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Figure 1: Illustration of of Reselected Key Photo Restoration in Live Photos and visual comparison.
While RefISR adopts external reference image with only semantic similarity, our setting leverages
both the reference and target images from the same Live Photo sequence, ensuring a shared temporal
context. The proposed LiveMoments significantly outperforms the premium smartphones.

ABSTRACT

Live Photo captures both a high-quality key photo and a short video clip to preserve
the precious dynamics around the captured moment. While users may choose
alternative frames as the key photo to capture better expressions or timing, these
frames often exhibit noticeable quality degradation, as the photo capture ISP
pipeline delivers significantly higher image quality than the video pipeline. This
quality gap highlights the need for dedicated restoration techniques to enhance the
reselected key photo. To this end, we propose LiveMoments, a reference-guided
image restoration framework tailored for the reselected key photo in Live Photos.
Our method employs a two-branch neural network: a reference branch that extracts
structural and textural information from the original high-quality key photo, and
a main branch that restores the reselected frame using the guidance provided by
the reference branch. Furthermore, we introduce a unified Motion Alignment
module that incorporates motion guidance for spatial alignment at both the latent
and image levels. Experiments on real and synthetic Live Photos demonstrate that
LiveMoments significantly improves perceptual quality and fidelity over existing
solutions, especially in scenes with fast motion or complex structures.

1 INTRODUCTION

Unlike traditional photographs that capture a static frame, a Live Photo preserves the fleeting moments
around a shutter click. To achieve this, each Live Photo consists of two components: (a) a high-quality
(HQ) key photo1 taken at the capture moment and (b) a low-quality (LQ) video clip approximately

1From Apple’s official documentation: https://support.apple.com/en-sg/104966
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3 seconds, spanning moments around the key photo. This format not only enables dynamic visual
recording, but also offers the flexibility for users to reselect a preferred frame as the new key photo.
However, these reselected frames often exhibit significantly reduced quality. While the original key
photo is processed through the complete ISP pipeline with advanced enhancements, the alternative
frames are extracted from a compressed, low-latency preview stream and are further degraded by
motion blur and sensor noise. To ensure optimal user experience, it is essential to restore the quality
of the reselected frame to match that of the original key photo, while preserving content fidelity.

To this end, we introduce a new task: Reselected Key Photo Restoration in Live Photos, where the
original key photo serves as a reference to guide the restoration of the reselected frame. We position
this task as a sub-category of Reference-based Super-Resolution (RefSR), with a unique setting that
restores a single LQ frame guided by a single reference from the same Live Photo sequence. Unlike
conventional Reference-based Image Super-Resolution (RefISR), which restores the LQ image with
an HQ reference from external databases, our task leverages an in-sequence reference that ensures
content consistency. Meanwhile, Reference-based Video SR (RefVSR) enhances full video sequences
but struggles with high-resolution inputs (i.e., 4K), and methods are typically built on triple-camera
smartphone datasets, with videos from different fields of view recorded simultaneously. In contrast,
our task focuses on real Live Photos, where a single 4K frame is restored with guidance from a
temporally offset reference. This setting naturally involves more dynamic real-world scenes, making
it novel and practical while remaining efficient in both time and memory. Furthermore, our task
introduces unique challenges, including significant quality gap and motion misalignment between the
reselected frame and the original key photo, due to subject movement or camera shake.

These challenges impose limitations on existing RefSR methods for the task of reselected key photo
restoration. Traditional RefISR methods, typically based on CNNs or transformers (Zhang et al.,
2019; Jiang et al., 2021), adopt various feature matching strategies but are constrained by relatively
small model size and the lack of strong pre-trained priors, making them insufficient for handling the
diverse degradations and motion misalignments in Live Photos. Although diffusion-based RefISR
methods demonstrate stronger generative capabilities, only two such methods have been explored
to date and often produce unnatural textures. ReFIR (Guo et al., 2024) relies on a fixed-coefficient
gating mechanism with limited robustness, while CoSeR (Sun et al., 2024) generates HQ references
from CLIP-based embeddings that neglect local detail alignment and fuses features by prioritizing
LR content, making it less suitable for reference-driven tasks. Beyond image-based settings, RefVSR
methods remain confined to traditional designs and exploit full sequence (Lee et al., 2022) or single
middle-frame (Kim et al., 2023) references with temporal propagation. Such designs are utilized to
handle small misalignments but fail under the larger temporal offsets and quality gaps in Live Photos.
In addition, single image SR (SISR) methods (Wang et al., 2024; Wu et al., 2024b) overlook the
reference and often fail to preserve accurate structure and details in the presence of motion.

Therefore, we propose LiveMoments, a diffusion-based framework tailored for reselected key photo
restoration in Live Photos. It leverages diffusion priors for fine-grained feature extraction and employs
attention-based fusion to guide the RestorationNet in selectively incorporating well-aligned reference
features within a shared feature space, enabling precise and targeted reference-driven conditioning.
To address motion misalignment between the two inputs, we further introduce a unified Motion
Alignment module that operates at both the latent and image levels. At the latent level, we propose a
motion-guided attention that injects spatially aligned guidance into the latent space for more coherent
feature fusion. At the image level, we design a patch correspondence retrieval strategy that captures
patch-wise motion to locate the corresponding reference patches for consistent restoration in ultra-
high-resolution frames. To facilitate fair evaluation, we introduce a comprehensive benchmark for this
task, including a synthetic dataset, SynLive260, and two real-world Live Photo datasets, vivoLive144
and iPhoneLive90, captured by consumer smartphones across diverse scenes. Furthermore, we adapt
the no-reference metrics originally used in SISR and image generation to better suit our setting, where
a HQ reference is available for evaluating result quality.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to address the problem of reselected key photo
restoration in Live Photos. We propose LiveMoments, a diffusion-based framework tailored for this
task, which leverages a dual-branch neural network with advanced feature fusion.

• To mitigate spatial misalignment in Live Photos, a unified Motion Alignment module is introduced
to inject the motion guidance at the latent level while ensuring image-level content consistency.
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• We establish a comprehensive benchmark consisting of three datasets and task-specific metrics.
Extensive experiments show that LiveMoments significantly outperforms state-of-the-art RefSR and
SISR methods in both quantitative and visual results, even under challenging real-world scenarios.

2 RELATED WORK

2.1 DIFFUSION-BASED SINGLE IMAGE SUPER-RESOLUTION (SISR)

Diffusion-based SISR restores the HQ images from a single LQ input via diffusion models, with
recent research focusing on complex and unknown degradations. Building on the remarkable
generative capabilities of diffusion models demonstrated in text-to-image (T2I) tasks (Rombach
et al., 2022; Podell et al., 2023), recent works (Wang et al., 2024; Lin et al., 2024; Wu et al., 2024b;
Yu et al., 2024) adapt these pretrained backbones to SISR by leveraging control mechanisms (e.g.,
ControlNet (Zhang et al., 2023b)). StableSR (Wang et al., 2024) fine-tunes a time-aware encoder with
the controllable feature warping module, while SeeSR (Wu et al., 2024b) uses degradation-aware
text prompts. SUPIR (Yu et al., 2024) scales up generation by integrating large diffusion backbones
with high-capacity adapters and datasets. CoSeR (Sun et al., 2024) utilizes a pre-trained T2I model
to generate HQ references from LR embeddings for guided restoration. More recently, one-step
distillation techniques are adopted to significantly reduce the number of diffusion steps by directly
initializing from the LQ input. OSEDiff (Wu et al., 2024a) utilizes VSD loss (Wang et al., 2023b) as
a regularization term, while TSD-SR (Dong et al., 2024) distills a multi-step SD3 model (Esser et al.,
2024) into a one-step SISR solution via target score distillation. Despite these advances, most of the
existing methods rely solely on generative priors and may produce visually plausible yet inaccurate
content that sacrifice fidelity for perceptual richness. Such methods often fail to produce accurate
results in real-world scenarios, where effectively preserving the original visual content is essential.

