calm: Co-evolution of
algorithms and language model for automatic heuristic design, 2025b. URL https://arxiv.
org/abs/2505.12285.

Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning Collaborative Policies to
Solve NP-hard Routing Problems. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 10418–10430. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
564127c03caab942e503ee6f810f54fd-Paper.pdf.

12

https://github.com/datphamvn/HSEvo
https://github.com/datphamvn/HSEvo
https://proceedings.neurips.cc/paper_files/paper/2023/file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf
https://arxiv.org/abs/2505.16952
https://proceedings.neurips.cc/paper_files/paper/2023/file/97b983c974551153d20ddfabb62a5203-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/97b983c974551153d20ddfabb62a5203-Paper-Conference.pdf
https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=bCmEP1Ltwq
https://openreview.net/forum?id=4pRwkYpa2u
https://arxiv.org/abs/2505.12285
https://arxiv.org/abs/2505.12285
https://proceedings.neurips.cc/paper_files/paper/2021/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/564127c03caab942e503ee6f810f54fd-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetric-
ity for Neural Combinatorial Optimization. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 1936–1949. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
0cddb777d3441326544e21b67f41bdc8-Paper-Conference.pdf.

Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
Colony Sampling with GFlowNets for Combinatorial Optimization. In Yingzhen Li, Stephan
Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), Proceedings of The 28th International Con-
ference on Artificial Intelligence and Statistics, volume 258 of Proceedings of Machine Learning
Research, pp. 469–477. PMLR, 2025. URL https://proceedings.mlr.press/v258/
kim25a.html.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seung-
jai Min. POMO: Policy Optimization with Multiple Optima for Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems, volume 33, pp. 21188–21198,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Xiaozhe Li, Jixuan Chen, Xinyu Fang, Shengyuan Ding, Haodong Duan, Qingwen Liu, and Kai
Chen. Opt-bench: Evaluating llm agent on large-scale search spaces optimization problems,
2025a. URL https://arxiv.org/abs/2506.10764.

Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
Unify ml4tsp: Drawing methodological principles for tsp and beyond from streamlined design
space of learning and search. In The Thirteenth International Conference on Learning Represen-
tations, 2025b.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In International Conference on Machine Learning (ICML), 2024a. URL https://
arxiv.org/abs/2401.02051.

Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. LLM4AD: A platform for algorithm design with large language model. 2024b.
URL https://arxiv.org/abs/2412.17287.

Fei Liu, Yilu Liu, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Eoh-s: Evolution of heuristic
set using llms for automated heuristic design. arXiv preprint arXiv:2508.03082, 2025.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial op-
timization with heavy decoder: Toward large scale generalization. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8845–8864. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1c10d0c087c14689628124bbc8fa69f6-Paper-Conference.pdf.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/0cddb777d3441326544e21b67f41bdc8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cddb777d3441326544e21b67f41bdc8-Paper-Conference.pdf
https://proceedings.mlr.press/v258/kim25a.html
https://proceedings.mlr.press/v258/kim25a.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://proceedings.neurips.cc/paper_files/paper/2020/file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf
https://arxiv.org/abs/2506.10764
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2412.17287
https://proceedings.neurips.cc/paper_files/paper/2023/file/1c10d0c087c14689628124bbc8fa69f6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1c10d0c087c14689628124bbc8fa69f6-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 11096–11107. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to Search Feasible and In-
feasible Regions of Routing Problems with Flexible Neural k-Opt. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 49555–49578. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 46534–46594. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and Thomas Stützle. Grammar-
based generation of stochastic local search heuristics through automatic algorithm configuration
tools. Computers & operations research, 51:190–199, 2014.

J Muth. Probabilistic learning combinations of local job-shop scheduling rules. Industrial schedul-
ing, 1963.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. AlphaEvolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025. URL https://arxiv.org/abs/2506.13131.

NVIDIA Corporation. NVIDIA cuOpt: Gpu-accelerated decision optimization. https://
github.com/NVIDIA/cuopt, 2025. Accessed: 2025-09-25.

Wenbin Ouyang, Sirui Li, Yining Ma, and Cathy Wu. Learning to segment for vehicle routing
problems. arXiv preprint arXiv:2507.01037, 2025.

David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook of metaheuristics, pp.
99–127. Springer, 2018.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Alberto Santini, Michael Schneider, Thibaut Vidal, and Daniele Vigo. Decomposition strategies for
vehicle routing heuristics. INFORMS Journal on Computing, 35(3):543–559, 2023.

Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and Gunter Dueck. Record
breaking optimization results using the ruin and recreate principle. Journal of Computational
Physics, 159(2):139–171, 2000.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In International conference on principles and practice of constraint programming, pp.
417–431. Springer, 1998.

Yiding Shi, Jianan Zhou, Wen Song, Jieyi Bi, Yaoxin Wu, and Jie Zhang. Generalizable Heuris-
tic Generation Through Large Language Models with Meta-Optimization. arXiv preprint
arXiv:2505.20881, 2025. URL https://arxiv.org/abs/2505.20881.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://arxiv.org/abs/2506.13131
https://github.com/NVIDIA/cuopt
https://github.com/NVIDIA/cuopt
https://arxiv.org/abs/2505.20881

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language Agents with Verbal Reinforcement Learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8634–8652. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf.

Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language
model agents in algorithm search for combinatorial optimization. ArXiv, abs/2504.04310, 2025.
URL https://arxiv.org/abs/2504.04310.

Anja Šurina, Amin Mansouri, Amal Seddas, Maryna Viazovska, Emmanuel Abbe, and Caglar
Gulcehre. Algorithm discovery with LLMs: Evolutionary search meets reinforcement learn-
ing. In Scaling Self-Improving Foundation Models without Human Supervision, 2025. URL
https://openreview.net/forum?id=1kAwyBpoO1.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Cong Dao Tran, Quan Nguyen-Tri, Huynh Thi Thanh Binh, and Hoang Thanh-Tung. Large language
models powered neural solvers for generalized vehicle routing problems. In ICLR 2025 Workshop
on Towards Agentic AI for Science: Hypothesis Generation, Comprehension, Quantification, and
Validation, 2025. URL https://openreview.net/forum?id=EVqlVjvlt8.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of Op-
erational Research, 257(3):845–858, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2016.08.012. URL https://www.sciencedirect.com/science/article/pii/
S0377221716306270.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
Neighborhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28, pp. 2692–2700. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Niels A. Wouda, Leon Lan, and Wouter Kool. PyVRP: a high-performance VRP solver package.
INFORMS Journal on Computing, 36(4):943–955, 2024. doi: 10.1287/ijoc.2023.0055. URL
https://doi.org/10.1287/ijoc.2023.0055.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning Improvement Heuris-
tics for Solving Routing Problems. IEEE Transactions on Neural Networks and Learning Systems,
2019.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Xianliang Yang, Ling Zhang, Haolong Qian, Lei Song, and Jiang Bian. HeurAgenix: Lever-
aging LLMs for Solving Complex Combinatorial Optimization Challenges. arXiv preprint
arXiv:2506.15196, 2025b. URL https://arxiv.org/abs/2506.15196.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-
enhanced Ant Systems for Combinatorial Optimization. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 43706–43728. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/883105b282fe15275991b411e6b200c5-Paper-Conference.pdf.

