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ABSTRACT

Learning from noisy labels (LNL) is crucial in deep learning, in which one of
the approaches is to identify clean-label samples from poorly-annotated datasets.
Such an identification is challenging because the conventional LNL problem,
which assumes only one noisy label per instance, is non-identifiable, i.e., clean
labels cannot be estimated theoretically without additional heuristics. This paper
presents a novel data-driven approach that addresses this issue without requiring
any heuristics about clean samples. We discover that the LNL problem becomes
identifiable if there are at least 2C − 1 i.i.d. noisy labels per instance, where
C is the number of classes. Our finding relies on the assumption of i.i.d. noisy
labels and multinomial mixture modelling, making it easier to interpret than pre-
vious studies that require full-rank noisy-label transition matrices. To fulfil this
condition without additional manual annotations, we propose a method that au-
tomatically generates additional i.i.d. noisy labels through nearest neighbours.
These noisy labels are then used in the Expectation-Maximisation algorithm to
infer clean labels. Our method demonstrably estimates clean labels accurately
across various label noise benchmarks, including synthetic, web-controlled, and
real-world datasets. Furthermore, the model trained with our method performs
competitively with many state-of-the-art methods.

1 INTRODUCTION

The significant advances in machine learning over the past decade have led to the development of
numerous applications that tackle increasingly-complex problems in many areas, such as computer
vision (Krizhevsky et al., 2012; Dosovitskiy et al., 2021), natural language processing (NLP) (Bah-
danau et al., 2015; Vaswani et al., 2017) and reinforcement learning (Silver et al., 2016; Jumper
et al., 2021). These solutions often rely on high-capacity models trained on vast amounts of anno-
tated data. The annotation of large datasets often relies on crowd-sourcing services, such as Amazon
Mechanical Turk, or automated approaches based on NLP or search engines. This might, generally,
produce poor-quality annotated labels, especially when data is ambiguous. Such a subpar annota-
tion, coupled with the well-known issue of deep neural networks being susceptible to overfitting to
randomly-labelled data (Zhang & Sabuncu, 2018), might lead to catastrophic failures, particularly
in critical applications such as autonomous vehicles or medical diagnostics. These challenges have
spurred research in the field of noisy label learning, aiming at addressing the problem of learning
from datasets with noisy annotations.

More specifically, learning from noisy labels (LNL) aims to employ mis-labelled training data to
train a classifier that can generalise well. One approach to accomplish this is to infer the clean label
Y of an instance X from an observed noisy label Ŷ . If C is the number of classes, then one can
relate Y and Ŷ through the sum rule of probability as follows:

Pr(Ŷ |X) =
∑C

c=1 Pr(Ŷ |X,Y = c) Pr(Y = c|X). (1)

In the literature, the clean label probability Pr(Y |X), the transition probability Pr(Ŷ |X,Y ) and
the noisy label probability Pr(Ŷ |X) are modelled as categorical distributions. This, however, re-
sults in an ambiguous estimation because there are multiple combinations of hidden probability pair
(Pr(Ŷ |X,Y ),Pr(Y |X)) leading to the same observed noisy label probability Pr(Ŷ |X). For ex-
ample, the following 3-class classification has at least two different solutions that result in the same
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observed noisy label distribution Pr(Ŷ |X):

Pr
(
Ŷ |X

)
=

[
0.25
0.45
0.3

]
=

[
0.8 0.1 0.2
0.15 0.6 0.3
0.05 0.3 0.5

]
︸ ︷︷ ︸

Pr1(Ŷ |X,Y )

[
2/11
13/22
5/22

]
︸ ︷︷ ︸
Pr1(Y |X)

=

[
0.7 0.2 0.1
0.1 0.6 0.1
0.2 0.2 0.8

]
︸ ︷︷ ︸

Pr2(Ŷ |X,Y )

[
2/15
7/10
1/6

]
︸ ︷︷ ︸

Pr2(Y |X)

.

Failing to address the LNL identifiability issue might lead to estimating an undesirable model which
may not be useful for making predictions or drawing conclusions. Existing LNL methods address
the identifiability issue primarily through modelling-driven approaches, often by imposing ad-hoc
priors in the form of heuristic assumptions and constraints, such as small-loss criterion (Han et al.,
2018b), anchor points (Liu & Tao, 2015) or zero Bayes risk (Zhu et al., 2024)), feature-based meth-
ods (Kim et al., 2021) or unique constraints on the modelling of transition matrix (Li et al., 2021;
Zhang et al., 2021b). Other methods follow a data-driven approach with multiple noisy labels per
sample (Liu et al., 2023). Although methods based on the modelling-driven approach have achieved
successful results in several benchmarks, their heuristics are either (i) sub-optimal, e.g., small-loss
criterion might under-select “hard examples” (i.e., samples that are near decision boundaries) that
are informative for learning, or (ii) associated with assumptions that might not always hold in prac-
tice, e.g., anchor points in (Liu & Tao, 2015), zero-error data in (Zhu et al., 2024), or “alignment
clusterability” in (Kim et al., 2021). In contrast, the data-driven approach tackles the problem more
fundamentally without relying on heuristic assumptions; however, current results in methods based
on the data-driven approach are difficult to interpret (e.g., full-rank transition matrices (Liu et al.,
2023)), reducing their applicability in practice.

