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Abstract

We study the constant regret guarantees in reinforcement learning (RL). Our ob-
jective is to design an algorithm that incurs only finite regret over infinite episodes
with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspec-
ified linear Markov decision processes (MDPs) where both the transition kernel
and the reward function can be approximated by some linear function up to mis-
specification level ζ. At the core of Cert-LSVI-UCB is an innovative certified
estimator, which facilitates a fine-grained concentration analysis for multi-phase
value-targeted regression, enabling us to establish an instance-dependent regret
bound that is constant w.r.t. the number of episodes. Specifically, we demon-
strate that for a linear MDP characterized by a minimal suboptimality gap ∆,
Cert-LSVI-UCB has a cumulative regret of Õ(d3H5/∆) with high probability,
provided that the misspecification level ζ is below Õ(∆/(

√
dH2)). Here d is

the dimension of the feature space and H is the horizon. Remarkably, this regret
bound is independent of the number of episodes K. To the best of our knowledge,
Cert-LSVI-UCB is the first algorithm to achieve a constant, instance-dependent,
high-probability regret bound in RL with linear function approximation without
relying on prior distribution assumptions.

1 Introduction

Reinforcement learning (RL) has been a popular approach for teaching agents to make decisions
based on feedback from the environment. RL has shown great success in a variety of applications,
including robotics (Kober et al., 2013), gaming (Mnih et al., 2013), and autonomous driving. In
most of these applications, there is a common expectation that RL agents will master tasks after
making only a bounded number of mistakes, even over indefinite runs. However, theoretical support
for this expectation is limited in RL literature: in the worst case, existing works such as Jin et al.
(2020); Ayoub et al. (2020); Wang et al. (2019) only provided Õ(

√
K) regret upper bounds with

K being the number of episodes; in the instance-dependent case, Simchowitz and Jamieson (2019);
Yang et al. (2021); He et al. (2021a) achieved logarithmic high-probability regret upper bounds (e.g.,
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Õ(∆−1 logK)) for both tabular MDPs and MDPs with linear function approximations, provided a
minimal suboptimality gap ∆. However, these findings suggest that an agent’s regret increases with
the number of episodes K, contradicting to the expectation of finite mistakes in practice. To close
this gap between theory and practice, there is a recent line of work proving constant regrets bound
for RL and bandits, suggesting that an RL agent’s regret may remain bounded even when it en-
counters an indefinite number of episodes. Papini et al. (2021a); Zhang et al. (2021) have provided
instance-dependent constant regret bound under certain coverage assumptions on the data distribu-
tion. However, verifying these data distribution assumptions can be difficult or even infeasible. On
the other hand, it is known that high-probability constant regret bound can be achieved uncondition-
ally in multi-armed bandits (Abbasi-Yadkori et al., 2011) and contextual linear bandits if and only
if the misspecification is sufficiently small with respect to the minimal sub-optimality gap (Zhang
et al., 2023b). This raises a critical question:

Is it possible to design a reinforcement learning algorithm that incurs only constant regret under
minimal assumptions?

To answer this question, we introduce a novel algorithm, which we refer to as Cert-LSVI-UCB, for
reinforcement learning with linear function approximation. To encompass a broader range of real-
world scenarios characterized by large state-action spaces and the need for function approximation,
we consider the misspecified linear MDP (Jin et al., 2020) setting, where both the transition kernel
and reward function can be approximated by a linear function with approximation error ζ. We show
that, with our innovative design of certified estimator and novel analysis, Cert-LSVI-UCB achieves
constant regret without relying on any prior assumption on data distributions. Our key contributions
are summarized as follows:

• We introduce a parameter-free algorithm, referred to as Cert-LSVI-UCB, featuring a novel
certified estimator for testing when the confidence set fails. This certified estimator enables
Cert-LSVI-UCB to achieve a constant, instance-dependent, high probability regret bound of
Õ(d3H5/∆) for tasks with a suboptimality gap ∆, under the condition that the misspecifica-
tion level ζ is bounded by ζ < Õ

(
∆/(
√
dH2)

)
. This bound is termed a high probability constant

regret bound, indicating that it does not depend on the number of episodes K. We note that this
constant regret bound matches the logarithmic expected regret lower bound of Ω(∆−1 logK),
suggesting that our result is valid and optimal in terms of the dependence on the suboptimality
gap ∆.

• When restricted to a well-specified linear MDP (i.e., ζ = 0), the constant high probability re-
gret bound improves the previous logarithmic result Õ(d3H5∆−1 logK) in He et al. (2021a) by a
logK factor. Our results suggest that the total suboptimality incurred by Cert-LSVI-UCB remains
constantly bounded, regardless of the number of episodes K. In contrast to the previous constant
regret bound achieved by Papini et al. (2021a), our regret bound does not require any prior as-
sumption on the feature mapping, such as the UniSOFT assumption made in Papini et al. (2021a).
To the best of our knowledge, Cert-LSVI-UCB is the first algorithm to achieve a high probability
constant regret bound for MDPs without prior assumptions on data distributions. We further show
that this constant regret high-probability bound does not violate the logarithmic expected regret
bound by letting δ = 1/K 2.

Notation. Vectors are denoted by lower case boldface letters such as x, and matrices by upper case
boldface letters such as A. We denote by [k] the set {1, 2, · · · , k} for positive integers k. We use
log x to denote the logarithm of x to base 2. For two non-negative sequence {an}, {bn}, an ≤ O(bn)
means that there exists a positive constant C such that an ≤ Cbn; an ≤ Õ(bn) means there exists
a positive constant k such that an ≤ O(bn logk bn); an ≥ Ω(bn) means that there exists a positive
constant C such that an ≥ Cbn; an ≥ Ω̃(bn) means there exists a positive constant k such that
an ≥ Ω(bn log

−k bn); an ≥ ω(bn) means that limn→∞ bn/an = 0. For a vector x ∈ Rd and a
positive semi-definite matrix A ∈ Rd×d, we define ∥x∥2A = x⊤Ax. For any set C, we use |C| to
denote its cardinality. We denote the identity matrix by I and the empty set by ∅. The total variation
distance of two distribution measures P(·) and Q(·) is denoted by ∥P(·)−Q(·)∥TV.

2The detailed conversion is presented in Remark 5.2.
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Algorithm Misspecified MDP? Result

LSVI-UCB (He et al., 2021a) × Õ(d3H5∆−1 log(K))

LSVI-UCB (Papini et al., 2021a) × Õ(d3H5∆−1 log(1/λ))

Cert-LSVI-UCB (ours, Theorem 5.1) ✓ Õ(d3H5∆−1)

Table 1: Instance-dependent regret bounds for different algorithms under the linear MDP setting.
Here d is the dimension of the linear function ϕ(s, a), H is the horizon length, ∆ is the minimal
suboptimality gap. All results in the table represent high probability regret bounds. The regret bound
depends the number of episodes K in He et al. (2021a) and the minimum positive eigenvalue λ of
features mapping in Papini et al. (2021b). Misspecified MDP? indicates if the algorithm can (✓)
handle the misspecified linear MDP or not (×).

2 Related Work

Instance-dependent regret bound in RL. Although most of the theoretical RL works focus on
worst-case regret bounds, instance-dependent (a.k.a., problem-dependent, gap-dependent) regret
bound is another important bound to understanding how the hardness of different instance can
affect the sample complexity of the algorithm. For tabular MDPs, Jaksch et al. (2010) proved
a Õ(D2S2A∆−1 logK) instance-dependent regret bound for average-reward MDP where D is
the diameter of the MDP and ∆ is the policy suboptimal gap. Simchowitz and Jamieson (2019)
provided a lower bound for episodic MDP which suggests that the any algorithm will suffer
from Ω(∆−1) regret bound. Yang et al. (2021) analyzed the optimistic Q-learning and proved a
O(SAH6∆−1 logK) logarithmic instance-dependent regret bound. In the domain of linear func-
tion approximation, He et al. (2021a) provided instance-dependent regret bounds for both linear
MDPs (i.e., Õ(d3H5∆−1 logK)) and linear mixture MDPs (i.e., Õ(d2H5∆−1 logK)). Further-
more, Dann et al. (2021) provided an improved analysis for this instance-dependent result with a
redefined suboptimal gap. Zhang et al. (2023a) proved a similar logarithmic instance-dependent
bound with He et al. (2021a) in misspecified linear MDPs, showing the relationship between mis-
specification level and suboptimality bound. Despite all these bounds are logarithmic depended on
the number of episode K, many recent works are trying to remove this logarithmic dependence. Pa-
pini et al. (2021a) showed that under the linear MDP assumption, when the distribution of contexts
ϕ(s, a) satisfies the ‘diversity assumption’ (Hao et al., 2020) called ‘UniSOFT’, then LSVI-UCB
algorithm may achieve an expected constant regret w.r.t. K. Zhang et al. (2021) showed a similar
result on bilinear MDP (Yang and Wang, 2020), and extended this result to offline setting, indicating
that the algorithm only need a finite offline dataset to learn the optimal policy. Table 1 summarizes
the most relevant results mentioned above for the ease of comparison with our results.

RL with model misspecification. All of the aforementioned works consider the well-specified
setting and ignore the approximation error in the MDP model. To better understand this misspecifi-
cation issue, Du et al. (2019) showed that having a good representation is insufficient for efficient RL
unless the approximation error (i.e., misspecification level) by the representation is small enough.
In particular, Du et al. (2019) showed that an Ω̃(

√
H/d) misspecification will lead to Ω(2H) sam-

ple complexity for RL to identify the optimal policy, even with a generative model. On the other
hand, a series of work (Jin et al., 2020; Zanette et al., 2020b,a) provided Õ(

√
K + ζK)-type regret

bound for RL in various settings, where ζ is the misspecification level3 and we ignore the depen-
dence on the dimension of the feature mapping d and the planing horizon H for simplicity. These
algorithms, however, require the knowledge of misspecification level ζ, thus are not parameter-
free. Another concern for these algorithms is that some of the algorithms (Jin et al., 2020) would
possibly suffer from a trivial asymptotic regret, i.e., Regret(k) > ω(kζ · poly(d,H, log(1/δ))), as
suggested by Vial et al. (2022). This means the performance of the RL algorithm will possibly de-
generate as the number of episodes k grows. To tackle these two issues, Vial et al. (2022) propose
the Sup-LSVI-UCB algorithm which requires a parameter εtol. When εtol = d/

√
K, the proposed

3The misspecification level for these upper bounds is measured in the total variation distance between the
ground truth transition kernel and approximated transition kernel, which is strictly stronger than the infinite-
norm misspecification used in Du et al. (2019).
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algorithm is parameter-free but will have a trivial asymptotic regret bound. When εtol = ζ, the
algorithm will have a non-trivial asymptotic regret bound but is not parameter-free since it requires
knowledge of the misspecification level. Another series of works (He et al., 2022b; Lykouris et al.,
2021; Wei et al., 2022) are working on the corruption robust setting. In particular, Lykouris et al.
(2021); Wei et al. (2022) are using the model-selection technique to ensure the robustness of RL
algorithms under adversarial MDPs.

3 Preliminaries

We consider episodic Markov Decision Processes, which are denoted byM(S,A, H, {rh}, {Ph}).
Here, S is the state space,A is the finite action space, H is the length of each episode, rh : S×A 7→
[0, 1] is the reward function at stage h and Ph(·|s, a) is the transition probability function at stage h.
The policy π = {πh}Hh=1 denotes a set of policy functions πh : S 7→ A for each stage h. For given
policy π, we define the state-action value function Qπ

h(s, a) and the state value function V π
h (s) as

Qπ
h(s, a) = rh(s, a) + E

[∑H
h′=h+1rh′

(
sh′ , πh′(sh′)

) ∣∣∣ sh = s, ah = a
]
, V π

h (s) = Qπ
h

(
s, πh(s)

)
,

where sh′+1 ∼ Ph(·|sh′ , ah′). The optimal state-action value function Q∗
h and the optimal state

value function V ∗
h are defined by Q∗

h(s, a) = maxπ Q
π
h(s, a), V

∗
h (s) = maxπ V

π
h (s).

By definition, both the state-action value function Qπ
h(s, a) and the state value function V π

h (s) are
bounded by [0, H] for any state s, action a and stage h. For any function V : S 7→ R, we denote
by [PhV ](s, a) = Es′∼Ph(·|s,a)V (s′) the expected value of V after transitioning from state s given
action a at stage h and [BhV ](s, a) = rh(s, a) + [PhV ](s, a) where B is referred to as the Bellman
operator. For each stage h ∈ [H] and policy π, the Bellman equation, as well as the Bellman
optimality equation, are presented as follows

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a) := [BhV

π
h+1](s, a),

Q∗
h(s, a) = rh(s, a) + [PhV

∗
h+1](s, a) := [BhV

∗
h+1](s, a).

We use regret to measure the performance of RL algorithms. It is defined as Regret(K) =∑K
k=1

(
V ∗
1 (s

k
1) − V πk

1 (sk1)
)
, where πk represents the agent’s policy at episode k. This definition

quantifies the cumulative difference between the expected rewards that could have been obtained by
following the optimal policy and those achieved under the agent’s policy across the first K episodes,
measuring the total loss in performance due to suboptimal decisions.

We consider linear function approximation in this work, where we adopt the misspecified linear
MDP assumption, which is firstly proposed in Jin et al. (2020).
Assumption 3.1 (ζ-Approximate Linear MDP, Jin et al. 2020). For any ζ ≤ 1, we say a MDP
M(S,A, H, {rh}, {Ph}) is a ζ-approximate linear MDP with a feature map ϕ : S × A 7→ Rd, if
for any h ∈ [H], there exist d unknown (signed) measures µh =

(
µ
(1)
h , · · · , µ(d)

h

)
over S and an

unknown vector θh ∈ Rd such that for any (s, a) ∈ S ×A, we have∥∥Ph(·|s, a)− ⟨ϕ(s, a),µh(·)⟩
∥∥
TV
≤ ζ,

∣∣rh(s, a)− ⟨ϕ(s, a),θh⟩ ∣∣ ≤ ζ,

w.l.o.g. we assume ∀(s, a) ∈ S ×A : ∥ϕ(s, a)∥ ≤ 1 and ∀h ∈ [H] : ∥µh(S)∥ ≤
√
d, ∥θh∥ ≤

√
d.

The ζ-approximate linear MDP suggests that for any policy π, the state-action value function Qπ
h

can be approximated by a linear function of the given feature mapping ϕ up to some misspecification
level, which is summarized in the following proposition.
Proposition 3.2 (Lemma C.1, Jin et al. 2020). For a ζ-approximate linear MDP, for any policy π,
there exist corresponding weights {wπ

h}h∈[H] where wπ
h = θh +

∫
V π
h+1(s

′)dµh(s
′) such that for

any (s, a, h) ∈ S ×A× [H],
∣∣Qπ

h(s, a)− ⟨ϕ(s, a),wπ
h⟩
∣∣ ≤ 2Hζ. We have ∥wπ

h∥2 ≤ 2H
√
d.

Next, we introduce the definition of the suboptimal gap as follows.
Definition 3.3 (Minimal suboptimality gap). For each s ∈ S, a ∈ A and step h ∈ [H], the subop-
timality gap gaph(s, a) is defined by ∆h(s, a) = V ∗

h (s) −Q∗
h(s, a) and the minimal suboptimality

gap ∆ is defined by ∆ = minh,s,a
{
∆h(s, a) : ∆h(s, a) ̸= 0

}
.
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Algorithm 1 Cert-LSVI-UCB

1: Set V k
H+1(s) = 0 for all (s, k) ∈ S × [K], Ckh,l = ∅ for all (h, l) ∈ [H]× N+, λ = 16

2: for episode k = 1, · · · ,K do
3: Set Lk = max{⌈log4(k/d)⌉, 0}
4: for step h = H, · · · , 1 do
5: for phase l = 1, · · · , Lk + 1 do
6: Uk

h,l = λI+
∑

τ∈Ck−1
h,l

ϕτ
h(ϕ

τ
h)

⊤

7: wk
h,l = (Uk

h,l)
−1
∑

τ∈Ck−1
h,l

ϕτ
h

(
rτh + V̂ k

h+1(s
τ
h+1)

)
8: Ũk,−1

h,l = κl

⌈
(Uk

h,l)
−1/κl

⌋
, w̃k

h,l = κl

⌈
wk

h,l/κl

⌋
where κl = 0.01 · 2−4ld−1

9: end for
10: V̂ k

h (sτh), ·, ·, · = Cert-LinUCB(sτh; {w̃k
h,l}l, {Ũ

k,−1
h,l }l, Lk) for all τ ∈ [k − 1]

11: end for
12: Observe sk1 ∈ S
13: for step h = 1, · · · , H do
14: ·, πk

h(s
k
h), l

k
h(s

k
h), f

k
h (s

k
h) = Cert-LinUCB(skh; {w̃k

h,l}l, {Ũ
k,−1
h,l }l, Lk)

15: Ck
h,lkh(s

k
h)

= Ck−1
h,lkh(s

k
h)
∪ {k} if fk

h (s
k
h) = 1 else Ck−1

h,lkh(s
k
h)

16: Ckh,l = C
k−1
h,l for all l ̸= lkh(s

k
h)

17: Play πk
h(s

k
h), set ϕk

h = ϕ
(
skh, π

k
h(s

k
h)
)
, receive rkh and observe skh+1 ∈ S

18: end for
19: end for

Notably, a task with a larger ∆ means it is easier to distinguish the optimal action π∗
h(s) from other

actions a ∈ A, while a task with lower gap ∆ means it is more difficult to distinguish the optimal
action.