15

https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://arxiv.org/abs/2504.04310
https://openreview.net/forum?id=1kAwyBpoO1
https://openreview.net/forum?id=EVqlVjvlt8
https://www.sciencedirect.com/science/article/pii/S0377221716306270
https://www.sciencedirect.com/science/article/pii/S0377221716306270
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.1287/ijoc.2023.0055
https://arxiv.org/abs/2506.15196
https://proceedings.neurips.cc/paper_files/paper/2023/file/883105b282fe15275991b411e6b200c5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/883105b282fe15275991b411e6b200c5-Paper-Conference.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
Global Partition and Local Construction for Solving Large-Scale Routing Problems in Real-Time.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292,
2024b. doi: 10.1609/aaai.v38i18.30009. URL https://ojs.aaai.org/index.php/
AAAI/article/view/30009.

Huigen Ye, Hua Xu, An Yan, and Yaoyang Cheng. Large language model-driven large neighbor-
hood search for large-scale milp problems. In Forty-second International Conference on Machine
Learning, 2025.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in LLM-based automatic heuristic design. In International Conference on
Machine Learning (ICML), 2024a.

Zhi Zheng, Changliang Zhou, Xialiang Tong, Mingxuan Yuan, and Zhenkun Wang. UDC: A Unified
Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 6081–6125. Curran Associates,
Inc., 2024b. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
prehensive exploration in LLM-based automatic heuristic design. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
Do1OdZzYHr.

16

https://ojs.aaai.org/index.php/AAAI/article/view/30009
https://ojs.aaai.org/index.php/AAAI/article/view/30009
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0b8e4c8468273ee3bafb288229c0acbc-Paper-Conference.pdf
https://openreview.net/forum?id=Do1OdZzYHr
https://openreview.net/forum?id=Do1OdZzYHr

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A PROMPTS

The exact prompts used by VRPAGENT-GA are presented below. We distinguish between general
prompts, which remain the same across all problems, and problem-specific prompts, which must be
tailored to each task. The two are combined by substituting variables in the general prompts (e.g.,
replacing {problem_desc} with the corresponding problem-specific description). For crossover and
ablation prompts, the provided template is further extended by inserting the implementations of the
associated individuals at the designated positions.

For brevity, we report only the problem-specific prompts for the CVRP here. The prompts for all
problems can be found in our online repository.

A.1 GENERAL PROMPTS� �
You are an operations research expert. Your task is to design new heuristics for an
existing **Large Neighborhood Search (LNS)** framework applied to the
{problem_name_long}. The framework iteratively improves a given initial solution
through the following steps:
1. **Customer Removal**: Select a subset of customers to remove using a specified
heuristic.
2. **Solution Perturbation**: Remove the selected customers from their tours. This
results in an infeasible solution where the removed customers are no longer served.
3. **Customer Ordering**: Order the removed customers using another heuristic.
4. **Greedy Reinsertion**: Reinsert the removed customers one by one into the tours,
following the order defined in step 3.

Your job is to implement **new heuristics for:**
- **Step 1**: Customer selection (`select_by_llm_1`)
- **Step 3**: Ordering of the removed customers (`sort_by_llm_1`)

All other components of the LNS framework are fixed and **cannot be modified**.

Routing Problem Description
{problem_desc}

Other implementation notes and requirements:
- The framework is implemented in **C++**.
- The LNS targets **large instances** (e.g., more than 500 customers).
- Only a small number of customers should be removed in each iteration.
- The selected customers do **not need to form a single compact cluster**, but **each
selected customer should be close to at least one or a few other selected customers**.
This encourages meaningful changes during greedy reinsertion.
- The heuristic must incorporate **stochastic behavior** to ensure sufficient diversity
over **millions of iterations**.
- The search is limited by runtime, meaning that the two new heuristics should be very
fast.

Code style
- IMPORTANT: DO NOT ADD ***ANY*** COMMENTS unless asked� �

Prompt 1: Global system context.� �
[TASK]
Write high-quality heuristics for `select_by_llm_1` and `sort_by_llm_1` in the LNS
framework. Write the full code file in a ```cpp``` code block.

Example implementation
{seed_code}

Libary context
You are also provided with some selected header function information with comments that
could be useful:
{LNS_headers}� �

Prompt 2: Initial operator generation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

� �
[Better Code]
{code_parent_1}

[Worse Code]
{code_parent_2}

[Task]
Write new high-quality heuristics for `select_by_llm_1` and `sort_by_llm_1` in the LNS
framework. Your implementation
should be a crossover of the two implementations above, taking most ideas from the
better code (80%) and only some ideas from the worse code (20%).
Ensure that the new code maintains a comparable overall complexity and length to the
two implementations above.
Output code only and enclose your code with C++ code block: ```cpp ... ```. Do not
comment your code.� �

Prompt 3: Crossover prompt with 80% bias.� �
[Code]
{code}

[Task]
To simplify the heuristics implemented in `select_by_llm_1` and `sort_by_llm_1` we want
to conduct an ablation study.
Choose a random mechanic/component from the code that you think might not be important
and remove any trace of it from the code. We will
then run your code to evaluate the impact of the removed component. Output code only
and enclose your code with C++ code block: ```cpp ... ```.� �

Prompt 4: Ablation (Mutation).� �
[Code]
{code}

[Task]
The goal is improve the heuristics implemented in `select_by_llm_1` and `sort_by_llm_1`.
Add a new mechanic/component to the code above. Be innovative. We will
then run your code to evaluate the impact of the new component. Output code only and
enclose your code with C++ code block: ```cpp ... ```.� �

Prompt 5: Extend (Mutation).� �
[Code]
{code}

[Task]
The goal is to find new parameter settings for heuristics implemented in
`select_by_llm_1` and `sort_by_llm_1`.
Modify the parameters of the code above to improve the effectiveness of the heuristic.
If there are magic numbers in the code, replace them with constants that are set at the
beginning of each function.
Do not make any other changes to the code.
Output code only and enclose your code with C++ code block: ```cpp ... ```.� �

Prompt 6: Adjust-Parameters (Mutation).� �
[Code]
{code}

[Task]
The goal is improve the runtime of the heuristics implemented in `select_by_llm_1` and
`sort_by_llm_1`.
Modify the code so that the runtime is reduced. It is ok to slightly change the logic
of the heuristic to achieve this.
Output code only and enclose your code with C++ code block: ```cpp ... ```.� �

Prompt 7: Refactor (Mutation).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2 PROBLEM-SPECIFIC PROMPTS

A.2.1 CVRP� �
The Capacitated Vehicle Routing Problem (CVRP) involves determining a set of delivery
routes from a depot to a group of customers, where each customer has a specific demand
and each vehicle has a fixed capacity. The objective is to design routes that minimize
the total distance traveled, while ensuring that:
Each route starts and ends at the depot.
Each customer is visited exactly once by a single vehicle.
The total demand on any route does not exceed the vehicle capacity.

