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Abstract

Discovering approximately optimal policies in domains is crucial to applying
reinforcement learning (RL) in many real-world scenarios, which is termed as
policy optimization. By viewing the policy optimization from the perspective of
variational inference, the representation power of policy network allows us to obtain
the approximate posterior of actions conditioned on the states, with the entropy
or KL regularization. However, in practice the policy optimization may lead to
suboptimal policy estimates due to amortization gap. Inspired by the Markov
Chain Monte Carlo (MCMC) techniques, instead of optimizing policy parameters
or policy distributions directly, we propose a new policy optimization method,
incorporating gradient-based feedback in various ways. The empirical evaluation
verifies the performance improvement of the proposed method in many continuous
control benchmarks.

1 Introduction

Reinforcement learning (RL) algorithms involve policy evaluation and policy optimization [32].
Given a policy, one can estimate the value for each state or state-action pair following that policy,
and given a value estimate, one can improve the policy to maximize the value. This latter procedure,
policy optimization, can be challenging in continuous control due to instability and poor asymptotic
performance. In deep RL, where policies over continuous actions are often parameterized by deep
networks, such issues are typically tackled using regularization from previous policies [29, 30] or
by maximizing policy entropy [22, 9]. These techniques can be interpreted as variational inference
[19], using optimization to infer a policy that yields high expected return while satisfying prior policy
constraints.

However, one subtlety arises: when used with entropy or KL regularization, policy networks perform
amortized optimization [11]. That is, many deep RL algorithms, such as soft actor-critic (SAC)
[14], optimize a network to directly output the parameters of policy distribution, approximating
the posterior of policy distribution given the collected trajectories. Specifically, it is realized by a
direct mapping from states to policy distribution parameters. While direct amortization schemes have
improved the efficiency of variational inference as encoder networks [18, 25, 21], the learned policy
distribution can be sub-optimal [6, 17]. This suboptimality is typically defined as the amortization
gap [6], resulting into a gap in policy optimization objective.

In order to fill in this amortization gap, recent work has sought to augment the direct amortization
approach by transforming policy distribution through mappings with additional trainable parameters
to achieve richer posterior approximations [2, 24], such as Normalizing Flow (NF) policy [33, 36].
Although it demonstrates success in various RL domains, the NF policy does not explicitly use
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information about the target posterior of policy distribution. Hence, it is unclear whether the
improved performance is resulted from better variational inference or simply the overparametrization
of the sequence of transformations.

In this work, inspired by the techniques and progress in probabilistic inference [38], we propose
to investigate the variational inference (VI) policy optimization augmented Markov Chain Monte
Carlo (MCMC) iterations. VI chooses a family of tractable distributions, and tries to find the member
of that family with the lowest KL divergence to the posterior, whereas MCMC simulates a Markov
chain whose stationary distribution is the posterior. Generally speaking, VI is often much faster in
finding a high posterior density region while MCMC can explore much more parameter space by
random jumps conditioned on local information [26]. By merging the advantages of MCMC and
VI to overcome each other’s limitations, we start a Markov chain with initial values drawn from an
optimized variational policy distribution, i.e., the base policy network, producing the output action or
its distribution.

In this, we use MCMC iterations to transform the output of policy network to approximate the target
posterior of actions. For deterministic policy, we adopt K steps of Langevin-dynamics (LD) MCMC
[27]. But the density of the marginal distribution is implicitly defined in LD MCMC. When the
output of policy network is a distribution and the action probability is explicitly evaluated in the
policy optimization objective, Hamiltonian-dynamics MCMC (HMC) [23] is adopted in MCMC
transformations. Both LD and HMC can be thought of as a Normalizing Flow scheme in which
the flow depends explicitly on the target distribution. Building upon the framework of Maximum
a posterior policy optimization (MPO) [1], we demonstrate performance improvements of MCMC-
augmented policies over other methods in various aspects, such as action exploration and policy
improvement.

In MPO, and many other algorithms, the KL divergence was added as a constraint to stabilize
the learning process [1, 29]. But their solutions were built upon computing the inverse of Fisher
information matrix, which has expensive computational overhead for high-dimensional parameters.
In order to reduce computation complexity, we propose to use PID control to maintain the KL
divergence distance from the previous to updated policies around a threshold value. Here we find that
tuning the KL multiplier by PID control can stabilize the policy optimization significantly, improving
the performance significantly.

