
Genetic Learning for Designing Sim-to-Real Data
Augmentations

Bram Vanherle bram.vanherle@uhasselt.be

Nick Michiels nick.michiels@uhasselt.be

Frank Van Reeth frank.vanreeth@uhasselt.be

Hasselt University - tUL

Flanders Make,

Expertise Centre for Digital Media

Reviewed on OpenReview:

https: // openreview. net/ group? id= ICLR. cc/ 2024/ Workshop/ DMLR

Abstract

Data augmentations are useful in closing the sim-to-real domain gap when training on
synthetic data. This is because they widen the training data distribution, thus encouraging
the model to generalize better to other domains. Many image augmentation techniques
exist, parametrized by different settings, such as strength and probability. This leads to
a large space of different possible augmentation policies. Some policies work better than
others for overcoming the sim-to-real gap for specific datasets, and it is unclear why. This
paper presents two different interpretable metrics that can be combined to predict how well
a certain augmentation policy will work for a specific sim-to-real setting, focusing on object
detection. We validate our metrics by training many models with different augmentation
policies and showing a strong correlation with performance on real data. Additionally, we
introduce GeneticAugment, a genetic programming method that can leverage these metrics
to automatically design an augmentation policy for a specific dataset without needing to
train a model.

Keywords: Computer Vision, Data Augmentation, Sim-to-Real, Synthetic Data

1 Introduction

Modern deep learning architectures can solve increasingly complex computer vision prob-
lems like object detection, segmentation, and pose estimation. These techniques, however,
require large amounts of labeled training data to function properly. Manually capturing
and annotating training images is a cumbersome task. Additionally, humans introduce bi-
ases and errors into the data, which can lead to worse downstream performance Northcutt
et al. (2021). For this reason, synthetic data has become more popular for training machine
learning models. Images are rendered from a scene representation, and the annotations are
derived from that representation. This way, the costly annotation step is avoided. One pop-
ular approach is leveraging graphics rendering engines Borkman et al. (2021); Greff et al.
(2022).

A major downside of synthetic data is that rendered images look slightly different from
real images. This is mostly due to the difficulty of exactly simulating physical lighting. Al-
though these rendered images look good to the human eye, there are still subtle differences.

©2023 Vanherle et al..

https://openreview.net/group?id=ICLR.cc/2024/Workshop/DMLR


Vanherle et al.

Neural networks are sensitive to this domain shift. When trained on synthetic data, they
tend to perform significantly worse on real data Peng et al. (2018). The larger this domain
shift is, the larger the performance gap.

Much research has been done to investigate ways to overcome this domain gap. Some
have proposed widening the domain of the synthetic data by introducing extreme ran-
domization during rendering in a technique called Domain Randomization Tobin et al.
(2017); Tremblay et al. (2018). Others have tackled this problem by increasing photo-
realism Movshovitz-Attias et al. (2016); Roberts et al. (2021) or by modeling the real do-
main more accurately Wood et al. (2021). Further techniques include refining the synthetic
images to match the real images better. This is done based on image statistics Abramov
et al. (2020) or using learning-based approaches Zhao et al. (2023a). Domain Adaptation
techniques are also used to overcome the sim-to-real domain gap Zhao et al. (2023b).

Data augmentation is a technique that alters images from the training set to create new
images, thus enlarging the training set and potentially increasing the performance of the
neural network Miko lajczyk and Grochowski (2018). Since it introduces randomness and
widens the training data distribution, data augmentation is also very useful for training
on synthetic data Carlson et al. (2019); Pashevich et al. (2019). Augmentation strategies
can be manually designed, sampled from a predefined structure Cubuk et al. (2020); Müller
and Hutter (2021), or generated automatically for a given problem Cubuk et al. (2019); Ho
et al. (2019).

Many different individual augmentation operations exist, such as cropping, rotating,
blurring, and adding noise. When faced with a specific sim-to-real scenario, it is unclear
what combination of augmentations will work well for that dataset. This paper presents
two metrics that explain why certain augmentations work well for specific scenarios. We
argue that a good augmentation for sim-to-real decreases the distance to the real dataset
while increasing the variation in the training data. We train a large amount of object detec-
tion models using different augmentation policies and show that our proposed metrics are
strongly correlated with downstream performance. Finally, we show that these metrics can
guide a genetic programming algorithm in designing an augmentation strategy automati-
cally without needing to train any models. We compare our results to existing augmentation
methods and to established domain adaptive object detection models. Code is available at:
https://github.com/EDM-Research/genetic-augment.

2 Method

We consider an object detection neural network f . The network has a backbone b that
computes a feature map and a detection head h that generates detections from the features

computed by b. This neural network is trained on a set of synthetic images X S =
{
xSi

}NS

and their accompanying labels YS =
{
ySi

}NS . Training is done by optimizing the weights
of f to minimize the object detection loss L over the synthetic data:

min
θ

1

NS

NS∑
i=0

L(a(xSi ), ySi ) (1)

with a the augmentation strategy. The goal is to select a to optimize the performance of
the trained network f on the real target data (X T ,YT ). We measure this performance

2

https://github.com/EDM-Research/genetic-augment


Data Augmentation for Sim-to-Real

using mean average precision (mAP) Everingham et al. (2010) averaged over the 0.5 to 0.95
threshold range. We aim to select the augmentation strategy a unsupervised; i.e., only X S

and X T are used to guide the selection. For this work, we focus on the augmentations that
operate on pixel values and do not affect the object detection annotations.