There is no limit on the number of vehicles that can be used.� �
Prompt 8: Problem description CVRP).

� �
From `Instance.h`:

```cpp
struct Instance {

int numNodes; // Total number of nodes including depot
int numCustomers; // Total number of customers (excluding depot)
int vehicleCapacity; // Capacity of the vehicle (identical for all vehicles)
std::vector<int> demand; // Demand of each node (with the depot at index 0 having a
demand of 0)
std::vector<std::vector<float>> distanceMatrix; //Distance matrix between nodes
std::vector<std::vector<float>> nodePositions; // Node positions in 2D space
std::vector<std::vector<int>> adj; // Adjacency list for each node, sorted by
distance

}
```

From `Solution.h`:

```cpp
struct Solution {

const Instance& instance; // Reference to the instance to avoid copying
float totalCosts; // Total cost of the solution
std::vector<Tour> tours; // List of tours in the solution
std::vector<int> customerToTourMap; // Map from each customer to its tour index. This
can be used to

// quickly find which tour a customer belongs to, e.g. solution.tours[solution.
customerToTourMap[c]] returns the tour of customer c.

}
```

From `Tour.h`:

```cpp
struct Tour {

std::vector<int> customers; // Customers in the tour, excluding depot
int demand = 0; // Total demand of the tour
float costs = 0; // Total cost of the tour including distance to and from the depot

}
```

From `Utils.h`:
```cpp
int getRandomNumber(int min, int max);
float getRandomFraction(float min = 0.0, float max = 1.0);
float getRandomFractionFast(); // Function to generate a random fraction (float) in the

range [0, 1] using a fast method
std::vector<int> argsort(const std::vector<float>& values); // Function to perform

argsort on a vector of float values
```� �

Prompt 9: Metaheuristic context ({LNS_headers}).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

� �
#include "AgentDesigned.h"
#include <random>
#include <unordered_set>
#include "Utils.h"

// Customer selection
std::vector<int> select_by_llm_1(const Solution& sol) {

// random selection of customers
std::unordered_set<int> selectedCustomers;

int numCustomersToRemove = getRandomNumber(10, 20);

while (selectedCustomers.size() < numCustomersToRemove) {
int randomCustomer = getRandomNumber(1, sol.instance.numCustomers);
selectedCustomers.insert(randomCustomer);

}

return std::vector<int>(selectedCustomers.begin(), selectedCustomers.end());
}

// Function selecting the order in which to remove the customers
void sort_by_llm_1(std::vector<int>& customers, const Instance& instance) {

// Placeholder for LLM-based sorting logic
// This function should implement the logic to sort customers based on a learned
model
// For now, we will just sort randomly as a placeholder
// sort_randomly(customers, instance);
static thread_local std::mt19937 gen(std::random_device{}());
std::shuffle(customers.begin(), customers.end(), gen);

}� �
Prompt 10: Seed heuristic ({seed_code}).

B ADDITIONAL DETAILS

B.1 COSTS PER RUN

Table 2: Comparison token usage and cost estimates across models per run (as of Sep. 2025) with inference
providers sources.

Model Open Source Token Usage Costs ($) Total Costs ($) Source
Input Output Input Output

Gemini 2.0 Flash ✗ 2.5M 1.2M 0.10 0.40 0.73 Vertex AI
Gemini 2.5 Flash ✗ 4.1M 7.1M 0.30 2.50 18.98 Vertex AI
gpt-oss (120B) ✓ 4.0M 2.5M 0.09 0.36 1.26 Clarifai
gemma 3 (27B) ✓ 2.5M 1.2M 0.09 0.16 0.42 DeepInfra
Qwen3 (30B) ✓ 1.5M 4.4M 0.08 0.29 1.40 Clarifai
Llama 3.3 (70B) ✓ 2.3M 1.0M 0.08 0.29 0.47 Clarifai

B.2 USE OF LARGE LANGUAGE MODELS

LLMs played an active role in this work. Beyond serving as general-purpose writing assistants for
improving clarity, style, and grammar and as coding assistants, LLMs were employed as heuristic
discovery tools during the optimization phase of our study. Importantly, the core research contri-
butions, including the design of the framework, theoretical development, and validation of results,
were conceived, implemented, and verified exclusively by the authors. All outputs from LLMs
were critically assessed, refined, and integrated to ensure correctness and adherence to academic
standards.

C EVALUATION ON CVRPLIB INSTANCES

We also evaluate VRPAGENT on the X instance set (Uchoa et al., 2017) from CVRPLib, which
consists of 100 CVRP instances with sizes ranging from 100 to 1000 customers. This dataset is ex-

20

https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://www.clarifai.com/
https://deepinfra.com/
https://www.clarifai.com/
https://www.clarifai.com/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 10 20
GA Iteration

48.10

48.20

48.30

48.40

O
b

je
ct

iv
e

VRPTW

0 10 20
GA Iteration

43.30

43.40

43.50

PCVRP

Default

Warmstart

Figure 6: Objective values during heuristic discovery for VRPTW and PCVRP with and without warm-starts
from the best CVRP heuristic.

plicitly designed to encompass a wide variety of challenging problem structures, including instances
with highly clustered customers and heterogeneous demands, providing a rigorous test of our agent’s
robustness in scenarios that closely resemble real-world complexity. To generate a heuristic for these
instances, we train VRPAGENT on a separate set of 128 instances exhibiting similar characteristics.
During the heuristic discovery process, the runtime for each instance is constrained to 0.025n sec-
onds, where n denotes the number of nodes.

The resulting heuristic is subsequently evaluated on the full X instance set with an increased runtime
limit of 1.0n seconds per instance. We compare the performance of the heuristic generated by VR-
PAGENT against the state-of-the-art handcrafted method SISRs under the same runtime constraints.
For each instance, we perform 10 independent runs and report the average results.

Table 3 summarizes the performance of both approaches on all individual instances. VRPAGENT
achieves superior solutions compared to SISRs on 67 instances, whereas SISRs outperforms VRPA-
GENT on 24 instances, demonstrating the overall advantage of our approach in this setting. Notably,
for larger instances with more than 500 customers, the heuristic produced by VRPAGENT consis-
tently yields better solutions, with only a few exceptions, highlighting its effectiveness in scaling to
more complex and larger-scale problems.