2.2 REFERENCE-BASED SUPER-RESOLUTION (REFSR)

RefSR aims to enhance LR inputs by leveraging external HR references. Image-based RefSR (RefISR)
addresses single-image restoration and primarily focus on establishing accurate correspondence
between the LR input and the reference image, enabling effective texture transfer and detail refinement.
Early methods explore various matching strategies, including feature warping (Zheng et al., 2018),
patch-level matching (Zhang et al., 2019; Yang et al., 2020), and multi-reference fusion (Zhang
et al., 2023a). In addition, SSEN (Shim et al., 2020) employs deformable convolution (Dai et al.,
2017) for adaptive feature alignment. Building on this, C2-Matching (Jiang et al., 2021) introduces a
contrastive correspondence network with teacher-student correlation distillation, while DATSR (Cao
et al., 2022) integrates deformable convolution with the Swin Transformer for enhanced performance.
Recently, ReFIR (Guo et al., 2024) proposes a retrieval-enhanced architecture built on diffusion-based
SISR models, achieving reference-guided texture propagation without additional training. Video-
based RefSR (RefVSR) extends reference-based techniques to video super-resolution on smartphone
datasets, where triple-camera systems simultaneously record videos from different fields of view.
By leveraging consecutive frames, these methods integrate multi-frame information with reference
to enhance restoration, with only minimal time gaps between frames and the reference. Methods
such as RefVSR (Lee et al., 2022) and RefVSR++(Zou et al., 2025) employ the entire HQ video
sequence as reference and exploit bidirectional propagation to align multi-frame information, while
ERVSR (Kim et al., 2023) improves efficiency by leveraging only a single reference frame. While
our setting can be regarded as a sub-category of RefSR, it departs from conventional paradigms in
both dataset construction and task formulation. To address the unique challenges posed in Live Photo,
we construct dedicated datasets and design task-specific architectures.

3 METHOD

3.1 PRELIMINARY

Given a Live Photo, we denote the reselected LQ frame as ILs ∈ RH×W×3 and the original HQ
key photo as IHo ∈ RH×W×3. The goal of our task is to reconstruct a high-quality version of the
reselected frame, denoted as ĨHs, that matches the visual quality of IHo while preserving the content

3
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Figure 2: Overall architecture of LiveMoments. After the fixed VAE encoder, the original key photo
and the re-selected LQ frame are fed into the ReferenceNet and RestorationNet, respectively, and
fused via cross-attention. For latent level motion alignment, the optical flow is estimated with a fixed
RAFT model and encoded with a Motion Encoder, which is further injected into the cross-attention
as an additive bias. For image level alignment, Patch Correspondence Retrieval (PCR) strategy is
adopted during the inference to ensure spatial consistency when using the tiling strategy.

fidelity of ILs. Thus, the task is formulated as learning a restoration model Gθ parameterized by θ,
which takes (ILs, IHo) as input and predicts ĨHs.

Since real-world Live Photos lack HQ ground-truth counterparts for reselected frames, we construct
the training dataset using HQ video sequences. For example, the ground-truth IHs of the reselected
frame and the original key photo IHo are extracted with a clear temporal gap. IHs is degraded to
produce the LQ reselected frame ILs (see Section 4.1 for more details). We employ flow match-
ing (Albergo & Vanden-Eijnden, 2022; Esser et al., 2024) to train the diffusion model. Flow matching
aims to transform Gaussian noise into a target distribution by learning an appropriate velocity field.
In particular, Rectified Flow defines the forward process as xt = α(t)x0+β(t)ϵ, where α(t) = 1− t

and β(t) = t. The training objective is Et,xt ∥f(xt)− dxt/dt∥22, where f denotes the neural network
that parameterizes the velocity field in the Rectified Flow. To adapt flow matching to image-to-image
translation tasks, several approaches condition the generation process on a source image, aiming to
synthesize the target image from Gaussian noise. However, these methods often suffer from issues
such as hallucinated textures. Inspired by bridge matching (Chadebec et al., 2025; Liu et al., 2023;
Shi et al., 2023) that directly learns the velocity field between the source and target distributions, we
leverage an objective that focuses on learning the velocity field between ILs and IHs. Specifically,
we define the forward process as:

zt = α(t)zHs + β(t)zLs + σ(t)ϵ, (1)

where zHs and zLs are the latent representations obtained by a VAE encoder in the setting of latent
diffusion. The objective is to learn the velocity field:

Lθ = Et,zt ||Gθ(zt, t)−
dzt
dt

||22. (2)

The details of α(t), β(t), σ(t) can be found in the supplementary material.

3.2 OVERVIEW OF LIVEMOMENTS

Our setting is characterized by temporal dependency and reference-target correlation. Specifically, the
reference and degraded frames are sampled from the same Live Photo sequence with a clear temporal
offset, yet they retain scene-level coherence compared to static or externally sourced references.
Consequently, effective restoration of the reselected key photo requires leveraging fine-grained
details from the reference frame. To achieve this, the proposed LiveMoments consists of three key
components, as shown in Fig. 2: a RestorationNet performs conditional denoising on the noisy latent
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of ILs; a ReferenceNet encodes the original key photo IHo to provide high-quality guidance; a unified
Motion Alignment module achieves fine-grained alignment at both the latent and image levels.

3.3 DUAL-BRANCH ARCHITECTURE

Inspired by the success of reference-guided generation in video tasks (Hu, 2024; Xu et al., 2024),
we adopt a similar dual-branch design for reference-based restoration, leveraging both the diffusion
priors and the attention mechanisms of the pre-trained T2I diffusion models. Unlike CLIP-based
structure (Radford et al., 2021), which focuses on global semantics for low-resolution inputs, the
ReferenceNet preserves high-resolution features and fine-grained details that are essential for high-
fidelity restoration. Structurally, it mirrors the denoising backbone, enabling weight initialization from
pre-trained checkpoints and better feature alignment with the RestorationNet. In our implementation,
both branches are built on the Stable Diffusion 3 (SD3) architecture (Esser et al., 2024), which
provides a powerful generation backbone. The original key photo IHo is first encoded into the latent
space by a frozen VAE encoder, then processed by a DiT-based ReferenceNet to obtain detailed
features. These features are integrated into the main branch through cross-attention, where the key
and value from both branches are concatenated as follows:

Cross attn = Softmax
(
Q[K,Kref]

⊤
√
d

)
[V, Vref], (3)

where Q is the query from the attention layer of the RestorationNet, Kref and Vref are the key and
value from the ReferenceNet, while K and V are those from the RestorationNet. [·, ·] denotes the
concatenation operation, and d is the channel dimension. This interaction enables the model to
adaptively select and transfer textures and structural information from the reference image rather than
relying solely on coarse semantic alignment.

