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ABSTRACT

Checklists have been widely recognized as effective tools for completing complex
tasks in a systematic manner. Although originally intended for use in procedural
tasks, their interpretability and ease of use have led to their adoption for predictive
tasks as well, including in clinical settings. However, designing checklists can be
challenging, often requiring expert knowledge and manual rule design based on
available data. Recent work has attempted to address this issue by using machine
learning to automatically generate predictive checklists from data, although these
approaches have been limited to Boolean data. We propose a novel method for
learning predictive checklists from diverse data modalities, such as images and time
series, by combining the power of dedicated deep learning architectures with the
interpretability and conciseness of checklists. Our approach relies on probabilistic
logic programming, a learning paradigm that enables matching the discrete nature
of checklist with continuous-valued data. We propose a regularization technique to
tradeoff between the information captured in discrete concepts of continuous data
and permit a tunable level of interpretability for the learned checklist concepts. We
demonstrate that our method outperforms various explainable machine learning
techniques on prediction tasks involving image sequences, medical time series, and
clinical notes.

1 INTRODUCTION

In recent years, machine learning models have gained popularity in the healthcare domain due to their
impressive performance in various medical tasks, including diagnosis from medical images and early
prediction of sepsis from clinical time series, among others (Davenport & Kalakota, 2019; Esteva
et al., 2019). Despite the proliferation of these models in the literature, their wide adoption in real-
world clinical practice remains challenging (Futoma et al., 2020; Ahmad et al., 2018; Ghassemi et al.,
2020; De Brouwer et al., 2022). Ensuring the level of robustness required for healthcare applications
is difficult for deep learning models due to their inherent black box nature. Non-interpretable models
make stress testing arduous and thus undermine the confidence required to deploy them in critical
applications such as clinical practice. To address this issue, recent works have focused on developing
novel architectures that are both human-interpretable and retain the high performance of black box
models (Ahmad et al., 2018).

One such approach is learning medical checklists from available medical records. Due to their
simplicity and ability to assist clinicians in complex situations, checklists have become increasingly
popular in medical practice (Haynes et al., 2009). However, the simplicity of using checklists typically
contrasts with the complexity of their design. Creating a performant checklist requires domain experts
who manually collect evidence about the particular clinical problem of interest (Hales et al., 2008),
and subsequently reach consensus on meaningful checklist rules (Hales et al., 2008). As the number
of available medical records grows, the manual collection of evidence becomes more tedious, bringing
the need for partially automated design of medical checklists.

Recent works have taken a step in that direction by learning predictive checklists from Boolean,
categorical, or continuous tabular data (Zhang et al., 2021; Makhija et al., 2022). Nevertheless, many
available clinical data, such as images or time series, are nor categorical nor tabular by nature. They
therefore fall outside the limits of applicability of previous approaches for learning checklists from
data. This work aims at addressing this limitations.
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Prior work leverages integer programming to generate checklists, but the discrete (combinatorial)
nature of solving integer programs makes it challenging to learn predictive checklists from images or
time series data. Deep learning architectures rely on gradient-based optimization which differs in
style and is difficult to reconcile with integer programming (Shvo et al., 2021). We instead propose
to formulate predictive checklists within the framework of probabilistic logic programming. This
enables us to extract binary concepts from high-dimensional modalities like images, time series, and
text data according to a probabilistic checklist objective, while propagating derivatives throughout the
entire neural network architecture. Unlike existing approaches, ProbChecklist doesn’t rely on fixed
summary extractors such as mean or standard deviation of time series; instead, it learns concepts
using neural networks (concept learners).

Cells - Survival - Blood - ##oly

Tumor - Cancer - ##ymph

Serum - Normal - ##gnant - Blood

Features - ##cre - Blood - Cancer

Dose - Survival - ##U - Cells

Studies - Cell - Ex - Survival - ##ymph

Neoplasm detection checklist

Figure 1: Example checklist learnt by
our architecture. Three or more checks
entail a positive neoplasm prediction.

Our architecture, ProbChecklist, operates by creating bi-
nary concepts from high-dimensional inputs, which are
then used for evaluating the checklist. However, they are
learnt with deep neural networks and are not necessarily
interpretable. We therefore investigate two different strate-
gies for providing predictive yet interpretable concepts.
The first relies on using inherently interpretable concept
extractors, which only focus on specific aspects of the
input data (Johnson et al., 2022). The second adds regu-
larization penalties to enforce interpretability in the neural
network by design. Several regularization terms have been
coined to ensure the concepts are unique, generalizable,
and correspond to distinctive input features (Jeffares et al.,
2023) (Zhang et al., 2018).