D SUCCESS RATE

During the main training runs, we track the proportion of generated operators that function correctly,
i.e., those that both compile successfully and produce solutions for all validation instances. We refer
to this proportion as the success rate, and it provides insight into the difficulty of the generation tasks
posed to the LLMs.

Fig. 7 reports the success rate over the course of the discovery runs. Across all problem settings,
the success rate remains above 85%, indicating that the generation tasks are generally manageable
for the LLM used. For the VRPTW, we also observe a gradual increase in success as the discovery
process progresses. For the PCVRP, the success rate is consistently around 95%, likely because not
all customers must be visited, making feasible solution generation comparatively easy (e.g., even a
solution with no tours is technically feasible).

Note that the figure reflects the success rate only for operators generated within the main loop of
VRPAGENT-GA (i.e., offspring and mutation operators). During the initial population generation,
the success rates are lower: 73% for the CVRP, 68% for the VRPTW, and 90% for the PCVRP.

E WARM-STARTING HEURISTIC DISCOVERY

We investigate whether operators discovered for one problem can be effectively adapted to other
problems by conducting experiments in which we warm-start the discovery process for the VRPTW
and PCVRP using the best heuristic found for the CVRP. For the warm-start, we provide the CVRP
implementation as an example to the model and task it with adapting the heuristic to the new problem
(i.e., VRPTW or PCVRP). Each configuration is run 10 times, and the results are averaged.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Comparisons on the X set of CVRPLib: best-known solutions (BKS), SISRs and VRPAgent costs, and
their percentage gaps. Results show the average performance across 10 runs.

SISRs VRPAgent SISRs VRPAgent

Instance BKS Obj. Gap% Obj. Gap% Instance BKS Obj. Gap% Obj. Gap%

X-n101-k25 27591 27591 0.000 27591 0.000 X-n336-k84 139111 139515 0.290 139377 0.190
X-n106-k14 26362 26383 0.080 26366 0.020 X-n344-k43 42050 42110 0.140 42146 0.230
X-n110-k13 14971 14971 0.000 14971 0.000 X-n351-k40 25896 25982 0.340 25992 0.370
X-n115-k10 12747 12747 0.000 12747 0.000 X-n359-k29 51505 51575 0.140 51570 0.130
X-n120-k6 13332 13332 0.000 13332 0.010 X-n367-k17 22814 22866 0.230 22829 0.070
X-n125-k30 55539 55606 0.120 55545 0.010 X-n376-k94 147713 147814 0.070 147737 0.010
X-n129-k18 28940 28952 0.040 28955 0.050 X-n384-k52 65928 66128 0.300 66066 0.210
X-n134-k13 10916 10943 0.250 10942 0.240 X-n393-k38 38260 38393 0.350 38355 0.250
X-n139-k10 13590 13599 0.070 13596 0.050 X-n401-k29 66154 66258 0.160 66251 0.150
X-n143-k7 15700 15717 0.110 15716 0.110 X-n411-k19 19712 19785 0.380 19764 0.270
X-n148-k46 43448 43478 0.070 43492 0.100 X-n420-k130 107798 107891 0.090 107897 0.090
X-n153-k22 21220 21227 0.030 21316 0.460 X-n429-k61 65449 65609 0.240 65590 0.220
X-n157-k13 16876 16883 0.040 16876 0.000 X-n439-k37 36391 36485 0.260 36461 0.190
X-n162-k11 14138 14153 0.110 14153 0.120 X-n449-k29 55233 55420 0.340 55443 0.380
X-n167-k10 20557 20557 0.000 20590 0.160 X-n459-k26 24139 24247 0.450 24226 0.360
X-n172-k51 45607 45630 0.050 45607 0.000 X-n469-k138 221824 222339 0.230 222249 0.190
X-n176-k26 47812 47841 0.060 47889 0.160 X-n480-k70 89449 89568 0.130 89603 0.170
X-n181-k23 25569 25580 0.040 25576 0.030 X-n491-k59 66483 66708 0.340 66608 0.190
X-n186-k15 24145 24163 0.080 24180 0.140 X-n502-k39 69226 69275 0.070 69272 0.070
X-n190-k8 16980 16996 0.090 16990 0.060 X-n513-k21 24201 24295 0.390 24298 0.400
X-n195-k51 44225 44308 0.190 44277 0.120 X-n524-k153 154593 154905 0.200 154786 0.120
X-n200-k36 58578 58641 0.110 58635 0.100 X-n536-k96 94846 95209 0.380 95153 0.330
X-n204-k19 19565 19631 0.340 19675 0.570 X-n548-k50 86700 86806 0.120 86783 0.100
X-n209-k16 30656 30670 0.050 30679 0.080 X-n561-k42 42717 42878 0.380 42820 0.240
X-n214-k11 10856 10904 0.450 10897 0.380 X-n573-k30 50673 50826 0.300 50773 0.200
X-n219-k73 117595 117624 0.030 117612 0.020 X-n586-k159 190316 190699 0.200 190598 0.150
X-n223-k34 40437 40551 0.280 40491 0.140 X-n599-k92 108451 108706 0.240 108685 0.220
X-n228-k23 25742 25794 0.200 25797 0.220 X-n613-k62 59535 59765 0.390 59679 0.240
X-n233-k16 19230 19282 0.270 19281 0.270 X-n627-k43 62164 62335 0.280 62320 0.250
X-n237-k14 27042 27103 0.230 27134 0.340 X-n641-k35 63682 63877 0.310 63842 0.250
X-n242-k48 82751 82902 0.180 82879 0.150 X-n655-k131 106780 106884 0.100 106825 0.040
X-n247-k50 37274 37389 0.310 37342 0.180 X-n670-k130 146332 146992 0.450 147491 0.790
X-n251-k28 38684 38808 0.320 38737 0.140 X-n685-k75 68205 68401 0.290 68340 0.200
X-n256-k16 18839 18901 0.330 18885 0.250 X-n701-k44 81923 82131 0.260 82080 0.190
X-n261-k13 26558 26657 0.380 26650 0.350 X-n716-k35 43373 43491 0.270 43493 0.280
X-n266-k58 75478 75650 0.230 75651 0.230 X-n733-k159 136187 136462 0.200 136401 0.160
X-n270-k35 35291 35347 0.160 35362 0.200 X-n749-k98 77269 77584 0.410 77493 0.290
X-n275-k28 21245 21275 0.150 21285 0.190 X-n766-k71 114417 114761 0.300 114688 0.240
X-n280-k17 33503 33634 0.390 33559 0.170 X-n783-k48 72386 72645 0.360 72568 0.250
X-n284-k15 20215 20289 0.370 20272 0.280 X-n801-k40 73305 73446 0.190 73438 0.180
X-n289-k60 95151 95452 0.320 95421 0.280 X-n819-k171 158121 158513 0.250 158408 0.180
X-n294-k50 47161 47280 0.250 47268 0.230 X-n837-k142 193737 194047 0.160 194018 0.150
X-n298-k31 34231 34274 0.120 34264 0.100 X-n856-k95 88965 89152 0.210 89119 0.180
X-n303-k21 21736 21788 0.240 21819 0.380 X-n876-k59 99299 99544 0.250 99494 0.200
X-n308-k13 25859 26192 1.290 25934 0.290 X-n895-k37 53860 54138 0.520 54104 0.450
X-n313-k71 94043 94235 0.200 94189 0.160 X-n916-k207 329179 329556 0.110 329566 0.120
X-n317-k53 78355 78397 0.060 78364 0.010 X-n936-k151 132715 133387 0.510 133201 0.370
X-n322-k28 29834 29933 0.330 29905 0.240 X-n957-k87 85465 85640 0.200 85633 0.200
X-n327-k20 27532 27671 0.510 27636 0.380 X-n979-k58 118976 119147 0.140 119118 0.120
X-n331-k15 31102 31141 0.130 31164 0.200 X-n1001-k43 72355 72563 0.290 72536 0.250