3.4 MOTION ALIGNMENT MODULE

3.4.1 LATENT SPACE MOTION ALIGNMENT

While the dual-branch structure enables implicit feature matching and detailed information transfer,
it is often insufficient for the task of reselected key photo restoration on Live Photos. The reselected
frame ILs typically suffers from motion blur and subject displacement, making it difficult to establish
accurate correspondences and align with the original key photo. Moreover, the significant quality
gap between the HQ key photo and the degraded reselected frame further hinders effective feature
alignment and leads to unreliable fusion.

To address these challenges, we design a motion-guided attention that introduces explicit motion
guidance into the latent space. In Live Photos, where temporal dependency naturally exists, optical
flow serves as an intuitive mechanism for establishing spatial correspondence. Distinct from previous
flow-based restoration methods, we transform the estimated flow into motion embeddings and
incorporate them into the cross-attention, thereby providing alignment priors to guide attention
toward relevant regions. Specifically, we utilize a pre-trained RAFT model (Teed & Deng, 2020)
to estimate the optical flow OLo→Ls, which serves as a dense pixel displacement field between the
degraded original key photo ILo and the reselected LQ frame ILs. During training, ILo is synthesized
by applying the same degradation parameters as those used for the reselected frame ILs. At inference
time, since ILs suffers from real-world degradation in Live Photos, we simulate the corresponding
degradation on IHo to narrow the quality gap and obtain more reliable motion estimation. To encode
the estimated motion, we introduce a lightweight Motion Encoder with convolutional layers and
SiLU activations that transforms the raw flow field into motion embeddings. These embeddings are
then incorporated into the cross-attention mechanism as an additive bias to the reference key features:

Cross attnopt = Softmax
(
Q[K,Kref + ELo→Ls]

⊤
√
d

)
[V, Vref], (4)

where ELo→Ls denotes the motion embeddings derived from the dense pixel displacement field
OLo→Ls. The encoded relative motion acts as a spatial bias that facilitates the query to attend to
aligned regions, thereby improving restoration under misaligned scenarios.

5
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Figure 3: Illustration of the proposed Patch Correspondence Retrieval (PCR) strategy. The average
displacement within a patch (the dense displacement field contained in P i

Ls) is used to shift the
top-left corner (xi, yi) to (x̂i, ŷi), then we crop the aligned reference patch P̂ i

Ho from IHo. On the
right, we compare the reselected patch P i

Ls, unaligned Ref patch P i
Ho and the aligned Ref patch P̂ i

Ho.

3.4.2 IMAGE SPACE MOTION ALIGNMENT

Live Photos typically have ultra-high resolutions (i.e., 3072 × 4096 for the original key photo),
which require patch-wise inference through a tiling strategy due to GPU memory limits. However,
subject motion often causes pixel-level misalignment between patches of ILs and IHo, leading to
content inconsistency that undermines reference-guided restoration. To mitigate this issue, and as
a complement to motion-guided attention, we propose a Patch Correspondence Retrieval (PCR)
strategy to stabilize local matching and improve content alignment between the reselected patches
from ILs and the reference patches from IHo during inference. Integrated into the tiling process
and applied before the VAE encoder, it uses the estimated displacement field to locate the reference
patch, ensuring that latent-space processing operates on spatially aligned inputs. Unlike pixel-
wise warping, the proposed alignment is performed at the patch level rather than on individual
pixels, which is consistent with the tiling-based inference pipeline and naturally preserves spatial
consistency. As shown in Fig. 3, we first estimate the optical flow OLs→Lo from ILs to ILo. For a
patch P i

Ls ∈ Rp×p×3 cropped from ILs with the standard tiling strategy, we compute the average
displacement vector within the patch as:

(∆xi,∆yi) = (
1

p2

p×p∑
j=1

f j
xi
,
1

p2

p×p∑
j=1

f j
yi
), (5)

where (f j
xi
, f j

yi
) represents the x- and y-axis components of the dense displacement field at pixel

j, obtained from OLs→Lo. The top-left corner (x̂i, ŷi) of the aligned reference patch P̂ i
Ho, cropped

from IHo, is then computed by shifting the top-left corner (xi, yi) of P i
Ls:

(x̂i, ŷi) = (xi +∆xi, yi +∆yi). (6)

The aligned reference patch P̂ i
Ho is then cropped from IHo with the patch size p. As shown in Fig. 3,

P̂ i
Ho achieves content consistency with P i

Ls, compared to the unaligned reference patch that directly
cropped from the same spatial location as P i

Ls. With the tiling strategy, the corresponding optical flow
patch is cropped at the same location as P̂ i

Ho to ensure spatial consistency of the network inputs.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Training Datasets. Since there are no existing datasets specifically for reselected key photo restora-
tion in Live Photos, we construct the training set based on high-quality video data. For each sample,
we select the HQ ground truth IHs of the reselected frame and the original key photo IHo with a clear
temporal gap. In particular, we extract frames from the first 3,000 videos of the 2K-resolution DL3DV
dataset (Ling et al., 2024), a large and multi-view video dataset covering over 10,000 scenes. The
frame interval is set to 5, resulting in 50,400 image pairs at a resolution of 1024 × 1024. To further
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Table 1: Quantitative comparison with RefSR and SISR methods on real-world Live Photo datasets.
The best results are highlighted in bold. Here, NIre denotes NIQEre, MUre denotes MUSIQre, CAre

denotes CLIPIQA and MAre denotes MANIQAre.

Method vivoLive144 iPhoneLive90
NIre ↓ MUre ↓ CAre ↓ MAre ↓ CLIP-Q↑ DINO-Q↑ NIre ↓ MUre ↓ CAre ↓ MAre ↓ CLIP-Q↑ DINO-Q↑