Clinical practice is a highly stressful environment where
complex decisions with far-reaching consequences have
to be made quickly. In this context, the simplicity, robust-
ness, and effectiveness of checklists can make a difference
(Hales et al., 2007). Healthcare datasets contain sensitive
patient information, including ethnicity and gender, which should not cause substantial differences in
the treatment provided. Nevertheless, machine learning models trained on clinical data have been
shown to exhibit unacceptable imbalance of performance for different population groups, resulting in
biased predictions. When allocating scarce medical resources, fairness should be emphasized more
than accuracy to avoid targeting minority subgroups (Fawzy et al., 2022). In an attempt to mitigate
this problem, we study the impact of including a fairness regularization into our architecture and
report significant reductions in the performance gap across sensitive populations.

We validate our approach empirically on several classification tasks using various data modalities
such as images and clinical time series. We show that ProbChecklist outperforms previous learnable
predictive checklist approaches as well as several interpretable machine learning baselines. We
showcase the capabilities of our method on two healthcare case studies, learning interpretable
checklists to early predict the occurrence of sepsis and mortality prediction for intensive care patients.

Contributions.

• We propose the first framework to learn predictive checklists from arbitrary input data modalities.
Our approach can learn checklists and extract meaningful concepts from time series and images,
among others. In contrast with previous works that used (mixed-)integer programming, our
approach formulates the predictive checklist learning within the framework of probabilistic logical
programming.

• We investigate the impact of different schemes for improving the interpretability of the concepts
learnt as the basis of the checklist. We employ regularization techniques to encourage the concepts
to be distinct, so they can span the entire input vector and be specialized, i.e. ignore the noise in the
signal and learn sparse representations. We also investigate the impact of incorporating fairness
constraints into our architecture.

• We validate our learning framework on different data modalities such as images, text and clinical
time series, displaying significantly improved performance compared to state-of-the-art checklist
learning schemes.
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2 RELATED WORKS

A major motivation for our work is the ability to learn effective yet interpretable predictive models
from data, as exemplified by the interpretable machine learning literature. Conceptually, our method
builds upon the recent body of work on learning predictive checklists from data. The implementation
of our solution is directly inspired by the literature on probabilistic logic programming.

Interpretable machine learning. Motivated by the lack of robustness and trust of black box models,
a significant effort has been dedicated to developing more human-interpretable machine learning
models in the last years (Ahmad et al., 2018; Murdoch et al., 2019). Among them, one distinguishes
between intrinsic (i.e. when the model is itself interpretable such as decision trees) and posthoc (i.e.
when trained models are interpreted a posteriori) methods (Du et al., 2019). Checklists belong to the
former category as they are an intuitive and easy to use decision support tool. Compared to decision
trees, checklists are more concise (there is no branching structure) and can thus be potentially more
effective in high stress environments (a more detailed argument is presented in Appendix D). Our
approach also relies on building concepts from the input data. Because the concepts are learnt from
data, they may themselves lack a clear interpretation. Both intrinsic and posthoc interpretability
techniques can then be applied for the concept extraction pipeline (Jeffares et al., 2023). Concept
Bottleneck Models (Koh et al., 2020) insert a concept layer before the last fully connected layer,
assigning a human-understandable concepts to each neuron. However, a major limitation is that it
requires expensive annotated data for predefined concepts.

Rule-based learning. Boolean rule mining and decision rule set learning is a well-studied area
that has garnered considerable attention spurred by the demand for interpretable models. Some
examples of logic-based models include Disjunctive Normal Forms (OR of ANDs), Conjunctive
Normal Forms (AND of ORs), chaining of rules in the form of IF-THEN-ELSE conditions in
decision lists, and decision tables. Most approaches perform pre-mining of candidate rules and
sample rules using integer programs (IP), simulated annealing, performing local search algorithm for
optimizing simplicity and accuracy (Lakkaraju et al., 2016), and Bayesian framework for constructing
a maximum a posteriori (MAP) solution (Wang et al., 2017).

Checklist learning. Checklists, pivotal in clinical decision-making, are typically manually designed
by expert clinicians (Haynes et al., 2009). Increasing medical records make manual evidence
collection tedious, prompting the need for automated medical checklist design. Recent works
have taken a step in that direction by learning predictive checklists from Boolean or categorical
medical data (Zhang et al., 2021). Makhija et al. (2022) have extended this approach by allowing
for continuous tabular data using mixed integer programming. Our work builds upon these recent
advances but allows for complex input data modalities. What is more, in contrast to previous works,
our method does not rely on integer programming and thus exhibits much faster computing times and
is more amenable to the most recent deep learning stochastic optimization schemes.