4 Proposed Algorithms

4.1 Main algorithm: Cert-LSVI-UCB

We begin by introducing our main algorithm Cert-LSVI-UCB, which is a modification of the
Sup-LSVI-UCB (Vial et al., 2022). As presented in Algorithm 1, for each episode k, our al-
gorithm maintains a series of index sets Clk,h for each stage h ∈ [H] and phase l. The algo-
rithm design ensures that for any episode k, the maximum number of phases l is bounded by
Lk ≤ max{⌈log4(k/d)⌉, 0}. During the exploitation step, for each phase l associated with the
index set Clk−1,h, the algorithm constructs the estimator vector wk

h,l by solving the following ridge
regression problem in Line 6 and Line 7:

wk
h,l ← argminw∈Rd λ∥w∥22 +

∑
τ∈Ck−1

h,l

(
w⊤ϕτ

h − rτh − V̂ k
h+1(s

τ
h+1)

)2
.

After calculating the estimator vector wk
h,l in Line 8, the algorithm quantilizes wk

h,l and (Uk
h,l)

−1

to the precision of κl. Similar to Sup-LSVI-UCB (Vial et al., 2022), we note Ũk,−1
h,l is the quantized

version of inverse covariance matrix (Uk
h,l)

−1 rather than the inverse of quantized covariance matrix
(Ũk

h,l)
−1. The main difference between our implementation and that in Vial et al. (2022) is that

we use a layer-dependent quantification precision κl instead of the global quantification precision
κ = 2−4L/d, which enables our algorithm get rid of the dependence on O(logK) in the maximum
number of phases Lk.

After obtaining w̃k
h,l and Ũk,−1

h,l , a subroutine, Cert-LinUCB, is called to calculate an optimistic

value function V̂ k
h (sτh) for all historical states sτh in Line 10. Then the algorithm transits to stage

h− 1 and iteratively computes w̃k
h,l and Ũk,−1

h,l for all phase l and stage h ∈ [H].

In the exploration step, the algorithm starts to do planning from the initial state sk1 . For each observed
state skh, the same subroutine, Cert-LinUCB, will be called in Line 14 for the policy πk

h(s
k
h), the
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Algorithm 2 Cert-LinUCB :
(
s; {w̃k

h,l}l, {Ũ
k,−1
h,l }l, L

)
7→
(
V̂ k
h (s), πk

h(s), l
k
h(s), f

k
h (s)

)
1: input: s ∈ S,∀l : w̃k

h,l ∈ Rd, Ũk,−1
h,l ∈ Rd×d, L ∈ N+

2: output: V̂ k
h (s) ∈ R, πk

h(s) ∈ A, lkh(s) ∈ N+, fk
h (s) ∈ {0, 1}

3: Ak
h,1(s) = A, qV k

h,0(s) = 0, V̂ k
h,0(s) = H

4: for phase l = 1, · · · , L+ 1 do
5: Set Qk

h,l(s, a) =
〈
ϕ(s, a), w̃k

h,l

〉
6: Set πk

h,l(s) = argmaxa∈Ak
h,l

Qk
h,l(s, a), V

k
h,l(s) = Qk

h,l

(
s, πk

h,l(s)
)

7: if l > L then
8: return

(
V̂ k
h (s), πk

h(s), l
k
h(s), f

k
h (s)

)
=
(
V̂ k
h,l−1(s), π

k
h,l−1(s), l, 1

)
9: else if γl ·maxa∈Ak

h,l(s)
∥ϕ(s, a)∥Ũk,−1

h,l
≥ 2−l then

10: return
(
V̂ k
h (s), πk

h(s), l
k
h(s), f

k
h (s)

)
=
(
V̂ k
h,l−1(s), argmaxa∈Ak

h,l(s)
∥ϕ(s, a)∥Ũk,−1

h,l
, l, 1

)
11: else if max

{
V k
h,l(s)− 3 · 2−l, qV k

h,l−1(s)
}
> min

{
V k
h,l(s) + 3 · 2−l, V̂ k

h,l−1(s)
}

then
12: return

(
V̂ k
h (s), πk

h(s), l
k
h(s), f

k
h (s)

)
=
(
V̂ k
h,l−1(s), π

k
h,l−1(s), l, 0

)
13: else
14: V̂ k

h,l(s) = min
{
V k
h,l(s) + 3 · 2−l, V̂ k

h,l−1(s)
}

15: qV k
h,l(s) = max

{
V k
h,l(s)− 3 · 2−l, qV k

h,l−1(s)
}

16: Ak
h,l+1(s) =

{
a ∈ Ak

h,l(s) : Q
k
h,l(s, a) ≥ V k

h,l(s)− 4 · 2−l
}

17: end if
18: end for

corresponding phase lkh(s
k
h), and a flag fk

h (s
k
h). If the flag fk

h (s
k
h) = 1, the algorithm adds the index

k to the index set Ck
h,lkh(s

k
h)

in Line 15. Otherwise, the algorithm skips the current index k and all

index sets remain unchanged. Finally, the algorithm executes policy πk
h(s

k
h), receives reward rkh and

observes the next state skh+1 in Line 17.

4.2 Subroutine: Cert-LinUCB

Next we introduce subroutine Cert-LinUCB, improved from Sup-Lin-UCB-Var (Vial et al., 2022)
that computes the optimistic value function V̂ k

h . The algorithm is described as follows. Starting
from phase l = 1, the algorithm first calculates the estimated state-action function Qk

h,l(s, a) as a
linear function over the quantified parameter w̃k

h,l and feature mapping ϕ(s, a), following Proposi-
tion 3.2. After calculating the estimated state-action value function Qk

h,l(s), the algorithm computes
the greedy policy πk

h,l(s) and its corresponding value function V k
h,l(s).

Similar to Sup-Lin-UCB-Var (Vial et al., 2022), our algorithm has several conditions starting from
Line 7 to determine whether to stop at the current phase or to eliminate the actions and proceed to
the next phase l + 1, which are listed in the following conditions.

• Condition 1: In Line 7, if the current phase l is greater than the maximum phase L, we directly
stop at that phase and take the greedy policy on previous phase πk

h(s) = πk
h,l−1(s).

• Condition 2: In Line 9, if there exists an action whose uncertainty ∥ϕ(s, a)∥Ũk.−1
h,l

is greater than

the threshold 2−lγ−1
l , our algorithm will perform exploration by selecting that action.

• Condition 3: In Line 11, we compare the value of the pessimistic value function qV k
h,l(s) and the

optimistic value function V̂ k
h,l(s) which will be assigned in Line 14 and Line 15, if the pessimistic

estimation will be greater than the optimistic estimation, we will stop at that phase and take the
greedy policy on previous phase πk

h(s) = πk
h,l−1(s). Only in this case, the Algorithm 2 outputs

flag fk
h (s) = 0, which means this observation will not be used in Line 15 in Algorithm 1.

• Condition 4: In the default case in Line 16, the algorithm proceeds to the next phase after elimi-
nating actions.
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Notably, in Condition 4, since the expected estimation precision in the l-th phase is about Õ(2−l),
our algorithm can eliminate the actions whose state-action value is significantly less than others, i.e.,
less than Õ(2−l), while retaining the remaining actions for the next phase.

Specially, our algorithm differs from that in Vial et al. (2022) in terms of Condition 3 to certify
the performance of the estimation. In particular, a well-behaved estimation should always guarantee
that the optimistic estimation is greater than the pessimistic estimation. According to Line 14 and
Line 15, this is equivalent to the confidence region for l-th phase has intersection of the previous
confidence region [qV k

h,l−1(s), V̂
k
h,l−1(s)]. Otherwise, we hypothesis the estimation on l-th phase is

corrupted by either misspecification or bad concentration event, thus will stop the algorithm. We
will revisit the detail of this design later.

It’s important to highlight that our algorithms provide unique approaches when compared with pre-
vious works. In particular, He et al. (2021b) does not eliminate actions and combines estimations
from all layers by considering the minimum estimated optimistic value function. This characteristic
prevents their algorithm from achieving a uniform PAC guarantee in the presence of misspecifica-
tion. For a more detailed comparison with He et al. (2021b), please refer to Appendix B.1. Addi-
tionally, Lykouris et al. (2021); Wei et al. (2022) focus on a model-selection regime where a set of
base learners are employed in the algorithms, whereas we adopt a multi-phase approach similar with
SupLinUCB rather than conducting model selection over base learners.

5 Constant Regret Guarantee

Theorem 5.1. Under Assumption 3.1, let γl = 5(l + 20 + ⌈log(ld)⌉)dH
√
log(16ldH/δ) for

some fixed 0 < δ < 1/4. With probability at least 1 − 4δ, if misspecification level ζ is below
Õ
(
∆/(
√
dH2)

)
where ∆ is the minimal suboptimality gap, then for all K ∈ N+, the regret of

Algorithm 1 is upper bounded by

Regret(K) ≤ Õ
(
d3H5∆−1 log(1/δ)

)
.

This regret bound is constant w.r.t. the episode K.

Theorem 5.1 demonstrates a constant regret bound with respect to number of episodes K. Com-
pared with Papini et al. (2021a), our regret bound does not require any prior assumption on the
feature mapping ϕ, such as the UniSOFT assumption made in Papini et al. (2021a). In addition,
compared with the previous logarithmic regret bound He et al. (2021a) in the well-specified setting,
our constant regret bound removes the logK factor, indicating the cumulative regret no longer grows
w.r.t. the number of episode K, with high probability.
Remark 5.2. As discussed in Zhang et al. (2023b) in the misspecified linear bandits, Our high prob-
ability constant regret bound does not violate the lower bound proved in Papini et al. (2021a), which
says that certain diversity condition on the contexts is necessary to achieve an expected constant
regret bound. When extending this high probability constant regret bound to the expected regret
bound, we have

E[Regret(K)] ≤ Õ
(
d3H5∆−1 log(1/δ)

)
· (1− δ) + δK,

which depends on the number of episodes k. To obtain a sub-linear expected regret, we can choose
δ = 1/K, which yields a logarithmic expected regret Õ(d3H5∆−1 logK) and does not violate the
lower bound in Papini et al. (2021a).
Remark 5.3. Du et al. (2019) provide a lower bound showing the interplay between the misspec-
ification level ζ and suboptimality gap ∆ in a weaker setting, which we discuss in detail in Ap-
pendix B.2. Along with the result from Du et al. (2019), our results suggests that ignoring the
dependence on H , ζ = Õ(∆/

√
d) plays an important seperation for if a misspeficied model can be

efficiently learned. This result is also aligned with the positive result and negative result for linear
bandits (Lattimore et al., 2020; Zhang et al., 2023b).

6 Technical Challenges and Highlight of Proof Techniques

In this section, we highlight several major challenges in obtaining the constant regret under misspec-
ified linear MDP assumption and how our method, especially the certified estimator, tackles these
challenges.
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6.1 Challenge 1. Achieving layer-wise local estimation error.

In the analysis of the value function under misspecified linear MDPs, we follow the multi-phase
estimation strategy (Vial et al., 2022) to eliminate suboptimal actions and improve the robustness of
the next phase estimation. Similar approaches have been observed in Zhang et al. (2023b); Chu et al.
(2011) within the framework of (misspecified) linear bandits. However, unlike linear bandits, when
constructing the empirical value function V̂h for stage h in linear MDPs, Jin et al. (2020) requires a
covering statement on value functions to ensure the convergence of the regression, which is written
by: (see Lemma D.4 in Jin et al. (2020) for details)∥∥∥∑τ∈Cϕ

τ
h

[
V̂ k
h+1(s

τ )− E[V̂ k
h+1(s

τ )]
]∥∥∥

U−1
h

≤ ÕH

(√
d log(|C|) + log(|Vk

h+1|/δ) +
√
dκ
)
,

(6.1)

where we employ notation ÕH to obscure the dependence on H to simplify the presentation. We use
the notation Vk

h+1 to denote as an κ-covering, (or quantification in Takemura et al. (2021); Vial et al.
(2022)) for the value functions V̂ k

h+1. However, in the multi-phase algorithm, the empirical value
function V̂ k

h+1 from the subsequent stage h + 1, which is formulated using all pairs of parameters{
wk

h,ℓ,U
k
h,ℓ

}
ℓ

in L phases. Consequently, the covering number log |Vk
h+1| is directly proportional

to the number of phases L = O(logK).

Therefore, when analyzing any single phase l, prior analysis cannot eliminate the logK term
from (6.1) to achieve a local estimation error independent that is independent of the logarithmic
number of global episodes logK. Furthermore, due to the algorithm design of previous meth-
ods (Vial et al., 2022), additional logK terms may be introduced by global quantification (i.e.,
εtol = d/

√
K).

Our approach: Cert-LinUCB. To tackle this challenge, we introduce the certified estimator into
Algorithm 2 and use a ‘local quantification’ to ensure the quantification error of each phase l depend
on the local phase Õ(l) instead of the global parameter logK. The certified estimator works as
follows: Considering the concentration term we need to control for each phase l:∥∥∥∑τ∈Ck

h,l
ϕτ

h

[
V̂ k
h+1(s

τ )− E[V̂ k
h+1(s

τ )]
]∥∥∥

(Uk
h,l)

−1
, (6.2)

as discussed in Challenge 1, the function class V̂k
h+1 ∋ V̂ k

h+1 involves L = O(logK) parameters,
leading to a logK dependence in the results when using traditional routines. The idea of certified
estimator is to get rid of this by not directly controlling log |Vk

h+1|. Instead, certified estimator es-
tablishes a covering statement for the value function class Vk

h+1,l+
∋ V̂ k

h+1,l+
, where V̂ k

h+1,l+
is the

value function that only incorporates the first l+ phases of parameters
{
wk

h,ℓ,U
k
h,ℓ

}
ℓ
. Under this

framework, the covering statement becomes:

Lemma 6.1 (Lemma C.4, informal). Let V̂ k
h+1,l+

be the output of Algorithm 2 terminated at phase
l+ ∈ N+, then with probability is at least 1− 2δ,∥∥∥∑τ∈Ck

h,l
ϕτ

h

[
V̂ k
h+1,l+

(sτ )− E[V̂ k
h+1,l+

(sτ )]
]∥∥∥

(Uk
h,l)

−1
≤ γl,l+ = 5l+dH

√
log(16ldH/δ).

Lemma 6.1 suggests a concentration inequality at any phase l+, and the following lemma sug-
gests that this procedure will only introduce an Õ(2−l+) error, under some faithful extension of the
V̂ k
h,l+

(s):

Lemma 6.2 (Lemma C.2, informal). For any l+ ∈ N+, |V̂ k
h (s)− V̂ k

h,l+
(s)| ≤ 6 · 2−l+ .

Therefore, if a large enough l+ can be reached in Algorithm 2, combining Lemma 6.1 and
Lemma 6.2 allow us to bound (6.2) without introducing logK factors. The next lemma shows
that the Line 11 will only never be triggered in shallow layer l.
Lemma 6.3 (Lemma C.8, informal). With probability at least 1 − 2δ, for any (k, h) ∈ [K] × [H],
Line 11 in Algorithm 2 can only be triggered on phase l ≥ Ω̃

(
log(1/ζ)

)
.
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Lemma 6.3 delivers a clear message: In the well-specified setting, Line 11 will never be triggered
(l ≥ ∞). When the misspecification level is large, then Line 11 will be more likely triggered,
indicating it’s harder for the algorithm to proceed to deeper layer. The contribution of the certified
estimator yields the following important lemma regarding the ‘local estimation error’:

Lemma 6.4 (Lemma C.12, Informal). With high probability, for any ε > Ω̃(
√
dH2ζ) and h ∈ [H],

Cert-LSVI-UCB ensures
∑∞

k=1 1
[
V ∗
h (s

k
h)− V πk

h (skh) ≥ ε
]
≤ Õ

(
d3H4ε−2

)
.

