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Abstract. Pelvic fractures pose significant diagnostic challenges, particularly in 

cases where fracture signs are subtle or invisible on standard radiographs. To 

address this, we introduce PelFANet, a dual-stream attention network that fuses 

raw pelvic X-rays with segmented bone images to improve fracture classification. 

The network employs Fused Attention Blocks (FABlocks) to iteratively ex-

change and refine features from both inputs, capturing global context and local-

ized anatomical detail. Trained in a two-stage pipeline with a segmentation-

guided approach, PelFANet demonstrates superior performance over conven-

tional methods. On the AMERI dataset, it achieves 88.68% accuracy and 0.9334 

AUC on visible fractures, while generalizing effectively to invisible fracture 

cases with 82.29% accuracy and 0.8688 AUC, despite not being trained on them. 

These results highlight the clinical potential of anatomy-aware dual-input archi-

tectures for robust fracture detection, especially in scenarios with subtle radio-

graphic presentations. 
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1 Introduction 

Pelvic fractures are among the most critical injuries in emergency medicine, typically 

caused by high-energy trauma such as motor vehicle accidents or falls [1]. Due to the 

pelvis's anatomical complexity and its role in protecting vital organs and blood vessels, 

such fractures can lead to severe complications, including hemorrhage and multi-organ 

damage [2]. In-hospital mortality rates range from 5% to 20%, influenced by fracture 

severity, hemorrhagic shock, and associated injuries [3, 4]. 

Diagnosis relies heavily on radiographic evaluation and clinician expertise [5], 

which poses challenges in trauma settings. Subtle or complex fractures are often 

missed, even by skilled radiologists [6]. In high-pressure environments, diagnostic er-

rors are common, with up to 20% of pelvic fractures initially overlooked in trauma 

centers [7], resulting in delayed treatment, worsening injuries, and increased mortality 

[8]. Rapid, accurate detection is thus essential. 

Recent studies have demonstrated strong performance in pelvic and femur fracture 

detection using deep learning frameworks, achieving accuracies in the range of 80–

98% [9, 10]. Segmentation-guided classification is a powerful method that enhances 

classification accuracy by localizing specific regions of interest before feature 
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extraction and prediction. In the context of medical imaging, this technique is especially 

useful for focusing on diagnostically relevant anatomical structures while ignoring ir-

relevant background noise. Segmentation-guided classification has proven effective 

across various domains, including colorectal cancer, liver cancer, and pneumonia, by 

improving diagnostic focus and reducing false negatives [11-15]. These methods are 

particularly valuable in low-contrast or cluttered imaging scenarios common issues in 

pelvic X-rays where global analysis may be insufficient for accurate fracture detection. 

Recent studies have shown the effectiveness of segmentation-guided pelvic fracture 

classification. [16] reported 96.32% DSC and 98.03% accuracy using Swin U-Net, 

while [17] achieved 0.96–0.97 DSC and 69–88% classification accuracy across pelvic 

ring fracture types using an AO/OTA-guided system. 

However, fracture diagnosis in pelvic radiographs can benefit significantly from 

contextual background information beyond the bone boundaries. While some fractures 

show clear cortical disruptions, others present subtle signs such as abnormal alignment, 

joint spacing, or limb asymmetry indicators that may lie outside the segmented bone 

region. Studies have shown that non-local cues like limb rotation, joint dislocation, or 

pubic symphysis widening can suggest fractures even in the absence of visible cortical 

breaks [18, 19]. Segmenting out only the bone often removes these diagnostic cues, 

whereas raw pelvic X-rays preserve the full anatomical context, including soft tissue 

and alignment, which can be crucial for detecting such subtle injuries. 

This is particularly relevant in cases of invisible fractures (IV), PXR images without 

obvious fracture signs but confirmed via 3D-CT imaging. As demonstrated in recent 

work, these cases are challenging for existing deep learning methods [20]. Our work 

addresses this by leveraging both raw and segmented inputs to retain global structure 

and enhance diagnostic robustness. 

To address the limitations of relying solely on either segmentation or raw image 

analysis, we propose PelFANet, a Pelvic Fused Attention Network that integrates both 

segmented bone structures and raw pelvic X-rays through a dual-stream fusion-guided 

attention architecture. By combining localized anatomical detail with full-field context, 

PelFANet is designed to detect both overt and subtle fracture cues. The streams are 

fused using CBAM-based attention [21], allowing the model to learn feature combina-

tions from both inputs that contribute to improved classification. PelFANet outperforms 

existing approaches by accurately detecting both visible fractures and invisible frac-

tures, by leveraging subtle contextual and anatomical cues indicative of underlying in-

jury.  