Probabilistic logical programming. Probabilistic logic reasoning combines logic and probability
theory. It represents a refreshing framework from deep learning in the path towards artificial
intelligence, focusing on high-level reasoning. Examples of areas relying on these premises include
statistical artificial intelligence (Raedt et al., 2016; Koller et al., 2007) and probabilistic logic
programming (De Raedt & Kimmig, 2015). More recently, researchers have proposed hybrid
architectures, embedding both deep learning and logical reasoning components (Santoro et al.,
2017; Rocktäschel & Riedel, 2017; Manhaeve et al., 2018). Probabilistic logic reasoning has been
identified as important component for explainable or interpretable machine learning, due to its ability
to incorporate knowledge graphs (Arrieta et al., 2020). Combination of deep learning and logic
reasoning programming have been implemented in interpretable computer vision tasks, among others
(Bennetot et al., 2019; Oldenhof et al., 2023).

3 BACKGROUND

Problem Statement: We consider a supervised learning problem where we have access to N input
data points xi ∈ X and corresponding binary labels yi ∈ {0, 1}. Each input data point consists
of a collection of K data modalities: xi = {x1

i ,x
2
i , . . . ,x

K
i }. Each data modality can either be

continuous (xki ∈ Rdk ) or binary (xki ∈ {0, 1}dk ). Categorical data are assumed to be represented
in expanded binary format. We set d as the overall dimension of xi. That is, d =

∑K
k=1 dk. The N

input data points and labels are aggregated in a data structure X and a vector y respectively.
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Our objective is to learn an interpretable decision function f : X → {0, 1} from some domain
F that minimizes some error criterion d between the predicted and the true label. The optimal
function f∗ then is: f∗ = argminf∈F Ex,y∼D[d(f(x),y)], where D stands for the observational
data distribution. We limit the search space of decision functions F to the set of predictive checklists,
which are defined below.

Predictive checklists: Generally, we define a predictive checklist as a linear classifier applying
on a list of M binary concepts ci ∈ {0, 1}M . A checklist will predict a data point, consisting of
M concepts ci = {c1i , . . . , cMi }, as positive if the number of concepts such that cmi = 1 is larger or
equal to a threshold T . That is, given a data point with concepts ci, the predicted label of a checklist

with threshold T is expressed as: ŷi =

{
1 if

∑M
m=1 c

m
i ≥ T

0 otherwise

The only parameter of a checklist is the threshold T . Nevertheless, the complexity lies in the definition
of the list of concepts that will be given as input to the checklist. This step can be defined as mapping
ϕ that produces the binary concepts from the input data: ci = ψ(xi). Existing approaches for learning
checklists from data differ by their mapping ψ. Zhang et al. (2021) assume that the input data is
already binary. In this case, the mapping ψM is then a binary matrix Ψ ∈ {0, 1}M×k such that
Ψ1k = 1k, where 1k is a column vector of ones1. One then computes ci as ci = ΨMxi. The element
of ΨM as well as the number of concepts M (hence the dimension of the matrix) are learnable
parameters.

Previous approaches (Makhija et al., 2022) relax the binary input data assumption by allowing
for the creation of binary concepts from continuous data through thresholding. Writing xbi and
xci for the binary and real parts of the input data respectively, the concept creation mechanism
transforms the real data to binary with thresholding and then uses the same matrix ΨM . We have
ci = ΨM [xbi , sign(xbi − ti)], where [·, ·] is the concatenation operator, ti is a vector of thresholds,
sign(·) is an element-wise function that returns 1 is the element is positive and 0 otherwise. In this
formulation one learns the number of concepts M , the binary matrix ΦM as well as the thresholds
values ti.

Probabilistic Logic Programming:

Probabilistic logical reasoning is a knowledge representation approach that involves the use of
probabilities to encode uncertainty in knowledge. This is encoded in a probabilistic logical program
(PLP) P connected by a set of N probabilistic facts U = {U1, ..., UN} and M logical rules F =
{f1, ...fM}. PLP enables inference on knowledge graphs P by calculating the probability of a query.
This query is executed by summing over the probabilities of different "worlds" w = u1, ..., uN (i.e.,
individual realizations of the set of probabilistic facts) that are compatible with the query q. The
probability of a query q in a program P can be inferred as PP(q) =

∑
w P (w) · I[F (w) ≡ q], where

F (w) ≡ q indicates that the propagation of the realization w across the knowledge graph, according
to the logical rules F , leads to q being true. The motivation behind using PLP is to navigate the
tradeoff between discrete checklists and learnable soft concepts. Incorporating a neural network
into this framework enables the generation of probabilistic facts denoted as the neural predicate Uθ,
where θ represents the weights. These weights can be trained to minimize a loss that depends on the
probability of a query q: θ̂ = argminθ L(P (q | θ)).