In this paper, we investigate the identifiability issue in LNL following the data-driven approach with
multiple noisy labels per training sample. Specifically,

• we formulate clean labels in LNL through multinomial mixture models and theoretically
derive the identifiability condition, showing that at least 2C − 1 i.i.d. noisy labels are
required per training sample, and

• we propose a practical method based on nearest neighbours to generate additional i.i.d.
noisy label to meet the identifiability condition.

The empirical evaluation of the proposed method evaluated on several LNL benchmarks (including
synthetic, web-controlled and real-world label noise problems) demonstrates its capability to esti-
mate clean labels without any heuristics. Furthermore, even though the main goal of this paper is
the theoretical investigation of the identifiability condition, our practical method shows competitive
results with several state-of-the-art techniques.

2 BACKGROUND

Identifiability studies whether the exact parameters of a model of interest can be uniquely re-
covered from observed data. Generally, a model is identifiable if and only if its parameters can be
uniquely determined from available data. In contrast, a non-identifiable model implies that there
exists multiple sets of parameters, where each set can explain the observed data equally well. Identi-
fiability is particularly important in statistical modelling, where statistical methods are used to infer
the true set of parameters from data. Formally, the identifiability of a distribution Pr(X; θ) over a
random variable X , parameterised by θ ∈ Θ with Θ denoting a parametric space, can be defined as:
Definition 1. Pr(X; θ) is identifiable if it satisfies: Pr(X; θ) = Pr(X; θ′) =⇒ θ = θ′,∀θ, θ′ ∈ Θ.

Mixture models A mixture of P distributions can be written as: q(X) =
∑P

c=1 πc Pr(X; θc),
where X is a random variable in X , π is the mixture coefficient vector in the (P − 1)-dimensional
probability simplex ∆P−1 =

{
y : y ∈ [0, 1]P ∧ 111⊤y = 1

}
, and {Pr(X; θc)}Pc=1 is a set of P distri-

butions. Compared to a single distribution, mixture models are more flexible with higher modelling
capacity, and hence, widely used to provide computationally convenient representation of complex
data distributions. And since mixture models are an instance of latent variable models, the Expecta-
tion - Maximisation (EM) algorithm (Dempster et al., 1977) can be used to infer their parameters.

Identifiability issue in mixture models is one of the most common problems in statistical in-
ference. For example, if all of the P component distributions in a mixture model q(X) belong
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to the same parametric family, then q(X) is invariant under P ! permutations by simply swapping
the indices of the component distributions, a phenomenon known as label-switching. In practice,
the identifiability issue due to label-switching (we will refer to this identifiability issue as label-
switching from now on) is of no concern since one can impose an appropriate constraint on its
parameters to obtain a unique solution. Nevertheless, parameter identifiability up to the permutation
of class labels (we will refer this as identifiability in the remaining of this paper) is still a practi-
cal problem, at least in maximum likelihood for mixture models where the distribution components
of such mixtures belong to certain distribution families. According to (Titterington et al., 1985,
Section 3.1), most mixture models supported on continuous space, e.g., Gaussian mixture models
(excluding the mixture of uniform distributions), are identifiable. However, when the support space
is discrete, the identifiability of such mixtures might not always hold. For example, a mixture of
Poisson distribution (Teicher, 1961) or a mixture of negative binomial distribution (Yakowitz &
Spragins, 1968) is identifiable, while a mixture of binomial distributions is only identifiable under
certain conditions (Teicher, 1961, Proposition 4). Another example is multinomial mixture models
which is, according to the Theorem 1 defined below, identifiable if and only if the number of samples
is at least almost twice the number of mixture components.

Theorem 1 ((Kim, 1984, Lemma 2.2), (Elmore & Wang, 2003, Theorem 4.2)). The class of N -trial
C-category multinomial mixture models:

{
M(x) : M(x) =

∑C
c=1 πc Mult(x;N, ρc)

}
is identifi-

able (up to label permutation) if and only if N ≥ 2C − 1.

3 METHODOLOGY

The first part of this section establishes the data-driven identifiability condition for the LNL problem
in the setting where each training sample has multiple i.i.d. noisy labels. The second part introduces
a practical method that satisfies the identifiability condition, enabling inference of the clean label
distribution when only a single noisy label is available per training sample.

3.1 IDENTIFIABLE CONDITION FOR NOISY LABEL LEARNING

In LNL, the clean label Y is often considered as a latent variable, and hence, the noisy label distri-
bution Pr(Ŷ |X = xi) can be modelled as a mixture of C distributions Pr(Ŷ |Y = c,X = xi),∀c ∈
{1, . . . , C} as in Eq. (1). Conventionally, each of the C distributions Pr(Ŷ |Y = c,X = xi) is
assumed to be a categorical distribution. Here, we expand the capability of such a modelling to
the setting of multiple noisy labels by considering each Pr(Ŷ |Y = c,X = xi) as a multinomial
distributions. Specifically, we model Pr(Ŷ |Y = c,X = xi) = Mult(Ŷ ;N, ρic) as an N -trial multi-
nomial component, and Pr(Y = c|X = xi) = πic as the corresponding mixture coefficient, where
N ∈ Z+ is the number of trials in the multinomial components (or number of noisy labels per train-
ing sample), ρic ∈ ∆C−1 is the probability parameter of the multinomial component, πi ∈ ∆C−1 is
the clean label probability and c ∈ {1, . . . , C} is the class index. Eq. (1) can, therefore, be written
in the form of a multinomial mixture model as:

Pr( Ŷ
∣∣∣X = xi) =

∑C
c=1 πic Mult(Ŷ ;N, ρic). (2)

The modelling assumption in Eq. (2) allows to determine the identifiable condition in LNL by lever-
aging the result in Theorem 1 as follows:

Identifiability Condition (Corollary of Theorem 1). Any noisy label learning problem where the
noisy label distribution is modelled as a multinomial mixture model shown in Eq. (2) is identifiable
if and only if there are at least 2C − 1 i.i.d. noisy labels Ŷ of an instance X (i.e., N ≥ 2C − 1).

For example, the conventional LNL setting has only one noisy label per sample: N = 1, and hence,
is non-identifiable for C ≥ 2 unless additional assumptions or constraints are introduced. Another
example is that binary classification on noisy labels, corresponding to C = 2, is identifiable if
N ≥ 3, or in other words, there must be at least 3 noisy labels per sample. This agrees with previous
studies identifiability for the LNL problem (Zhu et al., 2021b; Liu et al., 2023).

Remark 1. Previous work by Liu et al. (2023) establishes an identifiability condition that requires
at least three noisy labels per instance, each provided by a highly skilled annotator whose associated
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Table 1: Comparison of identifiability conditions: Liu et al. (2023) vs. our approach.

Aspect (Liu et al., 2023) Ours

Assumption Full-rank transition matrix annotators i.i.d. noisy labels from Pr
(
Ŷ |X

)
⇔ experts whose annotations have high
probability of matching ground truths

Min. № of labels
per instance

3 expert annotations 2C − 1 i.i.d. annotations

Pros & cons
✓ Few annotations per instance ✗ Higher number of annotations
✗ Expert recruitment is costly and hard
to meet for large number of classes C

✓ Easy to achieve (e.g., crowd-
sourcing)

→ prioritise annotator quality to min-
imise annotation quantity

→ trade annotator quality for an-
notation quantity

transition matrix is full rank. This assumption, while theoretically appealing, imposes a significant
practical burden: recruiting such highly competent experts is costly and becomes increasingly infea-
sible as the number of classes C grows. In contrast, our result “transposes” the previous condition,
in which at least 2C − 1 i.i.d. noisy labels from the same noisy label distribution Pr(Ŷ |X) are
required per instance, without any requirement on annotator expertise beyond independence. Al-
though our condition is less optimistic in terms of the number of labels needed, it eliminates the
stringent high-skill (i.e., full rank) assumption. Intuitively, Liu et al. (2023) relies on a small set
of expert annotators, whereas our result trades annotator quality for quantity, enabling the use of
large-scale crowdsourcing. The differences between these two studies are summarised in Table 1.

According to the identifiability condition, at least additional 2C − 2 i.i.d. noisy labels per training
sample must be available to solve the LNL in its standard setting. One can naively request more
noisy labels per training sample, e.g., via crowd-sourcing, that satisfies the identifiability condition.
Such an approach is, however, costly, time-consuming and poorly scalable, especially when the
number of classes C is large. For example, WebVision dataset (Li et al., 2017) with C = 1, 000
classes will require at least an addition of 1,998 noisy labels per sample, resulting in an impractical
solution. To address this issue, we propose a practical method in Section 3.2 to generate additional
noisy labels to address the identifiability issue in LNL.

3.2 PRACTICAL METHOD TO FULFIL THE IDENTIFIABILITY CONDITION

To obtain additional noisy labels per sample without additional labelling resources, we propose to
approximate the noisy label distribution Pr(Ŷ |X) by taking the similarity between the features of
training samples into account. Our assumption is that training samples with similar features tend
to be annotated similarly. In other words, similar instances have similar noisy labels (Table 5 em-
pirically verifies this claim on Cifar-10N). Thus, we can leverage the single noisy label per training
sample available in the training dataset to approximate the noisy label distribution Pr(Ŷ |X). The
approximated distribution is then used to generate many i.i.d. noisy labels that meet the identifi-
ability condition specified in Section 3.1. Subsequently, the EM algorithm is employed to infer
the parameters of the multinomial mixture model in Eq. (2), including the clean label distribution
Pr(Y |X). Appendix C presents a discussion on alternative ways to approximate Pr(Ŷ |X).