Avg. Gap% * 0.229 % 0.195%

Fig. 6 shows the objective function values over the course of the discovery process for the VRPTW
and PCVRP, comparing warm-start and cold-start runs. Warm-starting significantly improves per-
formance, yielding better results from the initial population. All warm-start runs begin from the best
CVRP implementation found across 10 discovery runs, which required a substantial amount of com-
pute. The combination of high-quality initial heuristics and diversity introduced through the start
population generation allows the method to discover implementations that outperform the cold-start
runs on average.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

10 20 30 40
GA Iteration

85

90

95

100

S
u

cc
es

s
R

at
e

(%
)

CVRP

10 20 30 40
GA Iteration

VRPTW

10 20 30 40
GA Iteration

PCVRP

Figure 7: Percentage of operators that compile successfully and produce valid solutions (success rate) through-
out the main discovery runs.

F ANALYSIS OF DISCOVERED HEURISTICS

F.1 HIGH-LEVEL DESCRIPTION

F.1.1 CVRP

Customer Removal The removal heuristic, iteratively constructs a set of customers to remove
based on a target size drawn from a uniform distribution (e.g., between 15 and 28). The process
initializes by either cutting a random contiguous tour segment (with probability 0.2) or selecting
a single random seed. The set is subsequently expanded by choosing a pivot from the currently
selected customers and applying one of three weighted strategies: adding a spatial neighbor from
the pivot’s k-nearest graph (60%), adding a short contiguous segment from the pivot’s current tour
(25%), or adding the pivot’s immediate tour predecessor or successor (15%). A random fallback
ensures the target removal count is always met.

Customer Ordering The customer ordering operator stochastically selects one of eight sorting
rules and a random sorting direction (ascending or descending). The scoring criteria include geomet-
ric metrics (distance to depot, distance to the removed set’s centroid, polar angle), problem-specific
attributes (demand, combined demand-distance), and topological features (connectivity among re-
moved nodes). Alternatively, the order may be determined by a stochastic Nearest-Neighbor chain
or a simple random shuffle. To enhance diversity, minor additive noise is applied to the calculated
scores during the sorting process.

F.1.2 VRPTW

Customer Removal The removal operator, constructs a cluster of customers to remove by grow-
ing a set from an initial random seed up to a target size drawn uniformly between 10 and 15. The
expansion logic prioritizes connectivity: at each step, the algorithm attempts to select a tour neighbor
(immediate predecessor or successor in the current route) with a probability of 0.45, or a geographi-
cal neighbor from the instance’s adjacency list with a probability of 0.35, where the latter is sampled
with a power-law bias to favor closer nodes. If these connected expansion attempts fail, or with a
15% probability once the set is sufficiently large, the algorithm performs a "random jump" or falls
back to a uniform random selection to ensure the target removal count is met.

Customer Ordering The customer ordering operator uniformly selects one of ten available scor-
ing strategies. These strategies range from sorting by single raw attributes (e.g., time window width,
start time, or negative demand) to complex composite scores. Specifically, one advanced strategy
aggregates five normalized attributes (including service time and distance to depot) using randomly
generated weights and polarities, while another assesses demand density relative to time window
tightness. To maximize diversity, the final ordering process includes a microscopic noise factor for
tie-breaking, a 25% probability of reversing the sorted list, and a final pass that applies a small
number of random swaps.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.1.3 PCVRP

Customer Removal The removal operator, constructs a cluster of customers to remove by growing
a set from an initial random seed up to a target size drawn uniformly between 10 and 20. The seed-
ing process prioritizes unassigned customers (25%) and those currently belonging to tours (60%)
before falling back to a uniform selection. The expansion logic is iterative: at each step, a subset
of "source" customers is chosen from the current selection, and candidates are gathered from both
their topological neighbors (via the adjacency list) and random samples of their current tour-mates.
A single candidate is uniformly selected from this pool, with a random safeguard applied if the
candidate pool is empty.

Customer Ordering The customer ordering operator executes a pure random shuffle with proba-
bility 0.1; otherwise, it employs a score-based sort relative to a pivot node. The pivot is selected from
the removed set (80%) or set to the depot (20%). The scoring function calculates a weighted sum
involving the distance to the pivot, the distance to the depot, the customer’s demand, and their prize
(if applicable). To enforce diversity, the specific weights for these components are modulated by
three distinct parameter regimes—varying the emphasis between prize collection and distance mini-
mization—and the final list is sorted in either ascending or descending order with equal probability.

F.2 EXPERT EVALUATION

LLM generated code raises many questions about its quality and maintainability. A further question
is how the code works and how it is able to achieve state-of-the-art performance. While we are
unable to fully answer these questions, we try to provide some initial insights into the quality of the
best heuristic generated for each problem. To do this, we have three co-authors of the paper with
many years of experience writing heuristics by hand analyze the code according to several criteria.
We acknowledge that this is not a scientific study and is not intended to draw generalizations about
the ability of LLMs to code heuristics for optimization problems. Rather, our goal is to give some
indications as to how the code generated compares to code written by humans and what kind of ideas
are present. We note that the code is generated without comments to avoid the LLM influencing the
analysis, however we note that variable names are present that do give some contextual information
about what the code does.