4 PROBCHECKLIST: LEARNING FAIR AND INTERPRETABLE PREDICTIVE
CHECKLISTS

4.1 ARCHITECTURE OVERVIEW

Our method first applies concept extractors on each data modality. Each concept extractor outputs
a list of concept probabilities for each data modality. These probabilities are then concatenated to
form a vector of probabilistic concepts (pi) for a given data sample. This vector is dispatched to a
probabilistic logic module that implements a probabilistic checklist with query q := P(yi = ŷi). We
can then compute the probability of the label of each data sample and backpropagate through the
whole architecture. At inference time, the checklist inference engines discretize the probabilistic

1This corresponds effectively to every row of Ψ summing to 1.
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checklist to provide a complete predictive checklist. A graphical depiction of the overall architecture
is given in Figure 2.
4.2 DATA MODALITIES AND CONCEPTS

Figure 2: Overview of our proposed ProbChecklist. Given
K data modalities as the input for sample i, we train K
concept learners to obtain the vector of probabilistic concepts
of each modality pk

i ∈ [0, 1]d
′
k . Next, we concatenate into

the full concepts probabilities (pi) for sample i. For training
the concept learners, we pass pi through the probabilistic
logic module. At inference time, we discretize pi to construct
a complete predictive checklist.

Data modalities refer to the distinct
sets of data that characterize specific
facets of a given process. For in-
stance, in the context of healthcare,
a patient profile typically includes dif-
ferent clinical time series, FMRI and
CT-scan images, as well as prescrip-
tions and treatment details in text for-
mat. The division in data modalities
is not rigid but reflects some underly-
ing expert knowledge. Concepts are
characteristic binary variables that are
learnt separately for each modality.
4.3 CONCEPT EXTRACTOR

Instead of directly learning binary con-
cepts, we extract soft concepts that
we subsequently discretize. For each
of the K data modalities, we have a
soft concept extractor ψk : Rdk →
[0, 1]d

′
k that maps the input data to a

vector of probabilities pki , where d′k
is the number of soft concepts to be
extracted from data modality k. Concatenating the outputs of the K concept extractors results in a
vector of probabilities pi ∈ [0, 1]d

′
, with the d′ the total number of soft concepts.

4.4 CHECKLIST LEARNING

The checklist prediction formula of Equation 3 can be understood as logical rules in a probabilistic
logical program. Together with the probabilities of each concepts, encoded in vector pi that represent
d′ probabilistic facts, this represents a probabilistic logical program Pθ. We refer to θ as the set of
learnable parameters in the probabilistic logical program.

We want to maximize the probability of a the prediction being correct. That is, we want to maximize
the probability of the query q := ŷi = yi,

θ̂ = argmin
θ

−PPθ
(ŷi = yi) = argmin

θ
−
∑
w

P (w) · I[F (w) ≡ (ŷi = yi)] (1)

By interpreting the probabilities pi as the probability that the corresponding binary concepts are
equal to 1 (i.e. pi[j] = P (ci[j] = 1), where [j] indexes the j-th component of the vector), we can
write the probability of query q as follows.
Proposition 4.1. The probability of the query ŷi = yi in the predictive checklist is given by

PPθ
(ŷi = 1) = 1− PPθ

(ŷi = 0) =

d′∑
d=T

∑
σ∈Σd

d′∏
j=1

(pi[j])
σ(j)(1− pi[j])

1−σ(j) (2)

where Σd is the set of selection functions σ : [d′] → {0, 1} such that
∑d′

j=1 σ(j) = d.
The detailed derivations are presented in Appendix A. We use the log-likelihood as the loss function,
which leads our final loss: L = yi log(PPθ

(ŷi = 1)) + (1− yi) log(PPθ
(ŷi = 0)).

The parameters θ, include multiple elements: the parameters of the different soft concept extractors
(θψ), the number of concepts to be extracted for each data modality d′k, the checklist threshold T . As
the soft concept extractors are typically parameterized by neural networks, optimizing L with respect
to θψ can be achieved via gradient based methods. d′k and T are constrained to be integers and are
thus treated as hyper-parameters in our experiments.
4.5 CHECKLIST INFERENCE

ProbChecklist relies on soft concepts extraction for each data modality. Yet, at test time, a checklist
operates on binary input data. We thus binarize the predicted soft concepts by setting ci[j] =
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I[pi[j] > τ ]. The thresholding parameter τ is an hyperparameter that can be tuned based on
validation data. After training, we construct the final checklist by pruning the concepts that are never
used in the training data (i.e. concepts j such that ci[j] = 0,∀i, are pruned). This step offers users the
flexibility to tune between sensitivity-specificity depending on the application. The optimal checklist
can be obtained by varying τ to optimize the desired metric on the validation data.