2.1 Metrics

A good augmentation should increase the variation in the training data. A model trained
on more diverse data is more likely to generalize to unseen data. For sim-to-real specifically,
a good augmentation will also make the synthetic training images more similar to the real
data. This could be done by, for example, introducing some noise or changing the image’s
brightness. For humans, it is difficult to estimate whether an augmentation will increase
variation or decrease distance. Especially considering an entire dataset. For this reason,
we introduce two metrics that can estimate these properties for a proposed augmentation
policy given a synthetic and real dataset. Metrics are computed in the feature space. A
backbone b is used that is pre-trained on ImageNet Deng et al. (2009) so that no models
need to be trained to find an optimal augmentation setup.

To measure the variation of an augmented dataset, we compute the average of the per-
feature variance over the features computed over a set of augmented synthetic images. For
each synthetic image, the feature map hS is computed after applying the augmentation
b(a(xSi )) = hS . All feature maps are flattened to a one-dimensional vector of size Nd to
form the set of feature vectors for the synthetic images HS . The variance of a feature
point is computed over the dataset V ar(HS

d ). This is averaged over all feature points
d ∈ [0, 1, . . . , Nd].

To measure the distance between the augmented synthetic images and the real images,
we measure the Wasserstein-1 distance in feature space on a per-feature basis. Feature
maps hT are computed for each real image. This is done using the same backbone as the
synthetic images but without applying the augmentation b(xTi ) = hT . The first Wasserstein
distance is computed between the distributions of feature point d for both the synthetic and
real features W (HT

d , H
S
d ). This is averaged over all feature points d ∈ [0, 1, . . . , Nd].

Yamaguchi et al. (2019) proposed similar metrics to find an optimal additional dataset
for training a multi-domain learning GAN to create additional training samples. They
measure the distance between the target and additional dataset using the Frechet Inception
Distance (FID) Heusel et al. (2017). Additionally, they use Multi-scale Structural Similar-
ity Wang et al. (2003) among the images of the additional dataset as a measure of variation
in the data. We find that our metrics are better suited to predicting model performance
given a specific augmentation, as detailed in Appendix B. Additionally, our proposed met-
rics are much faster, as multi-scale SSIM and FID are computationally expensive. This is
important as the Genetic Learning procedure presented in the next section requires many
evaluations of these metrics.

2.2 Genetic Learning

Although these metrics offer more explainability, it is still difficult to manually design
augmentations to satisfy these metrics. For this reason, we introduce GeneticAugment, an
algorithm that can automatically learn an augmentation policy that does well on these met-

3



Vanherle et al.

rics given a synthetic and real target dataset. Specifically, we aim to learn an augmentation
policy a consisting of a set of individual augmentations a = [a1, a2, . . . , aN ] executed sequen-
tially or at random. Each individual augmentation is defined by the selected augmentation
method, a strength value s, and a probability p. The sequential nature of the augmentation
strategies lends itself well to genetic algorithm learning Katoch et al. (2020); Fortin et al.
(2012). This also allows for much flexibility in designing augmentation strategies, as it does
not require differentiation.

To find an augmentation policy through genetic learning, we spawn a population of 100
random augmentation policies. These can all have a random or a fixed length and consist of
several random individual augmentations with a random strength and probability. In each
generation, 200 offspring of the previous generation are created. Offspring is produced by
crossing over two individuals of the previous generation or by mutating individuals. When
two individuals are crossed over, this is done using a one-point crossover. Mutating an
individual is done by replacing some of its augmentations with another random augmen-
tation. Augmentation policies can also be extended, or an augmentation can be randomly
removed. When the offspring is created, the offspring’s and population’s fitness is com-
puted. The fitness is defined by positive variance and negative distance, as defined in the
previous section. To optimize multiple objectives, NSGA-II Deb et al. (2002) is used to
select 100 non-dominated individuals for the next generation. Non-dominated individuals
from all generations are kept in a Pareto front.

3 Experiments

We train many object detection models using different augmentation techniques and settings
to show the large difference between the performances of different augmenters. We train
each model to detect cars on the synthetic Sim10k Johnson-Roberson et al. (2017) dataset
and test it on the real Cityscapes Cordts et al. (2016) dataset. We train a MaskRCNN He
et al. (2017) model with a ResNet-18 He et al. (2016) backbone. For more details, refer to
Appendix A.

We test 27 different augmentation techniques. These techniques fall under four cate-
gories: blurring, color augmentation, noise, and sharpening. We test each technique at three
different strengths: half of the default strength (s0.5), default strength (s1.0), and double
strength (s2.0). We also test each technique when only applying it randomly half the time
(p0.5). This totals to 27× 4 = 108 models trained and a baseline model without augmenta-
tion. A complete list of augmentations with parameters can be found in Appendix A.