2 Methodology 

2.1 Overview 

Our proposed framework for pelvic fracture classification follows a two-stage pipeline 

combining bone segmentation and dual-stream classification. First, a U-Net with Mix 

Transformer B0 encoder generates segmentation masks from raw pelvic X-rays, from 

which bone regions are cropped to create the bone segmentations [22, 23]. These  
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Fig. 1. (a) Conventional single-stream pipeline where only the raw pelvic X-ray (PXR) is used 

for direct fracture prediction. (b) Our proposed PelFANet pipeline where the raw PXR is first 

processed by a segmentation model to generate a bone segmentation. Both the raw image and the 

segmentation are then jointly input into PelFANet, a dual-stream fused attention network, to pre-

dict the presence of fractures. 

cropped segmentations, along with the corresponding raw X-rays, are fed into 

PelFANet, a dual-stream network that extracts and fuses features using Fused Attention 

Blocks (FABlocks) with CBAM. This architecture effectively integrates local anatom-

ical detail with global context to enhance fracture detection. The complete pipeline is 

illustrated in Figure 1. 

2.2 Bone Segmentation 

To incorporate anatomical context into the classification process, we first generate bone 

segmentations using a U-Net with a Mix Transformer B0 encoder. This hybrid archi-

tecture combines U-Net’s spatial accuracy with the transformer’s global context mod-

eling, enabling precise delineation of pelvic bones. 

Considering the full Pelvic region as a single class we train a one-class segmentation 

model. Once trained, the model infers bone masks, which are cropped to produce bone 

segmentations used as the second input to PelFANet, guiding fracture classification 

with structure-aware features. 

2.3 PelFANet 

Input. PelFANet uses a dual-input design, combining each raw pelvic X-ray with its 

corresponding bone segmentation. Both inputs are resized into a 224x224 image, then 

passed into two streams for separate processing. This setup enables the network to lev-

erage both structural and contextual cues for accurate fracture classification. 
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Fig. 2. (a) The overall architecture of PelFANet, a dual-stream fused attention network designed 

for pelvic fracture classification. It processes raw pelvic X-rays and corresponding bone segmen-

tations through parallel convolutional branches, followed by stacked eight FABlocks for progres-

sive feature fusion and attention refinement. (b) Detailed structure of a FABlock (Fused Attention 

Block), which extracts stream-specific features, applies CBAM-based attention over the concat-

enated representation, and redistributes refined features back into the two branches via residual 

pathways. 

Network Architecture. PelFANet is a dual-stream convolutional architecture specifi-

cally designed to fuse global context from raw pelvic X-rays and fine-grained anatom-

ical structure from bone segmentations. The network is composed of three main stages: 

parallel feature extraction, attention-guided fusion through stacked FABlocks, and final 

aggregation and classification. 

In the initial stage, the raw pelvic X-ray and its corresponding bone segmentation 

are passed through two independent convolutional branches. Each stream begins with 

a 3×3 convolution layer, followed by batch normalization, ReLU activation, and max 

pooling. These parallel branches extract low-level features specific to the raw and seg-

mented modalities. 

The core of the network consists of eight Fused Attention Blocks (FABlock). At 

each FABlock, the feature maps from the left and right branches are independently 

processed, concatenated, and passed through a Convolutional Block Attention Module 

(CBAM) to generate attention-refined fused features. These fused features are then pro-

jected via a 1×1 convolution and split back into the two original streams. Residual con-

nections and convolutional layers further refine the separated features before re- 

concatenation. This repeated fusion and redistribution mechanism allows the model to 

dynamically integrate complementary features across modalities while maintaining 

stream-specific information. 

Following the FABlocks, the fused features undergo global attention refinement and 

pooling before final classification through a fully connected layer. 

This architecture illustrated in Figure 2, enables the network to reason jointly over 

global cues and localized bone structures, improving its ability to detect subtle or com-

plex fracture patterns that may not be captured by single-source models. 
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FABlock. The Fused Attention Block (FABlock) is the core unit of PelFANet, enabling 

interactive feature refinement between the raw pelvic X-ray stream and the bone seg-

mentation stream. Let the input feature maps from these two streams be 𝐹1  ∈ 𝑅𝐶×𝐻×𝑊 

and 𝐹2  ∈ 𝑅𝐶×𝐻×𝑊, respectively. 