4.6 INTERPRETABILITY OF THE CONCEPT EXTRACTORS

The checklist concepts are learnt using deep neural networks and are, therefore, not interpretable in
general. To address this issue, we propose two mechanisms to improve the interpretability of the
learnt concepts: focused concept learners and regularization terms that incorporate explainability in
the structure of the concept learners. Focused models limit the range of features that can contribute to
a concept. This can be done via manual specification of the models e.g. using different LSTMs for
each time series (Johnson et al., 2022). Regularization terms such as TANGOS helps unveil each
input signal’s contribution to the learnt concepts for a given sample, making the concepts interpretable.
It ensures that the concepts are obtained from distinct and sparse subsets of the input vector, avoiding
overlap. Sparsity is achieved by taking the L1-norm of the concept gradient attributions with respect
to the input vector. To promote decorrelation of signal learned in each concept, the loss is augmented
by incorporating the inner product of the gradient attributions for all pairs of concepts. This scheme
compels the models to learn unique concepts. More details about TANGOS and its mathematical
formulation can be found in the Appendix F.1. We additionally introduce a regularization term
which propels the learnt concept probabilities towards either 0 or 1. This term helps in identifying
characteristic concepts for each patient: Lprob−reg =

∑
j

∑
i pi[j].

4.7 FAIRNESS REGULARIZATION

We encourage fairness of the learnt checklists by equalizing the error rate across subgroups of
protected variables. This is achieved by penalizing significant differences in False Positive and
False Negative Rates for sensitive subgroups (Pessach & Shmueli, 2022). For a binary classification
problem, with protected attribute S, predicted labels ŷ ∈ {0, 1}, and actual label y ∈ {0, 1}, we
define separations as follows (Corbett-Davies & Goel, 2018):

∆FPR = ∥P (ŷi = 1|y = 0, S = si)− P (ŷi = 1|y = 0, S = sj)∥1 ∀si, sj ∈ S (3)

∆FNR = ∥P (ŷi = 0|y = 1, S = si)− P (ŷi = 0|y = 1, S = sj)∥1 ∀si, sj ∈ S (4)

and combine these in a fairness regularizer LFair = λ(∆FPR+∆FNR).

5 EXPERIMENTS

We investigate the performance of ProbChecklist along multiple axes. We first compare the clas-
sification performance against a range of interpretable machine learning baselines. Second, we
investigate the importance of several key hyperparameters of our method. Lastly, we demonstrate how
we can tune the interpretability of the learnt concepts and how we can enforce fairness constraints
into ProbChecklist. Complete details about the datasets, baselines used in our experiments, and
hyperparameter tuning are available in Appendix E, C.

Baselines. We compare our method against the following baselines.
Mixed Integer Programming (MIP)(Makhija et al., 2022). This approach allows to learn predictive
checklists from continuous inputs. For images or time series, we typically apply MIP on top of an
embedding obtained from a pre-trained deep learning model.
Integer Linear Program (ILP)(Zhang et al., 2021). ILP learns predictive checklists with Boolean
inputs. We apply these to tabular data by categorizing the data using feature means as threshold.
CNN/LSTM/BERT + Logistic Regression (LR). This consists in using a CNN, LSTM or pre-trained
BERT on the input data and applying a logistic regression on the combination of the last layer’s
embeddings of each modality.
CNN/LSTM/BERT + Multilayer perceptron (MLP). This is similar to the previous approach but where
we apply an MLP on the combination of the last layer’s embeddings of each modality.
Datasets. A crucial strength of our method resides in its ability to learn predictive from high
dimensional input data. We briefly describe the MNIST synthetic dataset created here and defer the
descriptions of other datasets (PhysioNet sepsis tabular dataset, MIMIC mortality dataset, Medical
Abstracts TC Corpus) to the Appendix E.3
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Synthetic MNIST checklist. Due to the absence of real-world datasets with ground-truth checklists,
we first validate our idea on a synthetic setup created using MNIST image sequences as input and
a checklist defined on digit labels. Each sample consists of a sequence of K = 4 MNIST images
(treating each image as a separate modality). We then assign a label to each samples according
to the following ground-truth checklist. (i) Digit of Image1 ∈ {0, 2, 4, 6, 8}, (ii) Image2 ∈
{1, 3, 5, 7, 9}, (iii) Image3 ∈ {4, 5, 6}, (iv) Image4 ∈ {6, 7, 8, 9}. If at least 3 of the rules are
satisfied, the label is 1, and 0 otherwise.

