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Abstract

Lattice reduction is a combinatorial optimization problem aimed at finding the most or-
thogonal basis in a given lattice. In this work, we address lattice reduction via deep learning
methods. We design a deep neural model outputting factorized unimodular matrices and
train it in a self-supervised manner by penalizing non-orthogonal lattice bases. We in-
corporate the symmetries of lattice reduction into the model by making it invariant and
equivariant with respect to appropriate continuous and discrete groups.
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1. Introduction

Lattices are discrete geometric objects representing ‘high-dimensional grids’ that are ubiq-
uitous in mathematics and computer science. In particular, two fundamental computational
problems are based on lattices: the shortest and the closest vector problem respectively.
These arise in several areas, among which asymmetric post-quantum cryptography (Hoff-
stein et al., 1998; Regev, 2009) and multi-input multi-output digital signal decoding (Wor-
rall et al., 2022; Hassibi and Vikalo, 2005). Both are known to be computationally hard
(Goldreich et al., 1999; Ajtai, 1996) and no efficient algorithms exist to address them ex-
actly. However, these problems are easier to solve on lattices with highly-orthogonal bases
(Nguyen, 2009). This has motivated the introduction of lattice reduction – another compu-
tational problem consisting of finding the most orthogonal basis for a given lattice. While
the problem is still NP-hard, it can be solved approximately in polynomial time. The
Lenstra–Lenstra–Lovász (LLL) algorithm (Lenstra et al., 1982) is a celebrated algorithm
for this purpose, and can be thought as a discrete analogue of the Gram-Schmidt orthogo-
nalization procedure.

In this work, we propose a deep learning method to address lattice reduction. The hope
is that data-driven techniques are not only highly-parallelizable and therefore computation-
ally efficient, but might find patterns leading to better solutions compared to approximate
classical algorithms. Motivated by this, we develop a neural network model that outputs
a base-change unimodular matrix given a lattice basis as input. The training objective is
self-supervised, in the sense that the model minimizes a measure of orthogonality for the
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bases found. From the perspective of model design, we propose an architecture incorporat-
ing the symmetries of lattice reduction into the neural network. Specifically, we design a
deep model which is simultaneously invariant and equivariant to the orthogonal group and
to a finite subgroup of the unimodular group, respectively.

2. Background

An n-dimensional lattice is a discrete subgroup of Rn of maximal rank. If Λ ⊆ Rn is a
lattice, then there is an isomorphism of groups Λ ≃ Zn. Such an isomorphism determines
a basis of the lattice i.e., a set of linearly independent vectors b1, · · · , bn ∈ Rn such that
Λ = Zb1 ⊕ · · · ⊕ Zbn. A basis is succinctly described by an invertible matrix B ∈ GLn(R)
whose columns are the basis vectors. Given a lattice Λ, any two bases B,B′ ∈ GLn(R) are
related via (right) multiplication by an integral invertible matrix i.e., B′ = BQ for some
Q ∈ GLn(Z) = {Q ∈ Zn×n | det(Q) = ±1}. Matrices belonging to GLn(Z) are deemed
unimodular.

0

Figure 1: Two bases of a two-dimensional lattice.

In order to solve computational problems over lattices, it is convenient that the basis
vectors are as orthogonal as possible. This follows from the Minkowski’s theorem for lattices
– see Nguyen (2009) for a detailed discussion. The amount by which a basis is not orthogonal
is measured by the orthogonality defect :

δ(B) =

∏
i ∥bi∥

|det(B)|
(1)

Indeed, δ(B) ≥ 1 by Hadamard’s inequality and δ(B) = 1 iff the bi’s are mutually orthogo-
nal. Given a basis B ∈ GLn(R), lattice reduction is a computational problem consisting of
finding Q ∈ GLn(Z) minimizing δ(BQ). However, lattice reduction is NP-hard and, there-
fore, unfeasible to solve directly. The celebrated Lenstra–Lenstra–Lovász (LLL) algorithm
(Lenstra et al., 1982) is an approximate algorithm for lattice reduction that finds a basis B′

with orthogonality defect bounded by δ(B′) ≤ 2n(n−1)/4. The algorithm runs in O(n6 log3 β)
time (without fast arithmetics), where β = maxi ∥bi∥, and therefore is polynomial in com-
plexity. We review the LLL algorithm in the Appendix (Sec. A).

