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Abstract

We present MGAudio, a novel flow-based framework for open-domain video-to-
audio generation, which introduces model-guided dual-role alignment as a central
design principle. Unlike prior approaches that rely on classifier-based or classifier-
free guidance, MGAudio enables the generative model to guide itself through a
dedicated training objective designed for video-conditioned audio generation. The
framework integrates three main components: (1) a scalable flow-based Trans-
former model, (2) a dual-role alignment mechanism where the audio-visual encoder
serves both as a conditioning module and as a feature aligner to improve generation
quality, and (3) a model-guided objective that enhances cross-modal coherence
and audio realism. MGAudio achieves state-of-the-art performance on VGGSound,
reducing FAD to 0.40, substantially surpassing the best classifier-free guidance
baselines, and consistently outperforms existing methods across FD, IS, and align-
ment metrics. It also generalizes well to the challenging UnAV-100 benchmark.
These results highlight model-guided dual-role alignment as a powerful and scal-
able paradigm for conditional video-to-audio generation. Code is available at:
https://github.com/pantheon5100/mgaudio
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Vision-guided audio generation is gaining increas-
ing attention due to its critical role in Foley sound
synthesis for video and film production [2]. In
particular, video-to-audio (V2A) generation has
emerged as a key task, not only for enriching silent
videos produced by emerging text-to-video mod-
els [3, 4, 5, 6], but also for enhancing realism
and immersion in professional video editing work-
flows. Realistic audio is essential for audio-visual
coherence and immersive experience, but gener-
ating sound semantically aligned and temporally
synchronized with video remains challenge.

Prior works have explored GAN-based [7] and au-
toregressive Transformer-based models [8], which
often struggle with synchronization and semantic
consistency. More recent methods adopt diffusion
models to improve generation quality. For exam-
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Figure 1: V2A on VGGSound [1]. MGAudio
attains the best FAD among video-to-audio meth-
ods with full data and 1.1M iters, and remains
competitive even with only 10% data and 300k
iters, highlighting its strong data efficiency.

ple, Diff-Foley [9] uses a contrastively trained video encoder to extract visual conditions, which
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are then used to guide a diffusion model for audio generation. Other approaches, such as See and
Hear [10] and FoleyCrafter [1 1], leverage large pretrained models to achieve high-fidelity results, but
at the cost of massive model size (billions of parameters). In contrast, models like MDSGen [12],
FRIEREN [13], and MMAudio [14] (131-159M parameters) explore more lightweight denoising
or flow-matching [ 5] objectives, achieving competitive performance across fidelity and alignment
metrics. Despite architectural differences, diffusion- and flow-matching—based methods typically rely
on classifier-free guidance (CFG) to improve generation quality. This involves randomly dropping
conditioning signals during training to simulate both conditional and unconditional objectives. While
effective, this multi-task setup may dilute the model’s capacity and lead to mismatched sampling
behavior at inference.

To address the limitations of classifier-free guidance (CFG) in audio generation, we propose MGAudio,
a novel model-guided framework that replaces CFG with direct model-based supervision during
training. Our approach builds on the Model-Guided (MG) framework [16], originally introduced
for class-conditional image generation on ImageNet, and effectively extends and adapts it to the
video-to-audio domain. While MG is specified for discrete class labels, its application to conditional
generation from continuous video inputs remains unexplored. To this end, MGAudio introduces a
dual-role audio-visual encoder: one branch modulates the diffusion process via LayerNorm-based
conditioning, while the other provides intermediate alignment signals to guide audio synthesis at
multiple denoising steps.

We show that MGAudio (131M) achieves state-of-the-art performance on VGGSound [ 1], with a FAD
of 0.40. Notably, the same model generalizes robustly to the UnAV-100 benchmark [17] without any
fine-tuning, demonstrating strong cross-dataset transferability. Furthermore, when trained on just
10% of the VGGSound, it outperforms existing methods trained on the full dataset across key metrics
such as FAD (Fig. 1). These results demonstrate that model-guided training not only enables more
efficient learning but also offers a compelling alternative to CFG for scalable and effective audio
generation. Our key contributions are:

* We introduce MGAudio, a novel framework for video-to-audio generation that replaces the conven-
tional classifier-free guidance (CFG) objective with a model-guidance (MG) objective, leading to
more efficient training and improved generation quality.

* We propose a dual-role alignment mechanism that uses a shared jointly trained visual and audio
encoder for conditioning and intermediate representation alignment, enabling more effective video-
audio feature integration.

* MGAudio sets a new state-of-the-art on VGGSound, achieving an FAD of 0.4 with 131M parameters,
and maintains strong performance with only 10% of the training data (FAD = 0.8), highlighting its
efficiency and scalability.

» Extensive experiments and analyses on VGGSound and UnAV-100 benchmarks demonstrate that
the model-guidance objective, combined with dual-role alignment, significantly improves data
efficiency and generalization over prior methods.

2 Related Works

2.1 Classifier-Free Guidance Learning for Video-Guided Sound Generation

Early works such as SpecVQGAN [8] and Im2Wav [18] employ autoregressive Transformers to
generate audio tokens conditioned on video or CLIP features. However, their sequential decoding
results in slow inference and weak cross-modal alignment, limiting their effectiveness in open-domain
scenarios. Recent advances in generative modeling have led to powerful diffusion-based methods
that show strong performance across diverse application domains [19, 20]. Diff-Foley [9] introduces
a two-stage pipeline combining contrastive video-audio pretraining with latent diffusion for more
efficient generation. This has inspired follow-up work [10, 11]: [10] focuses on leveraging pre-trained
generative models rather than training from scratch, while [1 1] targets improvements in audio-visual
synchronization.

Despite their success, these approaches rely heavily on large U-Net backbones, which limits scalability
and efficiency. To address this, MDSGen [ | 2] incorporates recent innovations in generative modeling,
such as Diffusion Transformers (DiT) [21] and spatial masking [22, 23], adapting masked diffusion
Transformers for video-guided audio generation and achieving improved performance and efficiency.



The introduction of flow matching [15] has further expanded generative modeling abilities. Recent
methods like FRIEREN [13] and MMAudio [ 4] adopt flow matching as an alternative to diffusion,
using Transformer-based frameworks and reporting strong results on video-to-audio (V2A) tasks.
Similarly, we adopt flow matching with a Transformer-based model.

However, despite architectural differences, most state-of-the-art approaches, whether diffusion,
masked diffusion, or flow-based, continue to rely on classifier-free guidance (CFG) [24], where input
conditions are randomly dropped during training (typically at a rate of  =10%) to enable multi-task
learning (unconditional and conditional). In contrast, we shift the focus from this paradigm by
adopting the recent Model Guided approach [16], moving toward a more efficient audio model-guided
(AMG) strategy that achieves stronger generation quality and faster convergence.

2.2 Model-Guidance Learning in Audio Generation

Model-guided learning has recently been introduced in the vision domain as Vision Model-Guidance
(VMG) [16] which enables efficient single-pass inference and is complementary to CFG, offering
improvements in both inference modes. Inspired by this, we propose MGAudio, the Audio Model-
Guidance (AMG) to audio generation, tailored for video-conditioned open-domain sound synthesis.
Unlike the vision setting, we find that model-guided training alone improves convergence, but CFG
remains beneficial at inference to ensure high-fidelity audio. This reveals a modality-specific behavior,
suggesting that audio’s temporal sensitivity may demand additional supervision at test time.