TTSR 0.2050 0.3545 0.1928 0.1400 0.9626 0.8304 0.3069 0.2858 0.2593 0.1974 0.9505 0.8689
C2-Matching 0.2047 0.3512 0.1929 0.1390 0.9623 0.8298 0.3147 0.2800 0.2791 0.1978 0.9505 0.8685
DATSR 0.2212 0.3573 0.1951 0.1386 0.9621 0.8261 0.3324 0.2859 0.2853 0.1963 0.9500 0.8657
MRefSR 0.2276 0.3537 0.1916 0.1371 0.9616 0.8216 0.3408 0.2845 0.2900 0.1978 0.9499 0.8652
CoSeR 0.1953 0.1865 0.2752 0.1080 0.9658 0.9197 0.1774 0.2492 0.1564 0.0784 0.9608 0.8618
ReFIR (SeeSR) 0.3258 0.3042 0.8606 0.2731 0.9582 0.8156 0.2895 0.3605 0.5111 0.1429 0.9467 0.7319
ReFIR (SUPIR) 0.4665 0.2318 0.3571 0.1559 0.9201 0.8783 0.4336 0.2778 0.2224 0.0876 0.9190 0.8105
RefVSR 0.3798 0.3157 0.2142 0.1967 0.9609 0.8385 0.4226 0.2326 0.3016 0.2810 0.9472 0.8431
ERVSR 0.3314 0.4012 0.3457 0.1459 0.9597 0.8137 0.3635 0.3188 0.4569 0.2030 0.9448 0.8607
StableSR 0.3032 0.2833 0.7447 0.2250 0.9458 0.8491 0.2571 0.3566 0.3837 0.1253 0.9466 0.8174
DiffBIR 0.4228 0.3213 0.9547 0.3550 0.9023 0.7769 0.3477 0.3532 0.5397 0.1705 0.9145 0.7727
SeeSR 0.2767 0.2916 0.8168 0.2331 0.9606 0.8269 0.2957 0.3511 0.5174 0.1408 0.9445 0.7253
SUPIR 0.2703 0.2545 0.8275 0.1115 0.9407 0.8559 0.1805 0.3429 0.4924 0.0738 0.9422 0.7908
OSEDiff 0.2694 0.3191 0.8206 0.2444 0.9541 0.8536 0.2750 0.3832 0.4698 0.1260 0.9444 0.7525
TSD-SR 0.3359 0.3133 0.8519 0.2205 0.9476 0.8636 0.2963 0.3956 0.5142 0.1210 0.9477 0.7917
LiveMoments 0.0990 0.0893 0.0809 0.0556 0.9805 0.9629 0.0801 0.1230 0.1361 0.0543 0.9842 0.9466

enrich the dataset with various motion patterns, we additionally collect 4K videos from the internet,
obtaining 25,000 image pairs at the same resolution. To simulate degradations in Live Photo videos,
we utilize the Real-ESRGAN (Wang et al., 2021) pipeline to obtain the LQ reselected frame ILs, with
parameters specifically adjusted to better align the real-world degradations in mobile photography.
Test Datasets. For model evaluation, we construct a synthesized dataset, SynLive260, along with two
real-world Live Photo datasets, vivoLive144 and iPhoneLive90, collected from high-end consumer
smartphones. VivoLive144 and iPhoneLive90 consist of 144 and 90 Live Photos captured with vivo
X200 Pro and iPhone 15 Pro, respectively. In both datasets, the LQ reselected frames are manually
extracted from the associated Live Photo video clips. These two datasets cover diverse dynamic
scenes, including indoor and outdoor environments, street views, portraits, pets, and everyday objects,
with motions from camera movement and subject dynamics. SynLive260 is built from 182 internet
videos, covering various scenarios. After frame extraction, we obtain 260 image pairs of the HQ
reselected frame and the original key photo. The HQ reselected frame is then degraded by Real-
ESRGAN pipeline with a ×2 downsampling factor to simulate degradations in Live Photo videos.
Evaluation Metrics. On both the synthesized dataset and real-world Live Photo dataset, we adopt no-
reference metrics for evaluation. We apply four metrics originally designed for SISR: NIQE (Zhang
et al., 2015), MUSIQ (Ke et al., 2021), CLIPIQA (Wang et al., 2023a), and MANIQA (Yang et al.,
2022). However, unlike traditional SR settings, our task provides access to the original high-quality
key photo IHo as a reference. This allows us to extend these metrics into a relative no-reference form
by computing the normalized deviation between the restored reselected frame ĨHs and IHo:

metricre(ĨHs, IHo) =

∣∣∣metric(ĨHs)− metric(IHo)
∣∣∣

metric(IHo)
, (7)

where metric(·) denotes one of the above no-reference metrics. This formulation quantifies the
quality gaps between the restored image ĨHs and a known HQ reference. To further assess perceptual
alignment with IHo, we introduce two relative-reference metrics, CLIP-Q and DINO-Q, derived
from CLIP-I and DINO from DreamBooth (Ruiz et al., 2023). Following CLIPIQA, we remove the
positional embeddings from both models to support high-resolution inputs and eliminate resizing-
induced distortions, which is crucial for faithful quality assessment. We also calculate full-reference
metrics on the synthesized dataset: PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018)
and DISTS (Ding et al., 2020), where PSNR and SSIM are computed on y-channel in the YCbCr
space. FID is also evaluated on SynLive260. Since it requires downsampling 4K images to a low
resolution, we compute patch-wise FID by cropping images into 512× 512 patches, which ensures
that the evaluation resolution is consistent with recent restoration works (Dong et al., 2024).
Implementation Details. Both the ReferenceNet and the RestorationNet are initialized from the
pre-trained weights of SD3-medium. We only train the MM-DiT backbones of both networks along
with the Motion Encoder, while keeping the VAE encoder and decoder frozen. Training starts with
an initial learning rate of 5e−5 and takes roughly 48h with 2 NVIDIA H20 GPUs and a batch size
of 8. Inference is performed using a tiling strategy with a patch size of 1024× 1024, which is kept
identical to the training patch size for stable and fair evaluation.
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Table 2: Quantitative comparison with RefSR and SISR methods on the synthetic dataset SynLive260.
The best results are highlighted in bold. Here, NIre denotes NIQEre, MUre denotes MUSIQre, CAre

denotes CLIPIQA and MAre denotes MANIQAre.
Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIre ↓ MUre ↓ CAre ↓ MAre ↓ CLIP-Q↑ DINO-Q↑
TTSR 31.74 0.8778 0.2416 0.1259 18.53 0.4254 0.3885 0.1996 0.2209 0.9621 0.8373
C2-Matching 31.85 0.8782 0.2419 0.1250 18.51 0.4354 0.3873 0.2051 0.2199 0.9619 0.8391
DATSR 31.84 0.8783 0.2417 0.1251 18.50 0.4380 0.3876 0.2034 0.2186 0.9618 0.8388
MRefSR 31.84 0.8782 0.2420 0.1252 18.73 0.4342 0.3886 0.2058 0.2195 0.9612 0.8374
CoSeR 27.60 0.8136 0.2436 0.1135 13.92 0.2603 0.2548 0.6380 0.1028 0.9699 0.8924
ReFIR (SeeSR) 27.44 0.7942 0.2873 0.1530 28.26 0.3378 0.4028 1.2814 0.1837 0.9558 0.7934
ReFIR (SUPIR) 24.20 0.7024 0.3992 0.1779 33.95 0.4968 0.3273 0.7808 0.1491 0.9238 0.8295
RefVSR 26.28 0.8037 0.2937 0.1183 15.10 0.3713 0.3003 0.1964 0.2783 0.9631 0.8609
ERVSR 26.26 0.8016 0.3335 0.1306 20.22 0.4035 0.4021 0.2819 0.2129 0.9576 0.8327
StableSR 26.49 0.7619 0.3238 0.1491 23.77 0.3912 0.3951 1.1322 0.1573 0.9464 0.8386
DiffBIR 25.98 0.6927 0.4421 0.1958 36.39 0.3771 0.4199 1.3705 0.2260 0.9167 0.7824
SeeSR 27.25 0.7865 0.2981 0.1571 28.89 0.3602 0.3929 1.2805 0.1853 0.9538 0.7940
SUPIR 25.96 0.7309 0.3660 0.1762 31.53 0.2875 0.3741 1.3061 0.1083 0.9335 0.7869
OSEDiff 26.81 0.7882 0.2915 0.1412 27.17 0.3325 0.4132 1.1931 0.1669 0.9566 0.8220
TSD-SR 25.34 0.7379 0.3090 0.1625 24.03 0.4081 0.4595 1.3084 0.1641 0.9439 0.8208
LiveMoments 31.65 0.8990 0.0828 0.0365 4.00 0.0911 0.0720 0.1155 0.0495 0.9950 0.9740

reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 4: Visual comparison on the two real-world Live Photo datasets: vivoLive144 (top) and
iPhoneLive90 (bottom). The aligned original key photo is cropped manually for better comparison.