2 Background

2.1 Preliminaries

We investigate Markov decision processes (MDP), where st ∈ S and at ∈ A are the state and
action at time step t, with the corresponding reward rt = r(st, at). The state transition of the
environment is governed by st+1 ∼ penv(st+1|st, at), and the action is produced by the policy
πθ(at|st), parameterized by θ. The discounted sum of rewards is denoted asR(τ) =

∑
t γ

trt, where
γ ∈ (0, 1] is the discounted factor, and τ = (s1, a1, . . .) is a trajectory. Thus, the distribution over
the trajectory is

p(τ) = ρ(s1)

T∏
t=1

penv(st+1|st, at)πθ(at|st)

where the initial state is drawn from the distribution ρ(s1). The objective of RL is to maximize the
expected discounted return Ep(τ)[R(τ)].

At a given time step t, one can optimize this objective by estimating the accumulated future returns in
the summation using an action-value network [21, 14], denoted as Qπ(s, a) in terms of a policy π.

2.2 Reinforcement Learning via Probabilistic Inference

Recently a surge of works have formulated reinforcement learning and control as probabilistic
inference [7, 35, 34, 3, 19]. In these approaches, the agent-environment interaction process is
formulated as a probabilistic graphical model, then reward maximization is converted into maximum
marginal likelihood estimation, where the policy resulting maximal reward is learned via probabilistic
inference. This conversion is accomplished by introducing one or more binary observed variables O,
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whose probability conditioned on the trajectory can be expressed as

p(O = 1|τ) ∝ exp(R(τ)/α) (1)

where α is the temperature hyper-parameter. By referring variables O as optimality [19], our target is
to learn the policy πθ which can produce actions maximizing the likelihood of optimality. However
evaluating this likelihood, i.e., p(O = 1) =

∫
p(O = 1|τ)p(τ)dτ , needs the averaging over all the

trajectories, which is computationally intractable, especially in high-dimensional problems. Hence
variational inference is adopted to lower bound the objective, where a variational distribution q(τ |O)
is learned to approximate the posterior of trajectory given the optimality, i.e.,

q(τ |O) =

T∏
t=1

penv(st+1|st, at)q(at|st,O) (2)

And we learn q(at|st,O) to maximize the evidence lower bound (ELBO) of the objective, i.e.,
log p(O = 1), as below,

log p(O = 1) ≥
∫
q(τ |O)

[
log p(O = 1|τ) + log

p(τ)

q(τ |O)

]
dτ

= Eq[R(τ)/α]−DKL(q(τ |O)‖p(τ))) (3)

Simplifying the above equation further, we can get the objective of policy optimization as below

J (q, θ) = E(st,rt)∈τ,at∼q

[ T∑
t=1

γtrt − α log
q(at|st,O)

πθ(at|st)

]
(4)

Specifically, at time t, this objective can be written as

J (q, θ) = Eq[Qq(st, at)]− αDKL(q(at|st,O)‖πθ(at|st)) (5)

2.3 Hamiltonian Dynamics

Hamiltonian Monte Carlo (HMC) [23] is a classical MCMC method for sampling sequence of samples
which converge to being distributed according to the target distribution. Based on the empirical
success of Hamiltonian Monte Carlo [23, 15], many algorithms exploiting Hamiltonian dynamics
have been developed to obtain unbiased estimates of the ELBO and its gradients [28, 37, 4]. In this
work, we use multiple steps of Hamiltonian dynamics to improve action distribution and decrease the
amortization gap in variational inference. Here we focus on the time-inhomogeneous Hamiltonian
dynamics [23, 4]. This method uses reverse kernels which are optimal for reducing variance of the
likelihood estimators and allows for simple calculation of the approximate posteriors of the latent
variables. Additionally, we can easily use the reparameterization trick to calculate unbiased gradients
of the ELBO with respect to the parameters of interest.

2.4 Optimal Control

Here we regard the policy optimization iterations as system dynamics subject to an external influence,
or control. A standard formulation for discrete-time systems with feedback control is:

xk+1 = F (xk,uk)

yk = Z(xk)

uk = h(y0, . . . ,yk)

with state vector x, dynamics function F , measurement outputs y, applied control u, and the subscript
denoting the time step. The feedback rule h has access to past and present measurements. The goal in
optimal control is to design a control rule, h, that results in a sequence y0:T = {y0, . . . ,yT }, scoring
highly according to some metric C.