2.3 Feature Alignment for Accelerating Diffusion Learning

A key advancement in improving the training efficiency of vision diffusion is REPA [25], which
proposes aligning intermediate image features in generative model with a pre-trained representation
model [26, 27, 28, 29] to accelerate learning. Building on this idea, VA-VAE [30] and REPA-E [31]
jointly optimize vision feature alignment in the VAE and the transformer, yielding notable gains
in image generation quality. Inspired by these simple yet effective strategies, we introduce a novel
approach for audio generation that aligns intermediate audio features from a strong pretrained audio
model with the transformer model. We term this dual-role audio-visual learning, enabling efficient
and semantically consistent generation through cross-modal feature supervision.

2.4 Temporal Alignment in Video-to-Audio Generation Methods

Another important research direction in video-to-audio generation focuses on enhancing temporal
alignment between visual events and the generated audio. Recent works have explored various
strategies to improve synchronization and cross-modal correspondence. AV-Link [32] employs
temporally aligned self-attention fusion for bidirectional conditioning between audio and video.
Hidden Alignment [33] enhances synchronization through encoder design and temporally aware
augmentations. V2A-Mapper [34] adopts a lightweight approach that maps CLIP embeddings to
CLAP space for modality bridging using foundation models.

More recent frameworks such as MDSGen [12], FRIEREN [13], and MMAudio [ 14] explore different
ways of integrating video conditions: MDSGen [12] aggregates all frames into a compact global
representation, FRIEREN [13] interpolates frame features along the temporal axis for alignment with
the mel-spectrogram, and MMAudio [14] leverages a multimodal transformer to achieve fine-grained
audio—video attention.

Although our work does not primarily focus on temporal conditioning design, we adopt the MDSGen-
style global aggregation for simplicity and efficiency. As shown in Appendix J, different conditioning
strategies each exhibit unique strengths across distributional, semantic, and temporal dimensions.

3 Method

We introduce MGAudio, the first audio generation framework to adopt model-guided training. Un-
like classifier-free guidance (CFG) [24], which learns conditional model and unconditional model
separately, model-guided learning provides direct supervision through the model itself, refining
the model prediction directly aligns with CFG. As illustrated in Fig. 2, MGAudio comprises: (1) a
Dual-Role Audio-Visual Encoder (DRAVE) with learnable projections for cross-modal alignment; (2)
a Flow-Based Denoising Transformer (FBDT) that maps noise to audio via flow matching; and (3) an
Audio Model-Guidance (AMG) training objective that enables replacing CFG with a more targeted,
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Figure 2: Overview of the MGAudio framework for video-guided audio generation. We design the
first use of a model-guidance method that learns audio latent with a new objective and performs dual
alignment learning. The violet arrow — is training-only, the black arrow — is used for both training
and inference, and the blue arrow | is inference-only. MHSA: Multi-Head Self-Attention.

model-driven signal. These components together enable robust alignment, efficient denoising, and
high-quality video-conditioned audio generation. We describe each module below.

3.1 Scalable Flow-Based Denoising Transformer

The first key component of MGAudio is the Flow-Based Denoising Transformer (FBDT) shown
in Fig. 2, which builds upon the scalable flow-matching architecture of the Scalable Interpolant
Transformer (SiT) [35], a state-of-the-art generative modeling framework. In contrast to conventional
diffusion models [36], flow matching learns continuous transport directions, yielding more stable and
efficient denoising.

Given an input audio signal A € RZA and a sequence of silent video frames V € REv x3x224x224 of
length Ly, we first convert the ~ 8s waveform into a mel-spectrogram X € R%4*816 ysing log-mel
filterbanks with number of Mel bands 64. A pretrained AudioLDM VAE [37] Eyag maps X into a
latent representation x € R8*16x204 'which is then patchified (patch size p = 2) and flattened to a
sequence of tokens x’ € R316%D with D = 768 for the Base-size model. In parallel, silent video
frames are processed by a video encoder Eviqe, (€.g., CAVP video encoder [9]) to produce frame-level
embeddings v € REV*512_ These features are temporally aggregated (e.g., via average pooling or
attention, or with learnable 1 x 1 convolution layers as did in MDSGen [12]) to obtain a global video
representation o € R P This conditioning vector @ guides the Transformer model @ to predict the
noise vector € or its equivalent flow direction u during the reverse generation process. We formulate
audio generation as a flow-matching problem [15], where the model learns the direction of transport
from noise to data using a family of linear interpolants parameterized by time ¢ € [0, 1]. Following
the flow-matching paradigm [15], we define a noisy latent at time ¢ as:

x; = (1—t)xg +te, €~N(0,I), (1

where X is the clean latent and € is standard Gaussian noise. The model is trained to predict the
conditional flow direction that transports x; toward Xg:

g (x¢, T, ) — ue(xe]%0) |2, ()

EFM = Et,xo,ﬁ,e

where uy is the model-predicted flow direction. The true flow w, is analytically derived from the
derivative of the interpolant u;(x¢|Xo) = xo — €. This flow-matching loss serves as the core denoising
objective. Its efficacy is further enhanced by our model-guided formulation (Sec. 3.3), which refines
the supervision signal to better align with video context.

During inference, the model starts from pure Gaussian noise x; ~ A/ (0, I) in the latent space and
iteratively denoises using the predicted flows, progressively refining the latent X € R8*16x204 The
final mel-spectrogram X € R64x816 jg recovered using the VAE decoder, and a neural vocoder [38]
reconstructs the corresponding waveform. This formulation combines the scalability and efficiency
of flow-based models with the expressive power of Transformer architectures and robust conditioning
mechanisms for open-domain video-to-audio generation.



3.2 Dual-Role Audio-Visual Encoder

The second key component of our framework is the Dual-Role Audio-Visual Encoder (DRAVE),
illustrated in Fig. 2, which comprises two main branches: (1) an audio encoder and (2) a video encoder.
We adopt the Contrastive Audio-Visual Pretraining (CAVP) strategy introduced in Diff-Foley [9],
which effectively aligns audio and video representations and has demonstrated strong performance in
models like FRIEREN [13] and MDSGen [12]. While prior works typically use only the CAVP video
encoder, discarding the audio counterpart, we leverage both. Specifically, we use the CAVP video
encoder to condition the denoising process for vision-audio alignment (Video Processor branch)
and simultaneously integrate the CAVP audio encoder for audio-audio alignment (Audio Processor
branch), drawing inspiration from REPA [25] in the vision domain. This dual-role design enhances
representation learning and significantly improves audio generation quality.

Video Processor. As illustrated in Fig. 2, the input condition for the V2A task is a silent video. We
extract frame-level features using the CAVP video encoder [9], resulting in embeddings v € RLv *512,
These are projected to R“V X768 via a multi-layer perceptron (MLP) to match the input dimension of
the Transformer’s multi-head self-attention layers (model size B). To reduce temporal redundancy and
aggregate contextual cues, we follow MDSGen [12] and apply a 1 x 1 convolution to condense the
sequence into a compact global feature vector 7 € R1*7%8, This vector serves as a conditioning signal
in the denoising process, injected through Adaptive LayerNorm (AdaLN) to guide the generation
process with visual context.