5.1 CHECKLIST PERFORMANCE

We evaluate the classification performance of the different models according to accuracy, precision,
recall and specificity. For the checklist baselines, we also report the total number of concepts used
(M ) and the threshold for calling a positive sample (T ). Results are presented in table 1. Additional
results and details about hyperparameter tuning are provided in the Appendix E,C.

Dataset Model Accuracy Precision Recall Specificity d′
k T M

MNIST Checklist

CNN + MLP 94.72 ± 4.32 0.895 ± 0.1 0.835 ± 0.13 0.976 ± 0.02
4

- -
CNN + LR 95.04 ± 0.31 0.914 ± 0.01 0.836 ± 0.016 0.98 ± 0.003 - -
pretrained CNN + MIP 79.56 0 0 1 8 13.5 ± 0.5

ProbChecklist 96.808 ± 0.24 0.917 ± 0.015 0.929 ± 0.01 0.978 ± 0.004 4 8.4 ± 1.2 16

PhysioNet Tabular

Logistic Regression 62.555 ± 1.648 0.624 ± 0.0461 0.144 ± 0.0393 0.9395 ± 0.0283

1

- -
Unit Weighting 58.278 ± 3.580 0.521 ± 0.093 0.4386 ± 0.297 0.6861 ± 0.251 3.2 ± 1.16 9.6 ± 0.8
ILP mean thresholds 62.992 ± 0.82 0.544 ± 0.087 0.1196 ± 0.096 0.9326 ± 0.0623 2.8 ± 0.748 4.4 ± 1.01
MIP Checklist 63.688 ± 2.437 0.563 ± 0.050 0.403 ± 0.082 0.7918 ± 0.06 3.6 ± 0.8 8 ± 1.095

ProbChecklist 62.579 ± 2.58 0.61 ± 0.076 0.345 ± 0.316 0.815 ± 0.185S 1 3.6 ± 1.2 10

MIMIC III

Unit Weighting 73.681 ± 0.972 0.469 ± 0.091 0.223 ± 0.206 0.889 ± 0.026

1

6.1 ± 0.830 8.9 ± 0.627
ILP mean thresholds 75.492 ± 0.318 0.545 ± 0.028 0.142 ± 0.059 0.959 ± 0.019 3.6 ± 0.894 3.6 ± 0.894
MIP Checklist 74.988 ± 0.025 0.232 ± 0.288 0.014 ± 0.017 0.997 ± 0.004 4.5 ± 2.082 4.5 ± 2.082
LSTM + LR 66.585 ± 2.19 0.403 ± 0.02 0.684 ± 0.039 0.66 ± 0.034 - -
LSTM + MLP 76.128 ± 0.737 0.446 ± 0.223 0.23 ± 0.132 0.939 ± 0.036 - -
LSTM + MLP (all features) 80.04 ± 0.598 0.328 ± 0.266 0.129 ± 0.131 0.962 ± 0.043 - -

ProbChecklist 77.58 ± 0.481 0.642 ± 0.075 0.247 ± 0.032 0.953 ± 0.019 2 9.6 20

Medical Abstracts Corpus

BERT + ILP 72.991 ± 8.06 0.292 ± 0.29 0.197 ± 0.26 0.879 ± 0.17

6

1.2 ± 0.4 1.2 ± 0.4
BERT + MIP 69.32 ± 8.1 0.583 ± 0.14 0.059 ± 0.08 0.991 ± 0.09 2.5 ± 0.6 4 ± 0.8
BERT + LR 80.193 ± 0.88 0.790 ± 0.051 0.138 ± 0.065 0.988 ± 0.007 - -
BERT + MLP 81.782 ± 0.31 0.941 ± 0.04 0.07 ± 0.009 0.961 ± 0.01 - -

ProbChecklist 83.213 ± 0.23 0.616 ± 0.006 0.623 ± 0.01 0.891 ± 0.003 6 3 6

Table 1: Performance results for all the models and baselines on all the datasets. We report accuracy,
precision, recall as well as conciseness of the learnt checklist. To facilitate visualization and compari-
son, we plot these results in Section I of the Appendix (Figure 10).

MNIST Checklist. We used a simple three-layered CNN model as the concept learner for each
image. In Table 1, we report the results of the baselines and ProbChecklist for d′

k = 4 (M = 16) on
the test samples. Our method outperforms all the baselines, in terms of accuracy and recall, indicating
that it identifies the minority class better than these standard approaches. The MIP failed to find
solutions for some folds of the dataset and didn’t generalise well on the test samples.