3.2.1 APPROXIMATING THE MULTI-MODAL NOISY LABEL DISTRIBUTION Pr(Ŷ |X)

To generate additional i.i.d. noisy labels, we approximate the noisy label distribution of each train-
ing sample by exploiting the information of its nearest neighbours. The approximated noisy label
distribution of an instance, denoted as P̃r(Ŷ |X = xi), is derived not only from its own noisy label
but also from the noisy labels of other instances whose features are similar to the instance:

P̃r(Ŷ |X = xi)← µ P̃r(Ŷ |X = xi) + (1− µ)
∑K

j ̸=i,j=1 Aij P̃r(Ŷ |X = xj), (3)

where µ is a hyper-parameter in [0, 1] reflecting the trade-off between the noisy labels of the in-
stance and its neighbours, K is the number of nearest neighbours, and Aij ∈ [0, 1] is a coefficient
representing the similarity between xi and xj . Note that

∑K
j ̸=i,j=1 Aij = 1.
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There are several ways to find the similarity matrix [Aij ],Aii = 0, i ∈ {1, . . . ,M}, j ∈
{1, . . . ,K}. For example, the study in (He et al., 2017) employs sparse subspace clustering
method (Elhamifar & Vidal, 2013) to approximate the label distribution when learning human age
from images. In this paper, we use a slightly similar but more efficient method that utilises the
nearest neighbour information: locality-constrained linear coding (LLC) (Wang et al., 2010). In
particular, the coefficient Aij can be determined via the following optimisation:

minAi
∥xi −BiAi∥22 + λ∥di ⊙Ai∥22 s.t.: 111⊤Ai = 1,Aij ≥ 0,∀j ∈ {1, . . . ,K}, (4)

where Bi is a matrix containing the K nearest neighbours of instance xi (each column is a nearest-
neighbour instance), Ai = [Ai1 Ai2 . . . AiK ]

⊤ is the K-dimensional vector representing
the coding coefficients, ⊙ is the element-wise multiplication (a.k.a. Hadamard product), di =
exp(dist(xi,Bi)/σ) is the locality adaptor with dist(xi,Bi) being a vector of Euclidean distances
from xi to each of its nearest neighbours, and σ being used for adjusting the weight decay speed for
the locality adaptor. Nevertheless, since our interest is locality, not sparsity, in our implementation,
we ignore the second term in Eq. (4) by setting λ = 0.

Note that the optimisation in (4) is slightly different from the original LLC due to the additional
constraint of non-negativity of Aij . Nevertheless, the optimisation resembles a quadratic program,
and therefore, can be efficiently solved by off-the-shelf solvers, such as OSQP (Stellato et al., 2020).

To efficiently find nearest neighbours, we utilise TPU-KNN (Chern et al., 2022) – an efficient ap-
proximation to search for nearest neighbours with GPU acceleration capabilities. To optimise com-
putational efficiency and memory usage, we employ the features extracted from training samples in
the nearest neighbour search. Furthermore, to enhance the scalability of our method when dealing
with large datasets containing millions of training samples, we perform the nearest neighbour search
in a subset (about 15,000 training samples) that is randomly sampled from the training set.

Validity of i.i.d. assumption in generated noisy labels The i.i.d. assumption in the identifiability
condition means that noisy labels should be independently and identically distributed (i.e., know-
ing one noisy label gives no information about others). This requirement is satisfied because the
additional noisy labels are sampled independently from the approximated noisy label distribution
P̃r(Ŷ |X). This i.i.d. property of the generated noisy labels should not be confused with the inherent
dependency of P̃r(Ŷ |X) on neighbouring samples in Eq. (3).

3.2.2 INFER CLEAN LABEL POSTERIOR WITH EM

Once the noisy label distribution P̃r(Ŷ |X) is approximated as a (K+1)C-multinomial mixture, we
can generate L sets, each consisting of N noisy labels, with N ≥ 2C − 1, for each instance. The
EM algorithm is then used to infer the parameter of the multinomial mixture model in Eq. (2). In
particular, the objective function for the i-th sample can be written as:

maxπi,ρi
1/L
∑L

l=1 ln Pr(Ŷ = ŷl|X = xi;πi, ρi) + lnPr(πi;α) + lnPr(ρi;β), (5)

where: ŷl ∼ P̃r(Ŷ |X = xi) is an N -trial multinomial vector (e.g., sum of N one-hot noisy labels of
an instance), and α and β are the parameters of the priors of πi and ρi, respectively. The parameters
πi and ρi in (5) can be optimised via the EM algorithm.

According to Eq. (3), additional multinomial noisy labels are sampled from a (K+1)C-multinomial
mixture, P̃r(Ŷ |X = xi). Such a sampling process, however, has a complexity of O((K + 1)C2),
which is expensive when C – the number of classes – is large. That is because the mixture co-
efficient (or pseudo-clean label probability), πi = Pr(Y |X = xi), is assumed to be dense with
C components, while in practice, Pr(Y |X = xi) is often sparse with only C0 components where
C0 ≪ C (Han et al., 2018a). We therefore exploit this observation to mitigate the issue of high
complexity due to sampling. Appendix F provides further details on the reduction of number of
noisy labels needed in our practical implementation.

The proposed method (see Algorithm 1 in Appendix D) relies on the extracted features to perform
nearest neighbour search. Thus, if the features extracted are biased, it will worsen the quality of the
nearest neighbours, reducing the effectiveness of the proposed method. To avoid such confirmation
bias, we follow the co-teaching approach (Han et al., 2018b) that trains two models simultane-
ously where the noisy labels being cleaned by one model are used to train the other model and vice
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Table 2: The running time complexity per epoch of the data pre-processing step of the proposed
algorithm and existing methods, where: |θ| is the number of model’s parameters, M is the total
number of training samples, B is the mini-batch size, C is the number of classes, K is the number
of nearest neighbours, L is the set of multiple noisy labels (e.g., 2C − 1 per training samples), d is
the dimension of input samples, naugment is the number of data augmentations, niter, nosqp, nem are
the number of optimisation iterations used within each method.