Audio Processor. The ground-truth mel-spectrogram X is processed via two parallel branches, as
shown in Fig. 2. In the first branch, X is encoded by the AudioLDM?2 VAE [38], where Gaussian noise
is injected into the latent space to facilitate denoising-based generation. In the second branch, the same
spectrogram is passed through the CAVP audio encoder [9] to provide an auxiliary representation for
regularizing the learning process.

Drawing inspiration from regularization techniques in the vision domain, such as REPA [25] and
VA-VAE [30], we adopt a similar strategy for cross-modal alignment in audio generation. Unlike
REPA, which relies on generic visual encoders like DINOv2, we find that CAVP, specifically trained
for audio-visual correspondence, significantly improves alignment and synthesis quality. Our ablation
studies confirm that the CAVP audio-visual encoder plays a dual role: facilitating alignment with
video features and enhancing intermediate representations when paired with the denoising transformer.
We define the alignment loss used for joint training with the denoising branch as:

Ealign—audio = _]Ex,e,t

B

1 . . . . 7 7

B E [ﬁi] ,  with £; = 51m11ar1ty(G0, h¢(Ht)), 3)
i=1

where £; denotes the alignment loss for the i-th audio patch among B total patches. G represents the
CAVP-encoded clean audio features, and H; is the intermediate latent from the noisy audio branch at
time step ¢. H; is projected through an MLP h, to match the G’s dimensionality. Following REPA
[25], we use cosine similarity and retain the same number of positional layers for consistency. We
avoid applying an additional MLP to Gy, as it led to feature collapse in our experiments.

Overall Training Objective. The overall training loss combines the flow-matching denoising loss
and the alignment loss, balanced by a scaling factor A\, which we set to 0.5 by default, following prior
work [25]. The total objective is defined as:

LFM-align = Lpm + Aﬁalign—audio- 4

Here, Lrv denotes the flow-matching loss for denoising, while Lyjign-audio €nforces consistency
between pretrained clean audio and intermediate noisy audio generator representations.

3.3 Audio Model-Guidance (AMG)

The third core component of MGAudio is the Audio Model-Guidance (AMG) mechanism, which
departs from traditional classifier-free guidance (CFG) approaches commonly used in audio gen-
eration. As illustrated in Fig. 2, AMG serves as the key to effectively training our model under
video-conditioned audio generation. Building on the FBDT backbone, AMG replaces CFG with
a self-distilled target. Let ug(x;,7,t) be the conditioned flow prediction and ug(x¢, @, t) be the



unconditioned one. Our AMG objective is defined as a variant of VMG [16] that reformulates the
training target to directly approximate the CFG optimization trajectory:

L"AMG :Et,X(},’L_)',eHU/@(XtaUaﬁ) _ul||2a (5)
where the model-guided target v’ is defined as:
U/ :'U;—FU)‘Sg(UQ(Xt,’IT,t))—Ug(Xt,@,t), (6)

where w denotes the guidance scale factor, and sg(-) is the stop-gradient operator, used to block
gradient flow through the guidance term. This stabilizes training and prevents degenerate solutions,
as shown in [16]. To further improve stability, we compute ' using an Exponential Moving Average
(EMA) version of the online model ugy, ensuring more reliable target predictions over the course of
training. During training, the condition vector ¥ is randomly replaced with a zero vector & with
probability . The final loss in Eq. 4 training objective for MGAudio becomes:

LrMalign = LaMac + ALulign-audio- @)

3.4 AMG Meets CFG: Toward Efficient High-Fidelity Audio Generation

Finally, while model-guided training alone has proven effective in the vision domain, e.g., VMG [16]
achieves state-of-the-art performance without external guidance and sees only marginal gains when
combined with CFG, we observe a distinct trend in audio generation. Specifically, although training
with Audio Model-Guidance (AMG) already surpasses baseline models without guidance (e.g., SiT),
the highest audio generation quality is achieved when AMG-trained models are further enhanced
with classifier-free guidance (CFG) at inference.

We provide comprehensive ablations and analyses of this synergy in the experiments section. Notably,
we find that conventional CFG training, i.e., randomly dropping a fraction of conditioning inputs
during training as defined in Eq. 2, performs worse than our AMG formulation in Eq. 5, which
optimizes an implicit classifier via a modified objective. This demonstrates the superiority of AMG
as a training strategy, not just as a guidance method at inference time.

Lastly, motivated by the robustness and data efficiency observed in AMG-based training, we perform
a low-resource experiment on VGGSound. Remarkably, MGAudio achieves strong performance
across multiple evaluation metrics using only 10% of the full training set. We explore this strong
generalization capability in the ablation section, where we hypothesize that AMG promotes highly
efficient learning by effectively leveraging the task’s conditional structure. Our analysis also reveals
that data quality, rather than quantity, remains a critical bottleneck in VGGSound.

4 Experiments

4.1 Implementation Details

Datasets and Metrics. We train on the VGGSound dataset [ | ], which contains in-the-wild video clips
from YouTube, with ~182k for training and ~15k for testing. For generalization, we also test on the
UnAV-100 dataset [17], which includes 10,791 test videos with annotated sound events. Following
prior works [14, 13, 12], we evaluate generation quality using Fréchet Distance (FD), Fréchet Audio
Distance (FAD), Inception Score (IS), KL divergence, and audio-video alignment accuracy.

Training. MGAudio is trained for 1.1M steps with a batch size of 64, learning rate of le™, and
guidance scale w = 1.45. All experiments are run on a single A100 (80GB). For all experiment we
use sampling step of 50 and CFG value of 1.45. Following [ 13, 12], video-audio pairs are truncated
to 8.2 seconds. We use Base model size for its performance-efficiency tradeoff. Additional details of
experimental setup is in Appendix.

4.2 Main Results

a) VGGSound Dataset. Tab. 1 shows that MGAudio, the first model-guided (MG) audio generation
framework, achieves state-of-the-art results across multiple metrics using only 131M parameters. It
obtains an FAD of 0.40, significantly outperforming the second-best, MMAudio [14]. With a CFG
scale of 4.0, MGAudio achieves 99.04% alignment accuracy, surpassing all baselines. This metric,
introduced by [9], evaluates temporal synchronization and semantic coherence using a dedicated



Table 1: MGAudio on VGGSound. Audio generation quality across state-of-the-art methods on the
VGGSound test set is presented. Bold indicates the best performance, and an underline denotes the
second-best. CFG: Classifier-Free Guidance, MG: Model-Guidance. *We train MMAudio from
scratch solely on the VGGSound dataset, and set the text input to None during inference for fairness.