Remark 6.5. He et al. (2021b) achieved a similar O
(
d3H5ε−2

)
uniform-PAC bound for (well-

specified) linear MDP. Comparing with Lemma 6.4 with ζ = 0, one can find that our result is better
than He et al. (2021b). In addition, Lemma 6.4 ensures this uniform-PAC result under all stage
h ∈ [H] while He et al. (2021b) only ensure the h = 1. This improvement is achieved by a more
efficient data selection strategy which we will discuss in detail in Appendix B.1.

6.2 Challenge 2. Achieving constant regret from local estimation error

In misspecified linear bandits, Zhang et al. (2023b) concludes their proof by controlling∑∞
k=1 1[V

∗
1 (s

k
1) − V π

1 (sk1) ≥ ∆]4. Although it is trivial showing that rounds with instantaneous
regret V ∗

1 (s
k
1)− V π

1 (sk1) < ∆ is optimal in bandits (i.e., V ∗
1 (s

k
1) = V π

1 (sk1)), previous works fail to
reach a similar result for RL settings. This difficulty arises from the randomness inherent in MDPs:
Consider a policy π that is optimal at the initial stage h = 1. After the initial state and action, the
MDP may transition to a state s′2 with a small probability p where the policy π is no longer optimal,
or to another state s2 where π remains optimal until the end. In this context, the gap between V ∗

1 (s1)
and V π

1 (s1) can be arbitrarily small, given a sufficiently small p > 0:

V ∗
1 (s1)− V π

1 (s1) = p
(
V ∗
2 (s

′
2)− V π

2 (s′2)
)
+ (1− p)

(
V ∗
2 (s2)− V π

2 (s2)
)
= p
(
V ∗
2 (s

′
2)− V π

2 (s′2)
)
.

Therefore, one cannot easily draw a constant regret conclusion simply by controlling∑∞
k=1 1[V

∗
1 (s

k
1) − V π

1 (sk1) ≥ ∆] since the gap between V ∗
1 (s

k
1) − V π

1 (sk1) needs to be fur-
ther fine-grained controlled. In short, the existence of ∆ describing the minimal gap between
V ∗(s)−Q∗(s, a) cannot be easily applied to controlling regret V ∗(s)− V π(s).

Our approach: A fine-grained concentration analysis We address this challenge by providing
a fine-grained concentration analysis in connecting the gap with the regret. Notice that the regret
V ∗
h (sh) − V πk

h (sh) in episode k is the expectation of cumulative suboptimality gap E[
∑H

h=1 ∆
k
h]

taking over trajectory {skh}Hh=1. In addition, the variance of the random variable can be self-bounded
according to

Var
[∑H

h=1∆
k
h

]
≤ E

[(∑H
h=1∆

k
h

)2]
≤ H2 E

[∑H
h=1∆

k
h

]
= H2

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)
.

Denote ηk be the difference between V ∗
h (sh) − V πk

h (sh) and the actual
∑H

h=1 ∆
k
h. Freedman in-

equality (Lemma H.5) implies that
∑T

t=1 η
t ≥ aC and

∑T
t=1 Var[η

t] ≤ vC happens at the same
with a small probability for certain constant a and v. Using a fine-grained union bound statement
over C, we can reach the following statement indicates the cumulative regret can be upper bounded
using the cumulative suboptimality gap:
Lemma 6.6 (Lemma C.14, Informal). The following statement holds with high probability:∑K

k=1

(
V ∗
h (sh)− V πk

h (sh)
)
≤ Õ

(∑K
k=1

∑H
h=1∆

k
h +H2

)
.

Comparing with Lemma 6.1 in He et al. (2021a), Lemma 6.6 eliminates the logK dependence,
which is achieved by the aforementioned fine-grained union bound. As a result, together with
Lemma 6.4, we reach the desired statement that Cert-LSVI-UCB achieves constant regret bound
when the misspecification is sufficiently small against the minimal suboptimality gap.

7 Conclusions and Limitations

In this work, we proposed a new algorithm, called certified estimator, for reinforcement learning
with a misspecified linear function approximation. Our algorithm is parameter-free and does not

4We employ the RL notations and set h = 1 for the ease of comparison.
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require prior knowledge of misspecification level ζ or the suboptimality ∆. Our algorithm is based
on a novel certified estimator and provides the first constant regret guarantee for misspecified linear
MDPs and (well-specified) linear MDPs.

Limitations. Despite these advancements, several aspects of our algorithm and analysis warrant
further investigation. One significant open question is whether the dependency on the planning
horizon and dimension d,H can achieve optimal instance-dependent regret bounds. For the gap-
independent regret bounds, the regret lower bound is Ω(d

√
H3K) as shown by Zhou et al. (2021a),

and this benchmark has recently been met by works such as He et al. (2022a); Agarwal et al. (2022).
Additionally, our analysis assumes uniform misspecification across all actions. Investigating other
types of misspecifications could lead to more sophisticated results, enhancing the algorithm’s ro-
bustness and applicability to diverse real-world scenarios. This exploration remains an important
direction for future research.
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A Additional Related Work

RL with linear function approximation. Recent years have witnessed a line of work focusing
on RL with linear function approximation to tackle RL tasks in large state space. A widely studied
MDP model is linear MDP (Jin et al., 2020), where both the transition kernel and the reward function
are linear functions of a given feature mapping of the state-action pairs ϕ(s, a). Several works
have developed RL algorithms with polynomial sample complexity or sublinear regret bound in this
setting. For example, LSVI-UCB (Jin et al., 2020) has an Õ(

√
d3H4K) regret bound, randomized

LSVI (Zanette et al., 2020a) has an Õ(
√
d4H5K) regret bound and Ishfaq et al. (2021) achieved

an Õ(
√
d3H4K). He et al. (2022a) then improves this regret bound to a nearly minimax-optimal

result Õ(d
√
H3K) while Agarwal et al. (2022) provides a general function approximation extension

given the above result. Linear mixture/kernel MDPs (Modi et al., 2020; Jia et al., 2020; Ayoub et al.,
2020; Zhou et al., 2021b) have also emerged as another model that enables model-based RL with
linear function approximation. In this setting, the transition kernel is a linear function of a feature
mapping on the triplet of state, action, and next state ϕ(s, a, s′). Nearly minimax optimal regrets
can be achieved for both finite-horizon episodic MDPs (Ayoub et al., 2020; Zhou et al., 2021a) and
infinite-horizon discounted MDPs (Zhou et al., 2021b) under this assumption.

B Additional Discussions on Algorithm Design and Result

B.1 Comparison with He et al. (2021b)

It is worth comparing our algorithm with He et al. (2021b), which also provides a uniform PAC
bound for linear MDPs. Both our algorithm and theirs utilize a multi-phase structure that main-
tains multiple regression-based value function estimators at different phases. Despite this similarity,
there are several major differences between our algorithm and that in He et al. (2021b), which are
highlighted as follows:

(1) In Line 7 of Algorithm 1, when calculating the regression-based estimator, for different phase l,
we use the same regression target V̂ k

h+1, while their algorithm uses different V k
h+1,l for different

phase l.
(2) When aggregating the regression estimators over all different Lk phases, we follow the arm

elimination method as in Chu et al. (2011), while He et al. (2021b) simply take the point-wise
minimum of all estimated state-action functions, i.e., Q(s, a) = minl∈[Lk] Q

l
k,h(s, a).

12



(3) When calculating the phase lkh(s
k
h) for a trajectory sk1 , s

k
2 , · · · , skH , He et al. (2021b) require

that the phase lkh(s
k
h) to be monotonically decreasing with respect to the stage h, i.e., lkh(s

k
h) ≤

lkh−1(s
k
h−1) (see line 19 in Algorithm 2 in He et al. (2021b)). Such a requirement will lead to a

poor estimation for later stages and thus increase the sample complexity. In contrast, we do not
have this requirement or any other requirements related to lkh(s

k
h) and lkh−1(s

k
h−1).

As a result, by (3), He et al. (2021b) have to sacrifice some sample complexity to make their al-
gorithm work for different target value functions V k

h+1,l. As a comparison, since we use the same
regression target for different phase l, we do not have to make such a sacrifice in (3). Moreover, by
(2), He et al. (2021b) cannot deal with linear MDPs with misspecification, while our algorithm can
handle misspecification as in Vial et al. (2022).

B.2 Discussion on Lower Bounds of Sample Complexity

We present a lower bound from Du et al. (2019) to better illustrate the interplay between the mis-
specification level ζ and the suboptimality gap ∆.
Assumption B.1 (Assumption 4.3, Du et al. 2019, ζ-Approximate Linear MDP). There exists ζ >
0, θh ∈ Rd and µh : S 7→ Rd for each stage h ∈ [H] such that for any (s, a, s′) ∈ S × A × S , we
have

∣∣Ph(s
′|s, a)− ⟨ϕ(s, a),µh(s

′)⟩
∣∣ ≤ ζ and

∣∣r(s, a)− ⟨ϕ(s, a),θh⟩ ∣∣ ≤ ζ.
Theorem B.2 (Theorem 4.2, Du et al. 2019). There exists a family of hard-to-learn linear MDPs
with action space |A| = 2 and a feature mapping ϕ(s, a) satisfying Assumption B.1, such that
for any algorithm that returns a 1/2-optimal policy with probability 0.9 needs to sample at least
Ω(min{|S|, 2H , exp(dζ2/16)}) episodes.
Remark B.3. As claimed in Du et al. (2019), Theorem B.2 suggests that when misspecification in
the ℓ∞ norm satisfies ζ = Ω(∆

√
H/d), the agent needs an exponential number of episodes to find

a near-optimal policy, where ∆ = 1/2 in their setting. It is worth noting that Assumption B.1 is a
ℓ∞ approximation for the transition matrix. Such a ℓ∞ guarantee (∥ · ∥∞ ≤ ζ) is weaker than the ℓ1
guarantee (∥ · ∥1 ≤ ζ) provided in Assumption 3.1. So it’s natural to observe a positive result when
making a stronger assumption and a negative result when making a weaker assumption. In addition,
despite of this difference, one could find that ζ ∼ ∆/

√
d plays a vital role in determining if the task

can be efficiently learned. Similar positive and negative results are also provided in Lattimore et al.
(2020); Zhang et al. (2023b) in the linear contextual bandit setting (a special case of linear MDP
with H = 1).

C Constant Regret Guarantees for Cert-LSVI-UCB

In this section, we present the proof of Theorem 5.1. To begin with, we recap the notations used in
the algorithm and introduce several shorthand notations that would be employed for the simplicity
of latter proof. The notation table is presented in Table 2.Any proofs not included in this section are
deferred to Appendix D.

C.1 Quantized State Value Function set Vk
h,l.

To begin our proof, we first extend the definition of V̂ k
h,l to arbitrary l and give a formal definition of

the state value function class Vk
h,l as we skip the detail of this definition in Section 6.

Definition C.1. We extend the definition of state value function V̂ k
h,l to any tuple (k, h, l) ∈ [K] ×

[H]× N+ by

V̂ k
h,l, ·, ·, · = Cert-LinUCB

(
s; {w̃k

h,ℓ}lℓ=1, {Ũ
k,−1
h,ℓ }

l
ℓ=1, l

)
We also define the state value function family Vk

h,l be the set of all possible V̂ k
h,l.

Vk
h,l =

{
V̂ k
h,l

∣∣∣ V̂ k
h,l, ·, ·, · = Cert-LinUCB

(
s; {w̃·

·,ℓ}lℓ=1, {Ũ
·,−1
·,ℓ }

l
ℓ=1, l

)}
where {w̃·

·,ℓ}lℓ=1 and {Ũ·,−1
·,ℓ }lℓ=1 are referring to any possible parameters generated by Line 8 in

Algorithm 1.
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Notation Meaning
ζ Misspecification level of feature map ϕh. (see Definiton 3.1)
∆ Minimal suboptimality gap among ∆h. (see Definition 3.3)

skh, a
k
h States and actions introduced in the episode k by the policy πk.

Qπ
h(s, a), V

π
h (s) Ground-truth state-action value function and state value function of policy π.

Q∗
h(s, a), V

∗
h (s) The optimal ground-truth state-action value function and state value function.

∆h(s, a) Suboptimal gap with respect to the optimal policy π∗. (see Definition 3.3)
Ph,Bh The ground-truth transition kernel and the Bellman operator.
κl The quantification precision in the phase l. (see Algorithm 1)
γl The confidence radius in the phase l. (see Theorem 5.1)
Ckh,l Index sets during phase l in the episode k. (see Algorithm 1)

wk
h,l,U

k
h,l Empirical weights and covariance matrix in the phase l. (see Algorithm 1)

w̃k
h,l, Ũ

k
h,l Quantified version of wk

h,l and Uk
h,l. (see Algorithm 1)

V̂ k
h (s) The overall optimistic state value function. (see Algorithm 2)

Qk
h,l(s, a) Empirical state-action value function in phase l. (see Algorithm 2)
V k
h,l(s) Empirical state value function in phase l. (see Algorithm 2)

V̂ k
h,l(s) Optimistic state value function in phase l. (see Definition C.1)

qV k
h,l(s) Pessimistic state value function in phase l. (see Algorithm 2)
πk
h Policy played in the episode k. (see Algorithm 2)

πk
h,l Policy induced at state s during phase l of episode k. (see Algorithm 2)

lkh(s) The index of the phase at which state s stops in episode k. (see Algorithm 2)
ϕk
h The feature vector observed in the episode k. (see Algorithm 1)
Vk
h,l Function family of all optimistic state function V̂ k

h,l. (see Definition C.1)
γl,l+ The confidence radius with covering on phase l+. (see Definition C.3)
l+ The phase offsets for the covering statement. (see Lemma C.5)
χ The inflation on misspecification. (see Lemma C.6)
Lζ The deepest phase that tolerance ζ misspecification. (see Lemma C.8).
Lε The shallowest phase that guarantees ε accuracy. (see Lemma C.9).
∆k

h The suboptimaility gap of played policy πk
h at state skh. (see Lemma C.13)

G1 The event defined in Definition C.3.
G2 The event defined in Definition D.13.
Gε The condition defined in Definition C.10.

Table 2: Notations used in algorithm and proof

It is worth noting that one can check the definition of V̂ k
h,l here is consistent with those computed

in Algorithm 2 with l < lkh(s). Therefore, we will not distinguish between the notations in the
remainder of the proof.

The following lemma controls the distance between V̂ k
h (s) and V̂ k

h,l(s) for any phase l.

Lemma C.2. For any (k, h, s) ∈ [K]× [H]× S, l ∈ [lkh(s)− 1], it holds that

qV k
h,l(s) ≤ V̂ k

h (s) ≤ V̂ k
h,l(s), |V̂ k

h (s)− V̂ k
h,l(s)| ≤ 6 · 2−l.

Moreover, for any tuple (k, h, s, l+) ∈ [K] × [H] × S × N+, the difference |V̂ k
h (s) − V̂ k

h,l+
(s)|

is bounded by 6 · 2−l+ , following the extension of the definition scope of V̂ k
h,l+

as outlined in
Definition C.1.

Lemma C.2 suggests that given any phase l+, V̂ k
h,l is close to V̂ k

h . This enables us to construct
covering on V̂ k

h using the covering on V̂ k
h,l.

C.2 Concentration of State Value Function V̂ k
h (s)

In this subsection, we provide a new analysis for bounding the self-normalized concentration of∥∥∥∑τ ϕ
τ
h

(
[PhV̂

k
h ](sτh, a

τ
h)− V̂ k

h (sτh+1)
)∥∥∥

U−1
to get rid of the log k factor in Vial et al. (2022).
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To facilitate our proof, we define the filtration list Fk
h =

{{
sji , a

j
i

}H,k−1

i=1,j=1
,
{
ski , a

k
i

}h
i=1

}
. It is easy

to verify that skh, a
k
h are bothFk

h -measurable. Also, for any function V built onFk
h , [PhV ](skh, a

k
h)−

V (skh+1) is Fk
h+1-measurable and it is also a zero-mean random variable conditioned on Fk

h .

The first lemma we provide is similar with Vial et al. (2022), which shows the self-normalized
concentration property for each phase l and any function V ∈ Vk

h,l.

Definition C.3. For some fixed mapping l 7→ l+ = l+(l) that l+ ≥ l, we define the bad event as

B1(k, h, l, V ) =

{∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV ](sτh, a

τ
h)− V (sτh+1)

)∥∥∥∥∥
(Uk

h,l)
−1

> γl,l+

}
.

The good event is defined by G1 =
⋂K

k=1

⋂H
h=1

⋂
l≥1

⋂
V ∈Vk

h,l+

B∁1(k, h, l, V ) where we define

γl,l+ = 5l+dH
√

log(16ldH/δ) = Õ(ldH log(δ−1)).

Lemma C.4. The good event G1 defined in Definition C.3 happens with probability at least 1− 2δ.