Method Complexity
DivideMix (Li et al., 2020) O(6|θ|+ [4 + 2/B (naugmentd+ 2C)]M)
HOC (Zhu et al., 2021b) O

(
|θ|+ 3M + 2 lnM + niterC

2
)

Ours O
(
2|θ|+ 2 lnM + 2nosqpKd+ 2(L+ nem)C

2
)

versa. We also analyse the complexity (only the “data pre-processing step” and excludes the loss
calculation and model training because they are almost identical) of the proposed algorithm (see
Algorithm 1) and present the result in Table 2 (see Appendix E for the detailed analysis). In general,
the bottleneck of our method is at the sampling of i.i.d. noisy labels and the EM algorithm due to
its quadratic complexity with respect to the number of classes C. Readers are referred to Table 9 in
Appendix E for the details of actual running time.

4 EXPERIMENTS

We employ several LNL benchmarks to evaluate the robustness of the proposed learning method
when dealing with the most realistic type of label noise, namely: the instance-dependent noise.
In particular, the experiments are performed on both synthetic and real-world instance-dependent
label noise benchmarks. In addition, because our focus is on the theory of the identifiability in the
LNL problem, we show that the proposed method is effective and competitive to other state-of-the-
art (SOTA) methods without resorting to fine-tuning or employing highly-complex neural network
architectures. The details of datasets, hyper-parameters and models used are shown in Appendix G.

4.1 COMPARISON WITH IDENTIFIABILITY-BASED METHODS

Since both (Liu et al., 2023) and our study tackle the same identifiability issue in LNL, but follow
different approaches, it is important to evaluate the performance of practical methods derived from
the two approaches. More specifically, we compare HOC (Zhu et al., 2021b), representing (Liu
et al., 2023), with our method presented in Section 3.2. The comparison is conducted on multiple
noisy-label datasets, namely: three human-annotated noisy labels in CIFAR-10N (Wei et al., 2022).
The results of HOC are obtained through its official implementation, which is publicly available.

For the real-world dataset CIFAR-10N, we evaluate on all of the available settings, including a single
label for each of the three annotation cases, the aggregate which randomly selects one label from
the three noisy labels, and the worst which selects the noisy label among the three labels annotated.
We also consider the case of combining three noisy labels together by aggregating them into a soft
label in the case of the cross-entropy baseline and our method, or passing all three into the model of
interest to learn higher-order statistics in the case of HOC.

As shown in Table 3, our method outperforms the cross-entropy baseline and HOC in all CIFAR-
10N settings. The performance gap between HOC and our method may be attributed to HOC’s
dependence on k-NN label clusterability (Zhu et al., 2021b, Definition 1), which requires that the
k-nearest neighbours of an instance must belong to the same true class. This is evident from the
improvement of HOC’s performance when using three noisy labels per training sample, as shown
in the last column of Table 3. In contrast, our method does not rely on the strong assumption of k-
NN label clusterability and can consistently perform well with either single or multiple noisy labels
per training sample. Note that when using all three available noisy labels, the performance gap
between the baseline (training model directly on noisy label data), HOC and our method vanishes.
This might be because the assumption of three noisy labels in HOC becomes valid. In addition, the
label noise rate in this case is too small (approximately 0.02), and hence, makes the comparison less
distinguishable. Note that in this experiment, our method relies on a PreAct Resnet-18 pre-trained
on the training set of CNWL using SimCLR (Chen et al., 2020) for 500 epochs with a similar data
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Table 3: Prediction accuracy on human-annotation CIFAR-10N.

CIFAR-10N
Setting Aggregate Random 1 Random 2 Random 3 Worst 3 noisy labels
Noise rate 0.09 0.17 0.18 0.18 0.40 0.02

Cross-entropy (Wei et al., 2022) 87.77 ± 0.38 85.02 ± 0.65 86.46 ± 1.79 85.16 ± 0.61 77.69 ± 1.55 92.24 ± 0.66
HOC (Zhu et al., 2021b) 83.34 ± 0.09 81.92 ± 0.18 81.76 ± 0.12 81.31 ± 0.17 62.31 ± 0.14 91.94 ± 0.73
Ours 89.69 ± 1.15 90.00 ± 0.23 89.79 ± 0.18 88.69 ± 0.23 89.89 ± 0.45 92.41 ± 0.79

Table 4: Prediction accuracy (%) on real-world noisy label datasets: (left) Red CNWL, (middle)
mini-WebVision and ImageNet and (right) Animal-10N. Best result in bold, 2nd best in italics.