It is always easier to analyze and control systems with simpler dependence on the input, even though
the dependence on the state is complex. Control-affine systems are a broad class of dynamical systems
which are especially amenable to analysis [16]. Generally the dynamics there take the form

F (xk,uk) = f(xk) + g(xk)uk

where f and g can be non-linear and unknown a prior.
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3 MCMC Policy Optimization

Policy-based approaches in RL can be viewed as amortized variational inference, where the policy
network produces action or its distribution to approximate the posterior given the optimality O [19].
Hence, the policy network plays the same role of encoder in variational autoencoder (VAE) [18].
However, in VAE, both empirical observations and theoretical study show that the encoder network
can only produce sub-optimal approximate estimates of the target posterior, and the resulting gap in
the variational bound is termed as amortization gap [6]. In this work, in order to close this gap, we
propose to mix the policy network with MCMC iterations. Here MCMC transitions are initialized
by the output of policy network, and the optimization of hyper-parameters in MCMC transitions is
alternating with the optimization of policy network parameters.

3.1 Deterministic Policy

For deterministic policy, the policy network is a mapping from current state to action directly,
where the variational inference cannot be applied. In this case, in order to substitute the variational
framework, we formulate the policy optimization as a deterministic autoencoder (AE), i.e., LAE =
LREC +αLRAE

Z [12]. By formulating our problem as AE, the reconstruction loss LREC is just negative
of Q value from Q(s, a). And latent loss LRAE

Z can be set to ‖a − πθt(s)‖, since the latent loss is
essentially simplified KL loss [12] and the prior of action is assumed to be the last updated policy.
Thus the policy optimization objective to be maximized is formulated as

Uθt(s, a) = Qπθt (s, a)/α− ‖a− πθt(s)‖ (6)

In order to better estimate the maximum a posterior (MAP) of actions, we adopt Langevin-dynamic
(LD) [27] to transform the output of policy network. LD is used here because exploration is more
important for deterministic policy, and random noise injected in every iteration of LD Markov chain
can augment exploration a lot. Assume there are K iterations of LD Markov chain. For k-th LD
iteration, given current state s, the action is updated as below,

ak+1 =
εk
2

(
∇aU(s, a)a=ak

)
+ ξk (7)

where εk is the step size and ξk ∼ N (0, λ2I). We define a vector hLD = [ε1, ε2, . . . , εK , λ],
containing all the hyper-parameters in LD Markov chains. Denote the K steps of LD transitions
as a function fKLD(a, hLD) with initial action a, whose output is the action aK at K-th step of LD
transitions.

However, the action updates in (7) are not deterministic, which cannot be applied to algorithms based
on deterministic policy gradient theorem [31], such as DDPG [31] and TD3 [10]. Besides, scalar
hyper-parameters hLD, controlling stepsize and covariance of noise, are not flexible enough to adapt
to complex critic function. Here we formulate the transformations of actions via Langevin dynamics
as a normalizing flow [24, 33, 36, 20]. Instead of simply applying Langevin dynamics in the classical
formulation, in order to adapt the local geometry of the critic function, inspired by Langevin flows
[13], we add extra neural networks to augment the flexibility of the action transformations. All extra
neural networks are simple and do not increase the model complexity significantly. And we do not
need noise in any coupling layer, making transformations deterministic.

Specifically, we define the action transformations as a sequence of coupling layers:

fKLD(a, {φ1, . . . , φK}) = gφK ◦ · · · ◦ gφ1
(a) (8)

where the k-th coupling layer gφk with mask ml transforms action x to y. Building upon [8], the
coupling layer incorporates the Langevin dynamics as below,

y = m� x+(
m� x−m� ε2

2
∇U(x) + ε exp(σ(m� x))

)
� exp(S(m� x))

+T (m� x) (9)

where the subscript dependent on k is omitted. The masks m in every coupling layer are binary
vectors, with half of elements to be 1. We define σ(·), S(·) and T (·) as neural networks σ, S, T :
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Rda/2 −→ Rda/2, whose parameters at the k-th layer are denoted as φk. The neural networks σ, S, T
in all K layers are trained together in an end-to-end manner.