Lemma C.4 establishes the concentration bounds for any given phase l. However, the total number
of phases for the state value function V k

h (s) can be bounded only trivially byl = O(logK), resulting
in logK dependence. To address this issue, the following lemma proposes a method to eliminate
this logarithmic factor:

Lemma C.5. Under event G1, for any (k, h, l) ∈ [K]× [H]× N+,∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV̂

k
h+1](s

τ
h, a

τ
h)− V̂ k

h+1(s
τ
h+1)

)∥∥∥∥∥
(Uk

h,l)
−1

≤ 1.1γl. (C.1)

where we set γl = γl,l+ with l+ = l + 20 + ⌈log(ld)⌉.

Then Lemma C.5 immediately yields the following lemma regarding the estimation error of the
state-action value function Qk

h,l:

Lemma C.6. Under event G1, for any (k, h, s) ∈ [K]× [H]×S, l ∈ [lkh(s)− fk
h (s)], al ∈ Ak

h,l(s),∣∣Qk
h,l(s, a)− [BhV̂

k
h+1](s, a)

∣∣ ≤ 2 · 2−l + χ
√
lζ (C.2)

where we define χ = 12
√
dH .

Lemma C.6 build an estimation error for any l ∈ [lkh(s) − 1]. As we mentioned in the algorithm
design, a larger l here will lead to more precise estimation (a smaller 2−l term in (C.2)) but will
suffer from a larger covering number (a larger γl term in (C.2)). Following a similar proof sketch
from Vial et al. (2022), the next lemma shows that any action that is not eliminated has a low regret,

Lemma C.7. Fix some arbitrary L0 ≥ 1 and let χ = 12
√
dH . Under event G1, for any (k, h, s) ∈

[K]× [H]× S, l ∈ [min{L0, l
k
h(s)− fk

h (s)}], al+1 ∈ Ak
h,l+1(s),

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al+1) ≤ 8 · 2−l + 2l · χ

√
L0ζ.

C.3 The Impact of Misspecification Level ζ

Next, we are ready to show the criteria where Line 11 in Algorithm 2 will be triggered, which shows
the impact of misspecification on this multi-phased estimation.

Lemma C.8. Under event G1, for any (k, h) ∈ [K] × [H] such that fk
h (s

k
h) = 0, we have

lkh(s
k
h) > Lζ where Lζ is the maximal integer satisfying 2−Lζ ≥ χL1.5

ζ ζ for χ = 12
√
dH , i.e.,

Lζ = Ω(log(1/ζ)).

Equipped with Lemma C.8, the following lemma suggests that how much estimation precision ε can
be achieved by accumulating the error 2−lkh(s

k
h) that occurred in Lemma C.6.
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Lemma C.9. Under event G1 and for all ε > 0, define Lε to be the minimal integer satisfying
2−Lε ≤ 0.01ε/H , i.e., Lε = ⌈− log(0.01ε/H)⌉. When Lε ≤ Lζ , then for any K ⊆ [K], h ∈ [H],∑

k∈K

2−lkh(s
k
h) ≤ 0.01|K| · ε/H + 212LεdHγ2

Lε
· ε−1.

The relationship between Lε ≤ Lζ can be translated to the relationship between ε and ζ. We
characterize this condition as follows:

Definition C.10. Condition Gε is defined for a given ε, and is satisfied if Lζ ≥ Lε where Lε is
the minimal integer satisfying 2−Lε ≤ 0.01ε/H and Lζ is the maximal integer satisfying 2−Lζ ≥
χL1.5

ζ ζ.

Lemma C.11. If ε ≥ Ω
(√

dH2ζ log2(1/ζ)
)
, then Gε is satisfied.

Proof. If ε ≥ Ω
(√

dH2ζ log2(1/ζ)
)
, we have

2−Lε ≥ 0.005ε/H ≥ 2χL1.5
ζ ζ ≥ 2−Lζ .

where the first inequality is given by the definition of Lε, the last inequality is given by the definition
of Lζ , and the second inequality holds since HχL1.5

ζ ≤ O
(√

dH2 log2(1/ζ)
)
, and the last inequal-

ity is given by the definition of Lε and Lζ , respectively. Since 2−l decreases as l increases, we can
conclude that Lε ≤ Lζ .

The above analysis of the interplay between misspecification level ζ and precision ε yields the
following important lemma in our proof, showing a local decision error across all h ∈ [H]:

Lemma C.12. Under Assumption 3.1, let γl = 5(l+20+⌈log(ld)⌉)dH
√
log(16ldH/δ), for some

fixed 0 < δ < 1/3. With probability at least 1−3δ, for any ε > Ω
(√

dH2ζ log2(1/ζ)
)

and h ∈ [H],
we have

∞∑
k=1

1
[
V ∗
h (s

k
h)− V πk

h (skh) ≥ ε
]
≤ O

(
d3H4ε−2 log4(dHε−1) log(δ−1)ι

)
,

where ι refers to some polynomial of log log(dHε−1δ−1). This can also be written as

Pr
[
∃ε > ε0, h ∈ [H],

∞∑
k=1

1
[
V ∗
h (s

k
h)− V πk

h (skh) > ε
]
> f(ε, δ)

]
≤ δ.

with ε0 = Ω̃(
√
dH2ζ) and f(ε, δ) = Õ(d3H4ε−2 log(δ−1)).

C.4 From Local Step-wise Decision Error to Constant Regret

The next lemma shows that the total incurred suboptimality gap is constant if the minimal subopti-
mality gap ∆ satisfies ∆ > ε0.

Lemma C.13. Suppose an RL algorithm Alg. satisfies

Pr
[
∃ε > ε0, h ∈ [H],

∞∑
k=1

1
[
V ∗
h (s

k
h)− V πk

h (skh) > ε
]
> f(ε, δ)

]
≤ δ,

such that f(ε, δ) = Õ(C1/ε+C2/ε
2) where C1, C2 > 0 are constant in ε, but may depend on other

quantities such as d,H, log(δ−1). If the minimal suboptimality gap ∆ satisfies ∆ > ε0, then

K∑
k=1

H∑
h=1

∆k
h ≤ Õ(C2H/∆+ C1H)

where ∆k
h = ∆h

(
skh, π

k
h(s

k
h)
)
= V ∗

h (s
k
h) − Q∗

h

(
skh, π

k
h(s

k
h)
)

is the suboptimality gap suffered in
stage h of episode k.
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The following Lemma is a refined version of Lemma 6.1 in He et al. (2021a) that removes the
dependence between regret and number of episodes K.
Lemma C.14. For each MDP M(S,A, H, {rh}, {Ph}) and any δ > 0, with probability at least
1− δ, we have

Regret(K) < Õ
( K∑

k=1

H∑
h=1

∆k
h +H2 log(1/δ)

)
.

We are now ready to prove Theorem 5.1:

Proof of Theorem 5.1. By plugging in Lemma C.12 and Lemma C.13 into Lemma C.14, we can
reach the desired statement.

D Proof of Lemmas in Appendix C

In this section, we prove lemmas outlined in Appendix C. Any proofs not included in this section
are deferred to Appendix E.

D.1 Proof of Lemma C.2

Proof of Lemma C.2. According to the criteria for Line 11, we have qV k
h,l(s) ≤ V̂ k

h,l(s) for any
l ∈ [lkh(s)− 1]. From the definition of qV k

h,l(s) and V̂ k
h,l(s), they are monotonic in l that V̂ k

h,l−1(s) ≤
V̂ k
h,l(s) and V̂ k

h,l(s) ≤ V̂ k
h,l−1(s) hold. Combining with V̂ k

h+1(s) = V̂ k
h,lkh(s)−1

, we have

∀l ∈ [lkh(s)− 1], qV k
h,l(s) ≤ V̂ k

h (s) ≤ V̂ k
h,l(s) (D.1)

From the definition of V̂ k
h,l(s) and qV k

h,l(s), we have

0 ≤ V̂ k
h,l(s)− qV k

h,l(s) ≤
(
V̂ k
h,l(s)− V k

h,l(s)
)
+
(
V k
h,l(s)− qV k

h,l(s)
)
≤ 6 · 2−l. (D.2)

Plugging (D.1) into (D.2), we conclude that for any phase l ∈ [lkh(s) − 1], it holds that |V̂ k
h (s) −

V̂ k
h,l(s)| ≤ 6 · 2−l .

Now consider the extended state value function V̂ k
h,l+

with an arbitrary l+ ∈ N+. For every s where

l+ ≤ lkh(s) − 1, we have |V̂ k
h (s) − V k

h,l+
(s)| ≤ 6 · 2−l+ as reasoned above. For the other s ∈ S

where l+ ≥ lkh(s), we have V̂ k
h,l(s) = V̂ k

h (s) following the procedure of Algorithm 2. This suggest
that |V̂ k

h (s)− V̂ k
h,l+

(s)| ≤ 6 · 2−l+ always holds.

D.2 Proof of Lemma C.4

The following Lemma shows the rounding only cast bounded effects on the recovered parameters.
Lemma D.1. For any (k, h, s) ∈ [K]× [H]× S, l ∈ [lkh(s)− fk

h (s)], a ∈ Ak
h,l(s), it holds that∣∣〈ϕ(s, a),wk

h,l

〉
−
〈
ϕ(s, a), w̃k

h,l

〉∣∣ ≤ 0.01 · 2−4l,
∣∣∥ϕ(s, a)∥(Uk

h,l)
−1 − ∥ϕ(s, a)∥Ũk,−1

h,l

∣∣ ≤ 0.1 · 2−2l.

The following lemma shows the number of episodes that are taken into regression |Ckh,l| is bounded
independently from the number of episodes k.
Lemma D.2. For any tuple (k, h, l) ∈ [K]× [H]× N+, we have |Ckh,l| ≤ 16l · 4lγ2

l d.

The following lemma shows the number of possible state value functions |Vk
h,l| is bounded indepen-

dently from the number of episodes k.

Lemma D.3. For any tuple (k, h, l) ∈ [K]× [H]× N+, we have |Vk
h,l| ≤ (222d6H4)l

2d2

.

Now we are ready to prove Lemma C.4.
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Proof of Lemma C.4. Recall in Definition C.3, the good event defined by the union of each single
bad event:

G1 =

K⋂
k=1

H⋂
h=1

⋂
l≥1

⋂
V ∈Vk

h,l+

B∁1(k, h, l, V ),

where each single bad event is given by

B1(k, h, l, V ) =

{∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV ](sτh, a

τ
h)− V (sτh+1)

)∥∥∥∥∥
(Uk

h,l)
−1

> γl

}
,

in which [PhV ](s, a) = Es′∼Ph(·|s,a) V (s).

Consider some fixed (h, l) ∈ [H]×N+, V ∈ VK
h,l+

. Arrange elements of Ckh,l in ascending order as
{τi}i. Since the environment sample sτih+1 according to Ph(·|sτih , aτih ), we have [PhV ](sτih , aτih ) −
V (sτih+1) is Fτi

h -measurable with E
[
[PhV ](sτih , aτih ) − V (sτih+1)

∣∣Fτi
h

]
= 0. Since 0 ≤ V (sτih+1) ≤

H , we have |[PhV ](sτih , aτih )− V (sτih+1)| ≤ H . This further leads to∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV ](sτh, a

τ
h)− V (sτh+1)

)∥∥∥∥∥
(Uk

h,l)
−1

=

∥∥∥∥∥
|Ck−1

h,l |∑
i=1

ϕτi
h

(
[PhV ](sτih , aτih )− V (sτih+1)

)∥∥∥∥∥
(Uk

h,l)
−1

≤ H
√

2d ln
(
1 + |Ckh,l|/(dλ)

)
+ 2 ln(l2H|VK

h,l+
|/δ)

≤ H

√
2d ln(1 + l · 4lγ2

l ) + 2 ln(l2H(222d6H4)l
2
+d2

/δ)

≤ γl,l+ ,

where the first inequality holds following from the good event of probability 1 − δ/(l2H|VK
h,l+
|)

defined in Lemma H.2 over filtration {Fτi
h }i, the second inequality is derived from combin-

ing Lemma D.2 and Lemma D.3, and the last inequality is given by Lemma G.3. Accord-
ing to Lemma H.2, we have the bad event

⋃K
k=1 B1(k, h, l, V ) happens with probability at most

δ/(l2H|VK
h,l+
|). Taking union bound over all (h, l) ∈ [H]× N+, V ∈ VK

h,l+
, we have the bad event

happens with probability at most

Pr[G∁1 ] ≤
H∑

h=1

∞∑
l=1

∑
V ∈VK

h,l+

Pr
[ K⋃
k=1

B1(k, h, l, V )
]
≤

H∑
h=1

∞∑
l=1

∑
V ∈VK

h,l+

δ

l2H|VK
h,l+
|
≤ 2δ,

where the last inequality holds due to
∑

n≥1 n
−2 = π2/6. This completes our proof.

D.3 Proof of Lemma C.5

Proof of Lemma C.5. Denote the martingale difference between V̂ k
h,l+
− V̂ k

h as:

µk
h,l = [Ph(V̂

k
h,l+ − V̂ k

h+1)](s
k
h, π

k
h(s

k
h))−

(
V̂ k
h,l+(s

k
h+1)− V̂ k

h+1(s
k
h+1)

)
.

By triangle inequality:∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV̂

k
h+1](s

τ
h, a

τ
h)− V̂ k

h+1(s
τ
h+1)

)∥∥∥∥∥
(Uk

h,l)
−1

≤

∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV

k
h,l+ ](s

τ
h, a

τ
h)− V̂ k

h,l+(s
τ
h+1)

)∥∥∥∥∥
(Uk

h,l)
−1

+

∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
hµ

τ
h,l+

∥∥∥∥∥
(Uk

h,l)
−1

. (D.3)
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According to the definition of event G1, we can upper bound the first term by∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV

k
h,l+ ](s

τ
h, a

τ
h)− V̂ k

h,l+(s
τ
h+1)

)∥∥∥∥∥
(Uk

h,l)
−1

≤ γl,l+ = γl. (D.4)

According to Lemma C.2, we have |V̂ k
h,l+

(s) − V̂ k
h+1(s)| ≤ 6 · 2−l+ for any s ∈ S. Thus, the

difference can be bounded by |µτ
h,l+
| ≤ 6 · 2−l+ . Consequently, we can bound the second term by∥∥∥∥∥ ∑

τ∈Ck−1
h,l

ϕτ
hµ

τ
h,l+

∥∥∥∥∥
(Uk

h,l)
−1

≤ 6 · 2−l+
√
|Ckh,l|

≤ 6 · 2−l+

√
16l · 4lγ2

l d

= 24 · 2l−l+γl
√
ld, (D.5)

where the first inequality is provided by Lemma H.3, utilizing the condition |µτ
h,l+
| ≤ 6 · 2−l+ , the

second inequality is from Lemma D.2. By plugging in the definition of l+, we can further bound the
final term of (D.5) by∥∥∥∥∥ ∑

τ∈Ck−1
h,l

ϕτ
hµ

τ
h,l+

∥∥∥∥∥
(Uk

h,l)
−1

≤ 24 · 2l−l+γl
√
ld ≤ 24 · 2−20γl ≤ 0.1γl. (D.6)

Plugging (D.4) and (D.6) into (D.3) yields the desired statement such that∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
h

(
[PhV̂

k
h+1](s

τ
h, a

τ
h)− V̂ k

h+1(s
τ
h+1)

)∥∥∥∥∥
(Uk

h,l)
−1

≤ 1.1γl,

which concludes our proof.

D.4 Proof of Lemma C.6

The following lemma shows the state-action value function Qk
h,l(s, a) is always well estimated.

Lemma D.4. Under event G1, for any (k, h, l, s, a) ∈ [K]× [H]× N+ × S ×A,∣∣Qk
h,l(s, a)− [BhV̂

k
h+1](s, a)

∣∣ ≤ (1.2 + 8
√
ldH · 2lζ

)
γl∥ϕ(s, a)∥(Uk

h,l)
−1 + 0.01 · 2−4l + 2Hζ.

Equipped with Lemma D.1 and Lemma D.4, we are ready to prove Lemma C.6.

Proof of Lemma C.6. In case that l ≤ lkh(s)− fk
h (s), for any a ∈ Ak

h,l(s), we have that

∥ϕ(s, a)∥(Uk
h,l)

−1 ≤ ∥ϕ(s, a)∥Ũk,−1
h,l

+
∣∣∥ϕ(s, a)∥(Uk

h,l)
−1 − ∥ϕ(s, a)∥Ũk,−1

h,l

∣∣
≤ 2−lγ−1

l + 0.1 · 2−2l ≤ 1.1 · 2−lγ−1
l , (D.7)

where the first inequality holds due to triangle inequality, and in the second inequality, the first term
is satisfied since state s passes the criterion in Line 9 in phase l and the second term follows from
Lemma D.1, and the last inequality is given by Lemma G.2 which implies 2l > γl. Plugging (D.7)
into Lemma D.4 gives∣∣Qk

h,l(s, a)− [BhV̂
k
h+1](s, a)

∣∣ ≤ 0.01 · 2−4l + 1.32 · 2−l + 8.8
√
ldHζ + 2Hζ

≤ 2 · 2−l + 12
√
ldHζ,

which proves the desired statement.
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D.5 Proof of Lemma C.7

Equipped with Lemma C.6, we are able to show several properties of the state value function V k
h,l

throught the arm-elimination process. The first lemma suggests that for any action al ∈ Ak
h,l(s),

there is at least one action al+1 ∈ Ak
h,l+1(s) close to al in terms of the Bellman operator

[BhV̂
k
h+1](s, a) after the elimination.