Method Noise rate of CNWL
(no pre-trained) 0.2 0.4 0.6
Cross-entropy 47.36 42.70 37.30
mixup 49.10 46.40 40.58
DivideMix 50.96 46.72 43.14
MentorMix 51.02 47.14 43.80
FaMUS 51.42 48.06 45.10
SSR* 52.18 48.96 42.42
LSL 54.68 49.80 45.46
Ours 52.78 49.18 46.00

Method WebVision ImageNet
mixup 74.96 -
Co-teaching 63.58 61.48
DivideMix 77.32 75.20
ELR 76.26 68.71
MOIT 78.36 -
NCR 77.10 -
ASL 66.68 64.12
ROBOT 68.24 65.20
PCSE 70.48 67.72
Ours 80.48 74.63

Method Animal-10N
Cross entropy 79.40
Nested-Dropout 81.30
CE + Dropout 81.30
SELFIE 81.80
PLC 83.40
Nested-CE 84.10
ASL 77.70
ROBOT 83.52
PCSE 83.82
Ours 85.96

augmentation policy (random crop and resize, colour jittering, grey or colourise and Gaussian blur),
while the nearest neighbours in HOC rely on a Resnet-34 pre-trained on ImageNet.

4.2 RESULTS ON LNL COMMON BENCHMARKS

For Red CNWL, we follow the experimental setup from (Xu et al., 2021) and present results in
Table 4 (left). This benchmark includes widely used SOTA methods evaluated on low-resolution
(32-by-32 pixel2) images to ensure a fair comparison. While our goal is not to outperform existing
methods, these results illustrate that generating multiple noisy labels per sample shows competitive
performance, supporting our theoretical claims. We further evaluate the method on real-world noisy
label datasets, mini-WebVision and Animal-10N, with results shown in Table 4 (middle) and (right).
For mini-WebVision, we initialise the model with a ResNet-50 pre-trained for 100 epochs using
DINO (Caron et al., 2021). For Animal-10N, we use a VGG-19 pre-trained with DINO for 800
epochs. Again, the results are not intended to be SOTA but to show that the proposed approach is
robust and performs comparably under realistic noisy conditions. Additional results on CIFAR-10
and CIFAR-100 are provided in Appendix H (see Table 10). Table 10 (top) compares our method
to other approaches on synthetic noise settings. On CIFAR-10, our method performs on par with
SOTA methods, and on CIFAR-100, it slightly outperforms them. These results further support the
core claim: that leveraging a sufficient number of noisy labels per sample can effectively address
the noisy-label problem.

4.3 ABLATION STUDIES

We further study the effect of the number of noisy labels per sample, the number of nearest neigh-
bours and the effectiveness of our relabelling. Note that no self-supervised learning is used for
pre-training the model in the ablation studies to avoid potential confounding factors.

Number of noisy labels per sample We run experiments on the 100-class LNL problem of
the Red CNWL dataset at 0.6 noise rate with various number of noisy labels per sample N ∈
{3, 20, 100, 199, 400}. We plot the results in Fig. 1 (left), where L is the number of N multinomial
noisy labels defined in Algorithm 1. When L is small, the more noisy labels per sample or larger
N , the more effective, and the effectiveness diminishes after the threshold of 2C − 1, which in this
case is 199. This empirically confirms the validity of Section 3.1 about the identifiability in noisy
label learning. However, when L is large, the performance difference when varying N is not as
noticeable. In this regime (of large L), Section 3.1 might result in a conservative requirement in
terms of number of noisy labels per sample. The current LNL setting might contain some common
latent structure between samples (e.g., limited number of candidate labels per instance), which we
have not exploited yet to bring down the number of required noisy labels per sample. Future work
will need to address such issue to make the problem more practical.
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Figure 1: Ablation studies on: (left) the effect of number of noisy labels per sample on Red CNWL
at a noise rate of 0.6, (middle) and (right) the accuracy of the relabelling and the influence of nearest
neighbours on CIFAR-100.

Effectiveness of label cleaning is investigated by measuring the accuracy on the training set
between the pseudo labels “cleaned” by EM and the ground truth labels on CIFAR-100 at a noise
rate of 0.5. We also include the percentage of clean samples before training to compare more easily.
Note that despite the nominal noise rate of 0.5, the “empirical” noise rate measured on the generated
noisy labels following (Xia et al., 2020) before training is 0.44 (corresponding to 56 percent clean
samples). The results in Fig. 1 (middle) show that the proposed method can improve from the initial
dataset with 56 percent of clean samples to 68 percent. This 12 percent improvement is equivalent
to cleaning 27 percent of noisy labels that are initially present in the training set.

Number of nearest neighbours We also investigate the effect of the number of nearest neigh-
bours K to our proposed method by evaluating on CIFAR-100 at a noise rate of 0.5. The results in
Fig. 1 (right) show that the larger K, the more accurate the testing accuracy. However, the trade-off
is the running time shown in the right axis of Fig. 1 (right). Since K = 100 gives a good balance
between the performance and running time, this value is used in all of our experiments.

Table 5: Averaged label agreement of K =
10 nearest neighbours (in percentage) on
Cifar-10N to verify the assumption of label
consistency.

Setting Train directly Warm-up
Random 1 89.04 60.95
Random 2 88.68 59.70
Random 3 88.79 59.73
3 labels 97.96 65.49

Label consistency of KNN We verify the label
consistency of nearest neighbours with features ex-
tracted from our models. It is measured as the aver-
age label agreement between the sample of interest
and its nearest neighbours. Table 5 shows the label
agreement evaluated at two checkpoints: (i) train-
ing the model directly on noisy labels until conver-
gence (train directly), and (ii) training the model for
only 10 epochs (warm-up) In general, approximately
more than two thirds of the nearest neighbours of
each sample share the same class label at the begin-
ning of the training. This means that the assumption
of label consistency, in which similar instances have similar noisy labels, made in Section 3.2.1
holds with adequate probability.