Method FAD, FD| ISt KL| Align. Acc.t Time| (s) #Params| Train Type
Diff-Foley [NeurIPS’23] [9] 6.25 23.07 10.85 3.18 93.94 0.36 860M CFG
See and Hear [CVPR’24] [10] 551 26.60 547 281 58.14 18.25 1099M CFG
FRIEREN [NeurIPS’24] [13] 1.38 1236 12.12 273 97.25 0.20 157TM CFG
MDSGen [ICLR’25] [12] 1.40 1742 9.66 2.84 96.88 0.24 131M CFG
MMAudio [CVPR’25]* [14] 0.71 697 11.09 2.07 92.28 0.98 157M CFG
MGAudio, CFG = 1.45 040 616 1282 276 95.65 0.31 131M MG
MGAudio, CFG =4.0 223  13.65 12.68 2.72 99.04 0.31 131M MG
MGAudio, CFG = 6.0 1.50 9.10 17.39 2.80 98.10 0.31 131M MG

classifier. At a higher CFG scale (6.0), MGAudio also reaches an IS of 17.39, though with some
trade-offs in other metrics. Overall, these results highlight the efficiency of model-guided training
over conventional classifier-free guidance.

Table 2: MGAudio on UnAV-100. All models are trained on VGGSound from Tab. 1 and evaluated on
UnAV-100 test set for generalization. Bold indicates the best, and an underline for the second-best.

Method FAD| FD| ISt KL| Align. Ace.t Train Type
Diff-Foley [NeurIPS’23] [9] 7.51 2425 10.74 246 87.46 CFG
MDSGen [ICLR’25] [12] 201 16.10 10.10 2.18 97.57 CFG
FRIEREN [NeurIPS’24] [13] 140 10.82 1346 2.02 98.14 CFG
MMAudio [CVPR’25] [14] 093 8.63 1137 1.62 85.68 CFG
MGAudio (Ours) 0.54 540 1390 2.00 97.54 MG

b) UnAV-100 Dataset. To assess generalization of MGAudio, we evaluate on UnAV-100 [17]. Tab. 2
presents the results. All models are models trained on VGGSound as reported in Tab. 1. MGAudio
achieves the best performance across FAD, FD, and IS. While MMAudio gives the lowest KL
divergence, it suffers from poor alignment accuracy. In contrast, MGAudio maintains strong alignment
accuracy (97.54%). These results emphasize the robustness and strong generalization of our model-
guided approach, even on datasets with dense, diverse audio-visual events not seen during training.

4.3 Ablation Study

We attribute MGAudio’s strong performance to three design choices: the Audio Model-Guidance
(AMG) objective for improved supervision, a Dual-Role Audio-Visual Encoder that fully exploits
CAVP’s alignment strength, and compatibility with CFG at inference despite being trained without
it. We perform five ablations under a unified setup, including a data efficiency study showing
AMG’s robustness with just 10% of VGGSound. Comparisons with CFG-only baselines and various
alignment encoders (DINOv2, CLAP, CAVP) highlight the benefits of dual-alignment and the trade-
offs in fidelity. We also demonstrate scalability across model sizes and show via UMAP [39] that
AMG produces tighter, more class-consistent audio distributions than CFG-based methods. All
ablations use 300k steps and a smaller batch size of 16 for faster iteration.

4.3.1 Efficiency of Data Utilization

Motivated by the strong generalization and data efficiency of AMG training (Tab. 1, 2), we conduct a
low-resource experiment on VGGSound with only 300k training steps. Interestingly, as shown in Tab.
3, MGAudio achieves comparable or even superior performance using just 10% of the training data,
surpassing the full-data model on most metrics. Furthermore, compared with Table 1, our model
trained with only 10% of the data already outperforms Diff-Foley, See and Hear, FRIEREN, and
MDSGen in terms of FAD, FD, and KL, and achieves performance comparable to MMAudio. This
highlights AMG’s ability to effectively exploit conditional structure for efficient learning.

A manual inspection of 100 random samples in VGGSound reveals that approximately 6% exhibit
weak or irrelevant audio-visual alignment, and 9% contain static frames or silence, leaving only
85% with meaningful, well-aligned content. This suggests that noisy supervision in VGGSound may
hinder performance, and in some cases, less but cleaner data can lead to better results. Nonetheless,
we use the full dataset for all main experiments to ensure fair comparisons with prior work.



Table 3: Data Efficiency. Interestingly, training MGAudio on just 10% of VGGSound yields strong
performance, surpassing the full-data setting on several metrics. This highlights the model’s data
efficiency and robustness. AA: Alignment Accuracy (%).

VGGSound [1] UnAv-100 [17]

Train Data | FAD| FD] ISt KL| AA*1 | FAD/(s) FDJ ISt KL, AA?
5% 1L16 972 9.80 267 9337 | 137 176 10.94 1.95  96.00
10% 073 8.79 10.28 264 9573 | 085 715 11.67 195 97.61
30% 077 10.17 9.83 269 9527 | 073 829 11.09 204 9742
50% 0.80 1044 9.35 269 9451 | 078 839 10.50 203 96.97
100% 081 1025 9.85 271 9514 | 089  9.88 9.72 2.09  96.60

4.3.2 Effect of Model-Guidance and Dual-Alignment

We compare our model-guided approach with the CFG-based baseline SiT [35] in Tab. 4. SiT
achieves strong performance on V2A with CFG, notably an FAD of 1.52. However, while model
guidance (MG) alone underperforms, combining MG with CFG at inference significantly boosts
results, surpassing SiT across all metrics. This contrasts with findings in the ImageNet domain, where
MG alone is sufficient. Finally, our proposed dual-alignment strategy further improves performance,
outperforming SiT with CFG.

Table 4: Effectiveness of Model Guidance. Evaluation on the VGGSound test set shows that
combining model-guidance (MG) with classifier-free guidance (CFG) at inference significantly
boosts performance. Our dual-alignment strategy further enhances learning across all metrics.

Setting CFG Model-Guide Dual-Alignment \ FAD|, FD| IST KL| AA
(a) No Guidance - - 267 1723 569 3.01 7820

<

(b) SiT [35] - - 1.52 1625 651 287 87.07
() MG [16] - v - 2.13 1620 6.02 285 83.87
(d) Joint Guidance v v - 1.19 1426 7.70 273 92.37
(e) MGAudio v v v 1.14 13.09 835 270 93.67

4.3.3 Choice of Alignment Encoders

We find that prior works often use the video en- Table 5: Impact of Audio Encoder Choice. Eval-
coder as the only conditioning signal, without yation on the VGGSound test set shows that CAVP
fully leveraging its potential for joint integration yields a better FAD score. Gray indicates default.
in VAE or transformer alignment. In our anal-
ysis, we focus on the role of the audio encoder
to demonstrate how deeper integration can im- (@ DINOv2 5.52  27.17 325 4.34  21.66
X . (b) CLAP 135 1223 827 2.68 93.19
prove performance. While REPA [25] leverages (c) CAVP L14 1309 835 270 93.67
DINOV2 [26] for representation alignment in
vision tasks, directly applying MG with REPA and DINOVv?2 yields subpar results in video-to-audio
synthesis. Instead, we investigate various audio encoders and observe that CAVP [9] and CLAP [40]
achieve the best performance. Notably, CAVP attains a lower FAD of 1.14 compared to CLAP’s 1.35,
with other metrics remaining comparable. For simplicity, we adopt CAVP, which is already available
via Diff-Foley’s public checkpoint, avoiding the need for additional encoder models. As shown in
Fig. 3, using DINOv2 for alignment often leads to semantically incorrect generations, for instance,
generating speech instead of impact sounds in a badminton video, or failing to synthesize audio for
musical performances. In contrast, CAVP and CLAP produce more coherent and relevant results.