An overview of the results of these experiments is shown in Fig. 1. We notice that
most augmentations lead to a better generalizing model. However, a lot of them do not
improve the model by much. Some augmentation policies greatly improve the model, and
some make the model way worse. In general, blurring augmentations and randomly applied
augmentations do slightly better than other methods. It is difficult to predict why some
augmentations are better than others. This highlights the need for explainable metrics to
examine augmentations. More detailed results are given in Appendix B.

Usually, multiple augmentations are combined to form an augmentation policy. To
examine this scenario, we combine multiple augmentations based on their performance in the
previous experiment. Specifically, we combine the n best and n worst augmentation methods

4



Data Augmentation for Sim-to-Real

blur color noise sharpen s0.5 s1.0 s2.0 p0.5

7.52

20.15

26.90

m
AP

method settings

no augmentation

Performance of different augmentation techniques

Figure 1: Performance of different augmentations on Sim10k → Cityscapes.

2 4 6 8 10
number of augmentations

20.84

26.90

29.13

m
AP

best single augmentation

Effect of using multiple augmentations on mAP

n-best
n-worst
n-random

Figure 2: Performance combinations of augmentations on Sim10k → Cityscapes.

based on their performance in the p0.5 category. As a baseline, we also combine n random
augmentations. We test for n ∈ [2, 10]. Each augmentation is executed at default strength
and 1/n probability. This way, we examine if combining good single augmentations leads
to an even better augmentation strategy or whether multiple bad augmentations can form
a good augmentation strategy together. The results are shown in Fig. 2. Augmentations
are combined by executing them sequentially.

These results show that combining multiple good single augmentations leads to aug-
mentation policies that struggle to outperform the best single augmentation. Combining
multiple random augmentation methods results in widely varying results. The best aug-
mentation policy we have found so far results from combining seven random augmenters.
Finally, combining multiple weak augmentations slightly improves performance but comes
nowhere near the best single augmentation. The performance of single augmentations can-
not be used as a guide to create augmentation strategies. For this reason, we need some
reliable metrics that can be used to guide the design of augmentation strategies.

5



Vanherle et al.

0.421 0.487
Var(HS)

7.520

29.133
m

AP

Variance
: 0.639

0.222 0.264
W(HT, HS)

no augmentation

Distance
: -0.730

Effect of augmentation metrics on mAP

Figure 3: Relationship between the proposed metrics measured for augmentations and per-
formance of models trained with those augmentations on Sim10k → Cityscapes.

3.1 Validation of metrics

To show the predictive power of the proposed metrics, we measure them for each model
trained in the previous section. Measurement is done with a ResNet-18 pre-trained on
ImageNet. This is the same backbone that the object detection models use. Metrics are
measured using 2048 samples from the synthetic and real training data. We measure the cor-
relation between the metric and the model performance using Spearman’s rank correlation
coefficient ρ Spearman (1904).

Fig. 3 shows the measured metrics for each augmentation plotted versus the performance
of the model trained with that augmentation. There is a strong correlation between the
variance and distance metrics and the model’s performance on the real data. An increase
in augmentation variance leads to a better generalizing model. Eventually, the increase in
mAP tapers off when variation increases. Generally, when an augmentation policy decreases
the distance between the real and synthetic data in feature space, it improves the model’s
performance on real data.

4 Genetic Learning Results

Having shown a strong correlation between the proposed metrics and the performance of
augmentation strategies, we now use them to automatically design augmentation strategies
for Sim10k → Cityscapes using the genetic learning procedure described in Section 2.2. For
efficiency, we now use only 128 samples to evaluate an individual. Five generations are
created using the genetic learning approach to find an augmentation strategy. Finally, the
augmentation strategy with the lowest distance value is selected. An object detection model
is trained following that policy. To ensure fair evaluation, only images of the training sets
of both datasets are used to find augmentations.

6



Data Augmentation for Sim-to-Real

Table 1: Performance of GeneticAugment policies on Sim10k → Cityscapes for different
strategies compared to other methods using those strategies.

Strategy Method mAP

None No augmentation 20.15

OneOf (single) TrivialAugment Müller and Hutter (2021) 25.00
GeneticAugment (Ours) 26.97

OneOf (double) AutoAugment Cubuk et al. (2019) 24.90
GeneticAugment (Ours) 25.15

TwoOf RandAugment Cubuk et al. (2020) 23.97
GeneticAugment (Ours) 29.47

Sequential GeneticAugment (Ours) 27.47

4.1 Comparison to other augmentation methods

As a benchmark, we compare our model against other augmentation methods. These aug-
mentation methods use different strategies. TrivialAugment selects one random augmenta-
tion from a set each time. AutoAugment learns a set of augmentation pairs, of which one
pair is randomly selected for each image. For AutoAugment we use the strategy learned
for ImageNet and do not retrain it for our dataset. RandAugment picks two random aug-
mentations from a set. We train a variant of GeneticAugment that follows each of these
strategies for a better comparison. We also learn a sequential strategy that executes each
augmentation according to its probability. To maintain the focus on pixel domain augmen-
tations, we remove augmentations that do not preserve the annotations, such as rotation
and translation.