The three heuristics experts have XX (expert 1), YY (expert 2) and ZZ (expert 3) years of experience
writing OR heuristics1. All experts have experience with routing problems in addition to other types
of OR problems. Each expert provides an evaluation of the generated code of the best performing
heuristic for each of the three problems examined in this work. The experts describe a consensus
description of how the heuristic works then write independent discussions of each heuristic. The
individual rating criteria are as follows:

1. Readability (noting that the assessments are not general statements about LLM code)

2. Coherence and soundness

3. Maintainability

4. Interpretability, i.e., do we know why this code works well?

5. Are there any new ideas in the heuristic?

F.2.1 CVRP

The removal and sorting mechanisms are best described as ensembles of heuristics in which the
heuristic applied at any given iteration is chosen at random according to a probability distribution
determined through the static parameters of the approach. For the selection of customers for re-
moval, the heuristics of the ensemble show a similarity to the SISRs heuristic. In the first, adjacent
customers are selected for removal and in the second, random segments of tours are chosen. Since

1To avoid potentially violating the double blind submission policy, we do not indicate the years of experience
of the experts, as they are all coauthors of the work. These will be provided in the accepted version of this work,
and this message will be removed.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

these segments can overlap, we also have a SISRs-like idea. The third heuristic, as best as we can
determine, tries to expand a tour segment. For sorting, the heuristic first decides whether to sort de-
scending or ascending according to one of seven different heuristics. We omit a detailed description
of all the heuristics, but note that these include generally known ideas for sorting customers in a
CVRP, e.g. using criteria such as the distance to the depot, the demand of the customers, weighted
combinations of distance and demand, and greedy nearest-neighbor sequencing.

Expert 1 The code is surprisingly well-written and is split into different functions in a logical
fashion. The heuristics are coherent and reasonable. The ensemble contains many components and
an ablation analysis would be necessary to determine how much each component actually contributes
to the solution quality. The code looks relatively easy to maintain and follows good design principles
for C++ code. There are no special constructs or libraries used, the memory management is very
simple. While the heuristic does not present anything radically new, the scoring mechanism for
removed neighbor connectivity seems looks novel. The removal heuristic is a SISRs variant, but not
exactly the same as the original.

Expert 2 The code is easy to understand and well-written. It contains both very meaningful high-
level comments that make it easy to quickly assess the big picture of main functions, and low-level
comments that facilitate understanding the details. In addition, the code is decomposed in a useful
way into smaller functions with good names. As far as I see, this is good and standard C++ code that
should be very maintainable and does not contain any weird parts. The created selection heuristics
can be characterized as an ensemble of various known (and reasonably different) approaches that are
applied in a random fashion. The sorting function randomly chooses between eight scoring schemes
that involve use meaningful criteria; I assume that some combinations of criteria used for scoring
are novel, although the criteria themselves are mostly not.

Expert 3 The code is generally well-structured, with its components split into separate functions.
This organization makes it easier for users to follow the logic without becoming overwhelmed by
a single large code block. Additionally, the descriptive variable names and comments help readers
quickly recognize the purpose of each section and provide useful guidance when deeper understand-
ing is needed. Conceptually, the code combines several known ideas from the literature in a struc-
tured ensemble; while none of the components are new by themselves, the way they are combined
is somewhat novel. However, because it is not immediately clear which components are essential in
practice, further analysis would be required to determine whether the code could be simplified.

F.2.2 VRPTW

The selection and sorting heuristics form portfolio approaches, that is, ensembles of different heuris-
tics that are probabilistically selected and combined. The selection heuristic removes a randomly
chosen number of customers (10-15). It starts with a randomly picked customer and then uses a
main loop in which one additional customer is added per iteration, using spatial proximity and tour
neighborhood to a selected reference customer as well as pure randomness to guide the choice. The
sorting code involves ten different strategies, of which one is randomly chosen per call of the heuris-
tic. Five strategies rely on simple smetrics such as demand or time window start time, four are based
on combined metrics and one is a purely random shuffling of the customers. One of the combined
metrics is highly complex and heavily parameterized.

Expert 1 This heuristic is again very easy to read and the code is nicely structured. The functions
are decently easy to understand and the code can be considered interpretable. While the sorting
criteria are mostly standard and there are no big surprises, some combinations of metrics (e.g., the
normalized combination in case 7) are potentially novel.

Expert 2 Like in the CVRP case, the code is very well explained in both high and low-level
comments and structured into functions in a meaningful way, avoiding deeply nested statements
and making the code easy to follow and maintain. The code is reasonable and concise modern
C++. The selection heuristic randomly applies a set of reasonable heuristics, and the sorting code
again is based on randomly choosing between a set of useful and known sorting criteria, some of
which are weighted combinations of multiple criteria. Although consisting of simple components,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

the big number of heuristics and the multitude of parameters are remarkable. A human expert may
have come up with similar ideas, but selecting the components and tuing the parameters would have
taken a lot of time.

Expert 3 The code is overall readable and, as in the other case, reflects a consistent style the
LLM uses. Splitting the implementation into several functions helps users understand the individual
components more easily, while the comments and variable names further enhance readability. Again,
the sorting section includes many variants, but the large number of options risks obscuring which
criteria actually matter. Overall, the components used are standard for the VRPTW.

F.2.3 PCVRP

The removal and sorting heuristics form an ensemble of heuristics, with the specific method chosen
at random according to static parameters defined at the beginning. The removal operator first de-
termines how many customers to remove. It starts the selection from either an unvisited customer,
a customer based on a random tour, or a purely random choice. Customers are then added itera-
tively based on adjacency and tour neighbors, with random selection used as a fallback. The sorting
operator either shuffles customers randomly or scores them using a combination of properties such
as prize, distance to the depot, and demand, with probabilities applied to vary the weights of these
properties.

Expert 1 The code is well structured as with the other problems. A weakness in this code is one
code block in which many “magic numbers” are inserted into the code along with many random
numbers. While this code is not hard to understand, it could be written in a cleaner way. The scoring
mechanism is likely novel.

Expert 2 The code is mostly well-written and involves mostly meaningful explanations both in
high-and low-level comments. Again, it is reasonably structured into simple and mostly easy-
to-understand functions. Both the selection and sorting heuristics seem reasonable and involve
mostly known component heuristics and criteria. Compared the CVRP and the VRPTW, the LLM-
generated sorting function involves only two main strategies, one of which is a weighted combina-
tion where the weights are selected using multiple nested random number draws. This is a bit hard to
make sense of, I am sure that a similar behavior could have been achieved in an easier-to understand
way (e.g. by framing the highest level of the nested random selection as separate strategies instead
of introducing what the LLM calls “sub-biases” in a single strategy).

Expert 3 The code is well-structured and generally readable, though some functions are longer
than in the previous heuristic and combine multiple components that could be separated into dis-
tinct functions, as was done in the CVRP and VRPTW implementations. Nevertheless, the code
remains understandable thanks to the accompanying comments. While the components themselves
are familiar and standard for this problem domain, some of their combinations are unusual.

F.3 ABLATION STUDY

We conduct ablation studies for the best-performing heuristics to better understand their internal
mechanisms. To this end, we systematically remove individual subcomponents from the designed
heuristics and assess the impact of each change. To ensure statistically meaningful results, we
evaluate all variants on larger validation sets comprising 500 instances per problem, using the same
60s per-instance runtime limit as in the main experiments. For every configuration, including the
default version (which contains none of the ablated modifications), we run VRPAGENT 10 times
on the same set of 500 test instances and record the average tour cost of each run. We report the
mean and standard deviation of these run-level averages, together with a 95% confidence interval.
Statistical significance relative to the default configuration is determined using the Wilcoxon signed-
rank test applied to the paired run averages.