First, each input is passed through a stream-specific convolution: 

 𝐹1
′ =  𝑓3×3(𝐹1), 𝐹2

′ =  𝑓3×3(𝐹2) (1) 

The outputs are concatenated channel-wise, where 𝐹𝑐𝑎𝑡  ∈ 𝑅2𝐶×𝐻×𝑊: 

 𝐹𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1
′, 𝐹2

′) (2) 

This combined feature map is refined using the Convolutional Block Attention Mod-

ule (CBAM). CBAM sequentially applies channel and spatial attention to highlight in-

formative features. The CBAM-refined fused feature map is denoted as: 

 𝐶𝐹𝐴 =  𝑓1×1(𝐶𝐵𝐴𝑀(𝐹𝑐𝑎𝑡)) (3) 

This output, CFA (Combined Feature with Attention), is then used to update the 

original streams using additional convolution and residual addition: 

 𝑁𝐹1 =  𝐹1 + 𝑓3×3(𝐶𝐹𝐴),   𝑁𝐹2 =  𝐹2 + 𝑓3×3(𝐶𝐹𝐴) (4) 

where 𝑁𝐹1 and 𝑁𝐹2 are the updated feature maps for the raw X-ray and segmentation 

streams, respectively. These outputs are then forwarded to the next FABlock, enabling 

progressive cross-stream refinement with attention. 

Final Feature Aggregation and Classification. The fused feature map from the final 

FABlock is passed through a 3×3 convolution followed by CBAM attention, batch nor-

malization, and ReLU activation. Global features are then extracted using adaptive av-

erage pooling and flattened into a 1024-dimensional vector. This vector is passed 

through a fully connected layer to produce the final classification output, enabling pre-

diction of fracture presence based on the combined raw and anatomical information. 

3 Experiments 

3.1 Datasets 

AMERI Dataset. The Visible Fracture subset of the AMERI PXR dataset consists of 

228 pelvic X-ray images, including 168 fracture cases and 60 normal cases. These were 

selected from a larger set of 481 pelvic X-rays collected from 315 subjects at *** Hos-

pital in *** between April 2013 and August 2019. All fracture cases were confirmed 

by experienced radiologists. To ensure data quality, cases with implants or incomplete 

pelvic coverage were excluded. 

We also curated a dedicated Invisible Fracture subset comprising 23 fracture and 12 

normal cases. These fractures are not visible in X-rays but were confirmed through  
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Table 1. PelFANet Performance on Visible and Invisible Subsets 

Fracture Type Accuracy Precision Recall Specificity F1 Score AUC 

Visible 0.8868 0.9249 0.9221 0.7833 0.8471 0.9334 

Invisible 0.8229 0.8836 0.8435 0.7833 0.8123 0.8688 

corresponding 3D-CT scans, providing a challenging benchmark for evaluating the 

model’s ability to detect subtle and context-dependent fractures. 

COVID QU-Ex Dataset. We utilize the COVID-QU-Ex dataset for pretraining, which 

comprises 33,920 chest X-ray (CXR) images categorized into three classes: COVID-

19 (11,956), Non-COVID infections such as viral or bacterial pneumonia (11,263), and 

Normal (10,701) [24-28]. Crucially, the dataset provides ground-truth lung masks for 

all images, making it one of the largest public sets. This paired data enabled effective 

pretraining before fine-tuning on pelvic X-rays. 

3.2 Segmentation Training and Setup 

We trained a U-Net with Mix Transformer B0 on the AMERI dataset using 2-fold cross-

validation (228 images split equally, resized to 224×224). Data augmentation included 

geometric (ShiftScaleRotate, Perspective, Crop, Padding), intensity (CLAHE, Bright-

ness-Contrast, Gamma), and texture/color (Sharpening, Blurring, Motion Blur, HSV) 

applied probabilistically. The binary segmentation model used sigmoid activation and 

Dice Loss, trained for 300 epochs with Adam optimizer and Learning Rate (LR) 2×10⁻⁴ 

and cosine annealing scheduler (min LR 1×10⁻⁵, cycle 50), batch size 25. 

3.3 PelFANet Training and Setup 

The model was pretrained on the COVID-QU-Ex dataset because it exposed the net-

work to a wide range of anatomical structures and radiographic variations, reducing the 

likelihood of over-specialization to the training set. 

 The dataset was split into 80% training and 20% testing, with 20% of the training 

set used for validation. Each image was augmented four times, via random rotation 

(±25°), shearing (±10%), horizontal flipping, and translation (±10%) expanding the 

training set to 108,575 images. 

Pretraining used CrossEntropyLoss, an SGD optimizer (LR=0.0001), and a StepLR 

scheduler (decay every 10 epochs by 0.1). The model was trained for 100 epochs with 

a batch size of 64. 

For fine-tuning, 5-fold cross-validation was applied to the visible subset. To address 

class imbalance, each fracture case was augmented into 2 variants and each normal case 

into 6, using the same augmentation strategy. The final classification layer was changed 

from three to two outputs, and the entire model was retrained using the same loss, op-

timizer, and scheduler. Fine-tuning ran for 30 epochs with a batch size of 8. 
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Fig. 3. Grad-CAM visualizations from PelFANet for different prediction scenarios. (a) Ground 

Truth (GT): Fracture, Predicted: Fracture correct positive detection. (b) GT: Fracture, Predicted: 

Normal missed fracture. (c) GT: Normal, Predicted: Normal correct negative. (d) GT: Normal, 

Predicted: Fracture false positive. Heatmaps indicate regions influencing the model's decision. 