Sepsis Prediction from Tabular Data. This setup is ideal for comparison with existing checklist
method as they only operate on tabular dataset. In Figure 4, we visualize learnt by ProbChecklist
in one of the experiments. We observe that ProbChecklist exhibits similar performance to checklist
baselines. We want to emphasize that ProbChecklist provides a significantly broader applicability to
multimodal datasets while maintaining comparable performance on tabular datasets, thus making it
valuable.

Neoplasm Detection from Clinical Abstracts. We use a pretrained BERT model (Alsentzer et al.,
2019) with frozen weights as our concept learner. This was a BioBERT model pretrained on clinical
notes of MIMIC-III dataset. Our checklist has a much better recall and accuracy than previous
methods. Both checklist learning and deep learning methods give poor performance on the minority
class.

Mortality Prediction using Time Series Data. To learn representations from clinical timeseries,
we initialize K two-layered LSTMs. We highlight our key results in Table 1. For ProbChecklist,
we report the checklist which attains the highest accuracy on validation data. We surpass existing
methods in terms of accuracy and precision with a significant margin. We find that a checklist with
better recall can be constructed by optimizing over F1-Score instead of accuracy.

Sensitivity analysis: We investigate the evolution of performance of ProbChecklist with increasing
number of learnt concepts d′

k. On Figure 3a, we show the accuracy, precision, recall, and specificity
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in function of the number of concepts per image on the MNIST dataset. We observe a significant
improvement in performance when d′

k increases from 1 to 2, which suggests that having learning
one concept per image is inadequate to capture all the signal in the sample. It is also interesting to
note that the performance reaches a saturation point after d′

k = 3. This suggests held-out loss can be
used to tune the value of d′

k to find the optimal number of concepts for a given data modality.
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Sensitivity Analysis for MNIST Checklist
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(a) Performance of ProbChecklist with varying d′
k on

MNIST Checklist Dataset

(b) We plot images and corresponding gradient attribu-
tions heat maps for seven inputs samples of the Image
2 modality of the MNIST dataset. We used a checklist
with two learnable concepts per image. The intensity
of red denotes the positive contribution of each pixel,
whereas blue indicates the negative. If a concept pre-
dicted as true for an image, then we represent that with
plus (+) sign, and with a negative sign (-) otherwise.

Figure 3

5.2 CONCEPTS INTERPRETATION

We investigate the concepts learnt from image and timeseries datasets with an interpretability reg-
ularization as in Section 4.6. To gain insight into what patterns of signals refer to each individual
concept, we examine the gradient of each concept with respect to each dimension of the input signal.
Intuitively, the interpretability regularization enforces the concepts to focus on a sparse set of features
of the input data.

MNIST Images: We analyze the gradient of our checklist on individual pixels of the input images.
We use a checklist with two concepts per image. On Figure 3b, we show example images of the Image
2 of the MNIST dataset along with the gradient heat map for each learnt concept of the checklist. The
ground truth concept for this image is Image2 ∈ {1, 3, 5, 7, 9}. First, we see that the 7, 9, and 5
digits are indeed the only ones for which the predicted concepts of our checklist are positive. Second,
we infer from the gradient heat maps that concepts 1 and 2 focus on the image’s upper half and centre
region, respectively. Concept 1 is true for digits 5, 8, 9 and 7, indicating that it corresponds to a
horizontal line or slight curvature in the upper half. Since Digits 0 and 2 have deeper curvature than
the other images, and there is no activity in that region in the case of 4, concept 1 is false for them.
concept 2 is true for images with a vertical line, including digits 9, 4, 5 and 7. Therefore, concept
2 is false for the remaining digits (0, 2, 8). The checklist outcome matches the ground truth when
both concepts are true for a given image. Complementary analyses on MNIST and MIMIC III are
provided in Appendix F.2 and F.3. This analysis ensures interpretability at the individual sample level.
As illustrated in the previous example, recognizing and comprehending these concepts at the dataset
level relies on visual inspection.

Medical Abstracts: Compared to images and time series, interpreting concepts learned from textual
data is easier because its building blocks are tokens which are already human understandable. For the
Neoplasm detection task, we adopt an alternative method by conducting a token frequency analysis
across the entire dataset. This approach has yielded a more lucid checklist shown in Figure 1. We
identified key tokens associated with positive and negative concepts (positive and negative tokens).
Each concept is defined by the presence of positive words and the absence of negative words.