Lemma D.5. Under event G1, for any (k, h, s) ∈ [K]× [H]×S, l ∈ [min{L0, l
k
h(s)−fk

h (s)}], al ∈
Ak

h,l(s), there exists al+1 ∈ Ak
h,l+1(s) that

[BhV̂
k
h+1](s, al)− [BhV̂

k
h+1](s, al+1) ≤ 2χ

√
L0ζ

where χ = 12
√
dH for arbitrary L0 ≥ 1.

Then the following lemma shows that by induction on stage h ∈ [H], we can show the elimination
process keep at least one near-optimal action al+1 ∈ Ak

h,l+1(s).

Lemma D.6. Under event G1, for any (k, h, s) ∈ [K] × [H] × S, l ∈ [min{L0, l
k
h(s) − fk

h (s)}],
there exists al+1 ∈ Ak

h,l+1(s) that,

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al+1) ≤ 2l · χ

√
L0ζ.

where χ = 12
√
dH for arbitrary L0 ≥ 1.

The following two lemmas indicate that the state value function V k
h,l(s) on stage h is a good estima-

tion for the state value function given by Bellman operator V (s) = maxa∈A[BhV̂
k
h+1](s, a).

Lemma D.7. Under event G1, for any (k, h, s) ∈ [K]× [H]× S, l ∈ [min{L0, l
k
h(s)− fk

h (s)}],

max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,l(s) ≤ 2 · 2−l + (2l − 1)χ
√
L0ζ.

where χ = 12
√
dH for arbitrary L0 ≥ 1.

Lemma D.8. Under event G1, for any (k, h, s) ∈ [K]× [H]× S, l ∈ [min{L0, l
k
h(s)− fk

h (s)}],

V k
h,l(s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤ 2 · 2−l + χ

√
L0ζ,

where χ = 12
√
dH for arbitrary L0 ≥ 1.

Now we are ready to show any actions remaining in the elimination process are near-optimal.

Proof of Lemma C.7. First, according to Lemma D.7, we can write

max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,l(s) ≤ 2 · 2−l + (2l − 1)χ
√

L0ζ. (D.8)

Any action al+1 ∈ Ak
h,l+1(s) passes the elimination process will satisfy:

Qk
h,l(s, al+1) ≥ V k

h,l(s)− 4 · 2−l. (D.9)

According to Lemma C.6 with the condition that l ≤ L0, we have that the empirical state-action
value function Qk

h,l(s, ·) is a good estimation for [BhV̂
k
h+1](s, ·) among every al+1 ∈ Ak

l (s) under
event G1: ∣∣[BhV̂

k
h+1](s, al+1)−Qk

h,l(s, al+1)
∣∣ ≤ 2 · 2−l + χ

√
L0ζ. (D.10)

Combining (D.8), (D.9), and (D.10) gives

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al+1)

=
(
max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,l(s)
)
+
(
V k
h,l(s)−Qk

h,l(s, al+1)
)
+
(
Qk

h,l(s, al+1)− [BhV̂
k
h+1](s, al+1)

)
≤
(
2 · 2−l + (2l − 1)χ

√
L0ζ

)
+ 4 · 2−l +

(
2 · 2−l + χ

√
L0ζ

)
= 8 · 2−l + 2l · χ

√
L0ζ,

which proves the desired statement.
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D.6 Proof of Lemma C.8

The following two lemmas demonstrate that, at stage h, both the optimistic state value function,
V̂ k
h,l(s), and the pessimistic state value function, qV k

h,l(s), exhibit a gap relative to the state value
function determined by the Bellman operator, given as V (s) = maxa∈A[BhV̂

k
h+1](s, a).

Lemma D.9. Under event G1, for any (k, h, s) ∈ [K]× [H]× S, l ∈ [min{L0, l
k
h(s)− fk

h (s)}],

min
{
V k
h,l(s) + 3 · 2−l, V̂ k

h,l−1(s)
}
−max

a∈A
[BhV̂

k
h+1](s, a) ≥ 2−l − (2l − 1)χ

√
L0ζ,

where χ = 12
√
dH for arbitrary L0 ≥ 1. In case that l ≤ lkh(s)− 1, the inequality is equivalent to

V̂ k
h,l(s)−max

a∈A
[BhV̂

k
h+1](s, a) ≥ 2−l − (2l − 1)χ

√
L0ζ.

Lemma D.10. Under event G1, for any (k, h, s) ∈ [K]× [H]× S, l ∈ [min{L0, l
k
h(s)− fk

h (s)}],

max
a∈A

[BhV̂
k
h+1](s, a)−max

{
V k
h,l(s)− 3 · 2−l, qV k

h,l−1(s)
}
≥ 2−l − χ

√
L0ζ,

where χ = 12
√
dH for arbitrary L0 ≥ 1. In case that l ≤ lkh(s)− 1, the inequality is equivalent to

max
a∈A

[BhV̂
k
h+1](s, a)− qV k

h,l(s) ≥ 2−l − χ
√
L0ζ.

Proof of Lemma C.8. Set L0 = Lζ be the maximal integer satisfying 2−Lζ −χL1.5
ζ ζ ≥ 0. Combin-

ing Lemma D.10 and Lemma D.9, for any l ∈ [min{L0, l
k
h(s)− fk

h (s)}], we have that

min
{
V k
h,l(s) + 3 · 2−l, V̂ k

h,l−1(s)
}
−max

{
V k
h,l(s)− 3 · 2−l, qV k

h,l−1(s)
}

=
(
V̂ k
h,l(s)−max

a∈A
[BhV̂

k
h+1](s, a)

)
+
(
max
a∈A

[BhV̂
k
h+1](s, a)− qV k

h,l(s)
)

≥
(
2−l − (2l − 1)χ

√
L0ζ

)
+
(
2−l − χ

√
L0ζ

)
= 2 · 2−l − 2l · χ

√
L0ζ

≥ 2 · 2−L0 − 2χL1.5
0 ζ ≥ 0.

where the second inequality holds since 2−l decreases as l increases and the last inequality holds
according to the selection of L0.

When fk
h (s) = 0, consider l = lkh(s). The above reasoning indicates the criterion in Line 11 can

never satisfied. Thus fk
h (s) = 0 can only happen if lkh(s) > L0 = Lζ .

D.7 Proof of Lemma C.9

By partitioning [K] based on whether Algorithm 2 stops before phase Lε, we can prove Lemma C.9.
Specifically, Lemma D.2 bounds the number of episodes in which Algorithm 2 stops before phase
Lε. This allows us to establish an upper bound for the desired summation over these episodes. Fur-
thermore, for episodes that stop after phase Lε, the contribution of 2−lkh(s

k
h)γlkh(skh) is small according

to the definition of Lε.

Proof of Lemma C.9. Denote CKh,+ = [K]−
⋃Lε−1

l=1 CKh,l. In this sense, we have

∑
k∈K

2−lkh(s
k
h) =

∑
k∈K∩CK

h,+

2−lkh(s
k
h) +

Lε−1∑
l=1

∑
k∈K∩CK

h,l

2−lkh(s
k
h). (D.11)

From the construction of CKh,l, we have lkh(s
k
h) = l for any k ∈ CKh,l. Fix some k ∈ CKh,+. If

fk
h (s

k
h) = 0, we have lkh(s

k
h) ≥ Lζ ≥ Lε where the first inequality is given by Lemma C.8 and the

second inequality is given by the assignment of Lε. Otherwise, we have lkh(s
k
h) ≥ Lε according to
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the definition of CKh,l. This indicates lkh(s
k
h) ≥ Lε holds for any k ∈ CKh,+. This allow is to bound the

first term by ∑
k∈K∩CK

h,+

2−lkh(s
k
h) ≤

∑
k∈K∩CK

h,+

2−Lε ≤ 0.01|K| · ε/H, (D.12)

where the first inequality holds since lkh(s
k
h) > Lε and the second inequality holds from both 2−Lε ≤

0.01ε/H and |K ∩ CKh,+| ≤ |K|.

Furthermore, we can bound the second term by

Lε−1∑
l=1

∑
k∈K∩CK

h,l

2−lkh(s
k
h) ≤

Lε−1∑
l=1

|K ∩ CKh,l| · 2−l

≤
Lε−1∑
l=1

16l · 4lγ2
l d · 2−l

≤ 16Lεd · 2Lεγ2
Lε
≤ 212LεdHγ2

Lε
ε−1. (D.13)

where the second inequality is given by Lemma D.2, and the last inequality holds due to
0.005ε/H ≤ 2−Lε which is because Lε is a minimal integer such that 2−Lε ≤ 0.01ε/H .

Finally, plugging (D.12) and (D.13) into (D.11) gives∑
k∈K

2−lkh(s
k
h) ≤ 0.01|K| · ε/H + 212LεdHγ2

Lε
ε−1.

D.8 Proof of Lemma C.12

The following lemma provides an upper bound for the underestimation error of the empirical state
value function V̂ k

h with respect to the optimal state value function V ∗
h .

Lemma D.11. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h, s) ∈ [K]×[H]×S,

V ∗
h (s)− V̂ k

h (s) ≤ 0.07ε.

As V̂ k
h represents an empirical state value function with potentially optimal policy πk

h(s), the fol-
lowing lemma provides an upper bound for the overestimation error of V̂ k

h with respect to deploying
the policy πk

h(s) on the ground-truth transition kernel.
Lemma D.12. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h, s) ∈ [K]×[H]×S,

V̂ k
h (s)− [BhV̂

k
h+1](s, π

k
h(s)) ≤ 20 · 2−lkh(s) + 0.16ε/H.

To start with, we define a good event according to:

Definition D.13. For some ε > 0, let Kε
h = {k ∈ [K] : V ∗

h (s
k
h) − V πk

h (skh) ≥ ε}. We define the
bad event as

B2(h, ε) =

{ ∑
k∈Kε

h

H∑
h′=h

ηkh′ > 4
√
H3|Kε

h| log(4H|Kε
h| log(ε−1)/δ)

}
.

where ηkh = [Ph(V̂
k
h+1 − V πk

h+1)](s
k
h, π

k
h(s

k
h)) −

(
V̂ k
h+1(s

k
h+1) − V πk

h+1(s
k
h+1)

)
. The good event is

defined as G2 =
⋂H

h=1

⋂
l≥1 B∁2(h, 2−l).

The following lemma provides the concentration property such that the cumulative sample error is
small with high probability.
Lemma D.14. Event G2 happens with probability at least 1− δ.
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Using the above results, we can bound the instantaneous regret of any subsets once the misspecifi-
cation level is appropriately controlled,
Lemma D.15. Under event G1,G2 and for all ε > 0 that Gε is satisfied, for any K ⊆ [K] and
h ∈ [H], it satisfies that∑
k∈K

(
V ∗
h (s

k
h)− V πk

h (skh)
)
≤ 0.49|K|ε+ 217LεdH

2γ2
Lε
ε−1 + 4

√
H3|K| log(4H|K| log(ε−1)/δ).

With all lemmas stated above, we can show Cert-LSVI-UCBachieves constant step-wise decision
error. The following lemma gives a sufficient condition that Gε defined in Definition C.10 is satisfied.

Now, we are ready to prove Lemma C.12.

Proof of Lemma C.12. We focus on the case where the good event G1∩G2∩Gε occurs. By the union
bound statement over Lemma C.4 and Lemma D.14, and Lemma C.11, this good event happens with
a probability of at least 1− 3δ and requires ε ≥ Ω(ζ

√
dH2 log2(dHζ−1)). W.l.o.g, consider Kε

h for
some h ∈ [H] and ε = 2−l where l > 0 is an integer. On the one hand, we have∑

k∈Kε
h

(
V ∗
h (s

k
h)− V πk

h (skh)
)
≥ |Kε

h|ε. (D.14)

On the other hand, Lemma D.15 gives∑
k∈Kε

h

(
V ∗
h (s

k
h)− V πk

h (skh)
)
≤ 0.49|Kε

h|ε+ 217LεdH
2γ2

Lε
ε−1

+ 4
√
H3|Kε

h| log(4H|Kε
h| log(ε−1)/δ). (D.15)

Combining (D.14) and (D.15) gives

0.51|Kε
h|ε ≤ 217LεdH

2γ2
Lε
ε−1 + 4

√
H3|Kε

h| log(4H|Kε
h| log(ε−1)/δ).

Plugging the value of γLε
, we have

0.51|Kε
h|ε ≤ 222Lε(Lε + log(220dH))2d3H4ε−1 log(16Lεd/δ)

+ 4
√
H3|Kε

h| log(4H|Kε
h| log(ε−1)/δ). (D.16)

According to Lemma G.4, (D.16) implies

|Kε
h| ≤ O(Lε(Lε + log(dH))2d3H4ε−2 log(Lεd) log(δ

−1)ι),

where ι refers to a polynomial of log log(dHε−1δ−1). With the definition of Lε, we conclude that

|Kε
h| ≤ O(d3H4ε−2 log4(dHε−1) log(δ−1)ι).

D.9 Proof of Lemma C.13

Proof of Lemma C.13. From the definition of suboptimality gap, we have

∆k
h = V ∗

h (s
k
h)− [BhV

∗
h+1](s

k
h, π

k
h(s

k
h))

≤ V ∗
h (s

k
h)− [BhV

πk

h+1](s
k
h, π

k
h(s

k
h))

= V ∗
h (s

k
h)− V πk

h (skh). (D.17)

According to the assumption,

K∑
k=1

1
[
V ∗
h (s

k
1)− V πk

h (skh) ≥ ε
]
≤
(C1

ε
+

C2

ε2

)
loga

(C1

ε
+

C2

ε2

)
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holds for every ε > ε0 with probability at least 1−δ, replacing the V ∗
h (s

k
1)−V πk

h (skh) with its lower
bound ∆k

h yields for every ε > ε0,
K∑

k=1

1
[
∆k

h ≥ ε
]
≤
(C1

ε
+

C2

ε2

)
loga

(C1

ε
+

C2

ε2

)
.

In addition, according to the definition of minimal suboptimality gap ∆ in Definition 3.3, we have
∆k

h is either 0 or no less than ∆. Since for any x ∈ {0} ∪ [∆, H], it holds that x ≤ ∆ · 1[x ≥
∆] +

∫H

∆
1[x ≥ ε] dε, we decompose the total suboptimality incurred in stage h by

K∑
k=1

∆k
h ≤

K∑
k=1

(
∆ · 1

[
∆k

h ≥ ∆
]
+

∫ H

∆

1
[
∆k

h ≥ ε
]
dε

)

= ∆

K∑
k=1

1
[
∆k

h ≥ ∆
]
+

∫ H

∆

K∑
k=1

1
[
∆k

h ≥ ε
]
dε. (D.18)

In case that ε0 ≤ ∆, the first term in (D.18) can be bounded by

∆

K∑
k=1

1
[
∆k

h ≥ ∆
]
≤ ∆

(C1

∆
+

C2

∆2

)
loga

(C1

∆
+

C2

∆2

)
. (D.19)

We can further bound the second term by∫ H

∆

K∑
k=1

1
[
V ∗
1 (s

k
1)− V πk

1 (sk1) ≥ ε
]
dε ≤

∫ H

∆

(C1

ε
+

C2

ε2

)
loga

(C1

ε
+

C2

ε2

)
dε

≤ loga
(C1

∆
+

C2

∆2

)
·
(
C1 ln

H

∆
+

C2

∆

)
≤ (C1 logH + C2/∆) · polylog(C1, C2,∆

−1). (D.20)

Plugging (D.19) and (D.20) into (D.18) with summation over h ∈ [H], we conclude that the total
suboptimality incurred in stage h is bounded by

K∑
k=1

H∑
h=1

∆k
h ≤ H · (C1 + C2/∆+ C1 logH + C2/∆) · polylog(C1, C2,∆

−1)

≤ Õ(C2H/∆+ C1H).