4 Result 

4.1 Segmentation Performance 

The bone segmentation model was evaluated using Intersection over Union (IoU) and 

F1 Score. The model achieved high segmentation accuracy across both folds.  

An average IoU 0.9028 and an average F1 Score of 0.9278, these results confirm the 

effectiveness of our segmentation setup, providing reliable and accurate anatomical 

masks that serve as critical inputs to the PelFANet classifier. 

4.2 PelFANet Classification Performance 

Following segmentation, the PelFANet architecture processes both the raw PXR and 

the segmentation mask to perform fracture classification. Performance metrics, aver-

aged across the 5-fold setup, are shown in Table 1. On the test set of visible fracture 

cases, PelFANet achieved an accuracy of 88.68%, precision of 92.49%, recall of 

92.21%, and an AUC of 0.9334. While the model demonstrates strong sensitivity with 

high recall, the specificity of 78.33% indicates a moderate rate of false positives, re-

flecting a trade-off between detecting fractures and avoiding misclassification of nor-

mal cases. Most importantly, PelFANet was evaluated on the challenging invisible frac-

ture subset, where fractures are not visible in the pelvic X-rays. Although trained ex-

clusively on visible fracture cases, the model generalized well to this difficult set, 

achieving 82.29% accuracy, 88.36% precision, 84.35% recall, 78.33% specificity, and 

an AUC of 0.8688. These results suggest that PelFANet captures deeper, more abstract 

fracture features by effectively integrating both global context and localized anatomical 

information. 

Combining both raw PXR images and bone segmentation masks with attention 

mechanisms likely contributed to this improved performance. The bone segmentations 

not only guide the model to focus on diagnostically important regions but also retain 

spatial correspondence with the raw input, which is especially useful for subtle or non-

local signs of fracture. As illustrated in Figure 3, Grad-CAM visualizations reveal that  
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Table 2. Comparison with Prior Methods 

Method AUC F1 Score IV AUC IV F1 Score 

ImageNet [20] 0.8961 0.8000 0.7549 0.7270 

DRR20 [20] 0.9290 0.8520 0.8002 0.7860 

ImageNet + DRR20 [20] 0.9280 0.8390 0.7140 0.7210 

ImageNet + DRR20_Full  [20] 0.9151 0.8330 0.6896 0.7750 

PelFANet (Ours) 0.9334 0.8471 0.8688 0.8123 

correctly classified fracture cases exhibit focused activation on relevant bone regions, 

while correctly classified normal cases show minimal activation. In contrast, misclas-

sified samples tend to display scattered or misplaced attention, reflecting uncertainty in 

the model’s decision-making. 

4.3 Comparison with Prior Methods 

To validate the effectiveness of PelFANet, we compare it against multiple baselines 

from previous work that used ResNet-based classifiers [29] with various pretraining 

strategies, including ImageNet, DRR20 synthetic data, and their combinations. As 

shown in Table 2, PelFANet outperformed all prior models across both visible and in-

visible test sets. 

On the visible test set, PelFANet achieved an AUC of 0.9334, slightly outperforming 

the previous best method DRR20 with an AUC of 0.929. More importantly, PelFANet 

showed a substantial improvement on the challenging invisible fracture subset, achiev-

ing an AUC of 0.8688 and an F1 score of 0.8123, which is significantly higher than the 

prior best DRR20 with an AUC of 0.8002 and F1 score of 0.786. 

This comparative analysis highlights the distinct advantage of our dual-input, atten-

tion-fused framework, which enables PelFANet to capture both global context from 

raw images and precise anatomical boundaries from segmentations. Unlike conven-

tional single-stream or pretraining-only methods, our architecture dynamically refines 

features across both modalities through FABlocks and CBAM, leading to better perfor-

mance especially when facing complex or subtle fracture patterns. 

5 Conclusion 

In this study, we proposed PelFANet, a segmentation-guided dual-stream attention net-

work designed to improve pelvic fracture classification, with a focus on invisible frac-

tures. By integrating raw pelvic X-rays and corresponding bone segmentations, 

PelFANet leverages global anatomical context alongside localized structural cues. Its 

Fused Attention Blocks enable effective feature interaction between inputs, guiding the 

model to attend to diagnostically relevant regions. Results show PelFANet outperforms 

prior methods, especially in detecting invisible fractures, highlighting the potential of 

anatomy-aware dual-input models for real-world diagnostic challenges. Future work 

will extend this framework to other anatomical regions and larger datasets to support 

real-time clinical use. 
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