4.2 COMPARISON WITH EXISTING METHODS

We compare LiveMoments with three categories of state-of-the-art methods. First, RefISR methods
including TTSR (Yang et al., 2020), C2-Matching (Jiang et al., 2021), DATSR (Cao et al., 2022),
and MRefSR (Zhang et al., 2023a), as well as diffusion-based methods CoSeR (Sun et al., 2024) and
ReFIR (Yu et al., 2024) (based on SISR methods SeeSR and SUPIR). Designed for SISR, we replace
the synthesized reference in CoSeR with the actual one. Second, RefVSR methods RefVSR (Lee
et al., 2022) and ERVSR (Kim et al., 2023), for which we additionally supply full video inputs
to match their model design. Finally, recent diffusion-based SISR methods, including multi-step
(StableSR (Wang et al., 2024), DiffBIR (Lin et al., 2024), SeeSR (Wu et al., 2024b), SUPIR (Yu
et al., 2024)), and single-step (OSEDiff (Wu et al., 2024a), TSD-SR (Dong et al., 2024)).
Real-World Live Photo Datasets. The quantitative results on the two Live Photo datasets are shown
in Tab. 1, which can be found that our method achieves SOTA in both two datasets among all metrics.
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Table 3: Ablation study of the network design on vivoLive144. All warp operation is applied on the
original key photo, denoted as the reference image (Ref). The best results are highlighted in bold.

Method NIQEre ↓ CLIPIQAre ↓ MANIQAre ↓ CLIP-Q↑ DINO-Q↑
RestorationNet 0.1677 0.2348 0.1105 0.9690 0.9081
RestorationNet + ReferenceNet 0.1097 0.0823 0.0631 0.9792 0.9539
RestorationNet + ReferenceNet + warp RefImage 0.1034 0.0873 0.0573 0.9774 0.9480
RestorationNet + ReferenceNet + warp RefLatent 0.1130 0.0850 0.0622 0.9776 0.9456
RestorationNet + ReferenceNet + warp RefKV 0.1183 0.0853 0.0657 0.9774 0.9437
LiveMoments (full model) 0.0990 0.0809 0.0556 0.9805 0.9629

original key photo LiveMoments w/o PCR

reselected patch aligned Ref patch

LiveMoments w PCR
(b) w and w/o PCR comparison 

NIQE↓: 2.2079
NIQE!" ↓: 0.5870
MANIQA↑: 0.6223
MANIQA!" ↓: 0.4083

NIQE↓: 5.4055
NIQE!" ↓: 0.0110
MANIQA↑: 0.3705
MANIQA!" ↓: 0.1617

❌ 
preferred by 
no-reference metrics

✅ 
preferred by 
human & 
relative-reference metrics

(a) metrics comparison

Figure 5: (a) Comparison between no-reference metrics, the proposed relative no-reference metrics,
and human visual preference in evaluating the proposed task. (b) Comparison between LiveMoments
with (w) and without (w/o) the proposed Patch Correspondence Retrieval (PCR) strategy when
processing 4K images. Patches are cropped for clearer visualization.

We note that commonly used no-reference metrics may be suboptimal for evaluating reference-guided
restoration tasks, since they ignore the reference and often favor visually rich but inaccurate results.
As illustrated in Fig. 5, a restored image with high quality scores but large deviation from the reference
often contains visually implausible artifacts, whereas smaller deviations yield perceptually closer
results. This reveals the limitation of no-reference metrics and highlights the effectiveness of the
proposed relative no-reference metric. The visual results are provided in Fig. 4, where we compare
representative methods with strong quantitative results. Our method effectively restores the reselected
frame with details comparable to the original key photo without introducing artifacts, even when the
input suffers from motion misalignment. More results are provided in the supplementary material.

Synthetic Dataset. The quantitative results on SynLive260 are shown in Tab. 2. It can be found that
our method achieves the best performance among nearly all metrics. Although it shows lower PSNR,
this mainly reflects the limitation of full-reference metrics in real-world restoration tasks, as discussed
in (Yu et al., 2024). In contrast, the proposed task-specific metrics and qualitative comparisons (in
the supplementary material) better capture the perceptual fidelity of the results.

4.3 ABLATION STUDY

Effectiveness of the dual-branch architecture. To validate the effectiveness of our dual-branch
design, we first evaluate a baseline that uses only the RestorationNet without any reference guidance.
As shown in the 1-st row of Tab. 3, performance drops across all metrics, highlighting the importance
of introducing the ReferenceNet and the original key photo to enhance restoration quality.

Effectiveness of the motion-guided attention. We evaluate the effectiveness of our motion-guided
attention by exploring different strategies for incorporating dense correspondence for motion align-
ment into the network. Specifically, we evaluate a model without latent-level alignment and several
variants that inject motion information at different stages of the ReferenceNet, as shown in rows
2-5 in Tab. 3. All models are evaluated under our patch correspondence retrieval strategy to ensure
spatial consistency during tiled inference on our vivoLive144 dataset. Among them, the proposed
motion-guided attention outperforms other variants. This demonstrates the advantage of injecting
alignment to guide the feature matching in the attention space, rather than relying on warping. We
provide the results on SynLive260 in the supplementary material.
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Effectiveness of the Patch Correspondence Retrieval (PCR). We present challenging case with
large motion and complex textures that hinder patch-level alignment, to validate the effectiveness of
PCR. As shown in Fig. 5, our method establishes accurate correspondence between the two inputs,
leading to more consistent and visually coherent restoration. These results highlight the robustness of
our strategy under real-world scenes. We provides more visual results in the supplementary material.

5 CONCLUSION

We propose LiveMoments, a diffusion-based network designed for reselected key photo restoration
in Live Photos. LiveMoments employs a dual-branch neural network with cross-attention between
the branches to transfer detailed structural and textural information from the original high-quality key
photo to the reselected low-quality frame. To address the challenge of large motion misalignment,
we introduce a unified Motion Alignment module that aligns motion between the reselected and
original key photos in both the latent and image spaces. Furthermore, to facilitate comprehensive
comparison, we present a comprehensive benchmark comprising both real and synthetic Live Photos,
along with task-specific evaluation metrics. Extensive experiments on three datasets demonstrate that
LiveMoments significantly outperforms existing methods across both quantitative metrics and visual
quality, particularly in challenging scenarios.

ETHICS STATEMENT

Our work focuses on restoring reselected key photos in Live Photos for improving mobile photography.
The synthetic dataset SynLive260 is built from publicly available video sources with no personal
information. The real-world datasets (vivoLive144 and iPhoneLive90) were collected with the
consent of participants. Before public release, all identifiable faces will be removed or anonymized to
minimize privacy concerns. Our method is not intended for identity recognition or generation, and
the released resources will be restricted to academic research in image restoration. Potential misuse
is minimal given the planned anonymization and the academic scope of this work.