D.10 Proof of Lemma C.14

Proof of Lemma C.14. For a given policy π and any state sh ∈ S, we have

V ∗
h (sh)− V π

h (sh)

=
(
V ∗
h (sh)− [BhV

∗
h+1](sh, πh(sh))

)
+
(
[BhV

∗
h+1](sh, πh(sh))− [BhV

π
h+1](sh, πh(sh))

)
= ∆h(sh, πh(sh)) + [Ph(V

∗
h+1 − V π

h+1)](sh, πh(sh)),

where the second equality is given by the definition of suboptimality gap ∆h(·, ·) in Definition 3.3.
Taking expectation on both sides with respect to the randomness of state-transition and taking tele-
scoping sum over all h ∈ [H] gives

V ∗
1 (s1)− V π

h (s1) = E
[ H∑
h=1

∆h(sh, πh(sh))

]
,

where sh+1 ∼ Ph(·|sh, πh(sh)). Let the filtration list be Fk =
{{

sji , a
j
i

}H,k−1

i=1,j=1

}
, we have

E
[ H∑
h=1

∆k
h

∣∣∣Fk
]
= V ∗

1 (s
k
1)− V πk

h (sk1).
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Denote random variable ηk =
(
V ∗
1 (s

k
1)−V πk

h (sk1)
)
−
∑H

h=1 ∆
k
h. We can see ηk isFk+1-measurable

with |E[ηk|Fk]| = 0. Furthermore, for the variance of ηk, we have

Var[ηk|Fk] ≤ E
[( H∑

h=1

∆k
h

)2∣∣∣Fk
]

≤ H2 E
[ H∑
h=1

∆k
h

∣∣∣Fk
]

= H2
(
V ∗
1 (s

k
1)− V πk

h (sk1)
)
,

where the first inequality holds due to Var[X] ≤ E[(X − t)2] for any fixed t, the second inequality
follows 0 ≤ ∆k

h ≤ H . As a result, the total variance of the random variables {ηk} can be bounded
by

K∑
k=1

Var[ηk|Fk] ≤
K∑

k=1

H2
(
V ∗
1 (s

k
1)− V πk

h (sk1)
)
= H2Regret(K).

Let F (x) =
√
2xH2 log(x/δ) +H2 log(x/δ), using peeling technique, we can write

Pr
[( K∑

k=1

ηk
)
≥ F (Regret(K)), 1 < Regret(K)

]
= Pr

[( K∑
k=1

ηk
)
≥ F (Regret(K)), 1 < Regret(K),

K∑
k=1

Var[ηk|Fk] ≤ H2Regret(K)
]

≤
∞∑
i=1

Pr
[( K∑

k=1

ηk
)
≥ F (Regret(K)), 2i−1 < Regret(K) ≤ 2i,

K∑
k=1

Var[ηk|Fk] ≤ H2Regret(K)
]

≤
∞∑
i=1

Pr
[( K∑

k=1

ηk
)
≥ F (2i),

K∑
k=1

Var[ηk|Fk] ≤ 2iH2
]

≤
∞∑
i=1

exp
( −F (2i)2

2i+1H2 + 2F (2i)H2/3

)
, (D.21)

where the last inequality follows Lemma H.5. Plugging F (x) =
√

2xH2 log(x/δ) +H2 log(x/δ)
back into (D.21) yields

Pr
[( K∑

k=1

ηk
)
≥
√
2Regret(K)H2 log(Regret(K)/δ) +H2 log(Regret(K)/δ), 1 < Regret(K)

]
≤

∞∑
i=1

exp(− log(2i/δ)) =

∞∑
i=1

δ/2i = δ.

Therefore, whenever Regret(K) > 1, with probability at least 1− δ, we have

K∑
k=1

ηk <
√
2Regret(K)H2 log(Regret(K)/δ) +H2 log(Regret(K)/δ).

Combining with the fact that Regret(K) =
∑K

k=1 η
k +

∑K
k=1

∑H
h=1 ∆

k
h, we have

Regret(K) <

K∑
k=1

H∑
h=1

∆k
h +

√
2Regret(K)H2 log(Regret(K)/δ) +H2 log(Regret(K)/δ),
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whenever Regret(K) > 1. Taking x = Regret(K), a =
∑K

k=1

∑H
h=1 ∆

k
h +H2 log(Regret(K)/δ),

and b = 2H2 log(Regret(K)/δ), inequality (1) yields

Regret(K) ≤ 2

K∑
k=1

H∑
h=1

∆k
h + 2H2 log(Regret(K)/δ) + 4H2 log(Regret(K)/δ)

= 2

K∑
k=1

H∑
h=1

∆k
h + 6H2 log(1/δ) + 6H2 log(Regret(K)) (D.22)

According to the fact that x ≤ a log x + b ⇒ x ≤ 4a log(2a) + 2b, letting x = Regret(K), a =

2
∑K

k=1

∑H
h=1 ∆

k
h + 6H2 log(1/δ) and b = 6H2, (D.22) becomes

Regret(K) ≤

(
8

K∑
k=1

H∑
h=1

∆k
h + 24H2 log(1/δ)

)
log

(
4

K∑
k=1

H∑
h=1

∆k
h + 12H2 log(1/δ)

)
+ 12H2.

Hiding the logarithmic factors within the Õ notation yields

Regret(K) < Õ
( K∑

k=1

H∑
h=1

∆k
h +H2 log(1/δ)

)
.

E Proof of Lemmas in Appendix D

In this section, we prove lemmas outlined in Appendix D. Any proofs not included in this section
are deferred to Appendix F.

E.1 Proof of Lemma D.1

We first introduce the claim from Vial et al. (2022) controlling the rounding error:

Lemma E.1 (Claim 1, Vial et al. 2022, restate). For any (k, h, l, s, a) ∈ [K]× [H]×N+ ×S ×A,
we have

ϕ(s, a)⊤(wk
h,l − w̃k

h,l) ≤
√
dκl,

∣∣∥ϕ(s, a)(Uk
h,l)

−1 − ∥ϕ(s, a)∥Ũk,−1
h,l

∣∣ ≤√dκl,

where κl is used to quantify the vector wk
h,l and inverse matrix (Ul

h,l)
−1.

Proof of Lemma D.1. From Lemma E.1 we have∣∣〈ϕ(s, a),wk
h,l

〉
−
〈
ϕ(s, a), w̃k

h,l

〉∣∣ ≤ √dκl ≤ 0.01 · 2−4l

where the first inequality is due to Lemma E.1, and the second inequality is valid due to κl =
0.01 · 2−4l. Similarly, we have∣∣∥ϕ(s, a)∥(Uk

h,l)
−1 − ∥ϕ(s, a)∥Ũk,−1

h,l

∣∣ ≤√dκl ≤ 0.1 · 2−2l.

E.2 Proof of Lemma D.2

Proof of Lemma D.2. First, both lτh(s
τ
h) = l and fτ

h (s
τ
h) = 1 held for any τ ∈ Ckh,l. This implies

that the criteria for either Line 7 or Line 9 holds as l = lτh(s
τ
h). For τ that satisfies the first criterion,

we have lτh(s
τ
h) > Lτ . Note that Lτ = max{⌈log4(τ/d)⌉, 0}, so this only happens for τ < 4ld. For

other τ that satisfies the second criterion, we have that

∥ϕτ
h∥(Uτ

h,l)
−1 ≥ ∥ϕτ

h∥Ũτ,−1
h,l
−
∣∣∥ϕτ

h∥Ũτ,−1
h,l
− ∥ϕτ

h∥(Uτ
h,l)

−1

∣∣ ≥ 2−lγ−1
l − 0.1 · 2−lγ−1

l = 0.9 · 2−lγ−1
l ,
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where the first inequality holds due to the triangle inequality. In the second inequality, the first term
∥ϕτ

h∥Ũτ,−1
h,l

is bounded by criterion in Line 9 while the second term
∣∣∥ϕτ

h∥Ũτ,−1
h,l
− ∥ϕτ

h∥(Uτ
h,l)

−1

∣∣
follows from Lemma D.1.

Arrange elements of Ckh,l in ascending order as {τi}i. According to the above reasoning, the number
of elements τ ∈ Ckh,l that ∥ϕτ

h∥(Uτ
h,l)

−1 ≥ 0.9 · 2−lγ−1
l is at least |Ckh,l| − 4ld. This gives

|Ck
h,l|∑

i=1

min{1, ∥ϕτ
h∥2(Uτ

h,l)
−1} ≥ (0.9 · 2−lγ−1

l )2 · (|Ckh,l| − 4ld). (E.1)

On the other hand, Lemma H.1 upper bounds the LHS of (E.1) by
|Ck

h,l|∑
i=1

min{1, ∥ϕτ
h∥2(Uτ

h,l)
−1} ≤ 2d ln

(
1 + |Ckh,l|/(dλ)

)
. (E.2)

Combining (E.1) and (E.2) gives
0.81 · 4−lγ−2

l (|Ckh,l| − 4ld) ≤ 2d ln
(
1 + |Ckh,l|/(16d)

)
. (E.3)

From algebra analysis in Lemma G.1, a necessary condition for (E.3) is |Ckh,l| ≤ 16l · 4lγ2
l d.

E.3 Proof of Lemma D.3

We first present a claim from Vial et al. (2022) controlling the infinite norm of coefficient w.
Lemma E.2 (Claim 10, Vial et al. 2022). For any (k, h, l) ∈ [K]× [H]×N+, we have ∥wk

h,l∥∞ ≤
∥wk

h,l∥2 ≤ (2ldH)4.

Proof of Lemma D.3. Denote Xℓ as the set of all w̃k
h,ℓ and Yℓ as the set of all Ũk,−1

h,ℓ . From the

definition of Vk
h,l, we have that |Vk

h,l| ≤
∏l

ℓ=1

(
|Xℓ| · |Yℓ|

)
. From Lemma E.2, we have ∥wk

h,ℓ∥∞ ≤
(2ℓdH)4. Note that wk

h,ℓ ∈ Rd, we have the number of different w̃k
h,ℓ controlled by

|Xℓ| ≤ (1 + 2 · (2ℓdH)4/κℓ)
d ≤ (2 · (2ℓdH)4 · 26+4ℓd)d ≤ 2(7+8ℓ)dd5dH4d.

In addition, we have ∥(Uk
h,l)

−1∥∞ ≤ 1/λ = 1/16. So we can bound the number of Ũk,−1
h,ℓ by

|Yℓ| ≤ (1 + 2 · 1/(16κℓ))
d2

≤ (2 · 22+4ℓd)d
2

≤ 2(3+4ℓ)d2

dd
2

.

As a result, we can conclude that

|Vk
h,l| ≤

l∏
ℓ=1

(
|Xℓ| · |Yℓ|

)
≤

l∏
ℓ=1

(
2(7+8ℓ)dd5dH4d · 2(3+4ℓ)d2

dd
2)
≤ (222d5H4)l

2d2

.

E.4 Proof of Lemma D.4

Proof of Lemma D.4. According to Proposition 3.2, there exists a parameter wh such that for any
(s, a) ∈ S ×A, it holds that

∣∣⟨ϕ(s, a),wh⟩− [BhV̂
k
h+1](s, a)

∣∣ ≤ 2Hζ . Denoting ητh = ⟨ϕτ
h,wh⟩−

[BhV̂
k
h+1](s

τ
h, a

τ
h) and ετh =

(
V̂ k
h+1(s

τ
h+1)− [PhV̂

k
h+1](s

τ
h, a

τ
h)
)
, we have

Uk
h,l(w

k
h,l −wh) =

∑
τ∈Ck−1

h,l

ϕτ
h

(
rτh + V̂ k

h+1(s
τ
h+1)

)
−
(
λI+

∑
τ∈Ck−1

h,l

ϕτ
h(ϕ

τ
h)

⊤
)
wh

= −λwh +
∑

τ∈Ck−1
h,l

ϕτ
h

(
rτh + V̂ k

h+1(s
τ
h+1)− ⟨ϕτ

h,wh⟩
)

= −λwh +
∑

τ∈Ck−1
h,l

ϕτ
h

(
rτh + V̂ k

h+1(s
τ
h+1)− [BhV̂

k
h+1](s

τ
h, a

τ
h)
)
+

∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

= −λwh +
∑

τ∈Ck−1
h,l

ϕτ
hε

τ
h +

∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h, (E.4)
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where the first equality holds due to the definition of Uk
h,l,w

k
h,l, the second equality holds by rear-

ranging the terms, the third equality holds according the definition of ητh, and the last equality holds
from the relationship that [BhV̂

k
h+1](s

τ
h, a

τ
h) = rτh + [PhV̂

k
h+1](s

τ
h, a

τ
h). Therefore, for any vector

ϕ ∈ Rd, it holds that∣∣〈ϕ,wk
h,l −wh

〉∣∣ = ∣∣ϕ⊤(Uk
h,l

)−1
Uk

h,l(w
k
h,l −wh)

∣∣
=

∣∣∣∣∣ϕ⊤(Uk
h,l

)−1 ·

(
− λwh +

∑
τ∈Ck−1

h,l

ϕτ
hε

τ
h +

∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

)∣∣∣∣∣
≤ ∥ϕ∥(Uk

h,l)
−1

∥∥∥∥∥− λwh +
∑

τ∈Ck−1
h,l

ϕτ
hε

τ
h +

∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

, (E.5)

where the second equality follows (E.4) and the inequality holds from Cauchy–Schwarz inequality
(i.e., |x⊤Uy| ≤ ∥x∥U∥y∥U). From the triangle inequality, we have∥∥∥∥∥− λwh +

∑
τ∈Ck−1

h,l

ϕτ
hε

τ
h +

∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

≤ λ∥wh∥(Uk
h,l)

−1 +

∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
hε

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

+

∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

. (E.6)

There are three terms which we will bound respectively. For the first term, we have

λ∥wh∥(Uk
h,l)

−1 ≤ 2
√
dλH ≤ 0.1γl, (E.7)

where the first inequality holds due to the fact that ∥wh∥2 ≤ 2H
√
d as of Proposition 3.2 and the

fact that Uk
h,l ⪰ λI. Under the good event G1 and Lemma C.5, the second term can be bounded by

the following: ∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
hε

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

≤ 1.1γl. (E.8)

And the last term can be bounded by:∥∥∥∥∥ ∑
τ∈Ck−1

h,l

ϕτ
hη

τ
h

∥∥∥∥∥
(Uk

h,l)
−1

≤ 2Hζ
√
|Ckh,l| ≤ 2Hζ

√
16l · 4lγ2

l d = 8
√
ldH · 2lγlζ, (E.9)

where the first inequality is due to Lemma H.3, and the second inequality follows from Lemma D.2.
Plugging (E.6), (E.7), (E.8), and (E.9) into (E.5) gives∣∣〈ϕ,wk

h,l −wh

〉∣∣ ≤ (1.2γl + 8
√
ldH · 2lγlζ

)
∥ϕ∥(Uk

h,l)
−1 . (E.10)

So for any (s, a) ∈ S ×A, we have∣∣Qk
h,l(s, a)− [BhV̂

k
h+1](s, a)

∣∣ = ∣∣〈ϕ(s, a), w̃k
h,l

〉
− [BhV̂

k
h+1](s, a)

∣∣
≤
∣∣〈ϕ(s, a), w̃k

h,l −wk
h,l

〉∣∣+ ∣∣〈ϕ(s, a),wk
h,l −wh

〉∣∣+ ∣∣〈ϕ(s, a),wh

〉
− [BhV̂

k
h+1](s, a)

∣∣
≤ 0.01 · 2−4l +

(
1.2 + 8

√
ldH · 2lζ

)
γl∥ϕ(s, a)∥(Uk

h,l)
−1 + 2Hζ. (E.11)

where the first inequality holds from the triangle inequality, and there are three terms in the second
inequality which we will bound them respectively: the first term is given by Lemma D.1, the second
term follows (E.10), and the third term holds from the definition of wh.
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E.5 Proof of Lemma D.5

Proof of Lemma D.5. We prove by doing case analysis. In case that action al ∈ Ak
h,l+1(s), we can

assign al+1 = al ∈ Ak
h,l+1(s) so that

[BhV̂
k
h+1](s, al)− [BhV̂

k
h+1](s, al+1) = 0. (E.12)

On the other hand, in the case that al /∈ Ak
h,l+1(s), the action al is eliminated with Qk

h,l(s, al) <

V k
h,l(s)− 4 · 2−l. Note in this case, there exists al+1 = πk

h,l(s) ∈ Ak
h,l+1(s) such that

Qk
h,l(s, al) + 4 · 2−l < V k

h,l(s) = Qk
h,l(s, al+1). (E.13)

According to Lemma C.6 and the condition that l ≤ L0, we have that empirical state-value function
Qk

h,l(s, ·) is a good estimation for [BhV̂
k
h+1](s, ·) on actions al, al+1 ∈ Ak

l (s) under event G1:∣∣[BhV̂
k
h+1](s, al)−Qk

h,l(s, al)
∣∣ ≤ 2 · 2−l + χ

√
L0ζ (E.14)∣∣[BhV̂

k
h+1](s, al+1)−Qk

h,l(s, al+1)
∣∣ ≤ 2 · 2−l + χ

√
L0ζ. (E.15)

Moreover,

[BhV̂
k
h+1](s, al)− [BhV̂

k
h+1](s, al+1)

=
(
[BhV̂

k
h+1](s, al)−Qk

h,l(s, al)
)

+
(
Qk

h,l(s, al)−Qk
h,l(s, al+1)

)
+
(
Qk

h,l(s, al+1)− [BhV̂
k
h+1](s, al+1)

)
≤ 2 ·

(
2 · 2−l + χ

√
L0ζ

)
− 4 · 2−l

= 2χ
√
L0ζ. (E.16)

where the first inequality is derived from combining (E.13), (E.14), and (E.15). So from (E.12) and
(E.16), we have that [BhV̂

k
h+1](s, al)− [BhV̂

k
h+1](s, al+1) ≤ 2χ

√
L0ζ holds in both cases.