Encoder FAD| FD| ISt KL| Align. Acc.

—— =
CAVP

CLAP

Figure 3: Effect of Alignment Encoder in Mel-Spectrogram. The selection of alignment encoders
significantly impacts the quality of generated audio in the V2A task.
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Figure 4: Audio Distribution. MGAudio generates audio samples that more closely align with the
target distribution compared to other methods. For example, samples for classes “playing djembe”
(red points) and “scuba diving” (black points) are tightly clustered around the center of the real
sample distribution. Full-resolution version are provided in the supplementary for clearer inspection.

4.3.4 Scalability

We demonstrate that MGAudio scales in model Table 6: Scalability. Evaluation on the VGGSound
size effectively across key metrics: FAD, FD, test set shows that MGAudio maintains strong per-
and IS, as shown in Tab. 6. We evaluate four formance as model size increases, demonstrating
model sizes: S/2, B/2, L/2, XL/2, where “/2” effective scalability with larger parameter counts.
refers to the default patch size used in SiT [35]. - -

. ; Model S FAD|, FD| ISt KL| Align. Acc.
Unlike MDSGen [12], which reported overfit- oce ore v v ! v en. 2
ino in their L2 model. our model-cuided ap. 52 G4M 254 1814 623 3.13 93.53
ting in their L. , g P~ B2(13IM) 114 13.09 835 270  93.67
proach maintains strong performance even at L2 (464M) 095 1022 9.84 273 94.50
larger scales. To balance performance and effi- _ XL/2(680M)  0.90  10.09 9.96 2.73 94.40
ciency, we adopt the B/2-size model (131M) in all main experiments, as it already delivers competitive
results with significantly lower computational cost compared to baselines.

4.3.5 Audio Distribution Learned by Model Guidance

We compare the generative behavior of our model-guided MGAudio with classifier-free guidance
(CFG)-based methods, including Diff-Foley [9], FRIEREN [13], and MDSGen [12]. To evaluate
the learned distributions, we select four distinct VGGSound classes: playing djembe, playing cornet,
scuba diving, and black capped chickadee calling. For each class, we sample 50 videos and generate
20 outputs per video (1000 samples per method) using varied seeds. The distributions are visualized
via UMAP [39]. As shown in Fig. 4, MGAudio produces samples that cluster more tightly around the
real sample distributions than other methods, reflecting stronger class consistency and diversity. These
observations align with the quantitative results in Tab. 1, where MGAudio achieves a significantly
lower FAD than the others. FD metrics further support these findings.

4.3.6 Model-Guidance vs. Classifier-Free Guidance

We examine the effect of classifier-free guidance (CFG) during inference for models trained with
different objectives. Here, we use sampling step of 25 same with FRIEREN. Fig. 5 shows that
FRIEREN [13], which depends on CFG during both training and inference, suffers significantly
when CFG is disabled (i.e., CFG = 1). In contrast, MGAudio, trained with our AMG (model-guided)
objective, performs strongly even without CFG. Applying an optimal CFG scale further improves
MGAudio, setting a new state-of-the-art. These results highlight the robustness of model-guided
training and its reduced reliance on inference-time CFG for effective video-to-audio generation.
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Figure 5: Effect of CFG vs. AMG. Training with AMG consistently outperforms CFG across all
evaluation metrics on the video-to-audio task, highlighting the advantages of model-guided learning.



To further validate these findings under controlled conditions, we compare MGAudio with the CFG-
only baseline SiT, which shares the same architecture, training setup, and optimization parameters.
Both models are trained for 300,000 iterations with a batch size of 32. Figure 6 presents FAD and
FD results across various sampling steps, with and without CFG applied at inference. MGAudio
consistently outperforms the SiT baseline in all configurations. Notably, even without CFG—which
reduces inference cost by eliminating the need for dual model passes—MGAudio achieves superior
perceptual and distributional quality. This confirms that model-guided training not only enhances
robustness and efficiency but also provides consistent gains across both comparable baselines (SiT)
and prior state-of-the-art methods (FRIEREN).

FD (w/o CFG) FAD (w/o CFG) FD (CFG=2) FAD (CFG=2)
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Figure 6: Comparison of FD and FAD metrics for SiT and MGAudio models, evaluated with and
without CFG across different sampling steps.

4.4 Limitations

One limitation of our method is its reduced effectiveness when generating human vocalizations or
linguistically complex audio, such as dialogue or singing, especially from subtle visual cues like lip
movements. Since MGAudio is optimized for general audio effects and ambient sounds, it lacks the
structural and phonetic awareness needed to model such content reliably. Additionally, while model-
guided training improves overall alignment and diversity, it may introduce confusion when the visual
semantics are ambiguous or loosely correlated with the target sound. Furthermore, inference speed
remains a bottleneck due to the reliance on a VAE and the iterative sampling process. A promising
direction for future work is to adopt acceleration techniques such as Consistency Models [41] or
Physics-Informed Distillation (PID) [42].

5 Conclusion

In this work, we reveal a compelling property of the proposed MGAudio, a model based on scalable
interpolant transformers (SiT) trained with model-guided objectives, demonstrating their strong poten-
tial for efficient audio generation. Our MGAudio framework achieves state-of-the-art performance on
VGGSound with a FAD of 0.40, which sets a new benchmark. Notably, training with only 10% of the
VGGSound dataset surpassing most existing methods that rely on 100% of the data in terms of FAD.
We also show that model-guidance produces a more compact and coherent audio distribution com-
pared to classifier-free guidance (CFG). Finally, by aligning audio and video representations through
dual learning, our framework utilizes pretrained video encoders more effectively than conventional
conditioning strategies. These contributions collectively highlight the potential of model-guided
diffusion transformers as a scalable, data-efficient solution for multimodal audio generation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide extensive experiments and detailed analysis to support our claims
in Section Experiment.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussion the limitations in the Limitation section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary details to reproduce the main experimental
results, including baseline hyperparameters and training or inference settings. Some minor
details that may not be included in this paper are in the referenced works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are publicly available, and we will release our code upon accep-
tance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We show the details in the experiments section and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a single A100 GPU for experiments; details are also shared in the
experiments section.
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due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
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Answer: [NA]
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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¢ The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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Model-Guided Dual-Role Alignment for High-Fidelity
Open-Domain Video-to-Audio Generation

Appendix

A Model Guidance: Derivation and Integration

In our framework, MGAudio, we incorporate the Model Guidance (MG) strategy proposed by [16] as
a training-time objective that complements the conventional Classifier-Free Guidance (CFG). While
CFG modifies the inference trajectory by combining outputs from conditional and unconditional
branches, MG introduces an auxiliary loss that explicitly accounts for the posterior dependency
between conditions and noisy inputs. This enables improved condition alignment without incurring
additional inference-time overhead.