5.3 FAIRNESS
We evaluate the fairness of ProbChecklist on the MIMIC-III Mortality Prediction task and show
that we can reduce the performance disparities between sensitive attributes by incorporating fairness
regularization (FR) terms, as introduced in Section 4.7. We set the sensitive features as gender
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∈ {Male, Female} and ethnicity ∈ {Black,White,Others}. Our results are displayed on Tables
2 and 11. These disparities in performance across different sub-populations are significantly reduced
after fairness regularization is used. To see the effectiveness of the regularizer, we report the
percentage decrease in ∆FNR and ∆FPR observed with respect to the unregularized checklist
predictions for all pairs of sensitive subgroups. Similar fairness constraints (FC) can also be added to
the ILP mean-thresholds baseline (Jin et al., 2022). We include a separate constraint for each pair
that restricts |∆FNR| and |∆FPR| to be less than ϵ = 0.05.

Figure 4: Learnt checklist for PhysioNet
Sepsis Prediction Task (Tabular). We
report the performance result as accu-
racy (65.69%), precision (0.527), recall
(0.755), and specificity (0.6).

It is important to note that our approach minimizes the
summation of ∆FNR and ∆FPR across all pairs of sub-
groups, but in the ILP we can specify a strict upper bound
for each pair. Due to this, we might observe an increase
in the gap for certain pairs in case of ProbChecklist, but
adjusting the relative weights of these terms in the loss
equation helps in achieving optimal performance. Al-
though ProbChecklist had higher initial FNR/FPR values,
the regularizer effectively reduces them to be comparable
to those of ILP, particularly for the ethnicity pairs.

6 DISCUSSION
Performance of ProbChecklist. Through these exper-
iments, we aim to showcase that ProbChecklist surpasses
existing checklist methods and achieves comparable per-
formance to MLP (non-interpretable) methods. The switch
to learnable concepts explains the improvement in accu-
racy over checklist methods. These concepts capture more
signal than fixed summary/concept extractors used in prior works to create binarized tabular data. It’s
important to note that a checklist, due to its binary weights, has a strictly lower capacity and is less
expressive than deep learning but possesses a more practical and interpretable structure. Despite this,
it exhibits similar performance to an MLP.

Method Female-Male White-Black Black-Others White-Others
∆FNR ∆FPR ∆FNR ∆FPR ∆FNR ∆FPR ∆FNR ∆FPR

ILP mean thresholds
w/o FC 0.038 0.011 0.029 0.026 0.152 0.018 0.182 0.045

FC 0.011 0.001 0.031 0.008 0.049 0.016 0.017 0.0007
% ↓ 71.053 90.909 -6.897 69.231 67.763 11.111 90.659 98.444

ProbChecklist
w/o FR 0.127 0.311 0.04 0.22 0.02 0.273 0.02 0.053

FR 0.103 0.089 0.028 0.016 0.021 0.008 0.006 0.008
% ↓ 18.898 71.383 30.000 92.727 -5.000 97.033 70.000 85.660

Table 2: Improvement in fairness metrics
across gender and ethnicity on MIMIC III for
the mortality prediction task after adding fair-
ness regularization. We report ∆FNR and
∆FPR for all pairs of subgroups of sensitive
features and the percentage decrease (% ↓) wrt
unregularized checklist.

Interpretability of checklist structure and learnt
concepts. Although ProbChecklist employs a
probabilistic objective for training the concept learn-
ers, the end classifier used for inference is, in fact,
a discrete checklist. While this makes the classi-
fier highly interpretable, it also shifts the focus of
interpretability to the learnt concepts. We fully real-
ize this trade-off and investigate existing techniques
to maintain feature-space interpretability. For time
series and images, we employ regularization terms
(4.6) to enforce sparsity, avoid redundancy, and learn
strongly discriminative features with high probabil-
ity. We also use focused concept learners to avoid
learning concepts that are functions of multiple modalities. Identifying patterns from the binarized
concepts is primarily based on visual inspection and expert knowledge. We noticed it is easier to
source and comprehend the key tokens contributing to each concept for text data. Lastly, we want to
highlight that ProbChecklist is a flexible framework, and other interpretable models can be easily
integrated as concept learners.
Limitations. We have taken the first step towards learning checklists from complex modalities,
whereas the existing methods are restricted to tabular data. Even though we have a mechanism to learn
interpretable checklist classifiers using logical reasoning, more work is needed on the interpretability
of the learnt concepts. Another drawback is the exponential memory complexity of the training. A
fruitful future direction would be to study approximations to explore a smaller set of combinations of
concepts. Detailed complexity analysis can be found in Appendix B.
Societal Impact. As discussed initially in the paper, manually designed checklists are extensively
used in hospitals for decision-making under complex situations and help automate certain aspects of
the treatment. With more research on the interpretability of concepts, ProbChecklist can replace the
existing manual procedure and reduce the burden on the healthcare system.
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