3. Method

Our goal is deploying (geometric) deep learning in order to approximate lattice reduction.
To this end, we design a model of the form φ : GLn(R) → GLn(Z), where the input
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represents a basis B of a lattice, while the output represents the base-change unimodular
matrix Q. The objective of the model on a datapoint B is minimizing the (logarithmic)
orthogonality defect of the reduced basis B′ = Bφ(B) i.e., the loss is

L(B, θ) = log δ(B′) =
∑
i

log ∥b′i∥ − log |det(B′)|, (2)

where θ represents the parameters of φ. Note that det(B′) = det(BQ) = det(B) is constant
and, therefore, is not optimized. In the following, we discuss two challenges related to to
the design of the model: outputting unimodular matrices and incorporating the symmetries
of lattice reduction.

3.1. Unimodular Outputs

A first challenge is designing φ in order to output unimodular matrices. To this end, we
design φ to output a matrix with 1 on the diagonal and 0 everywhere except for one column
and one row, i.e.: 

1 0 m1,j · · · 0

0 1

...
. . .

...

mi,1 · · · 1 · · · mi,j · · · mi,n

...
. . .

...
...

0 mn,j · · · 1

· · ·

...

· · ·


(3)

We refer to the matrix above as an extended Gauss move. The model is applied recursively
k times to obtain Q = T1 · · ·Tk, where Ti = φ(BT1 · · ·Ti−1). The motivation is the following
fact on SLn(Z) = {Q ∈ Zn×n | det(Q) = 1} ⊆ GLn(Z) – see the Appendix (Sec. B) for a
proof.

Proposition 3.1:
For n ≥ 3, every matrix in SLn(Z) is a product of at most 4n+ 51 extended Gauss moves.

Note that the distinction between SLn(Z) and GLn(Z) is irrelevant for the purpose of lattice
reduction since the orthogonality defect is invariant to multiplying a basis vector by −1. We
remark that the above bound is not strict, especially for the additive constant, but ideally
the number of steps k should be chosen in the order of O(n).

In order to produce an extended Gauss move, φ first outputs a matrix M ∈ Rn×n. The
absolute values of the n(n − 1) entries of M away from the diagonal are normalized to a
probability distribution over indices (i, j) of M with i ̸= j. An index (i, j) is then sampled
via the Gumbel-Softmax trick (Jang et al., 2016), which is necessary to differentiate through
sampling. The corresponding entry mi,j of M is used to build an extended Gauss move
with non-trivial i-th row and j-th column. Lastly, the latter are discretized in order to lie in
Z. To this end, we adopt the procedure of stochastic rounding (Gupta et al., 2015; Louizos
et al., 2018), consisting of rounding mi,j to one of the two closest integers by sampling (via
the Gumbel-Softmax trick) from a Bernoulli distribution with probability equal to (one
minus) the rounding error.
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3.2. Invariance and Equivariance

Another challenge is designing the model in order to preserve the symmetries of lattice
reduction. To this end, note that if B′ = BQ is a basis minimizing the orthogonality defect
(Equation 1) for some B ∈ GLn(Z), then the following symmetries hold:

• If B̃ = BH for some H ∈ GLn(Z), then B′ = B̃Q̃ minimizes the orthogonality defect
for B̃, where Q̃ = H−1Q.

• If B̃ = UB for some U ∈ On(R), then B̃Q minimizes the orthogonality defect for B̃.

Intuitively, the first property above reflects ‘internal’ symmetries due to base change within
the lattice, while the second one reflects ‘external’ symmetries due to rigid transformations
of the lattice in Euclidean space. Based on the properties above, we aim to design a model
φ satisfying:

• Right unimodular equivariance: φ(BH) = H−1φ(B) for H ∈ GLn(Z).
• Left orthogonal invariance: φ(UB) = φ(B) for U ∈ On(R).

In order to address left orthogonal invariance, we simply input the Gram matrix G = BTB
to the model. In what follows, we will abuse the notation for φ and write both φ(B) and
φ(G), depending on the input considered. In order to address right unimodular equivari-
ance, note first that G transforms as BH 7→ HTGH. Therefore, the model needs to satisfy
φ(HTGH) = H−1φ(G) for H ∈ GLn(Z). However, the latter equivariance property turns
our to be too challenging to be achieved. Not only it involves different transformations
between input and output, but the unimodular group GLn(Z) is algebraically subtle and
understood only partially. Due to this, we focus on a relevant finite subgroup of GLn(Z):
the hyperoctahedral group Hn. The latter consists of the 2nn! signed permutation matri-
ces and can be thought as the group of isometries of both the hypercube and the cross-
polytope. Considering the hyperoctahedral subgroup simplifies the challenge of designing
an equivariant φ for a number of reasons. First, Hn ⊆ On(R) and therefore H−1 = HT for
H ∈ Hn. Moreover, the orthogonality defect is invariant to the hyperoctahedral group i.e.,
δ(BH) = δ(B). Therefore, right unimodular equivariance reduces equivalently to:

φ(HTGH) = HTφ(G)H. (4)

The latter not only is a natural tensorial transformation law, but is already satisfied (in
expectation) by the (stochastic) procedure described in Sec. 3.1 to obtain extended Gauss
moves. Moreover, it is compatible with the recursion implemented to obtain a product of
multiple moves.

In order to design a model that is equivariant as above, we implement ideas from Jo
et al. (2021) and deploy a message-passing Graph Neural Network (GNN) on a graph whose
nodes are pairs of indices (i, j) and that has edge between (i, j) and (i′, j′) if i = i′ or j = j′

or i = j′ or j = i′. This leads to a neural architecture that is equivariant for permutation
matrices H. In order to extend equivariance to diagonal H with ±1 on the diagonal, we
adapt the methods from Lim et al. (2023) and deploy activation functions that are even or
odd appropriately.
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Figure 2: Performance of our model and the LLL algorithm in n ∈ {4, 8} dimensions.

4. Experiments

We implement our model and train it on a randomly-generated dataset. To this end, we
procedurally generate 1000 random matrices at each epoch by sampling entries indepen-
dently from a uniform distribution in [0, 1] and applying the matrix exponential in order
to obtain an invertible matrix B ∈ GLn(R) representing a basis of a lattice. The test set
contains 4000 random lattices from the same distribution and is fixed. We set the number
of Gauss moves produced by the model equal to the dimension of the lattice i.e., k = n,
and compute the loss in Eq. 2 at each step.

Fig. 2 reports the mean and standard deviation over test matrices B for our model
and the LLL algorithm. The plots display results as training progresses in dimensions
n = 4, 8. As can be seen, our model not only performs similarly to LLL at convergence, but
even outperforms it, especially in dimension n = 8. In order to highlight the performance
difference, in the Appendix (Sec. C) we include an additional analysis where the two
methods are evaluated on a portion of data where they perform respectively the worst.

5. Conclusions and Future Work

In this work, we have addressed lattice reduction via deep learning methods. We have
designed a model to output unimodular matrices and to respect the symmetries of lattice
reduction. As a limitation, our model is not equivariant (on the right) to the whole uni-
modular group (but only to the hyperoctahedral subgroup) and therefore does not leverage
upon the complete spectrum of symmetries of the lattice reduction problem. The challenge
of designing a model equivariant to GLn(Z) remains open, and represents an interesting
line for future investigation.
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Appendix A. The LLL Algorithm

In this section, we describe the Lenstra–Lenstra–Lovász (LLL) algorithm for lattice reduc-
tion (Lenstra et al., 1982) in details. Let B ∈ GLn(R) be a basis of a lattice and denote by
B∗ the orthogonal basis of Rn obtained via the Gram-Schmidt algorithm applied to B. For
each i, j consider moreover

µi,j =
bi · b∗j
∥b∗j∥2

. (5)

Definition 1:
A basis B ∈ GLn(R) is Siegel-reduced if for all i > j:

|µi,j | ≤ 1
2

∥b∗i ∥2
∥b∗i−1∥2

≥
(
3
4 − µ2

i,i−1

)
Size Condition Lovász Condition

The following is a bound on the orthogonality defect for Siegel-reduced bases.

Lemma A.1 (Lenstra et al. (1982)):
If B is Siegel-reduced then:

δ(B) ≤ 2
n(n−1)

4 . (6)

The LLL algorithm finds a Siegel-reduced basis of an integral lattice Λ ⊆ Zn ⊆ Rn

starting from an arbitrary basis B ∈ GLn(R) ∩ Zn×n (see Algorithm 1). It can be seen
that the algorithm runs in O(n6 log3 β) time (without fast arithmetics) (Nguyen and Stehlé,
2009), where β = maxi ∥bi∥, and therefore is polynomial in complexity.