Combining all the discussions above, the policy optimization objective is as below, in iteration t,

JLD(θ, h) = Es∼dD(s)

[
Qπθt

(
s, aK

)
− βt‖aK − πθt(s)‖

]
(10)

where aK is the output of fKLD(πθ(s), h), and dD(s) is the distribution of states stored in replay buffer
D. Here the second term in (10) is essentially same as the KL divergence loss in the variational
framework (5). The parameters, h := {φk}Kk=1, consist of the parameters of neural networks in every
coupling layer. We replace α by βt dependent on step t, since it is tuned adaptively by PID control
by the end of every policy optimization iteration.

In implementation, we update the policy parameters θ and LD transition hyperparameters h in an
alternating way. That is

θt+1 = arg max
θ
J (θ, htLD) and ht+1

LD = arg max
h
J (θt+1, h) (11)

When optimizing the objective (10), we use stochastic gradient descent (SGD) for multiple steps,
where in each step a minibatch of states are uniformly sampled from the replay buffer D and the
expectation becomes empirical averaging over the minibatch.

3.2 Stochastic Policy

For stochastic policy, the output of policy network is a distribution of action. Since the density
of actions is needed to be evaluated in the stochastic policy optimization algorithms, we adopt
Hamiltonian Monte Carlo (HMC) [23, 4] to improve the action distribution, generated by policy
network, to better approximate the posterior of action given optimality. The marginal likelihood
after HMC can be evaluated, since the composition of equations in Hamiltonian dynamics has unit
Jacobian [23].

Specifically, in HMC, we introduce momentum variables ρ to pair with the action a, and make
Markov chain to work in an extended space (a, ρ) ∈ Rda × Rda . Assume the momentum variable ρ
has Gaussian prior N (ρ|0, I), and the prior of action a is the output distribution of the last updated
policy πθt(a|s) for iteration t of policy optimization. Therefore, the target distribution for variational
policy optimization, i.e., unnormalized posterior of action and momentum, becomes

p̄α(s, a, ρ) ∝ exp
(
Qπθt (s, a)/α

)
πθt(a|s)N (ρ|0, I) (12)

Since the stochastic policy is optimized in the formulation of variational inference, the variational
distribution of action and momentum variable can be the policy distribution being updated and
prior of momentum, i.e., πθ(a|s)N (ρ|0, I). The core idea is to improve variational distributions by
applying multiple steps of deterministic Hamiltonian transitions, to better approximate the posterior
and decrease the amortization gap [6]. Denote one step of Hamiltonian transition as Φkθt,hHMC

, where
θt is the parameters contained in the potential function of Hamiltonian dynamics and the vector hHMC
contains the hyper-parameters used in Hamiltonian transitions. Hence, {Φkθ,hHMC

}Kk=1 denotes time-
discretized and inhomogeneous Hamiltonian dynamics, which discretizes the Hamiltonian dynamics
into K steps of transitions [23, 4]. Different from normalizing flow policy [33, 36], in addition to the
acceleration from gradient information, the log density is easy to compute here, without any complex
inference. Each transformation Φkθt,h represents a leapfrog step, transforming (a, ρ) to (a′, ρ′), which
can be described as:

ρ̃ = ρ− ε

2
�∇Uθt(s, a)

a′ = a+ ε� ρ̃
ρ′ = ρ̃− ε

2
�∇Uθt(s, a′) (13)

where Uθt is the potential function containing parameters θt,∇ is differentiation taken with respect
to a, and step size ε ∈ Rda . By ignoring the normalizer of target distribution (12), the potential
function used in leapfrog (13) can be described as Uθt(s, a) = −(Qπθt (s, a)/α + log πθt(a|s)).
Specifically, the hyperparameter hHMC in HMC only contains step sizes ε ∈ Rda . Thus we have
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the deterministic transition as (ak, ρk) = Φkθt,hHMC
(ak−1, ρk−1). Denote the distribution of action

and momentum variable at k-th step of transitions as qkθt,hHMC
(ak, ρk), and the initial action and

momentum are sampled from variational distributions, i.e., q0θt,hHMC
(a0, ρ0) := πθ(a|s)N (ρ|0, I).