REPRODUCIBILITY STATEMENT

We provide implementation details in Sec. 4.1 and Appendix B, covering both training and inference.
Details of dataset preparation and evaluation metrics are also included in Sec. 4.1. We plan to release
our code and datasets to enable reproducibility and encourage further research.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only to polish the writing and check grammar. They were
not used to generate ideas, design methods, or influence experimental results.

B MORE IMPLEMENTATION DETAILS

B.1 LOSS DETAILS

We define the forward process of the flow matching as,

zt = α(t)zHs + β(t)zLs + σ(t)ϵ, (8)

and the objective:

Lθ = Et,zt ||Gθ(zt, t)−
dzt
dt

||22. (9)

Specifically, we define the coefficients as,

α(t) =
(1− t)(0.2− t)

0.2
, β(t) =

(1− t)t

0.2
, (10)

σ(t) = t, with t ∈ [0, 0.2]. (11)

It can be observed that α(t), β(t) and σ(t) are differentiable and sum to 1 for every t. Moreover,
when t = 0, zt = zHs , and when t = 0.2, zt = 0.8zLs + 0.2ϵ. This formulation adheres to the flow-
matching framework, with the only deviation from the classical setup being the initial distribution:
instead of pure Gaussian noise, we use a biased mixture defined as zmix = 0.8zLs

+ 0.2ϵ. The
learning objective is to estimate a velocity field that transports zmix → zHs

within a narrow time
window of length 0.2.

The core intuition is that low-quality (i.e., zLs) and high-quality (i.e., zHs) images share most of
their low-frequency information. In other words, the primary difference between them lies in the
high-frequency details. As a result, applying the full computational cost of denoising a completely
random image—as is done in classical diffusion or flow-matching approaches—is largely inefficient.

Therefore, we apply only a 20% Gaussian noise perturbation, which preserves low-frequency infor-
mation while introducing stochasticity to maintain a well-posed learning problem, e.g., preventing
the collapse of the generative diffusion prior. Furthermore, the ODE is integrated over a shortened
time interval, t ∈ [0, 0.2], significantly reducing the sampling path length. As a result, our inference
process requires only 6 sampling steps, making it substantially faster than most diffusion-based image
generation models. More importantly, due to the reduced stochasticity, the predictions become more
deterministic—an advantageous property in image restoration scenarios where consistency is critical.

B.2 TRAINING DETAILS

Following prior work, we perform cross-attention across all DiTs in Stable Diffusion 3-medium for
full feature fusion, involving both image and text embeddings. Since the reference image provides
rich structural and textural cues, we use an empty text prompt during training and inference. We
fine-tune the image branches in both the DiT-based ReferenceNet and RestorationNet, while keeping
the text branch fixed to fully exploit the HQ guidance.

B.3 COMPARISONS ON COMPUTATIONAL COSTS

LiveMoments processes a 1024×1024 patch in 1.89 seconds under FP16 inference on an H20 GPU
(14.6 GB memory, 98.91 TFLOPs). For a 4K Live Photo (i.e., 3072 × 4096), the total processing
time is about 40 seconds. To further clarify the computational cost, we report the parameter count,
as well as the parameter-only VRAM and the inference-time peak VRAM for all components of
LiveMoments in Tab. 4, measured when processing a 4K Live Photo.
We also provide a detailed comparison of parameter count, FLOPs, peak memory usage, and inference
time between our method and the diffusion-based RefISR and SISR methods. All measurements
were conducted on a single NVIDIA H20 GPU and run in mixed precision under a resolution of
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Table 4: Comparisons on branch-wise parameter counts and VRAM, measured when processing a
4K Live Photo.

Component Parameter Counts (M) Parameter-only VRAM (MB) Inference-time Peak VRAM (MB)
VAE 83.82 159.87 12368.33
ReferenceNet 2028.33 3868.73 10090.78
RestorationNet 2084.95 3976.73 10091.28
RAFT 5.26 10.03 13180.38
Motion Encoder 66.09 126.06 9940.00

Table 5: Comparisons with RefISR and SISR methods on parameter counts, FLOPs, peak memory
usage and inference time at a resolution of 1024× 1024 on a single NVIDIA H20 GPU.

Type Method Parameter Counts (M) TFLOPs Peak Memory (GB) Inference Time (s)

Time-Step Distilled Methods OSEDiff 1294.38 + 470.93 (DAPE) 20.53 8.66 0.43
TSD-SR 2207.33 21.91 8.60 0.24

Non-Distilled Methods

CoSeR 2655.52 – 32.74 48.83
ReFIR (SeeSR) 2039.83 + 470.93 (DAPE) 1560.70 17.83 27.62
ReFIR (SUPIR) 4801.18 2672.70 59.82 31.67
StableSR 1554.64 2236.31 34.53 164.67
DiffBIR 1683.45 691.43 35.46 26.02
SeeSR 2039.83 + 470.93 (DAPE) 741.42 12.07 14.54
SUPIR 4801.18 1200.65 54.25 16.98
LiveMoments 4268.45 98.91 14.53 1.89

1024 × 1024, except for CoSeR and DiffBIR, which do not support mixed precision inference at
that resolution. As shown in Tab. 5, our LiveMoments achieves the lowest TFLOPs and the shortest
inference time among the multi-step methods, while maintaining a competitive model size and peak
memory usage to others. Although one-step diffusion methods such as OSEDiff and TSDSR benefit
from distillation-based training and therefore exhibit faster inference and lower computational cost,
LiveMoments achieves a trade-off between computational cost and restoration quality.

C USER STUDY

We compare LiveMoments with three representative RefSR methods:
a traditional method (DATSR), a diffusion-based approach (ReFIR),
and the strongest quantitative baseline (CoSeR). A total of 26 partici-
pants took part in the vote. They were asked to select the result that
best matches the visual quality of the reference while preserving the
content of the reselected LQ frame. As shown in Fig. 6, our method
receives 69.62% approval rates, indicating its effectiveness.

Figure 6: User study results.

D MORE ANALYSIS OF THE PROPOSED RELATIVE NO-REFERENCE METRICS

D.1 CORRELATION BETWEEN RELATIVE NO-REFERENCE METRICS AND HUMAN PREFERENCES

Using the same three baselines as in the main user study (DATSR, ReFIR, and CoSeR), we further
conducted a ranking-based experiment to analyze the correlation between the relative no-reference
metrics and human preferences. We randomly sampled 15 images from vivoLive144 and 10 images
from iPhoneLive90. A total of 15 participants are invited to rank the images based on perceptual
similarity to the reference.
In Tab. 6, the Spearman and Pearson correlations show that all four metrics maintain positive,
moderate alignment with human perception across devices and ISPs. These values are comparable to
those reported in generic NR-IQA methods without task-specific training such as CLIPIQA (typically
0.36–0.74), despite our much smaller real-world dataset. This indicates that the proposed relative
no-reference metrics remain meaningfully correlated with human perception.
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Table 6: Spearman and Pearson correlations between relative no-reference metrics and human
perception on real-world Live Photo datasets.