A.1 Model Guidance for Flow Matching

Our model is based on the flow-matching mechanism [ | 5] for the denoising process, main backbone

being SiT [35]. Flow-Matching aims to learn a conditional velocity field ug (x:, ¢, ¥') given condition
¥ (condense feature vector extracted from the silent video), such that it matches the ground-truth
flow:

dXt
dt

where € ~ N(0,I) and x, = (1 — ¢)xo + te. The standard flow-matching loss is:

Ut(Xt | Xo) = = Xp — €, (8)

Lem = Ex, et,5 ||ug(xe, T, 0) — ue(xy | XO)H; )

While Eq. 9 learns to model the conditional distribution pg (x; | ¥), diffusion models often underutilize
the conditioning information in practice. To address this, MG proposes to include the posterior term
po(U | x¢), resulting in the joint distribution:

Po(x¢ | U) = po(xe | V) - po(V | x¢)", (10)

where w is the guidance scale controlling the strength of the posterior term. The score of this joint
distribution becomes:

Vi, log po(x¢ | V) = Vi, logpo(x¢ | V) +w - Vi, logpg (¥ | x). (11

Using Bayes’ rule, we express the posterior as:
log po (¥ | x¢) o log po(x: | ¥) — log pe(x¢), (12)
which leads to the posterior gradient:
Vi, log pa (T | xt) oc ug(x¢,t,0) — ug(x¢,t,7), (13)

where ug(xy,t, ) denotes the velocity predicted without conditioning.

This gives rise to the modified target velocity:
u’ :u+w~sg(ua(xt,t,17) *Ug(Xt,t,Q))), (14)

where u = x( — € is the ground-truth velocity and sg(-) denotes the stop-gradient operation, used to
stabilize training. The final Model Guidance loss is:

— 2
Ly = Exge,t,5 ||ug(xe,t,7) — 0|5 (15)

21



Table 7: MGAudio on VGGSound. Audio generation quality across state-of-the-art methods on the
VGGSound test set is presented. Bold indicates the best performance, and an underline denotes the
second-best. CFG: Classifier-Free Guidance, MG: Model-Guidance. *We train MMAudio from
scratch solely on the VGGSound dataset, and set the text input to None during inference for fairness.

Method Train Type Inference Type FAD| FD| ISt KLJ| Align. Acc.?

Diff-Foley [NeurIPS’23] [9] CFG CFG 6.25 23.07 10.85 3.18 93.94
See and Hear [CVPR’24] [10] CFG CFG 551 2660 547 281 58.14
FRIEREN [NeurIPS’24] [13] CFG CFG 1.38 1236 1212 2.73 97.25
MDSGen [ICLR’25] [12] CFG CFG 1.40 1742 9.66 2.84 96.88
MMAudio [CVPR’25]* [14] CFG CFG 0.71 697 11.09 2.07 92.28
MGAudio MG No CFG 080 7.89 990 2.77 90.80
MGAudio MG CFG 040 6.6 12.82 276 95.65

A.2 Inference-Time Integration of CFG into MG-Trained Models

At inference, we integrate classifier-free guidance (CFG) to explicitly control generation fidelity.
Although the MG loss is utilized solely during training to enhance model sensitivity to conditioning
signals, employing CFG at inference further boosts fidelity without additional retraining. Empirical
results demonstrate that combining MG with CFG achieves superior perceptual quality and alignment,
effectively balancing diversity and fidelity across key metrics such as FAD.

Tab. 7 shows that our best MGAudio model (131M parameters), trained for 1.1M steps without
CFG, achieves a competitive FAD score of 0.80 and alignment accuracy of 90.80%, outperforming
strong baselines like MDSGen (131M parameters) and FRIEREN (157M parameters), and closely
approaching MMAudio (157M parameters), all utilizing CFG at inference. Notably, applying CFG
significantly enhances our model’s performance, achieving state-of-the-art results with an FAD of
0.40 and alignment accuracy of 95.65%, underscoring CFG’s critical role in improving alignment
quality.

B More Training Details

Training Configurations. We adopt the same model architecture and hyperparameters as SiT [35].
For all experiments, the guidance scale factor in Eq. 6 of the main paper is set to w = 1.45, following
the default in [16]. For the initial 10,000 training steps, we set w = 0 to stabilize early training. All
models are optimized using AdamW [43] with a weight decay of 0 and betas (0.9, 0.999). We use
a constant learning rate of 1 x 10~%, a batch size of 64, and train for 1.1 million steps in the main
experiments (Table 1 and Figure 5). Data augmentation follows the same protocol as Diff-Foley [9].
We do not tune learning rates, apply warm-up or decay schedules, modify AdamW parameters, add
extra augmentations, or apply gradient clipping. For ablation studies in Sections 4.3.1-4.3.5, models
are trained for 300,000 steps with a batch size of 16, while keeping all other settings unchanged.

Sampling Configurations. We utilize an exponential moving average (EMA) of model weights with
a decay factor of 0.9999 and employ EMA checkpoints for all sampling, which consistently achieving
improved performance. By default, sampling is performed using the Euler-Maruyama solver with
50 denoising steps and a classifier-free guidance (CFG) value of 1.45. For the comparative analysis
presented in Figure 5 of the main paper, we adopt the Euler solver with a reduced step count of 25,
aligning our methodology with that of FRIEREN [13] to ensure a fair and accurate comparison.

Metric Calculation We utilize audio evaluation tools provided by AudioLDM [37] for FAD, FD, IS,
and KL. For alignment accuracy, we use the code provided by Diff-Foley [9].

Architectural Configurations. We adopt the same transformer architecture as SiT [35], experiment-
ing with four model scales: MGAudio-S, B, L, XL, varying in parameter count and computational
cost. A detailed summary is provided in Tab. 8.

C Learned Data Distribution Comparison

We present a higher-resolution comparison of the generated and real audio sample distributions in
Fig. 7. For each audio sample, both generated and real, we first extract sample-wise logits using
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Table 8: Transformer Model Configurations of MGAudio with different model size.

Model Layer N Hidden dimension d Head Patchsize # Parameters (M)
MGAudio-S 12 384 6 2 34
MGAudio-B 12 768 12 2 131
MGAudio-L 24 1024 16 2 464
MGAudio-XL 28 1152 16 2 680
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Figure 7: Audio Distribution. MGAudio generates audio samples that more closely align with the
target distribution compared to other methods. For example, samples for classes “playing djembe”
(red points) and “scuba diving” (black points) are tightly clustered around the center of the real
sample distribution.

the PANNs model [44]. These logits are then projected into a 2D space using UMAP [39] for
visualization. The resulting embeddings are used to plot the distribution of generated samples, along
with contour plots of the real samples. The filled contours in Fig. 7 represent the density of real audio
samples from VGGSound, focusing on four selected classes: playing djembe, playing cornet, scuba
diving, and black-capped chickadee calling.

D Effect of Batch Size

We analyze the influence of varying batch sizes on the stability and quality of MGAudio training. As
shown in Tab. 9, larger batch sizes generally improve key performance metrics, particularly FAD, FD,
IS, and alignment accuracy, suggesting enhanced audio fidelity, diversity, and alignment quality.
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For our main experiments, we select a batch size of 64, which yields the best overall performance
metrics across all evaluated criteria. For computational efficiency in our extensive ablation studies,
we opt for a smaller batch size of 16, which provides reasonable performance metrics despite some
degradation, enabling faster experimentation cycles.