5 RELATED WORK

LNL has been studied since the 1980s with some early works focusing on the statistical point of
view (Angluin & Laird, 1988; Bshouty et al., 2002), such as determining the number of samples to
achieve certain prediction accuracy under certain types of label noise. The field has then attracted
more research interest, especially in the era of deep learning where an increasing number of anno-
tated data is required to train large deep learning models. Learning from noisy labels is inherently
challenging due to the issue of identifiability. Despite its importance, the identifiability issue in
LNL remains a partially-addressed problem that requires the introduction of model-driven ad-hoc
constraints or exploration through the use of data-driven multiple noisy labels.

Ad-hoc constraints Many studies have implicitly or partially discussed the identifiability issue in
the LNL problem and proposed practical methods designed with different heuristic criteria (Menon
et al., 2015) to make the problem identifiable. The most widely-used constraint is the small loss
criterion where the labels of samples with small loss values are assumed to be clean (Han et al.,
2018b). Training is then carried out either on only those low-risk samples (Han et al., 2018b) or
cast as a semi-supervised learning approach with those clean samples representing labelled data
while the others denoting un-labelled data (Li et al., 2020). Although this line of research achieves
remarkable results in several benchmarks, they still lack theoretical foundations that explain why
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the small loss criterion is effective. There is one recent attempt that theoretically investigates the
small loss hypothesis (Gui et al., 2021), but the study is applicable only to the class-dependent
(a.k.a. instance-independent) label noise setting that assumes the presence of “anchor points”, i.e.,
samples that are guaranteed to have clean labels. Other methods propose different ad-hoc constraints
based on observations in matrix decomposition and geometry. For instance, Lin et al. (2015); Li
et al. (2021) suggest the minimal volume of the simplex formed from the columns of transition
matrices. Zhang et al. (2021b) present a matrix decomposition approach and employ total variation
regularisation to ensure the uniqueness of the solution. Cheng et al. (2022) impose similarity of
transition matrices between samples that are close to each other.

Multiple noisy labels per instance Learning from multiple noisy labels per instance has recently
emerged as one approach to theoretically address the identifiability issue. The most relevant study
in this area is the investigation of identifiability of transition matrices in noisy label learning (Liu
et al., 2023). In that paper, the authors implicitly extend the conventional 2-D transition matrix
to a 3-D tensor with the third dimension representing annotators and exploit the results in 3-D
arrays (Kruskal, 1976; 1977) to find the condition of identifiability. Similar to a study in crowd-
sourcing literature (Traganitis et al., 2018, Lemma 1), the authors in (Liu et al., 2023) conclude
that at least 3 “informative” noisy labels per instance are needed. Although the finding is more
optimistic than ours, it relies on the assumption of “informative” noisy labels, which requires a full-
rank transition matrix for each annotator on each instance. The assumption of full-rank transition
matrices implicitly depends on the number of classes as a larger number of classes increases the
difficulty to make each C-by-C transition matrix full-rank. Moreover, that assumption lacks clarity
since it is unclear how to translate the full-rankness required for a transition matrix to a property
an annotator must have. In contrast, our result does not rely on those assumptions, such as the
“informativeness” of noisy labels nor full-ranked transition matrices, except that the multiple noisy
labels should be i.i.d., and that we rely on a multinomial mixture modelling. Another related study
is the Higher-Order-Consensus (HOC) (Zhu et al., 2021b), which is a practical method present in
(Liu et al., 2023). To address the identifiability issue in LNL, HOC also relies on the full-rank
transition matrices (Zhu et al., 2021b, Assumption 1) and the 2-NN label clusterability (Zhu et al.,
2021b, Definition 1) where the sample of interest and its two nearest neighbours belong to the
same true class. HOC, however, mainly relies on instance-independent label noise, which may limit
its applicability. Furthermore, the assumptions of clusterability in HOC does not always hold in
practice (Zhu et al., 2021b, Table 3), especially at larger noise rates. Compared to HOC, our method
presented in Section 3.2 requires a less restricted assumption where similar samples are annotated
similarly (see Table 5 for our empirical verification). We also provide an empirical comparison
between HOC and our practical method in Section 4.1 to understand further the differences.

6 CONCLUSION

This study has conducted a formal investigation into the identifiability of noisy label learning using
multinomial mixture models. Specifically, the LNL problem has been formulated as a multinomial
mixture model, where the clean label probability is represented as the mixture coefficient and each
column in the transition matrix is represented as each multinomial component. Such modelling re-
veals that LNL is identifiable when there are at least 2C − 1 i.i.d. noisy labels per sample provided;
otherwise, the problem becomes non-identifiable unless additional assumptions or constraints are
employed. This result agrees with previous studies on the identifiability of label noise learning,
where the conventional setting of a single noisy label per training sample is non-identifiable. To
practically address the LNL problem, we propose to leverage nearest neighbours to generate ad-
ditional noisy labels to fulfill the identifiability requirement. The clean label distribution is then
inferred through the EM algorithm for multinomial mixture models. Even though our goal was not
to outperform SOTA methods, the experimental results show that generating multiple noisy labels
per sample yields competitive performance on various challenging benchmarks, particularly in sce-
narios involving instance-dependent and real-world label noises, supporting our theoretical claims.
The proposed method also out-performs HOC – a practical method that deals with the identifiability
in noisy label learning – in several settings, including the one with multiple noisy labels per training
sample. Despite the promising finding, the number of noisy labels required to make the LNL identi-
fiable in Section 3.1 is still impractical in several applications where the number of classes is large,
if we require additional manual labels. Future work will focus on the relation between class labels
to further reduce this number, making it more practical.
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A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

Portions of the text in this paper were revised through the usage of large language models to im-
prove clarity. The original idea, formulation, experiments and conclusion were done by the authors
themselves.