Thus the process of transforming (a0, ρ0) to (aK , ρK) can be defined as

(aK , ρK) = fKHMC(a0, ρ0, θt, hHMC) :=
(
ΦKθt,hHMC

◦ · · · ◦ Φ1
θt,hHMC

)
(a0, ρ0) (14)

where (a0, ρ0) ∼ πθ(a0|s)N (0, I).

Since the policy optimization for stochastic policies is in the formulation of variational inference,
the objective should be the ELBO, for both updating policy πθ(a|s) and optimizing HMC hyper-
parameters hHMC. Based on the foundations of variational inference, the ELBO here can be written
as the difference of the log target distribution and log variational distribution, i.e.,

LELBO(s; θ, h) = E(a0,ρ0)∼πθ(·|s)N (·|0,I)[log p̄(s, aK , ρK)− log qKθt,h(aK , ρK)] (15)

where (aK , ρK) = fKHMC(a0, ρ0, θt, h) defined in (14), θt is the parameters of last updated policy
network regarded as the action prior, and parameters to be optimized consist of policy network
parameters θ and hyper-parameters in Hamiltonian transitions h.

According to [4], based on the change of variable formula in probability density, the distribution of
action and momentum variables at K-th step of leapfrog ΦKθt,hHMC

can be expressed as

qKθt,hHMC
(aK , ρK) = q0θt,hHMC

(a0, ρ0)

K−1∏
k=0

∣∣ det∇Φk+1
θt,hHMC

(ak, ρk)
∣∣−1

= πθ(a0|s)N (ρ0|0, I) (16)

where the second equality is due to the unit Jacobian of leapfrog step (13). It also helps us to evaluate
the density of transformed actions in a convenient approach. Therefore, considering (3)(12)(16)
together, the EBLO averaged over states in replay buffer can then be expressed as

J (θ, h) = Es∼dD(s)

[
Qπθt (s, aK)− βt log

πθ(a0|s)
πθt(aK |s)

− βt
2
ρTKρK

]
(17)

where (a0, ρ0) ∼ πθ(·|s)N (·|0, I) and (aK , ρK) = fKHMC(a0, ρ0, θt, h). Here we replace the temper-
ature parameter α in (12) by βt, which is tuned automatically by PID control, to keep the KL distance
between previous and updated policies around a pre-defined value. The parameters of policy network
θ and hyper-parameters of HMC are optimized in an alternative way same as (11).

3.3 Theoretical Analysis

By regarding the policy distribution πθ(a|s) as the variational distribution, we essentially improve
the variational distribution by running HMC method initialized at πθ(a|s) and whose stationary
distribution is the posterior of the interst p̄(a|s). Assume we run the HMC iteration for k steps, by
marginalizing the momentum ρ, the distribution of action is denoted as qkθ,h(a). It is provable that
the distribution qkθ,h(a) is an improvement of the variational distribution and it is closer to the target
posterior p̄(a|s) in terms of KL divergence [5], reducing the amortization gap,

KL(qθ(a)|p̄(a|s)) ≥ KL(qkθ (a)|p̄(a|s))

According to [23], as the step k → ∞, the distribution qkθ,h(a) will tend to p̄(a|s) in terms of KL
divergence. So the improvement of our method can be proved. And empirically it is enough to have
around K = 5 steps of HMC iterations.

4 Implementation

4.1 Tuning Multiplier βt by PID Control

In implementation, the policy distance, the second term in (10)(17), is calculated by the empirical
average over the minibatch of states randomly sampled from the replay buffer. Hence, D̂LD =

6



Ês∼B[‖aK − πθt(s)‖] and D̂HMC = Ês∼B
[

log πθ(a0|s)N (ρ0|0,I)
πθt (aK |s)N (ρK |0,I)

]
, for deterministic and stochastic

policy respectively.

By representing D̂LD and D̂HMC as D̂, the policy optimization can be formulated as a first-order
system, i.e., θt+1 = F (θt, h, βt), yt = D̂, βt = h(y0, . . . , yt, ε), where F (θt, h, βt) = θt + γ ·
∇Ê[Q(s, aK)] + β · γ · ∇D̂ with learning rate γ, function h is the PID control rule, and ε is the
pre-defined threshold for the distance. The control rules h for updating βt can be described as below,

∆←− D̂ − ε, and ∂ ←− D̂ − D̂prev

I ←− (I + ∆)+, and β ←− (KP∆ +KII +KD∂)+

where D̂prev is the empirical distance in the last iteration. And hereKP ,KI ,KD are tuned empirically.