Table 1 shows that policies learned by GeneticAugment outperform random policies
proposed by other methods for all different strategies. Also, the sequential strategy shows
strong performance. This indicates that for sim-to-real, there is a clear benefit to using a
learned policy over random policies and that the proposed metrics can guide the discovery
of a policy. GeneticAugment offers an efficient method for finding such policies, as it
does not require training models. These results also highlight the versatility of the genetic
algorithm approach combined with the variance and distance metrics, as it can be applied
to multiple strategies. It should be noted that GeneticAugment can choose from a wider
set of augmentation techniques than the other methods. The evolution of the metrics
during the training of the TwoOf strategy is shown in Fig. 4. As expected, we observe the
variance in the population increasing while the distance decreases. The average length of the
augmentation sequences increases during the learning. Specifics of the learned augmentation
strategies are shown in Appendix B.

4.2 Comparison to Domain Adaptive Object Detection techniques

Our method leverages unlabeled images from the target domain to improve the performance
of an object detection model trained on a source domain. For this reason, we also compare

7



Vanherle et al.

0 1 2 3 4 5
generation

0.440

0.568

va
ri

an
ce

Variance

0 1 2 3 4 5
generation

0.243

0.277

di
st

an
ce

Distance

0 1 2 3 4 5
generation

2

17

le
ng

th

Length

Figure 4: Evolution of the range of the metrics measured on the population during the
generations of the genetic algorithm.

Table 2: Performance of different Domain Adaptive Object Detection techniques on
Sim10k → Cityscapes.

Method Detector AP50

Source FasterRCNN-VGG16 42.8
ViSGA Rezaeianaran et al. (2021) FasterRCNN-ResNet50 49.3
KTNet Tian et al. (2021) FasterRCNN-VGG16 50.7
GeneticAugment (Ours) FasterRCNN-VGG16 54.8
PT Chen et al. (2022) FasterRCNN-VGG16 55.1

our technique to domain adaptive object detection techniques. Whereas these methods often
introduce new training techniques and novel architectures, our approach is model-agnostic
and works by only changing the input data through augmentations.

Following other works in the field, we train a FasterRCNN Ren et al. (2015) with a
VGG16 Simonyan and Zisserman (2015) backbone. During training, we freeze the first
three blocks of the backbone, as is commonly done for synthetic data Hinterstoisser et al.
(2019). The TwoOf policy of the previous experiment is used during training, as it is the
best-performing strategy. We also train an object detection in the same setup without
augmentation as a benchmark. We report AP with a threshold of 0.5 instead of the mAP
of previous experiments since this is the standard for this benchmark.

Table 2 shows the performance of GeneticAugment compared to recent works using the
same architecture. We observe that the model trained with GeneticAugment outperforms
most other approaches. This shows that data-driven augmentation design can obtain good
sim-to-real performance without changing model architectures. Additionally, we can con-
clude that the designed augmentations are not limited to the backbone used to find them,
as a ResNet-18 was used to find augmentations and VGG16 was used in the detection
model. Note that recent works have increased the state of the art on this benchmark to
62.0 AP Zhao et al. (2023b) using the more powerful Deformable DETR architecture Zhu

8



Data Augmentation for Sim-to-Real

et al. (2021). Since our approach is model-agnostic, it can also be applied to more modern
architectures.

5 Conclusion

We showed through extensive experiments that there is a wide variety in the performance of
augmentation policies for sim-to-real training, with most leading to only small benefits. To
explain this difference in performance and to guide the design of augmentation policies, we
presented two augmentation metrics that show a high correlation with the performance of
a model trained using that augmentation. These metrics are computed using the synthetic
training data and real target data. It is difficult to tune a data augmentation policy to satisfy
these metrics manually. For this reason, we introduced a genetic learning algorithm that can
automatically design an augmentation policy that does well on these metrics. The algorithm
finds policies in a data-driven manner, so no models need to be trained. This approach leads
to good sim-to-real performance, outperforming non-data-driven augmentation techniques.
Additionally, it performs well compared to domain adaptive object detection methods.

Reproducibility Statement

In Appendix A, we provide a detailed description of how the object detection models
throughout the paper are trained. We also describe exactly how the augmentations are
done and with what parameters. This appendix also details how the genetic program-
ming algorithm is implemented. For full reproducibility, code can be found at https://

github.com/EDM-Research/genetic-augment. The synthetic Sim10k Johnson-Roberson
et al. (2017) dataset and the real Cityscapes Cordts et al. (2016) dataset are publicly avail-
able for downloading. This should further encourage reproducibility.

Broader Impact Statement

The advancement of synthetic data can make computer vision AI more easily accessible to
those unable to fund large-scale labeling operations. This can have positive societal effects,
as smaller companies and regular people can benefit from the progress in AI. As it lowers
the bar for entry for good actors, it might also do the same for bad actors. We should
always be conscious of this when communicating our research.

References

A. Abramov, C. Bayer, and C. Heller. Keep it simple: Image statistics matching for domain
adaptation, 2020.

S. Borkman, A. Crespi, S. Dhakad, S. Ganguly, J. Hogins, Y. Jhang, M. Kamalzadeh, B. Li,
S. Leal, P. Parisi, C. Romero, W. Smith, A. Thaman, S. Warren, and N. Yadav. Unity
perception: Generate synthetic data for computer vision. CoRR, abs/2107.04259, 2021.
URL https://arxiv.org/abs/2107.04259.