Algorithm 1: LLL Algorithm

Input: Basis of an (integral) lattice B ∈ GLn(R) ∩ Zn×n

Output: Siegel-reduced basis B
B∗ ← Gram-Schmidt(B)
k ← 2
while k ≤ n do

for j = k − 1 to 1 do
if |µk,j | > 1

2 then
bk ← bk − ⌈µk,j⌋bj
B∗ ← Gram-Schmidt(B)

end

end

if
∥b∗k∥

2

∥b∗k−1∥2
≥

(
3
4 − µ2

k,k−1

)
then

k ← k + 1
end
else

Swap bk and bk−1

k ← max{k − 1, 2}
B∗ ← Gram-Schmidt(B)

end

end
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Appendix B. Theoretical Result

We will call Gauss move a Q ∈ SLn(Z) with 1 on the diagonal (Qi,i = 1 for all i) and at
most one non-zero element Qi,j away from the diagonal (i ̸= j). The following is a deep
algebraic property of Gauss moves.

Theorem B.1 (Carter and Keller (1983)):
For n ≥ 3, SLn(Z) is boundedly generated by Gauss moves. Specifically, every matrix in
SLn(Z) is a product of at most 1

2(3n
2 − n) + 51 Gauss moves.

Our result is derived from the above one as follows.

Proposition B.2:
For n ≥ 3, every matrix in SLn(Z) is a product of at most 4n+ 51 extended Gauss moves.

Proof Pick Q ∈ SLn(Z). Note first that the non-zero entries of each row and each column
of Q are coprime since they can be arranged in an integral linear combination equal to
det(Q) = 1. Next, consider the last row of Q, denoted by u1 = Qn,1, · · · , un = Qn,n. We
would like to show that the non-zero entries among u1, · · · , un−1 can be made coprime by
multiplying Q on the right by at most one (non-extended) Gauss move. If un = 0, this is
true already for Q by the above observation. Suppose that un ̸= 0. If there are less than two
indices 1 ≤ i < n such that ui ̸= 0, we can replace one vanishing ui with un by multiplying
Q on the right by a (non-extended) Gauss move and obtain the desired result. Otherwise,
assume without loss of generality that u1 ̸= 0 and consider some t ∈ Z such that:

• t ≡ 1 mod all the primes dividing all the non-zero ui for i ∈ {1, · · · , n− 1},
• t ≡ 0 mod all the primes dividing all the non-zero ui for i ∈ {2, · · · , n − 1} but not
dividing u1.

Then the non-zero integers among u1 + tun, u2 · · · , un−1 are coprime, as desired.

We therefore assume that u1, · · · , un−1 are coprime. By the Bézout’s identity, there
exist integers a1, · · · , an−1 such that

∑
1≤i<n aiui = 1− un. By multiplying Q on the right

by the extended Gauss move 
1 0 · · · a1

0 1
...

...
. . . an−1

0 · · · 0 1

 (7)

we reduce to the case un = 1. By further multiplying on the right by the extended Gauss
move 

1 0 · · · 0

0 1
...

...
. . . 0

−u1 · · · −un−1 1

 (8)

we reduce to the case where the last row is (0, · · · , 0, 1). Similarly, by multiplying by another
move on the left, the last column reduces to (0, · · · 0, 1), obtaining a matrix of the form:

0
...
0

0 · · · 0 1

A

 (9)
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where A ∈ SLn−1(Z).

Putting everything together, via induction with 4n−12 extended Gauss moves we arrive
at a matrix of the form A′⊕ I, where A′ ∈ SL3(Z) and I is the identity matrix of dimension
n− 3. Since by Carter and Keller (1983) any matrix in SL3(Z) can be written as a product
of 63 (non-extended) Gauss moves, this concludes the proof.
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Appendix C. Additional Experimental Results

In order to highlight the performance difference between our model and LLL, we design
another empirical comparison as follows. We evaluate both the models on a portion p ∈ [0, 1]
of test data on which the two methods perform respectively the worst. This provides
empirical insights into the extent by which one method can compensate for the deficiencies
of the other. Fig. 3 reports the results in dimensions 4 and 8 for p = 20%. As can be seen,
our model outperforms LLL by a large extent when both are evaluated on the matrices
on which LLL performs the worst. On the contrary, the performance of the two methods
are more comparable when evaluated on the matrices on which our method performs the
worst. Note that in this case the performance of LLL is unstable since it is evaluated on
a distibution that is changing over time. We conclude that our model can partially amend
for the eventual poor performance of LLL, while the opposite is less likely.
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Figure 3: Performance on the 20% of test data on which LLL (top) and our model (bottom)
perform respectively the worst.
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