Metric vivoLive144 iPhoneLive90
Spearman↑ Pearson↑ Spearman↑ Pearson↑

NIQEre 0.493 0.518 0.604 0.560
MUSIQre 0.585 0.543 0.414 0.440
CLIPIQAre 0.558 0.542 0.486 0.495
MANIQAre 0.535 0.548 0.370 0.413

NIQE↓: 2.0735
NIQE!" ↓: 0.4873
CLIPIQA↑: 0.7990
CLIPIQA!" ↓: 0.1901

NIQE↓:  2.7610
NIQE!" ↓: 0.3174
CLIPIQA↑: 0.6824
CLIPIQA!" ↓: 0.0165

CLIPIQA↑: 0.5867
CLIPIQA!" ↓: 0.2224
MANIQA↑: 0.5033
MANIQA!" ↓: 0.1184

CLIPIQA↑: 0.4266
CLIPIQA!" ↓: 0.1112
MANIQA↑: 0.4235
MANIQA!" ↓: 0.0588

❌ 
preferred by 
no-reference metrics

✅ 
preferred by 
human & 
relative-reference metrics

❌ 
preferred by 
no-reference metrics

✅ 
preferred by 
human & 
relative-reference metrics

MUSIQ↑: 54.67
MUSIQ!" ↓: 0.3663
MANIQA↑: 0.5203
MANIQA!" ↓: 0.3054

MUSIQ↑: 40.34
MUSIQ!" ↓: 0.0081
MANIQA↑: 0.3902
MANIQA!" ↓: 0.0210

MUSIQ↑: 54.68
MUSIQ!" ↓: 0.0308
CLIPIQA↑: 0.6246
CLIPIQA!" ↓: 0.5199

MUSIQ↑: 52.37
MUSIQ!" ↓: 0.0126
CLIPIQA↑: 0.4153
CLIPIQA!" ↓: 0.0104

NIQE↓: 3.7756
NIQE!" ↓: 0.3111
MUSIQ↑: 55.61
MUSIQ!" ↓: 0.1828

NIQE↓:  4.2253
NIQE!" ↓: 0.2291
MUSIQ↑: 50.70
MUSIQ!" ↓: 0.0783

CLIPIQA↑: 0.3558
CLIPIQA!" ↓: 0.6378
MANIQA↑: 0.4587
MANIQA!" ↓: 0.1764

CLIPIQA↑: 0.1968
CLIPIQA!" ↓: 0.0941
MANIQA↑: 0.3883
MANIQA!" ↓: 0.0042

Figure 7: Comparison between no-reference metrics, the proposed relative no-reference metrics,
and human visual preference in evaluating the key photo reselection task. The aligned key photo is
cropped manually for better comparison.

D.2 COMPARISON OF NO-REFERENCE METRICS WITH THE PROPOSED RELATIVE
NO-REFERENCE METRICS

We present additional experiments in Fig. 7 to demonstrate that the widely-used no-reference metrics
may have limitations in assessing image quality under the task of key photo reselection. It can be
observed that these metrics prefer rich texture but far from real appearance results.

E ADDITIONAL ABLATION RESULTS

E.1 ABLATION STUDY ON SYNLIVE260 DATASET

We additionally provide ablation results on SynLive260 with ground-truth in Table 7. While our
method does not achieve the absolute best scores in distortion-oriented metrics such as PSNR and
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Table 7: Ablation study of the network design on SynLive260. All warp operation is applied on the
original key photo, denoted as the reference image (Ref). The best results are highlighted in bold.
Here, CAre denotes CLIPIQA and MAre denotes MANIQAre.
Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ CAre ↓ MAre ↓ CLIP-Q↑ DINO-Q↑
RestorationNet 30.42 0.8610 0.1685 0.0793 0.1721 0.0927 0.9841 0.9195
RestorationNet + ReferenceNet 31.47 0.8980 0.0837 0.0388 0.1246 0.0586 0.9949 0.9643
RestorationNet + ReferenceNet + warp RefImage 31.49 0.8927 0.0968 0.0475 0.1569 0.0546 0.9934 0.9556
RestorationNet + ReferenceNet + warp RefLatent 31.84 0.8986 0.0924 0.0441 0.1305 0.0618 0.9936 0.9566
RestorationNet + ReferenceNet + warp RefKV 31.82 0.8991 0.0895 0.0435 0.1306 0.0645 0.9940 0.9580
LiveMoments (full model) 31.65 0.8990 0.0828 0.0365 0.1155 0.0495 0.9950 0.9740

Table 8: Ablation study of different training degradation settings on vivoLive144. “Customized Live
Photo degradation” is the setting used in the main experiments. Best results are highlighted in bold.
Degradation Type NIQEre ↓ MUSIQre ↓ CLIPIQAre ↓ MANIQAre ↓ CLIP-Q↑ DINO-Q↑
Moderate-StableSR 0.0925 0.1086 0.0883 0.0673 0.9786 0.9550
StableSR 0.0933 0.1165 0.1056 0.0734 0.9791 0.9581
SeeSR 0.0904 0.1030 0.0812 0.0647 0.9788 0.9505
Customized Live Photo Degradation 0.0990 0.0893 0.0809 0.0556 0.9805 0.9629

original key photo

reselected patch aligned Ref patch

LiveMoments w PCR LiveMoments w/o PCR original key photo

reselected patch aligned Ref patch

LiveMoments w PCR LiveMoments w/o PCR

Figure 8: Comparison between LiveMoments with (w) and without (w/o) the proposed Patch
Correspondence Retrieval (PCR) strategy when processing 4K images. Patches are cropped for
clearer visualization. Please zoom in for better view.

SSIM, it consistently surpasses all baselines across perceptual and reference-based quality metrics
(LPIPS, DISTS, CLIP-Q, DINO-Q, etc.). These results indicate that LiveMoments is more effective
at recovering fine-grained structures and perceptual fidelity, aligning better with human perception.
The consistent performance on both synthetic and real data further confirms the robustness and
effectiveness of our design.

E.2 MORE VISUAL EXAMPLES FOR PATCH CORRESPONDENCE RETRIEVAL (PCR)

To further validate the effectiveness of our Patch Correspondence Retrieval (PCR) strategy, we
provide additional challenging cases in Fig. 8. Even under large motion and complex textures, PCR
corrects spatial offsets between degraded and reference patches, enabling accurate transfer of fine
details such as text edges and leaf veins. These results confirm that PCR enhances both restoration
fidelity and fine-grained detail recovery in high-resolution scenarios.

E.3 ANALYSIS ON DEGRADATION SETTINGS

We conducted analyses to explore how different synthetic degradation settings affect real-world
performance. Specifically, we trained LiveMoments under three representative degradation settings:
(1) SeeSR degradation, (2) StableSR degradation, and (3) a lighter moderate-StableSR variant
constructed by reducing the blur and noise levels. The quantitative results on vivoLive144 are
reported in Tab. 8. Among the three settings, our customized Live Photo degradation achieves the
best results across most metrics, indicating that it better reflects real-world degradation characteristics.
At the same time, LiveMoments maintains stable performance under all three degradation variants,
demonstrating its robustness to different synthetic degradation.
We also provides the visualizations of degraded images in Fig. 9. For each setting, the synthetic
degradation is applied to the original key photo from our real-world Live Photo dataset and compared
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Table 9: Ablation study of robustness analysis under flow noise injection and flow estimator replace-
ment on vivoLive144. Best results are highlighted in bold.