9

https://github.com/EDM-Research/genetic-augment
https://github.com/EDM-Research/genetic-augment
https://arxiv.org/abs/2107.04259


Vanherle et al.

A. Buslaev, A. Parinov, E. Khvedchenya, V. Iglovikov, and A. Kalinin. Albumentations:
fast and flexible image augmentations. ArXiv e-prints, 2018.

A. Carlson, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson. Sensor transfer:
Learning optimal sensor effect image augmentation for sim-to-real domain adaptation.
IEEE Robotics and Automation Letters, 4(3):2431–2438, 2019.

M. Chen, W. Chen, S. Yang, J. Song, X. Wang, L. Zhang, Y. Yan, D. Qi, Y. Zhuang,
D. Xie, et al. Learning domain adaptive object detection with probabilistic teacher. In
International Conference on Machine Learning, pages 3040–3055. PMLR, 2022.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation policies from data. 2019. URL https://arxiv.org/pdf/1805.09501.pdf.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le. Randaugment: Practical au-
tomated data augmentation with a reduced search space. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 18613–18624. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/

d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective ge-
netic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197,
2002. doi: 10.1109/4235.996017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338, 2010.

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné. DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research, 13:2171–
2175, jul 2012.

K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J. Fleet, D. Gnanapra-
gasam, F. Golemo, C. Herrmann, T. Kipf, A. Kundu, D. Lagun, I. Laradji, H.-T. D. Liu,
H. Meyer, Y. Miao, D. Nowrouzezahrai, C. Oztireli, E. Pot, N. Radwan, D. Rebain,
S. Sabour, M. S. M. Sajjadi, M. Sela, V. Sitzmann, A. Stone, D. Sun, S. Vora, Z. Wang,
T. Wu, K. M. Yi, F. Zhong, and A. Tagliasacchi. Kubric: A scalable dataset generator. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3749–3761, June 2022.

10

https://arxiv.org/pdf/1805.09501.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf


Data Augmentation for Sim-to-Real

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’16, pages 770–778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL http:

//ieeexplore.ieee.org/document/7780459.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

8a1d694707eb0fefe65871369074926d-Paper.pdf.

S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige. On pre-trained image fea-
tures and synthetic images for deep learning. In Computer Vision – ECCV 2018 Work-
shops: Munich, Germany, September 8-14, 2018, Proceedings, Part I, page 682–697,
Berlin, Heidelberg, 2019. Springer-Verlag. ISBN 978-3-030-11008-6. doi: 10.1007/
978-3-030-11009-3 42. URL https://doi.org/10.1007/978-3-030-11009-3_42.

D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel. Population based augmentation: Effi-
cient learning of augmentation policy schedules. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 2731–2741. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/ho19b.html.

M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasude-
van. Driving in the matrix: Can virtual worlds replace human-generated annotations for
real world tasks? In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 746–753. IEEE, 2017.

S. Katoch, S. S. Chauhan, and V. Kumar. A review on genetic algorithm: past, present,
and future. Multimedia Tools and Applications, 80:8091 – 8126, 2020.

T. maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:

//github.com/pytorch/vision, 2016.

A. Miko lajczyk and M. Grochowski. Data augmentation for improving deep learning in
image classification problem. In 2018 International Interdisciplinary PhD Workshop
(IIPhDW), pages 117–122, 2018. doi: 10.1109/IIPHDW.2018.8388338.

11

https://doi.org/10.1038/s41586-020-2649-2
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1007/978-3-030-11009-3_42
https://proceedings.mlr.press/v97/ho19b.html
https://github.com/pytorch/vision
https://github.com/pytorch/vision


Vanherle et al.

Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh. How useful is photo-realistic rendering
for visual learning? In G. Hua and H. Jégou, editors, Computer Vision – ECCV 2016
Workshops, pages 202–217, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-49409-8.

S. G. Müller and F. Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmen-
tation. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 774–782, October 2021.

C. G. Northcutt, A. Athalye, and J. Mueller. Pervasive label errors in test sets destabi-
lize machine learning benchmarks. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:

//openreview.net/forum?id=XccDXrDNLek.

A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid. Learning to augment
synthetic images for sim2real policy transfer. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2651–2657. IEEE, 2019.

X. Peng, B. Usman, K. Saito, N. Kaushik, J. Hoffman, and K. Saenko. Syn2real: A new
benchmark for synthetic-to-real visual domain adaptation, 2018.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/

paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

F. Rezaeianaran, R. Shetty, R. Aljundi, D. O. Reino, S. Zhang, and B. Schiele. Seeking
similarities over differences: Similarity-based domain alignment for adaptive object de-
tection. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
9184–9193, 2021.

M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista, N. Paczan, R. Webb,
and J. M. Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor
scene understanding. In ICCV, 2021. URL https://arxiv.org/pdf/2011.02523.pdf.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.

org/stable/1412159.

K. Tian, C. Zhang, Y. Wang, S. Xiang, and C. Pan. Knowledge mining and transferring
for domain adaptive object detection. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9113–9122, 2021. doi: 10.1109/ICCV48922.2021.00900.