E.6 Proof of Lemma D.6

Proof of Lemma D.6. We prove by induction on l. The induction basis holds at l = 0 by selecting
a1 = argmaxa∈A[BhV̂

k
h+1](s, a) ∈ A which ensures maxa∈A[BhV̂

k
h+1](s, a)− [BhV̂

k
h+1](s, a1) =

0. Additionally, if the induction hypothesis holds for l − 1, we have that

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al+1)

=
(
max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al)

)
+
(
[BhV̂

k
h+1](s, al)− [BhV̂

k
h+1](s, al+1)

)
≤ 2(l − 1)χ

√
L0ζ + 2χ

√
L0ζ

= 2l · χ
√

L0ζ,

where the first inequality term is derived from combining induction hypothesis with Lemma D.5.
We can then reach desired statement holds for all l in the range by induction.

E.7 Proof of Lemma D.7

Proof of Lemma D.7. According to Lemma D.6, there exists some action al ∈ Ak
h,l(s) that

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, al) ≤ 2(l − 1)χ

√
L0ζ. (E.17)

Moreover, we have

[BhV̂
k
h+1](s, al)− V k

h,l(s) ≤ [BhV̂
k
h+1](s, al)−Qk

h,l(s, al) ≤ 2 · 2−l + χ
√
L0ζ, (E.18)

where the first inequality comes from the definition V k
h,l(s) = maxa∈Ak

h,l
Qk

h,l(s, a) and the second
inequality holds according to Lemma C.6 with l ≤ L0. Adding up (E.17) and (E.18) leads to

max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,l ≤ 2 · 2−l + (2l − 1)χ
√
L0ζ.

This completes the proof.
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E.8 Proof of Lemma D.8

Proof of Lemma D.8. The statement holds by simply checking:

V k
h,l(s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤ V k

h,l(s)− [BhV̂
k
h+1](s, π

k
h,l(s))

= Qk
h,l(s, π

k
h,l(s))− [BhV̂

k
h+1](s, π

k
h,l(s))

≤ 2 · 2−l + χ
√
L0ζ,

where the first inequality holds from maxa∈A[BhV̂
k
h+1](s, a) ≥ [BhV̂

k
h+1](s, π

k
h,l(s)), the equality is

from the definition V k
h,l(s) = Qk

h,l(s, π
k
h,l(s)), and the last inequality holds according to Lemma C.6

with the condition l ≤ L0.

E.9 Proof of Lemma D.9

Proof of Lemma D.9. The statement holds by checking

min
{
V k
h,l(s) + 3 · 2−l, V̂ k

h,l−1(s)
}
−max

a∈A
[BhV̂

k
h+1](s, a)

=
l

min
ℓ=1
{V k

h,ℓ(s) + 3 · 2−ℓ} −max
a∈A

[BhV̂
k
h+1](s, a)

≥
l

min
ℓ=1
{3 · 2−ℓ − (2 · 2−l + (2ℓ− 1)χ

√
L0ζ)}

= 2−l − (2l − 1)χ
√

L0ζ,

where the first equality holds due to V̂ k
h,l(s) = minlℓ=1{V k

h,ℓ(s) + 3 · 2−ℓ}, the inequality holds
according to Lemma D.7, and the last equality holds since 2−l decreases as l increases.

E.10 Proof of Lemma D.10

Proof of Lemma D.10. The statement holds by checking

max
a∈A

[BhV̂
k
h+1](s, a)−max

{
V k
h,l(s)− 3 · 2−l, qV k

h,l−1(s)
}

= max
a∈A

[BhV̂
k
h+1](s, a)−

l
max
ℓ=1
{V k

h,ℓ(s)− 3 · 2−ℓ}

=
l

min
ℓ=1

{
max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,ℓ(s) + 3 · 2−ℓ
}

≥
l

min
ℓ=1
{−(2 · 2−l + χ

√
L0ζ) + 3 · 2−ℓ}

= 2−l − χ
√
L0ζ,

where the first equality holds due to the design of Algorithm 2 such that qV k
h,l(s) =

maxlℓ=1{V k
h,ℓ(s) − 3 · 2−ℓ}, the inequality holds according to Lemma D.8, and the last equality

holds since 2−l decreases as l increases.

E.11 Proof of Lemma D.11

We prove Lemma D.11 in this subsection. The first lemma which we introduce establishes an upper
bound on the underestimation of the state value function V̂ k

h for every action and every state through
a categorised discussion based on whether Algorithm 2 reaches phase Lε for state s. Specifically,
if the process does not reach phase Lε, we can substantiate the statement by applying Lemma D.9
to phase lkh(s) − 1. Conversely, if the process reaches phase Lε, the statement can be proven by
applying Lemma D.7 to phase Lε.
Lemma E.3. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h, s) ∈ [K]× [H]×S,

max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h (s) ≤ 0.07ε/H.
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Now we are ready to prove Lemma D.11 by induction.

Proof of Lemma D.11. We prove by induction on stage h ∈ [H]. It is sufficient to show for any
h ∈ [H], s ∈ S,

V ∗
h (s)− V̂ k

h (s) ≤ 0.07ε · (H + 1− h)/H. (E.19)

We use induction on h from H + 1 to 1 to prove the statement. The induction basis holds from the
definition that V ∗

H+1(s) = V̂ k
H+1(s) = 0. Assume the induction hypothesis (E.19) holds for h + 1,

we have

max
a∈A

[BhV
∗
h+1](s, a)−max

a∈A
[BhV̂

k
h+1](s, a) ≤ max

a∈A
[Bh(V

∗
h+1 − V̂ k

h+1)](s, a)

≤ max
s′∈S

(
V ∗
h+1(s

′)− V̂ k
h+1(s

′)
)

≤ 0.07ε · (H − h)/H. (E.20)

So for level h, it holds that

V ∗
h (s)− V̂ k

h (s)

=
(
max
a∈A

[BhV
∗
h+1](s, a)−max

a∈A
[BhV̂

k
h+1](s, a)

)
+
(
max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h (s)
)

≤ 0.07ε · (H − h)/H + 0.07ε/H ≤ 0.07ε · (H + 1− h)/H,

where the first inequality holds by combining (E.20) with Lemma E.3. This proves the induction
statement (E.19) for h, which leads to the desired statement.

E.12 Proof of Lemma D.12

We prove Lemma D.12 in this subsection, the first lemma we use establishes an upper bound on the
overestimation of the state value function V̂ k

h for the executed policy πk
h(s) across all states.

Lemma E.4. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h, s) ∈ [K]× [H]×S,

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, π

k
h(s)) ≤ 16 · 2−lkh(s) + 0.10ε/H.

Then the following lemma establishes an upper bound on the decision error induced by the arm-
elimination process with respect to the state-action value function given by the ground-truth trans-
form.

Lemma E.5. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h, s) ∈ [K]× [H]×S,

V̂ k
h (s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤ 10 · 2−lkh(s) + 0.06ε/H.

Proof of Lemma D.12. We can directly reach the desired result by taking summation on Lemma E.4
and Lemma E.5:

V̂ k
h (s)− [BhV̂

k
h+1](s, π

k
h(s))

≤
(
max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, π

k
h(s))

)
+
(
V̂ k
h (s)−max

a∈A
[BhV̂

k
h+1](s, a)

)
≤
(
16 · 2−lkh(s) + 0.10ε/H

)
+
(
10 · 2−lkh(s) + 0.06ε/H

)
= 26 · 2−lkh(s) + 0.16ε/H.

E.13 Proof of Lemma D.14

We can prove the statement by applying a union bound to the concentration event, as given by the
Azuma-Hoeffding inequality.
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Proof of Lemma D.14. Consider some fixed h ∈ [H] and ε = 2−l > 0. List the episodes index k

such that V ∗
h (s

k
h)− V πk

h (skh) > ε holds in ascending order as {τi}i. Recall that

ητih = [Ph(V̂
τi
h+1 − V πτi

h+1)](s
τi
h , πτi

h (sτih ))−
(
V̂ τi
h+1(s

τi
h+1)− V πτi

h+1(s
τi
h+1)

)
.

Since the environment sample sτih′+1 according to Ph′(·|sτih′ , a
τi
h′), we have ητih′ is Fτi

h′+1-measurable
with E

[
ητih′

∣∣Fτi
h′

]
= 0. Since both 0 ≤ V̂ τi

h′+1(s
τi
h′+1) ≤ H and 0 ≤ V πτi

h′+1(s
τi
h′+1) ≤ H hold, we

have |ητih′ | ≤ 2H . According to Lemma H.4 over filtration

Fτ1
h ⊆ F

τ1
h+1 ⊆ · · · ⊆ F

τ1
H ⊆ F

τ2
h ⊆ F

τ2
h+1 ⊆ · · · ⊆ F

τ2
H ⊆ · · · ⊆ F

τi
h′ ⊆ · · ·

for some fixed S = |Kε
h|, the good event that

|Kε
h|∑

i=1

H∑
h′=h

ητih′ ≤ 2H
√
2HS log(4HS2l2/δ) = 4

√
H3|Kε

h| log(4H|Kε
h| log(ε−1)/δ)

happens with probability at least 1− δ/(4HS2l2). By the union bound statement over all (h, S, l) ∈
[H]× [K]× N+, we have the bad event happens with probability at most

Pr[G∁2 ] ≤
H∑

h=1

K∑
S=1

∞∑
l=1

Pr[B2(h, 2−l)] ≤
H∑

h=1

K∑
S=1

∞∑
l=1

δ

4HS2l2
≤ δ,

where the last inequality holds from
∑

n≥1 n
−2 = π2/6, which reach the desired statement.

E.14 Proof of Lemma D.15

We first provide the following instantaneous regret upper bound by combining Lemma D.11 and
Lemma D.12.
Lemma E.6. Under event G1 and for all ε > 0 that Gε is satisfied, for any (k, h) ∈ [K]× [H],

V ∗
h (s

k
h)− V πk

h (skh) ≤ 0.23ε+ 26

H∑
h′=h

2−lk
h′ (s

k
h′ ) +

H∑
h′=h

ηkh′ ,

where ηkh = [Ph(V̂
k
h+1−V πk

h+1)](s
k
h, π

k
h(s

k
h))−

(
V̂ k
h+1(s

k
h+1)−V πk

h+1(s
k
h+1)

)
is a Fk

h+1-measurable
random variable that E[ηkh|Fk

h ] = 0 and |ηkh| ≤ H .

Together with Lemma C.9 and the definition of G2, we can provide an upper bound for arbitrary
subsets.

Proof of Lemma D.15. Taking summation on result given by Lemma E.6 to all k ∈ K gives∑
k∈K

(
V ∗
h (s

k
h)− V πk

h (skh)
)
≤ 0.23|K|ε+ 26

∑
k∈K

H∑
h′=h

2−lk
h′ (s

k
h′ ) +

∑
k∈K

H∑
h′=h

ηkh′ . (E.21)

We can bound the second term according to Lemma C.9,

26
∑
k∈K

H∑
h′=h

2−lk
h′ (s

k
h′ ) ≤ 0.26|K|ε+ 217LεdH

2γ2
Lε
ε−1. (E.22)

Under event G2, the third term satisfies that∑
k∈K

H∑
h′=h

ηkh′ ≤ 4
√
H3|K| log(4H|K| log(ε−1)/δ). (E.23)

Plugging (E.22) and (E.23) into (E.21) gives∑
k∈K

(
V ∗
h (s

k
h)− V πk

h (skh)
)
≤ 0.49|K|ε+ 217LεdH

2γ2
Lε
ε−1 + 4

√
H3|K| log(4H|K| log(ε−1)/δ).

(E.24)
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F Proof of Lemmas in Appendix E

F.1 Proof of Lemma E.3

Proof of Lemma E.3. We start the proof by discussing different cases. First, if lkh(s) ≤ Lε, we have
lkh(s)− 1 ≤ min{Lε, l

k
h(s)− 1}, according to the definition of V̂ k

h,l(s),

max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h (s) = max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h,lkh(s)−1(s)

≤ −2−(lkh(s)−1) + 2(lkh(s)− 1)χ
√
Lεζ

≤ 0 + 2χL1.5
ε ζ

≤ 0.02ε/H, (F.1)

where the first inequality holds from Lemma D.9, and the last inequality holds due to χL1.5
ε ζ ≤

2−Lε ≤ 0.01ε/H given by Gε.

On the other hand, when lkh(s) > Lε, we have Lε ≤ min{Lε, l
k
h(s)− 1} and thus

V̂ k
h (s) ≥ qV k

h,Lε
(s) ≥ V k

h,Lε
(s)− 3 · 2−Lε (F.2)

where the first inequality is due to Lemma C.2 and the second inequality holds due to the definition
of qV k

h,Lε
(s). Therefore, Lε ≤ min{Lε, l

k
h(s)− 1} yields

max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h (s) ≤ max
a∈A

[BhV̂
k
h+1](s, a)− V k

h,Lε
(s) + 3 · 2−Lε

≤ 5 · 2−Lε + (2Lε − 1)χ
√
Lεζ

≤ 0.05ε/H + 0.02ε/H = 0.07ε/H, (F.3)

where the first inequality is given by (F.2), the second inequality is given by Lemma D.7, and the
last inequality holds from χL1.5

ε ζ ≤ 2−Lε ≤ 0.01ε/H given by Gε. So considering both (F.1) and
(F.3), we have the first statement

max
a∈A

[BhV̂
k
h+1](s, a)− V̂ k

h (s) ≤ 0.07ε/H

always holds under event G1.

F.2 Proof of Lemma E.4

We prove Lemma E.4 by applying Lemma C.7 on phase min{Lε, l
k
h(s)− 1}, in this subsection.

Proof of Lemma E.4. Note we have πk
h,lkh(s)−1

(s) ∈ Ak
h,lkh(s)

(s) according to the definition of

Ak
h,l+1(s). This implies πk

h(s) ∈ Ak
h,lkh(s)

(s) during the elimination process.

If lkh(s) ≤ Lε, we have lkh(s)− 1 ≤ min{Lε, l
k
h(s)− 1}. Thus,

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, π

k
h(s)) ≤ 8 · 2−(lkh(s)−1) + 2lkh(s) · χ

√
Lεζ

≤ 16 · 2−lkh(s) + 2χL1.5
ε ζ

≤ 16 · 2−lkh(s) + 0.02ε/H, (F.4)

where the first inequality follows from Lemma C.7 with πk
h(s) ∈ Ak

h,lkh(s)
(s) and the last inequality

holds due to χL1.5
ε ζ ≤ 0.01ε/H given by Gε.

Otherwise, we have Lε ≤ min{Lε, l
k
h(s)− 1}. In this case, we have

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, π

k
h(s)) ≤ 8 · 2−Lε + 2χL1.5

ε ζ

≤ 0.08ε/H + 0.02ε/H = 0.10ε/H, (F.5)
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where the first inequality follows from Lemma C.7 with πk
h(s) ∈ Ak

h,lkh(s)
(s) ⊆ Ak

h,Lε
(s) according

to the elimination routine and the final inequality holds due to χL1.5
ε ζ ≤ 2−Lε ≤ 0.01ε/H given by

Gε. So by combining (F.4) and (F.5), we have the desired statement that

max
a∈A

[BhV̂
k
h+1](s, a)− [BhV̂

k
h+1](s, π

k
h(s)) ≤ 16 · 2−lkh(s) + 0.10ε/H.

F.3 Proof of Lemma E.5

We prove Lemma E.5 in this section by applying Lemma D.8 on phase min{Lε, l
k
h(s)− 1}.

Proof of Lemma E.5. If lkh(s) ≤ Lε, we have lkh(s)− 1 ≤ min{Lε, l
k
h(s)− 1}. Firstly, we have

V̂ k
h (s) ≤ V̂ k

h,lkh(s)−1(s) ≤ V k
h,lkh(s)−1(s) + 3 · 2−(lkh(s)−1). (F.6)

where the first inequality is given by Lemma C.2 and the second inequality follows from the defini-
tion of V̂ k

h,lkh(s)−1
(s). This leads to

V̂ k
h (s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤

(
V̂ k
h (s)− V k

h,lkh(s)−1(s)
)
+
(
V k
h,lkh(s)−1(s)−max

a∈A
[BhV̂

k
h+1](s, a)

)
≤ 3 · 2−(lkh(s)−1) + 2 · 2−(lkh(s)−1) + χ

√
Lεζ

≤ 10 · 2−lkh(s) + 0.01ε/H, (F.7)

where in the second inequality, the first term is given by (F.6) and the second term holds according
to Lemma D.8, and the third inequality holds from χ

√
Lεζ ≤ 0.01ε/H given by Gε.