Method NIQEre ↓ MUSIQre ↓ CLIPIQAre ↓ MANIQAre ↓ CLIP-Q↑ DINO-Q↑
LiveMoments + 10% noise 0.0999 0.0921 0.0808 0.0561 0.9802 0.9622
LiveMoments + 20% noise 0.1035 0.0935 0.0802 0.0551 0.9799 0.9613
LiveMoments + 40% noise 0.1082 0.0993 0.0811 0.0546 0.9792 0.9591
LiveMoments + 80% noise 0.1108 0.1072 0.0845 0.0548 0.9785 0.9555
LiveMoments + 100% noise 0.1116 0.1099 0.0862 0.0566 0.9782 0.9540
LiveMoments + 200% noise 0.1159 0.1222 0.0915 0.0578 0.9771 0.9497
LiveMoments (SPyNet) 0.1006 0.0907 0.0809 0.0561 0.9804 0.9629
LiveMoments (LiteFlowNet) 0.1031 0.0946 0.0808 0.0544 0.9794 0.9595
LiveMoments 0.0990 0.0893 0.0809 0.0556 0.9805 0.9629

Figure 9: Comparison between different degradation settings. The aligned LQ is cropped manually
for better comparison. Please zoom in for better view.

with the corresponding reselected LQ frame, allowing us to assess how well the synthetic degradations
replicate real degradation patterns. The results show that existing settings tend to apply stronger
degradations than those observed in real Live Photos, while our customized Live Photo degradations
more faithfully reflect real-world characteristics.

E.4 ROBUSTNESS ANALYSIS OF INACCURATE MOTION ALIGNMENT

We analyze the behavior and robustness of LiveMoments when the estimated optical flow is inaccurate
and motion alignment becomes unreliable. To quantify its sensitivity to flow errors, we conduct two
analyses on vivoLive144: (1) perturbing the RAFT flow with Gaussian noise, and (2) replacing RAFT
with alternative flow estimators. The results is provided in Tab. 9.
Noise Injection. We add Gaussian noise with different magnitudes (10%–200% of the original
flow magnitude) to the RAFT outputs. Although the perturbed flows become increasingly distorted,
the reconstruction quality of LiveMoments degrades only slightly under moderate perturbations,
indicating low sensitivity to flow inaccuracies.
Flow Estimator Replacement. We substitute RAFT with SPyNet and LiteFlowNet, and the results
remain close to the original RAFT-based LiveMoments, suggesting that the model does not rely on a
specific flow estimator and generalizes across different motion estimation methods.

In addition, we provide visualizations to to further analyze the impact of flow errors, including the
reselected LQ frame, the original key photo with optical flow, and the warped original key photo,
together with cropped regions that illustrate local refinement quality.
Robust cases. As shown in Fig. 10, LiveMoments remains stable even when RAFT produces low-
confidence or divergent flow vectors due to large motion or occlusion. Despite inaccurate motion
guidance, the model does not introduce hallucinated textures and still produces visually coherent
results, demonstrating its robustness to moderate flow errors.
Failure cases. In Fig. 11, we provide failure-case visualizations, including examples with large
motion, severe occlusion, and low-texture regions that lead to inaccurate flow. These examples reveal
the boundary conditions where motion alignment errors exceed the model’s ability to compensate.
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original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

Figure 10: Robust cases with inaccurate motion alignment. The aligned original key photo is cropped
manually for better comparison. Please zoom in for better view.

F MORE VISUAL RESULTS

In Figs. 12, 13, 14 and 16, we present additional visual comparisons on the real world Live Photo
dataset vivoLive144, including cases under high-resolution scenes. We compare visual results on
vivoLive144 from other RefISR, RefVSR and SISR baselines in Fig. 15. In Figs. 17 and 18, we
present additional visual comparisons and high-resolution results on iPhoneLive90. The visual
results of iPhoneLive90 from other RefISR, RefVSR and SISR baselines are provided in Fig. 19. In
Figs. 19 and 20, we present additional visual comparisons and high-resolution results on SynLive260.
These examples demonstrate the robustness of LiveMoments in addressing the key photo re-selection
task across scenarios.
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original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

original key photo with optical flow warped original key photoreselected LQ frame

reselected patch LiveMoments

manually aligned Ref patch warped Ref patch

Figure 11: Failure cases with inaccurate motion alignment. The aligned original key photo is cropped
manually for better comparison. Please zoom in for better view.
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reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 12: More visual comparisons of RefISR, RefVSR and SISR methods on vivoLive140 dataset.
The aligned original key photo is cropped manually for comparison. Please zoom in for a better view.

LiveMoments

cropped LQ frame 

CoSeR

ReFIR (SUPIR)

LiveMoments

aligned key photo

LiveMoments

original key photo

Figure 13: High-resolution visual comparisons of diffusion-based RefISR methods on vivoLive140
dataset. The aligned original key photo is cropped manually for better comparison.
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LiveMoments

cropped LQ frame 

CoSeR

ReFIR (SUPIR)

LiveMoments

aligned key photooriginal key photo

Figure 14: High-resolution visual comparisons of diffusion-based RefISR methods on vivoLive140
dataset. The aligned original key photo is cropped manually for better comparison.

reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 15: More visual comparisons of other RefISR, RefVSR and SISR methods on vivoLive140
dataset. The aligned original key photo is cropped manually for better comparison. Please zoom in
for a better view.
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LiveMoments

cropped LQ frame 

CoSeR

ReFIR (SUPIR)

LiveMoments

aligned key photo

LiveMoments

original key photo

Figure 16: High-resolution visual comparisons of diffusion-based RefISR methods on vivoLive140
dataset. The aligned original key photo is cropped manually for better comparison.

reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 17: More visual comparisons of RefISR, RefVSR and SISR methods on iPhoneLive90 dataset.
The aligned original key photo is cropped manually for comparison. Please zoom in for a better view.
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LiveMoments

cropped LQ frame 

CoSeR

ReFIR (SUPIR)

LiveMoments

aligned key photooriginal key photo

Figure 18: High-resolution visual comparisons of diffusion-based RefISR methods on iPhoneLive90
dataset. The aligned original key photo is cropped manually for better comparison.

reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 19: More visual comparisons of other RefISR, RefVSR and SISR methods on iPhoneLive90
dataset. The aligned original key photo is cropped manually for better comparison. Please zoom in
for a better view.
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LiveMoments

cropped LQ frame 

CoSeR

ReFIR (SUPIR)

LiveMoments

ground truthoriginal key photo

Figure 20: High-resolution visual comparisons of diffusion-based RefISR methods on SynLive260
dataset. The aligned original key photo is cropped manually for better comparison.

reselected LQ frame

original key photo

reselected LQ frame

original key photo

Figure 21: More visual comparisons of RefISR, RefVSR and SISR methods on SynLive260 dataset.
The aligned original key photo is cropped manually for better comparison. Please zoom in for a better
view.
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