12

https://openreview.net/forum?id=XccDXrDNLek
https://openreview.net/forum?id=XccDXrDNLek
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://arxiv.org/pdf/2011.02523.pdf
http://arxiv.org/abs/1409.1556
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159


Data Augmentation for Sim-to-Real

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain random-
ization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), page
23–30. IEEE Press, 2017. doi: 10.1109/IROS.2017.8202133. URL https://doi.org/10.

1109/IROS.2017.8202133.

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci,
S. Boochoon, and S. Birchfield. Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 969–977, 2018.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Z. Wang, E. Simoncelli, and A. Bovik. Multiscale structural similarity for image quality as-
sessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers,
2003, volume 2, pages 1398–1402 Vol.2, 2003. doi: 10.1109/ACSSC.2003.1292216.

E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. J. Cashman, and J. Shotton. Fake it
till you make it: Face analysis in the wild using synthetic data alone. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 3681–3691,
October 2021.

S. Yamaguchi, S. Kanai, and T. Eda. Effective data augmentation with multi-domain
learning gans. In AAAI Conference on Artificial Intelligence, 2019.

G. Zhao, T.-L. Shen, S. You, and C.-C. J. Kuo. Unsupervised synthetic image refine-
ment via contrastive learning and consistent semantic-structural constraints. In Defense
+ Commercial Sensing, 2023a. URL https://api.semanticscholar.org/CorpusID:

258309171.

Z. Zhao, S. Wei, Q. Chen, D. Li, Y. Yang, Y. Peng, and Y. Liu. Masked retraining
teacher-student framework for domain adaptive object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 19039–19049,
October 2023b.

X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. Deformable DETR: deformable trans-
formers for end-to-end object detection. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

13

https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://api.semanticscholar.org/CorpusID:258309171
https://api.semanticscholar.org/CorpusID:258309171


Vanherle et al.

Appendix A. Implementation Details

A.1 Object Detection Details

The object detection experiments use a MaskRCNN He et al. (2017) architecture with a
ResNet-18 He et al. (2016) backbone. The backbone is initialized with weights trained on
ImageNet Deng et al. (2009). All weights are retrained during training. We use a batch size
of four and a learning rate of 0.00005. Following the convention in unsupervised domain
adaptation, we resize each image so that the shortest size is 600 pixels. A lot of models
needed to be trained during this research. To keep the total cost of training reasonable, we
have chosen a short training program of 50 epochs, showing the model 1 000 images each
epoch. This was enough for all models to nearly reach convergence and to compare the
different augmentations.

A.2 Augmentation Details

For all augmentations, we used the Albumentations library Buslaev et al. (2018) implemen-
tation. For each augmentation, a default value was chosen. This was usually the library’s
default value. What default value and which function was used is detailed in Table 3.
Throughout the paper, augmentation strengths were defined by a strength value. Practi-
cally, all parameter values for an augmentation were scaled by this value. In the case of
a tuple, only the second value was scaled by the strength value, unless this would make
that value smaller than the first value of the tuple. In the case of methods employing a
kernel, it is enforced that the value remains odd. The parameter was scaled inversely for
the posterize augmentation, as decreasing the number of bits strengthens the augmenter.

For the baselines TrivialAugment, AutoAugment, and RandomAugment, we used the
implementations available in Torchvision maintainers and contributors (2016) at their de-
fault settings. To compare with our pixel-based method, we removed the non-pixel-based
augmentations: ShearX, ShearY, TranslateX, TranslateY and Rotate.

14



Data Augmentation for Sim-to-Real

A.3 Metric Computation Details

The variance is computed using the Numpy Harris et al. (2020) var function. With
features the list of all features computed over the chosen sample of the synthetic data:

def variance(features: np.array):

return np.mean(np.var(features, axis=0))

The Wasserstein distance is computed using the wasserstein distance function of the
Scipy library Virtanen et al. (2020). With features the list of all features computed over
the chosen sample of the synthetic data and reference features the list of all features
computed over the chosen sample of the real data:

def wasserstein_distance(features: np.array, reference_features: np.array):

d = []

for i in range(features.shape[1]):

d.append(stats.wasserstein_distance(reference_features[:, i], features[:, i]))

return np.mean(d)

A.4 Genetic Learning Details

Genetic learning is done using the DEAP library Fortin et al. (2012).

Augmentations are spawned with a random length unless a fixed size is provided. This
random length is sampled from a normal distribution truncated between 2 and 16. The
distribution has a mean of 6 and a standard deviation of 5. Each individual is a random
augmentation sampled from the pool of all augmentations parameterized by a strength
value and probability. Probability is sampled between 0 and 1, and strength between 0 and
2. For the OneOf double strategy, each element in an individual consists of two random
augmentations.

A mutation is done with a 30% probability. When an individual is mutated, each of its
elements has a 10% chance to be swapped out by a different random augmentation. If a
fixed length is not specified, there is also a 10% chance a random augmentation is added at
the back or that one random augmentation from the set is removed.

Crossover happens with a 60% probability. Two individuals are crossed using a one-
point method. The two individuals are cut in half randomly, and the other halves are
swapped between individuals.