F.3.1 CVRP

Customer Removal We ablate the following subcomponents that are used by the generated heuris-
tic during the customer removal procedure:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1. Initial Segment Removal: This mechanism is employed as an alternative to selecting a
single seed customer. It selects a fixed-length contiguous segment of customers for removal
to initiate the destruction process. In the subsequent expansion steps, this tour segment is
then extended by other customers.

2. Nearest Neighbor Expansion: Used in the iterative removal loop, this mechanism grows
the removed set by spatial clustering around already-selected customers. It selects a can-
didate c from the k-nearest neighbors of a pivot p using a biased probability distribution,
which strongly favors the nearest physical neighbor; this is intended to ensure the final
removed set is geographically compact, creating a large, localized "hole".

3. Adjacent Tour Node Expansion: This alternative expansion strategy works by identifying
the immediate predecessor and successor of a pivot customer p in its current tour and then
uniformly selecting one of these adjacent (unselected) nodes. Its intention is to ensure the
removal of customers that are tightly coupled in the solution tour.

4. Route Segment Removal: This alternative expansion strategy works by identifying a seg-
ment of fixed length that includes the pivot p in its tour and adding all nodes in that segment
to the removed set.

Table 4 shows the results of the ablation experiments. Removing Route Segment Removal signif-
icantly or Nearest Neighbor Expansion leads to a significant increase in costs. Other components,
such as Initial Segment Removal and Adjacent Tour Node Expansion, have only minor effects.

Table 4: Ablation of removal strategies for the CVRP.

Configuration Mean Std CI95 p-value

Default Configuration 36.70378 0.003310 0.002368 —
- w/o Initial Segment Removal 36.70551 0.003138 0.002245 0.375000
- w/o Adjacent Tour Node Expansion 36.70705 0.002539 0.001816 0.064453
- w/o Route Segment Removal 36.71770 0.003249 0.002324 0.001953
- w/o Nearest Neighbor Expansion 37.72012 0.018678 0.013362 0.001953

Customer Ordering We ablate the following subcomponents that are used by the generated
heuristic during the customer ordering procedure:

1. Demand: A simple ordering rule that orders removed customers based on the customer’s
demand value in descending order, ensuring high-demand customers are prioritized early
during the re-insertion phase.

2. Center Proximity: This ordering rule first calculates the geometric center (centroid) of all
removed customers, and then sorts them by their Euclidean distance from this centroid.

3. Depot Proximity: This ordering rule calculates the score as the raw Euclidean distance
from the depot. The list is typically sorted in ascending order of this distance.

4. Polar Angle: This rule defines a radial sequencing of insertion priorities. The mechanism
calculates the polar angle of each customer relative to the depot (origin) and then sorts the
list ascending or descending by this angle to implement a sweep re-insertion strategy.

5. Connectivity: This rule prioritizes customers based on their spatial integration with the
removed set. The mechanism calculates the score by measuring the connectivity, deter-
mined by the sum of inverse distances between each customer and all other customers in
the removed set; this is intended to prioritize the re-insertion of customers that are highly
integrated with the destroyed cluster.

6. Weighted Demand-Distance Score: This rule prioritizes customers based on a weighted
sum of demand and distance to the depot. The mechanism calculates a linear combination
score, where the weights are varied stochastically and a small noise value is applied to
increase exploration.

7. Nearest Neighbor Chain: This rule defines a local, greedy sequence. It starts with a
random customer and then iteratively finds the **closest unplaced customer** to the most

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

recently selected one until the entire set is ordered; this generates a local, greedy sequence
for the destroyed cluster.

8. Random Shuffle: This rule simply orders all removed customers at random.

Table 5 shows the results. For most ordering rules, we do not observe a statistically significant
impact, which is expected given that many strategies overlap and the effect of each individual rule
is limited when numerous strategies are combined. Interestingly, the Connectivity rule stands out as
a significant contributor to performance, despite being more computationally expensive than most
other strategies.

Table 5: Ablation of ordering strategies for the CVRP.

Configuration Mean Std CI95 p-value

Default Configuration 36.70378 0.003310 0.002368 —
- w/o Nearest Neighbor Chain 36.70083 0.001283 0.000918 0.037109
- w/o Demand 36.70116 0.003045 0.002178 0.130859
- w/o Weighted Demand-Distance Score 36.70196 0.001920 0.001374 0.173071
- w/o Random Shuffle 36.70390 0.002159 0.001545 0.625000
- w/o Polar Angle 36.70499 0.001673 0.001197 0.431641
- w/o Connectivity 36.70747 0.001244 0.000890 0.009766
- w/o Center Proximity 36.70984 0.003388 0.002424 0.003906
- w/o Depot Proximity 36.75184 0.002093 0.001498 0.001953

F.3.2 VRPTW

Customer Removal We ablate the following subcomponents that are used by the generated heuris-
tic during the customer removal procedure:

1. Tour Neighbor Expansion: This mechanism expands the removed set by identifying the
immediate predecessor or successor of a pivot customer in its current tour. It is intended to
remove chains of customers that are in the same solution tour.

2. Nearest Neighbor Expansion: Used to maintain spatial locality, this mechanism selects
a candidate from the closest customers of a pivot customer. It utilizes a biased probability
distribution that strongly favors the nearest neighbors to ensure the destroyed set remains
geographically compact.

3. Random Jump Expansion: This mechanism introduces a perturbation to the growth pro-
cess by selecting a completely random unselected customer, regardless of proximity to the
current set. It is only triggered once the removed set reaches a minimum size.

Table 6 presents the results. Removing the Random Jump Expansion has no statistically signifi-
cant effect on the VRPTW heuristic, while both of the other expansion strategies are critical for
maintaining high solution quality.

Table 6: Ablation of selection strategies for the VRPTW.

Configuration Mean Std CI95 p-value

Default Configuration 47.46744 0.005987 0.004283 —
- w/o Random Jump Expansion 47.46464 0.004139 0.002961 0.375000
- w/o Tour Neighbor Expansion 47.61712 0.003621 0.002590 0.001953
- w/o Nearest Neighbor Expansion 48.16588 0.005831 0.004171 0.001953

Customer Ordering We ablate the following subcomponents that are used by the generated
heuristic during the customer ordering procedure:

1. Time Window Width: This rule orders removed customers based on the width of their
time window in ascending order, ensuring that customers with tighter time constraints are
prioritized for re-insertion.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. Time Window Start: This rule orders customers strictly by the start time of their time
window in ascending order.

3. Demand: A rule that orders customers based on their demand value in descending order,
prioritizing high-demand customers early in the insertion process.