4.2 Explicit and Implicit Gradient

In the practical policy optimization, the action value given by the Q network may not be accurate,
and directly incorporating gradient information like (13) may lead the policy distribution to local
optima. To tackle this problem, we propose to incorporate gradient information in both explicit and
implicit approaches, controlled by a trade-off parameter σ. The explicit approach is to directly use
the gradient of Q network with respect to action like (13), while the implicit approach is to use the
gradient processed by a function T . Specifically, σh and Th, parameterized by h, are realized by
simple neural networks with sigmoid and tanh functions as activations respectively. Their inputs are
gradient, action and state, where the state is optional and can be ignored in some environments. The
output of σh is a scalar, controlling the trade-off between explicit and implicit gradients. The output
of Th has the same dimension as action. Therefore, the leapfrog operation can be rewritten as

ρ̃ = ρ− ε

2
� (σh(s, a, g) · g + (1− σh(s, a, g)) · Th(s, a, g)) (18)

ρ′ = ρ̃− ε

2
� (σh(s, a, g′) · g′ + (1− σh(s, a, g′)) · Th(s, a, g′)) (19)

where g := ∇Uθt(s, a), g′ := ∇Uθt(s, a′) and a′ = a + ε � ρ̃. In order to stabilize the learning
process, the gated mechanism is used for the gradient trade-off. It is straightforward that the modified
leapfrog (19) still has unit Jacobian, and it leaves the canonical joint distribution of action and
momentum (a, ρ) invariant.

Empirically, we find that it is enough to choose simple architecture for the neural networks σh and
Th, i.e., two-layer with 8 or 16 hidden neurons. Otherwise, the complex architecture can make
learning unstable, and the learned policy may be far from optimality. During training, neural network
parameters h are included into the parameters of HMC iteration, optimized alternatively with the
parameters of the policy network θ.

The proposed method is shown in Algorithm 1.

Algorithm 1: Hamiltonian Policy Optimization
Data: Denote at, st as the action and state at timet; Denote the replay buffer as B;

1 Initialize θ, h;
2 for t = 1, 2, . . . do
3 Sample at ∼ πθt(·|st);
4 Obtain aKt , ρ

K
t = HMC(st, at;K,ht);

5 Apply aKt into the environment, and obtain next state st+1;
6 Store the experience tuple (st, a

K
t , st+1) into B;

7 Sample a minibatch of experience tuples Dt from B;
8 Update the Q network by Dt;
9 Obtain the transformed action and momentum

aK , ρK = HMC(s, a;K,ht),∀(s, a) ∈ Dt;
10 Update the policy and HMC parameters by optimizing J (θ, h) defined in (17);
11 end
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Algorithm 2: HMC(s, a;K,h), ε ∈ h
1 Sample ρ0 ∼ N (0, I);
2 for k = 1, . . . ,K do
3 Obtain ρ̃k by (18);
4 Update ak = ak−1 + ε� ρ̃k;
5 Obtain ρk by (19);
6 end

Output: aK , ρK

5 Experiments

The second set of experiments studies the performance improvement of the multi-actor method. The
environments are Hopper, HalfCheetah, and Ant. The performance metric is cumulative reward at the
step of 5e5, obtained from 5 random seeds. The proposed method uses PID control to update the KL
multiplier βt. The baseline is SAC [14], where the entropy coefficient α is set to 0.2 in Humanoid-v2
and 0.05 in other environments. The policy networks in both proposed method and SAC are the
same, having two-layer with 256 hidden neurons in each layer. The neural networks Th and σh in
Hamiltonian dynamics are very small, only having two layers with 16 neurons in each layer.

Table 1: Summary of quantitative results. All results correspond to the original exact reward defined
in OpenAI Gym

Hopper HalfCheetah Ant

SAC 3281.1±168.1 2613.2±102.8 3492.1± 126.9
Ours 4021.3± 172.2 2925.7± 133.1 4037.1± 158.1
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