Appendix B. Detailed Results

Table 4 reports the individual performance of models trained on Sim10k using the different
augmentation settings. Results are reported both on the Cityscapes test set, and on the
Cityscapes test set processed by the same augmentation used during training. As noted in
the main paper, augmentations with no randomness built in, such as invert, do badly on
the test set. However, we observe this can be overcome by applying that augmentation to
the test set.

15



Vanherle et al.

Table 3: Details of what Albumentations function was used during this research at which
default value.

Augmenter Paramter Value

GaussianBlur blur limit (3, 15)
Blur blur limit 7
Defocus radius (3, 10)
GlassBlur sigma 0.7
MedianBlur blur limit 7
MotionBlur blur limit 7
ZoomBlur max factor 1.09

ChannelShuffle

CLAHE clip limit 4
ColorJitter (brightness) brightness 0.3

others 0.0
ColorJitter (contrast) contrast 0.3

others 0.0
ColorJitter (saturation) saturation 0.3

others 0.0
ColorJitter (hue) hue 0.3

others 0.0
Equalize

FancyPCA alpha 0.3
InvertImg

Posterize num bits 4
RandomGamma gamma limit (80, 120)
RandomToneCurve scale 0.1

Emboss strength (0.2, 0.5)
Sharpen alpha (0.2, 0.5)
UnsharpMask blur limit (3, 15)

alpha 0.5

GaussNoise var limit 75.0
ISONoise color shift (0.01, 0.05)

intensity (0.1, 0.5)
MultiplicativeNoise multiplier 0.9
PixelDropout dropout prob 0.01
UniformNoise strength 0.2

16



Data Augmentation for Sim-to-Real

Table 4: Individual performance of each augmentation on Sim10k → Cityscapes under dif-
ferent settings. Performance is reported in mAP of the test set and on the test set
with that augmentation applied.

Test Augmented Test
Augmentation s0.5 s1.0 s2.0 p0.5 s0.5 s1.0 s2.0 p0.5

None 20.15 20.15

gaussian blur 23.98 24.33 24.85 26.70 23.30 23.11 21.51 25.97
blur 23.45 24.53 24.84 24.64 21.66 23.22 22.38 23.84
defocus 24.24 21.33 20.71 26.90 23.10 19.86 16.73 24.48
glass blur 17.96 19.69 18.80 25.23 16.41 16.77 18.09 22.96
median blur 24.65 24.75 25.41 24.68 23.13 23.59 22.55 24.09
motion blur 25.62 24.85 21.81 25.27 24.80 23.62 19.31 24.65
zoom blur 20.17 23.84 19.98 23.22 20.17 20.04 9.56 22.16

channel shuffle 23.08 21.82 24.88 23.03 22.81 21.74 24.81 22.74
clahe 20.50 17.85 18.75 20.89 22.21 19.71 21.47 21.26
brightness 21.44 22.85 21.94 20.34 21.40 22.68 21.77 20.23
contrast 20.88 23.33 20.75 21.94 20.83 23.26 20.51 21.87
saturation 19.90 20.88 22.39 21.27 19.82 20.93 22.48 21.26
hue 24.63 24.81 23.97 25.42 24.51 24.55 23.72 25.27
equalize 14.44 18.68 16.57 21.40 22.82 24.35 22.48 22.58
fancy pca 21.60 23.01 25.10 23.09 21.55 22.97 25.12 23.07
invert 8.92 8.81 7.52 20.59 21.68 22.16 21.21 20.14
posterize 20.98 21.56 20.52 22.61 20.98 20.14 15.60 22.25
gamma 20.49 21.92 22.95 20.95 20.73 21.99 21.80 20.86
tone curve 24.04 24.76 23.53 21.15 24.00 24.69 23.15 21.10

gauss noise 21.53 24.36 21.85 21.19 20.85 23.81 20.99 20.87
iso noise 21.34 22.95 22.44 22.09 20.85 22.07 21.93 21.62
multiplicative noise 19.02 20.51 19.98 20.51 21.37 20.30 20.81 20.35
dropout 23.01 22.91 22.38 23.57 21.87 21.41 19.73 23.35
uniform noise - - - - - - - -

emboss 21.19 19.80 20.16 22.76 21.88 20.64 21.66 22.85
sharpen 17.79 19.72 20.41 22.41 21.04 23.06 22.48 22.56
unsharp mask 21.73 21.80 21.39 20.59 21.87 22.05 21.80 20.68

Average 21.02 21.76 21.30 22.79 21.76 22.03 20.91 22.43

17



Vanherle et al.

0.033 0.326
Multiscale SSIM

7.520

29.133
m

AP

Variation
: 0.168

3685.732 4044.392
Frechet Distance

no augmentation

Distance
: -0.296

Effect of augmentation metrics on mAP

Figure 5: Relationship between the metrics proposed by Yamaguchi et al. (2019) and perfor-
mance of models trained with different augmentations on Sim10k → Cityscapes.

B.1 Performance of other metrics

To validate the utility of our proposed metrics, we also use the metrics proposed by Ya-
maguchi et al. (2019) to predict the performance of a model trained on a specific aug-
mentation. Yamaguchi et al. (2019) proposed measuring the variation by computing the
multiscale structural similarity between all augmented images. They used the Frechet In-
ception Distance between the augmented and real images to measure distance. Instead of
using the Inception network as a feature detector for the distance, we use ResNet, which is
used for the other metrics and for training the object detection network.