Table 9: Impact of Batch Size on MGAudio Performance Metrics

Batch Size FAD| FD] ISt KL| Align. Acc.

16 1.14  13.09 835 2.70 93.67
32 0.71 12.07 8.61 272 94.41
64 0.51 9.19 10.25 2.75 95.14

E Effect of Sampling Step

We evaluate the performance of MGAudio under different sampling step budgets: 5, 25, 50, 120, 250,
and 500 steps. As shown in Fig. 8, MGAudio achieves optimal performance for major metrics such
as FAD, FD, and KL at 25-50 sampling steps. This indicates that further increasing sampling steps
does not necessarily enhance results and may incur unnecessary computational overhead.

FAD FD IS KL Align acc (%)
20.0 75.0 35
10.0 80.0
100 >0 3.0 60.0
25.0 5.0 ’ '
0.0 40.0
5 50 120 500 5 50 120 500 5 50 120 500 5 50 120 500 5 50 120 500

Sampling Steps Sampling Steps Sampling Steps Sampling Steps Sampling Steps

Figure 8: Performance Metrics of MGAudio Across Different Sampling Steps.

Furthermore, to ensure a fair comparison across methods, we evaluate all models using identical
sampling steps or number of forward evaluation (NFE) while adopting the default CFG value reported
in each method. As shown in Table 10, our approach achieves competitive or superior results
under these standardized and transparent settings. Notably, even at ( NFE = 100 ), MGAudio
maintains inference times comparable to FRIEREN and MDSGen while being substantially faster
than MM Audio. Moreover, at ( CFG = 1.0 ), our model surpasses both FRIEREN and MDSGen in
overall quality with only 50 NFEs, demonstrating its efficiency and strong generation capability.

Table 10: Comparison of inference efficiency and quality under different CFG values and sampling
settings.

Method CFG Steps NFE FAD| FD| IST Time(s)/
FRIEREN 4.50 25 50 1.38 1236 12.12 0.20
MDSGen 5.00 25 50 140 1742 9.66 0.24
MMAudio 4.50 25 50 0.71 6.97 11.09 0.98

MGAudio (Ours)  1.00 25 25 1.40 9.04 9.19 0.08
MGAudio (Ours)  1.45 25 50 0.68 749  12.11 0.15
MGAudio (Ours)  1.00 50 50 0.80 7.89  9.90 0.15
MGAudio (Ours)  1.45 50 100 0.40 6.16 12.82 0.31

F Effect of Longer Training

To study the effect of extended training, we continue training MGAudio up to 1.7M steps. As shown
in Fig. 9, the model continues to improve steadily with longer training, with performance metrics
stabilizing beyond 1.1M steps. We select the 1.1 M-step checkpoint as our final model to balance
training efficiency and generation quality.
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Figure 9: Longer Training Effect. We plot the evolution of five evaluation metrics, FAD, FD, IS, KL
divergence, and alignment accuracy, over training steps. MGAudio exhibits consistent improvements
across all metrics during the first 1M steps, after which most metrics begin to saturate. Notably, FAD
and FD steadily decrease, and IS and alignment accuracy improve, indicating that both perceptual
quality and semantic consistency benefit from prolonged training.

Interestingly, prior work based on diffusion models such as MDSGen [12] reports that longer training
can lead to degraded performance, likely due to overfitting or mode collapse. In contrast, our method
maintains or improves quality throughout, highlighting its robustness and the effectiveness of the
model-guided training objective with flow-matching learning.

G Robust Learning from Noisy or Limited Data

We observe that MGAudio maintains strong performance even when trained with only 10% of the
VGGSound dataset, suggesting improved robustness to limited and potentially noisy training data.
This robust learning capability under constrained data conditions has not been observed in prior
Vision Model Guidance [16].

To verify this observation, we train MGAudio (with and without AMG loss) and MMAudio using
the same 10% subset of VGGSound under identical settings (1M steps). As shown in Table 11,
MGAudio with the AMG loss substantially outperforms both its ablation and MMAudio across all
metrics, indicating that the AMG loss may promote more stable and data-efficient learning.

Table 11: Performance Comparison when models train with 10% of VGGSound dataset.

Method AMG Loss FAD, FD| ISt KL|

MMAudio [14] - 2.81 1428 10.37 2.87
MGAudio X 32.84 123.14 1.09 4.34
MGAudio v 0.82 813 10.68 2.67

Mechanistically, we hypothesize that AMG’s self-distilled flow targets act as a dynamic regularizer:
during training, the model infuses its own predicted flow (conditioned on the visual cue) into the
target flow, effectively “rectifying” noisy or weak samples. This process stabilizes learning and yields
stronger generalization under data scarcity.

H Effect of Representation Alignment Weight \

We investigate the effect of varying the weight A of the audio representation alignment loss, following
the setup in prior work [25]. As shown in Table 12, the model achieves the best perceptual quality
(lowest FAD) when \ = 0.5. Increasing A beyond this value slightly improves FD and KL but leads
to a degradation in perceptual realism. Overall, A = 0.5 provides a balanced trade-off between
perceptual quality and distributional fidelity, and the model remains stable across a reasonable range
of A. Therefore, we adopt A = 0.5 as the default setting in all subsequent experiments.

I Sampler Investigation

We investigate two widely-used sampler families: deterministic ODE solvers (Euler integrator) and
stochastic SDE samplers (Euler-Maruyama integrator). Following prior works [35, 16], both samplers
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Table 12: Ablation study on )\, the weight of the audio representation alignment loss.

Metric A=025 X=05 AX=075 A=1.0

FAD] 0.74 0.71 0.78 0.81
FDJ 13.48 12.07 11.69 11.64
KLJ] 7.75 8.61 8.62 8.62

are evaluated using a consistent 50-step sampling scheme. As presented in Tab. 13, the SDE-based
Euler-Maruyama sampler achieves better overall performance, indicating superior audio fidelity and
diversity compared to the deterministic Euler sampler. Thus, for our main experiments, we utilize the
Euler-Maruyama integrator due to its optimal balance between realism and variation.

Table 13: Performance Comparison between ODE Euler and SDE Euler-Maruyama Samplers.

Sampler Type FAD| FD| ISt KL| Align. Acc. (%)
Euler ODE 058 6.71 1247 2.69 95.98
Euler-Maruyama SDE 040 6.6 12.82 2.76 95.65

J Video Conditioning Integration Styles

Our default conditioning strategy follows MDSGen [12], which aggregates video frames into a single
global feature vector and modulates the audio generator via AdaIN. This approach is computationally
efficient but may compromise temporal precision. Although temporal modeling is not the primary
focus of this work, we explore alternative conditioning strategies to examine their potential impact on
generation quality.

To ensure a fair comparison, we integrate each conditioning strategy into our framework by selectively
enabling its corresponding temporal alignment mechanism while removing others. All models are
trained under identical configurations (batch size of 64, 300k iterations) to isolate the effect of each
conditioning design. The core part for each strategy is:

* MDSGen-style (ours): Global frame aggregation with AdaIN modulation.