4. Depot Distance: This rule orders customers based on their Euclidean distance from the
depot in descending order, prioritizing the re-insertion of outlying customers before those
closer to the depot.

5. Weighted Start and Width: This mechanism calculates a deterministic score as a linear
combination of the time window start time and half the time window width; it prioritizes
customers that start early and have tight constraints.

6. Service Time: This rule orders customers based on their service duration in descending
order, prioritizing those that consume the most route time.

7. Multi-Attribute Score: This rule prioritizes customers using a linear combination of five
normalized attributes: time window start, time window width, demand, service time, and
distance. The weights for each attribute are randomized for every execution to maximize
exploration of different sorting criteria.

8. Arrival Time Slack: This rule prioritizes customers based on the maximum possible slack
between the earliest arrival (determined by distance from depot) and the latest possible
arrival (determined by the time window end). It orders customers with larger slack values
first.

9. Weighted Density and Tightness: This rule calculates a composite score combining de-
mand density (demand divided by service time) and time window tightness (inverse of
width). It weights these two components using a stochastic factor to alternate priority be-
tween high-density and highly-constrained customers.

10. Pure Random Shuffle: This rule simply orders all removed customers at random.

Table 7 shows the results. For most ordering strategies, there is no statistical evidence that they indi-
vidually have a meaningful impact on the heuristic’s performance. This is expected, as 10 different
strategies are used and selected uniformly at random during the search, so removing a single strategy
has only a minor effect. Notably, the Weighted Start and Width heuristic stands out as an exception,
significantly contributing to the overall performance.

Table 7: Ablation of ordering strategies for the VRPTW.

Configuration Mean Std CI95 p-value

Default Configuration 47.46744 0.005987 0.004283 —
- w/o Demand 47.46509 0.003528 0.002524 0.556641
- w/o Time Window Width 47.46617 0.002892 0.002069 0.431641
- w/o Arrival Time Slack 47.46631 0.006066 0.004339 0.695312
- w/o Multi-Attribute Score 47.46645 0.006211 0.004443 1.000000
- w/o Depot Distance 47.46671 0.007461 0.005337 1.000000
- w/o Time Window Start 47.46708 0.004177 0.002988 1.000000
- w/o Weighted Density and Tightness 47.46756 0.005045 0.003609 1.000000
- w/o Pure Random Shuffle 47.46765 0.006718 0.004806 0.845703
- w/o Service Time 47.46789 0.007746 0.005541 0.921875
- w/o Weighted Start and Width 47.49367 0.005458 0.003905 0.001953

F.3.3 PCVRP

Customer Removal We ablate the following subcomponents that are used by the generated heuris-
tic during the customer removal procedure:

1. Biased Seed Selection: Instead of selecting the initial seed customer uniformly at random,
this mechanism prioritizes the selection of customers that are currently visited by a vehicle
over unvisited customers.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

2. Multi-Source Expansion: Used in the iterative removal process, this strategy selects cus-
tomers using multiple seed customer, allowing the destruction area to expand in clusters.

3. Tour-Based Neighbor Expansion: This mechanism expands the removed set by iden-
tifying customers that share the same route as a seed customer. It samples a subset of
tour-neighbors to ensure that entire segments of existing routes are targeted are removed.

Table 8 shows the results. All three ablated removal strategies contribute to the overall performance
of the heuristic. Interestingly, even subtle algorithmic details, such as the Biased Seed Selection
strategy, which starts the customer removal process from previously visited customers with higher
probability rather than uniformly at random, can produce small but consistent improvements.

Table 8: Ablation of selection strategies for the PCVRP.

Configuration Mean Std CI95 p-value

Default Configuration 42.73483 0.003547 0.002538 —
- w/o Multi-Source Expansion 42.73821 0.001865 0.001334 0.027344
- w/o Biased Seed Selection 42.75303 0.002260 0.001617 0.001953
- w/o Tour-Based Neighbor Expansion 42.97553 0.003856 0.002758 0.001953

Customer Ordering We ablate the following subcomponents that are used by the generated
heuristic during the customer ordering procedure:

1. Pivot Proximity: This mechanism orders customers based on their distance to a specific
pivot node that is stochastically chosen as either the depot or a random customer from the
removed set.

2. Prize-Focused Scoring: This configuration corresponds to the first weighting profile. It
calculates a weighted sum of the customer’s prize and their distance to the depot, assigning
significantly higher weight to the prize value. A small noise factor is added to encourage
slight exploration, but the primary intention is to prioritize the re-insertion of high-profit
customers.

3. Prize-Distance Scoring: This configuration corresponds to the second weighting profile.
It assigns roughly equal weights to the customer’s prize and their distance to the depot.
To promote solution diversity a significantly larger noise factor is applied compared to the
other profiles.

4. Distance-Demand Scoring: This configuration corresponds to the third weighting profile.
It shifts the heuristic’s focus by heavily weighting the distance to the depot and introducing
a weight for customer demand (which is ignored in the other profiles).

5. Random Shuffle: This mechanism bypasses the scoring logic entirely and orders all re-
moved customers at random. It is selected with a small probability to increase exploration.

Table 9 shows the results. Interestingly, removing the Prize-Distance Scoring slightly improves per-
formance, making it the only case in our ablation experiments where removal leads to a statistically
significant improvement. In contrast, both the Distance-Demand Scoring and Pivot Proximity order-
ing strategies contribute positively and improve performance in a statistically significant manner.

Table 9: Ablation of ordering strategies PCVRP.

Configuration Mean Std CI95 p-value

Default Configuration 42.73483 0.003547 0.002538 —
- w/o Prize-Distance Scoring 42.73103 0.002071 0.001481 0.013672
- w/o Prize-Focused Scoring 42.73353 0.002825 0.002021 0.492188
- w/o Random Shuffle 42.73397 0.001956 0.001399 0.921875
- w/o Distance-Demand Scoring 42.74467 0.003440 0.002461 0.003906
- w/o Pivot Proximity 42.86265 0.002567 0.001837 0.001953

30

	Introduction
	Related Work
	Vehicle Routing Problems
	VRPAgent
	Large Neighborhood Search with LLM-generated Operators
	Heuristic Discovery

	Experiments
	Comparison to State-of-the-Art
	Analyses

	Discovered Heuristic Operators
	Conclusion
	Prompts
	General prompts
	Problem-Specific Prompts
	CVRP

	Additional Details
	Costs per Run
	Use of Large Language Models

	Evaluation on CVRPLib Instances
	Success Rate
	Warm-Starting Heuristic Discovery
	blueAnalysis of discovered heuristics
	blueHigh-level Description
	CVRP
	VRPTW
	PCVRP

	blueExpert Evaluation
	CVRP
	VRPTW
	PCVRP

	blueAblation Study
	CVRP
	VRPTW
	PCVRP