The results in Fig. 5 show that there is a significantly lower correlation between these
metrics and the downstream performance of the object detection model compared to our
metrics. These metrics were originally designed to select a good additional dataset to train
a GAN on and show good performance for this task. However, these metrics do not seem
ideal for finding good image data augmentations. Potentially, because their variation metric
operates in the pixel domain, whereas our metric measures variation in the feature space,
which might be better to measure the impact on a downstream object detection model.
Additionally, the Frechet Distance assumes the data is normally distributed, which is not
necessarily true for the backbone features. Finally, our metrics are also much faster, which
is necessary as the metrics need to be computed often during the genetic learning procedure.

B.2 Training sequential augmentations

We test the capabilities of our genetic learning approach by learning sequential augmenta-
tion strategies of different lengths. In augmentations of this strategy, each augmentation is
executed sequentially by its given probability. We learn several augmentation policies of a
fixed length l ∈ [2, 4, 6, 8]. We also learned an augmentation strategy that does not have a
fixed length.

The results in Table 5 show that all augmentation strategies lead to a good increase in
performance compared to using no augmentation. Even the sequence of only two augmenta-

18



Data Augmentation for Sim-to-Real

Table 5: Performance of GeneticAugment learned sequential augmentation policies on
Sim10k → Cityscapes of different lengths.

Augmentation mAP

None 20.15

GeneticAugment-2 26.66
GeneticAugment-4 27.07
GeneticAugment-6 27.48
GeneticAugment-8 24.04
GeneticAugment-n 27.47

Figure 6: Evolution of the metrics measured from the individuals during multiple gener-
ations of the genetic algorithm. The range indicates the minimal and maximal
values. The middle line is the average.

tions improves the mAP by more than six points. Most augmentation strategies outperform
the best single augmentation found in Section 3, whereas the best multiple augmentation
policy from that section is not matched. These are good results as that policy was found
by combining seven random augmentations. Finding augmentations this way is unfeasible
as it could require training many models before finding a good policy. Our approach, on
the other hand, requires only inference of a pre-trained network.

Fig. 6 shows the progress of the metrics during the genetic learning process. The variance
of the population clearly increases. The distance appears more difficult to optimize, but
we observe the average and minimal individual decrease. The algorithm also prefers longer
sequences over time. Fig. 7 shows the Pareto frontier after the last generation.

B.3 Learned Augmentations

In the main paper, several augmentation policies are learned following different strategies.
In this section, we detail the exact policies. Table 6 shows the policy learned for the OneOf
(single) strategy. Table 7 shows the policy learned for the OneOf (double) strategy. The

19



Vanherle et al.

Figure 7: Pareto frontier after the last generation. Each dot represents an individual aug-
mentation policy.

Table 6: Augmentation learned by GeneticAugment for Sim10k → Cityscapes using the
OneOf (single) strategy.

Augmentation s p

glass blur 1.49 0.63
motion blur 1.10 0.85
uniform noise 1.41 0.96
defocus 1.80 0.79
hue 1.16 0.28
gaussian blur 0.41 0.30
defocus 0.87 0.60
uniform noise 0.17 0.96
brightness 1.77 0.05
median blur 0.29 0.45
hue 1.24 0.02

policy learned for TwoOf is shown in Table 8. Finally, the policy learned for the sequential
policy is shown in Table 9.

20



Data Augmentation for Sim-to-Real

Table 7: Augmentation learned by GeneticAugment for Sim10k → Cityscapes using the
OneOf (double) strategy.

Augmentation s p

defocus 1.83 0.63
contrast 0.70 0.25

equalize 0.18 0.46
uniform noise 0.90 0.62

Table 8: Augmentation learned by GeneticAugment for Sim10k → Cityscapes using the
TwoOf strategy.

Augmentation s p

equalize 0.91 0.58
uniform noise 1.59 0.11
multiplicative noise 0.17 0.55
channel shuffle 1.47 1.00
blur 1.12 0.37
gaussian blur 1.20 0.76

Table 9: Augmentation learned by GeneticAugment for Sim10k → Cityscapes using the
Sequential strategy.

Augmentation s p

multiplicative noise 0.40 0.58
brightness 0.79 0.07
dropout 0.42 0.93
median blur 1.43 0.55
brightness 1.50 0.48
channel shuffle 0.35 0.38
channel shuffle 0.41 0.12
brightness 1.53 0.22
unsharp mask 1.16 0.64
iso noise 0.78 0.31
sharpen 1.22 0.73
contrast 1.83 0.96
posterize 0.48 0.35
median blur 0.88 0.61
fancy pca 1.14 0.66
median blur 1.00 0.05

21


	Introduction
	Method
	Metrics
	Genetic Learning

	Experiments
	Validation of metrics

	Genetic Learning Results
	Comparison to other augmentation methods
	Comparison to Domain Adaptive Object Detection techniques

	Conclusion
	Implementation Details
	Object Detection Details
	Augmentation Details
	Metric Computation Details
	Genetic Learning Details

	Detailed Results
	Performance of other metrics
	Training sequential augmentations
	Learned Augmentations