¢ FRIEREN-style [13]: Temporal interpolation of frame features to match the mel-spectrogram
length, followed by channel-wise concatenation.

* MMAudio-style [14]: Multimodal transformer with joint audio—video attention.

We evaluate each strategy using MMAudio’s metric suite, which covers distributional fidelity (FD-
VGG, FD-PASST), semantic consistency (IB-Score), and temporal alignment (DeSync):

Table 14: Comparison of video conditioning strategies. Lower is better for FD and DeSync; higher
is better for IB-Score.

Conditioning Style FD-VGG | FD-PASST | IB-Score{ DeSync |

MDSGen-style 0.5411 74.092 24.58 1.242
FRIEREN-style 0.8293 90.668 23.56 0.938
MMAudio-style 0.6327 81.732 25.05 0.961

Findings. As shown in Table 14, we have the following findings: (1) MDSGen-style conditioning
achieves the best distributional fidelity, likely due to its compact and stable global representation.
(2) FRIEREN-style provides the strongest temporal alignment, benefiting from explicit frame-level
interpolation. (3) MMAudio-style yields the highest semantic consistency, owing to its cross-modal
attention design.

These results suggest that temporal conditioning design is largely orthogonal to our core contribu-
tions—AMG and dual-role alignment. We adopt the MDSGen-style configuration for its simplicity
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and strong overall performance, but acknowledge that incorporating finer temporal granularity remains
a promising direction for future work.

Table 15: Training Time for Different MGAudio Model Sizes. Wall-clock training durations on a
single A6000 GPU for 300,000 iterations using mixed-precision training and a batch size of 16.

Model Training Time (hours)
MGAudio-S 16.6
MGAudio-B 25.7
MGAudio-L 57.0

MGAudio-XL 77.1

K Training Time Analysis

Tab. 15 details the training durations for various MGAudio model sizes (small to extra-large). Training
was conducted on a single A6000 GPU using mixed-precision optimization for 300,000 iterations with
a batch size of 16. We select MGAudio-B as our primary model due to its balanced trade-off between
performance and computational efficiency. The results highlight the increasing computational
requirements associated with larger model architectures, illustrating practical considerations in
choosing model complexity.

L Additional Metrics Comparison

To comprehensively evaluate audio quality beyond standard metrics such as FAD and FD, we follow
[14] and include additional metrics shown in Table 16. These metrics encompass Fréchet Distance
(FD) computed using multiple audio models (VGG [45], PANNSs [44], PaSST [46]), and Kullback-
Leibler divergence (KL) evaluated using PANNs and PaSST embeddings for distribution matching
between generated audio and ground truth audio. And Inception Score (IS) [47] to assess audio
quality. Semantic alignment is evaluated using IB-Score, where ImageBind [48] extracts visual and
audio features, computing average cosine similarity as in [49]. Audio-visual synchrony is measured
via DeSync scores using Synchformer to estimate temporal alignment errors.

As detailed in Table 16, MGAudio consistently outperforms competing methods in key distribution
metrics (FD-VGG and FD-PANNs) and achieves the highest audio quality according to IS with a
CFG of 6.0. Additionally, despite MMAudio achieving the lowest DeSync, MGAudio demonstrates a
strong semantic alignment (IB-Score), particularly at higher CFG values, without the need for explicit
test-time optimization as done by See and Hear. Furthermore, MGAudio accomplishes these superior
results with fewer parameters (131M) compared to MMAudio (157M), underscoring its efficiency
and effectiveness.

Table 16: Metrics from MMAudio [14]. MGAudio on VGGSound. Audio generation quality across
state-of-the-art methods on the VGGSound test set is presented. Bold indicates the best performance,
and an underline denotes the second-best. *We train MM Audio from scratch solely on the VGGSound
dataset, and set the text input to None during inference for fairness.

| FD, KL/ ISt |

Method VGG PANNs PaSST [ PANNs PaSST | PANNs | [B-Score? (s) | #DeSync) | # Params|
Diff-Foley [NeurlPS23] [0] | 6.25  23.07 35892 | 3.7 304 | 1077 19.88 0.1 860M
See and Hear [CVPR'24] [10] | 551 2660 22767 | 282 278 571 3611 120 1099M
FRIEREN [NeurlPS'24] [13] | 138 1236 107.57 | 272 284 | 12.12 283 0.85 157M

MDSGen [ICLR'25] [12] | 140 1742 11427 | 283 280 9.68 253 123 131M
MMAudio [CVPR'2S]* [14] | 071 697 5100 | 208 197 | 1108 2735 0.50 157M
MGAudio, CFG= 145 | 040 616 8353 | 275 256 | 1280 26.53 122 131M
MGAudio, CFG = 4.0 223 1365 7741 | 275 262 | 144l 2713 123 131M
MGAudio, CFG = 6.0 150 910 6975 | 281 262 | 17.36 2877 121 131M
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M Human Preference Evaluation

We conducted a human evaluation to compare MGAudio with two baselines (FRIEREN [13] and
MMAudio [14]) using a 5-point Likert scale. Three participants were asked to first watch the silent
video and then listen to the generated audio clips from each method without being informed of their
source. Participants rated each clip from 1 to 5, where ‘1” indicates poor audiovisual alignment and
unnatural sound, and ‘5” indicates strong synchronization and natural acoustic quality.

As shown in Table 17, listeners consistently preferred MGAudio over both FRIEREN and MMAudio,
indicating that our method produces audio that better aligns with visual events and is more perceptually
natural.

Table 17: Average human preference scores (1-5) for generated audio across different methods.

Method FRIEREN MMAudio MGAudio (ours)
Preference 3.44+0.46 3.89+0.47 4.38 £ 0.39

N Qualitative Comparisons

We present qualitative comparisons between MGAudio and prior state-of-the-art methods on randomly
selected videos from the VGGSound test set. Each example shows input video frames followed
by the mel-spectrograms generated by different models. As illustrated in Fig. 10-13, MGAudio
produces spectrograms with more realistic structure, temporal continuity, and acoustic richness,
closely resembling the ground truth. Corresponding audio samples are included in the supplementary
materials. These results highlight the benefits of the model-guided objective in generating coherent
and semantically accurate audio. Beside the samples show at here, we have included more samples
generated from different method in the supplementary material.
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Figure 10: Qualitative Comparison of Mel-Spectrograms. The example is from the VGGSound
test set (video: “A8rklgn3N4A_000028.mp4”), depicting a cat growling.

29



°
[}
2
S
=
3
a
E

MDSGen FRIEREN Diff-Foley

MMAudio

GT

Figure 11: Qualitative Comparison of Mel-Spectrograms. The example is from the VGGSound
test set (video: “GO2Tf8KLJ14_000061.mp4”), depicting a person playing steel guitar, slide guitar.
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Figure 12: Qualitative Comparison of Mel-Spectrograms. The example is from the VGGSound
test set (video: “hHbJRPjqgXQ_000090.mp4”), depicting a race car, auto racing.
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Figure 13: Qualitative Comparison of Mel-Spectrograms. The example is from the VGGSound
test set (video: “mKEJRZtNx90_000044.mp4”), depicting a baltimore oriole calling his mate.
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