Otherwise, we have Lε ≤ min{Lε, l
k
h(s)− 1}, this leads to

V̂ k
h (s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤

(
V̂ k
h (s)− V k

h,Lε
(s)
)
+
(
V k
h,Lε

(s)−max
a∈A

[BhV̂
k
h+1](s, a)

)
≤ 3 · 2−Lε + 2 · 2−Lε + χ

√
Lεζ

≤ 0.03ε/H + 0.02ε/H + 0.01ε/H = 0.06ε/H, (F.8)

where in the second inequality, the first term is given by the definition of V̂ k
h (s) and the second term

holds according to Lemma D.8, and the third inequality holds from χL1.5
ε ζ ≤ 2−Lε ≤ 0.01ε/H

given by Gε. Combining (F.7) and (F.8) gives the desired statement

V̂ k
h (s)−max

a∈A
[BhV̂

k
h+1](s, a) ≤ 10 · 2−lkh(s) + 0.06ε/H.

F.4 Proof of Lemma E.6

Proof of Lemma E.6. According to the definition in which V πk

h (skh) = [BhV
πk

h+1](s
k
h, π

k
h(s

k
h)) and

ηkh + [Ph(V̂
k
h+1 − V πk

h+1)](s
k
h, π

k
h(s

k
h))−

(
V̂ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
. We can write

V̂ k
h (skh)− V πk

h (skh) =
(
V̂ k
h (skh)− [BhV̂

k
h+1](s

k
h, π

k
h(s

k
h))
)
+ ηkh +

(
V̂ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
.

By a telescoping statement from h to H with the final terminal value V̂ k
H+1(·) = V πk

H+1(·) = 0, we
reach

V̂ k
h (skh)− V πk

h (skh) =

H∑
h′=h

(
V̂ k
h (skh)− [BhV̂

k
h+1](s

k
h, π

k
h(s

k
h))
)
+

H∑
h′=h

ηkh′ . (F.9)
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As a result, we can bound the desired term by

V ∗
h (s

k
h)− V πk

h (skh) ≤ V̂ k
h (skh)− V πk

h (skh) + 0.07ε

=

H∑
h′=h

(
V̂ k
h (skh)− [BhV̂

k
h+1](s

k
h, π

k
h(s

k
h))
)
+

H∑
h′=h

ηkh′ + 0.07ε

≤
H∑

h′=h

(
26 · 2−lk

h′ (s
k
h′ ) + 0.16ε/H

)
+

H∑
h′=h

ηkh′ + 0.07ε

= 0.23ε+ 26

H∑
h′=h

2−lk
h′ (s

k
h′ ) +

H∑
h′=h

ηkh′ .

where the first inequality is given by Lemma D.11, the first equality is given by (F.9), and the final
inequality is given by Lemma D.12.

G Technical Numerical Lemmas

Lemma G.1. If |Ckh,l| ≤ 4ld+ 2.5 · 4lγ2
l d ln

(
1 + |Ckh,l|/(16d)

)
, then |Ckh,l| ≤ 16l · 4lγ2

l d.

Proof. Denote c = |Ckh,l|/(l · 4lγ2
l d). We have that

cl · 4lγ2
l d ≤ 4ld+ 2.5 · 4lγ2

l d ln(1 + cl · 4lγ2
l /16).

Dividing both sides by 4lγ2
l d, we have that

cl ≤ 1/γ2
l + 2.5 ln(1 + cl · 4lγ2

l /16)

≤ 1/γ2
l + 2.5 ln(4c · 5lγ2

l /16) ≤ 1/γ2
l + 4.1l + 2.5 ln(c).

Since l ≥ 1 and γl ≥ 1, we can further conclude that

c ≤ 5.1 + 2.5 ln(c) ≤ 5.1 + 2.5(1 + c/6).

The necessary condition for the above inequality is c ≤ 16, which proves the desired statement.

Lemma G.2. For any l ≥ 1, γl+1/γl ≤ 1.4.

Proof. Firstly, we have that

l + 22 + log(l + 1)

l + 20 + log(l)
≤ l + 22 + 0.2l + 2

l + 20
= 1.2, (G.1)

where the first inequality holds due to log(x+ 1) ≤ 0.2x+ 2. In addition, we have

4 + log(l + 1)

4 + log(l)
≤ 4 + log(l) + 1

4 + log(l)
≤ 1.25, (G.2)

where the first inequality holds due to log(x+1) ≤ log(x)+1. As a result, we can reach the desired
statement according to

γl+1

γl
=

5(l + 1 + ⌈20 + log((l + 1)d)⌉)dH
√

log(16(l + 1)dH/δ)

5(l + ⌈20 + log(ld)⌉)dH
√
log(16ldH/δ)

≤ l + 22 + log(l + 1) + log(d)

l + 20 + log(l) + log(d)
·

√
log(l + 1) + log(16dH/δ)

log(l) + log(16dH/δ)

≤ l + 22 + log(l + 1)

l + 20 + log(l)
·

√
log(l + 1)

log(l)

≤ 1.2
√
1.25

≤ 1.4,

where the third inequality holds from plugging both (G.1) and (G.2).
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Lemma G.3. √
2d ln(1 + l · 4lγ2

l ) + 2 ln(l2H(222d6H4)l
2
+d2

/δ) ≤ γl,l+

Proof. By calculation, we have that

H

√
2d ln(1 + l · 4lγ2

l ) + 2 ln(l2H(222d6H4)l
2
+d2

/δ)

≤ H
√
2d ln(1 + l · 4l · 1.42lγ2

1) +H
√

12l2+d
2 ln(24ldH/δ)

≤ l+dH
√
2 ln(24ldH/δ) + l+dH

√
12 ln(24ldH/δ)

≤ 5l+dH
√
log(24γl+ ldH/δ)

= γl,l+ .

Lemma G.4. If some constant c1, c2 > 0 that

|Kε
h| < c1Lε(Lε + log(dH))2d3H4ε−2 log(Lεd/δ) + ε−1

√
c2H3|Kε

h| log(H|Kε
h| log(ε−1)/δ).

Then, there exists c3 > 0 such that

|Kε
h| < c3Lε(Lε + log(dH))2d3H4ε−2 log(Lεd) log(δ

−1)ι,

where ι is a polynomial of log log(LεdHδ−1).

Proof. Let x = |Kε
h|/ log(|Kε

h|). We have that

x < c1Lε(Lε + log(dH))2d3H4ε−2 log(Lεd/δ) + ε−1
√

c2H3x log(H log(ε−1)/δ).

Since x < a+
√
bx implies x < 2a+ 2b, so the above inequality implies

x < 2c1Lε(Lε + log(dH))2d3H4ε−2 log(Lεd/δ) + 2c2H
3ε−2 log(H log(ε−1)/δ).

Moreover, since y/ log(y) < a implies y < 2a log a, we can conclude that there exists c3 > 0 that

|Kε
h| < c3Lε(Lε + log(dH))2d3H4ε−2 log(Lεd) log(δ

−1)ι,

where ι is a polynomial of log log(LεdHε−1δ−1).

H Auxiliary Lemmas

This section provides some auxiliary concentration lemmas frequently used in the proof.
Lemma H.1 (Lemma 11, Abbasi-Yadkori et al. (2011)). Let {ϕk}∞k=1 be any bounded sequence
such that ϕk ∈ Rd and ∥ϕk∥2 ≤ B for some constant B > 0. For k ≥ 1, let Uk = λI +∑k−1

τ=1 ϕ
τ (ϕτ )⊤. Let λ > 0, then for all k ∈ [K], we have that

k∑
τ=1

min
{
1, ∥ϕτ∥2(Uτ )−1

}
≤ 2d ln

(
1 + kB2/(dλ)

)
.

Lemma H.2 (Self-Normalized Martingale, Abbasi-Yadkori et al. (2011)). Let {Fk}∞k=1 be a filtra-
tion, and {ϕk, ηk}∞k=1 be a stochastic process where ϕk ∈ Rd is Gk-measurable and ηk is Fk+1-
measurable such that

|E[ηk|Fk]| = 0, |ηk| ≤ R, ∥ϕk∥2 ≤ B

for some constant B,R > 0. Let λ > 0. For k ≥ 1, let Uk = λI+
∑k−1

τ=1 ϕ
τ (ϕτ )⊤. Then for any

δ ∈ (0, 1), with probability at least 1− δ, for all k ≥ 1, we have that∥∥∥∥∥
k−1∑
τ=1

ητϕτ

∥∥∥∥∥
(Uk)−1

≤ R
√

2d ln
(
1 + kB2/(dλ)

)
+ 2 ln δ−1.
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Lemma H.3 (Lemma 8, Zanette et al. (2020b)). Let {ϕk, ηk}∞k=1 be any bounded sequence satis-
fying ϕk ∈ Rd and |ηk| ≤ ζ for some constant ζ > 0. For k ≥ 1, let Uk = λI+

∑k−1
τ=1 ϕ

τ (ϕτ )⊤.
Then, for all k ≥ 1, we have that ∥∥∥∥∥

k−1∑
τ=1

ητϕτ

∥∥∥∥∥
(Uk)−1

≤ ζ
√
k.

Lemma H.4 (Azuma–Hoeffding inequality, Hoeffding (1963)). Let {ηk}Kk=1 be a martingale differ-
ence sequence with respect to a filtration {Fk}Kk=1 satisfying |ηk| ≤ M for some constant M > 0
and ηk is Fk+1-measurable with |E[ηk|Fk]| = 0. Then for some fixed k ∈ [K] and any δ ∈ (0, 1),
with probability at least 1− δ, we have

k∑
τ=1

ητ ≤M
√
2k ln δ−1.

Lemma H.5 (Freedman inequality, Cesa-Bianchi and Lugosi (2006)). Let {ηk}Kk=1 be a martingale
difference sequence with respect to a filtration {Fk}Kk=1 satisfying |ηk| ≤ M for some constant
M > 0 and ηk is Fk+1-measurable with |E[ηk|Fk]| = 0. Then for some fixed k ∈ [K], a > 0 and
v > 0, we have

Pr
( k∑

τ=1

ητ ≥ a,

k∑
τ=1

Var[ητ |Fτ ] ≤ v
)
≤ exp

( −a2

2v + 2aM/3

)
.

I Numerical Simulation

We added experiments on synthetic datasets to verify the performance of the algorithm and the
contribution of each component. Specifically, we consider a linear MDP with S = 4, A = 5,
H = 2, and d = 8. Each element in the feature vector ϕ(s, a) and µ(s′) is generated by a uniform
distribution U(0, 1). Subsequently, ϕ is normalized to ensure that P(s′|s, a) is a probability measure,
i.e., ϕ(s, a) = ϕ(s, a)/

∑
s′ ϕ

⊤(s, a)µ(s′). The reward is defined by r(s, a) = ϕ⊤(s, a)θ, where
θ ∼ N(0, Id). The model misspecification is also added to the transition P and reward function r.
For a given misspecification ζ, the ground truth reward function is defined by r(s, a) = ϕ⊤(s, a)θ+
Z(s, a), where Z(s, a) ∼ U(−ζ, ζ). When adding the model misspecification to the transition
kernel, we first random sample a subset S+ ⊂ S such that |S+| = |S|/2. Then the misspecified
transition kernel is then generated by

P′(s′|s, a) = P(s′|s, a) + 2
ζ

S
1[s′ ∈ S+]−

ζ

S
,

we can verify that ∥P(·|s, a) − P′(·|s, a)∥TV = ζ. We investigated the misspecification level from
ζ = 0, 0.01, · · · , 0.3 in 16 randomly generated environments over 2000 episodes. We report the
cumulative regret and runtime with respect to different misspecification levels. Additionally, we
performed an ablation study by 1) removing the certified estimation (Algorithm 2, Line 11) and 2)
removing the quantization (Algorithm 1, Line 8).

The results of these configurations are presented in the following table. The detailed regret for
all misspecification level is presented in Table 3 and Figure 1, we plot the cumulative regret for
2000 episodes with respect to the misspecification level ζ. The cumulative regret curve is plotted in
Figure 2.

The experimental results suggest several key findings that support our theoretical analysis:

• When the misspecification level is low, it is possible to achieve constant regret, where the instan-
taneous regret in the final rounds is approximately zero.

• The certified estimator and the quantization do not significantly affect the algorithm’s runtime.
In contrast, the certified estimator provides an ‘early-stopping’ condition in Algorithm 2, which
slightly reduces the algorithm’s runtime. In particular, our algorithm yields a computational com-
plexity of O(d2AHK2 logK), which is the same as Vial et al. (2022) and only logK greater than
the vanilla LSVI-UCB (Jin et al., 2020) due to the multi-phased algorithm.
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(b) Without quantization

Figure 1: Cumulative regret over 2000 episodes with respect to different misspecification level ζ.
The result is averaged over 16 individual environments.

• The certified estimator helps the algorithm by providing robust estimation in the presence of mis-
specification. As shown in the table, using the certified estimator does not make a significant
difference when the misspecification level ζ is low, but it becomes significant as the misspecifica-
tion level increases.

• The quantization does not contribute significantly to the results, as the numerical results are intrin-
sically discrete and quantized. In Figure 2, the regret curve with quantization and the one without
quantization are highly overlapped.

C. Q. ζ = 0.0 0.01 0.02 0.03 0.04
× × 189.01 ± 57.21 190.57 ± 59.49 194.74 ± 61.99 201.36 ± 63.67 211.67 ± 66.06
× ✓ 189.00 ± 57.18 190.55 ± 59.49 194.75 ± 61.99 201.41 ± 63.67 211.68 ± 66.06
✓ × 196.32 ± 64.09 203.68 ± 77.24 200.41 ± 66.88 207.47 ± 70.97 222.61 ± 78.77
✓ ✓ 196.31 ± 64.06 199.07 ± 68.45 200.42 ± 66.88 207.52 ± 70.96 222.62 ± 78.77

C. Q. ζ = 0.05 0.06 0.07 0.08 0.09
× × 220.52 ± 67.85 233.57 ± 66.54 248.08 ± 68.70 264.49 ± 72.05 279.82 ± 78.28
× ✓ 220.50 ± 67.86 233.48 ± 66.50 248.06 ± 68.69 264.56 ± 72.00 279.81 ± 78.25
✓ × 221.87 ± 73.51 232.75 ± 73.75 261.16 ± 84.44 262.07 ± 82.05 273.56 ± 96.19
✓ ✓ 221.86 ± 73.51 232.70 ± 73.81 261.14 ± 84.43 262.15 ± 82.01 273.55 ± 96.17

C. Q. ζ =0.1 0.11 0.12 0.13 0.14
× × 292.59 ± 80.52 305.73 ± 83.47 323.93 ± 90.25 337.65 ± 94.39 355.49 ± 106.22
× ✓ 292.68 ± 80.55 305.71 ± 83.44 323.91 ± 90.23 337.65 ± 94.39 355.49 ± 106.22
✓ × 285.81 ± 102.54 297.98 ± 107.21 315.22 ± 114.50 335.69 ± 110.76 339.81 ± 99.26
✓ ✓ 285.90 ± 102.57 297.97 ± 107.18 315.20 ± 114.49 335.69 ± 110.76 339.82 ± 99.27

C. Q. ζ =0.15 0.2 0.25 0.3 Time(s)
× × 377.27 ± 127.21 450.49 ± 154.80 526.45 ± 181.90 634.46 ± 245.70 1654.76 ± 125.40
× ✓ 377.23 ± 127.13 450.48 ± 154.79 526.36 ± 181.91 634.48 ± 245.68 1654.21 ± 141.31
✓ × 351.52 ± 118.09 436.30 ± 154.89 530.15 ± 194.89 605.64 ± 233.19 1599.66 ± 138.18
✓ ✓ 351.50 ± 118.03 436.29 ± 154.91 530.58 ± 195.24 605.67 ± 233.18 1593.38 ± 98.11

Table 3: Average cumulative regret (± standard derivation) and execution time over 2000 episodes.
The results are averaged over 16 individual runs. C indicates if Certified Estimator is used. Q
indicates if Quantization is used.
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(c) ζ = 0.10
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(d) ζ = 0.15
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(e) ζ = 0.20
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Figure 2: Cumulative regret with respect to the number of episodes. We reported the median cumu-
lative regret with the shadow area as the region from 25% percentage to 75% percentage statistics
over 16 runs.
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