B EM FOR MULTINOMIAL MIXTURE MODELS

This appendix presents the EM algorithm for multinomial mixture models mentioned in Sec-
tion 3.2.2.

Recall that a mixture of multinomial distributions in the LNL problem can be written as:

p(Ŷ |X = xi) =

C∑
c=1

p(Y = c|X = xi) p(Ŷ |X = xi, Y = c) =

C∑
c=1

πicMult(Ŷ ;N, ρic). (2)

The aim here is to infer the parameters of the multinomial mixture model. In particular, we want
to exploit the given L noisy labels {ŷl}Ll=1 of an instance X = xi to infer p(Y |X = xi) and
p(Ŷ |X = xi, Y ).

We note that despite the identifiable condition in Section 3.1 requiring N ≥ 2C − 1, we still need
multiple sets of such N -trial noisy labels for inference. If only a single set of N noisy labels is
given, the inference will have a very large uncertainty although the problem is identifiable.

B.1 MAXIMUM LIKELIHOOD

Given L noisy labels {ŷl}Ll=1 of an instance X = xi, the objective in terms of maximum likelihood
estimation can be written as:

max
πi,ρi

L∑
l=1

ln p(Ŷ = yl|X = xi) = max
πi,ρi

L∑
l=1

C∑
c=1

πicMult(Ŷ = yl;N, ρic). (6)

B.1.1 E-STEP

This step is to calculate the posterior of the latent variable zn given the data xn:

γlc = p(Y = c|Ŷ = ŷl, X = xi;π
(t)
i , ρ

(t)
i )

=
p(Ŷ = ŷl|Y = c,X = xi; ρ

(t)
i ) p(Y = c|X = xi;π

(t)
i )∑C

c=1 p(Ŷ = ŷl|Y = c,X = xi; ρ
(t)
i ) p(Y = c|X = xi;π

(t)
i )

=
π
(t)
c Mult(Ŷ = ŷl;N, ρ

(t)
ic )∑C

c=1 π
(t)
ic Mult(Ŷ = ŷl;N, ρ

(t)
ic )

.

(7)

B.1.2 M-STEP

In the M-step, we maximise the following expected completed log-likelihood w.r.t. πi and ρi:

Q =

L∑
l=1

E
p(Y |Ŷ=ŷl,X=xi;π

(t)
i ,ρ

(t)
i )

[
ln p(Ŷ , Y |X = xi;πi, ρi)

]
=

L∑
l=1

E
p(Y |Ŷ=ŷl,X=xi;π

(t)
i ,ρ

(t)
i )

[
ln p(Y |X = xi;πi) + ln p(Ŷ = ŷl|Y,X = xi; ρi)

]
=

L∑
l=1

C∑
c=1

E
p(Y=c|Ŷ=ŷl,X=xi;π

(t)
i ,ρ

(t)
i )

[
lnπic + lnMult(Ŷ = ŷl;N, ρic)

]
=

L∑
l=1

C∑
c=1

γnk

[
lnπic +

C∑
c′=1

ŷl ln ρicc′ + const.

]
.

(8)
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The Lagrangian for π can be written as:

Qπi
= Q− λ

(
C∑

c=1

πic − 1

)
, (9)

where λ is the Lagrange multiplier. Taking derivative of the Lagrangian w.r.t. πic gives:

∂Qπi

∂πic
=

1

πic

L∑
l=1

γlc − λ. (10)

Setting the derivative to zero and solving for πic gives:

πic =
1

λ

L∑
l=1

γlc. (11)

And since
∑C

c=1 πic = 1, one can substitute and find that λ = L. Thus:

π
(t+1)
ic =

1

L

L∑
l=1

γlc. (12)

Similarly, the Lagrangian of ρicc′ can be expressed as:

Qρicc′ = Q−
C∑

c=1

ηc

(
C∑

c′=1

ρicc′ − 1

)
, (13)

where ηc is the Lagrange multiplier. Taking derivative w.r.t. ρicc′ gives:

∂Qρicc′

∂ρicc′
=

1

ρicc′

L∑
l=1

γlcŷlc′ − ηc. (14)

Setting the derivative to zero and solving for ρicc′ gives:

ρicc′ =
1

ηc

L∑
l=1

γlcŷlc′ . (15)

The constraint on ρic as a probability vector leads to ηc = N
∑L

l=1 γlc. Thus:

ρ
(t+1)
icc′ =

∑L
l=1 γlcŷlc′

N
∑L

l=1 γlc
. (16)

B.2 MAXIMUM A POSTERIOR (MAP)

The objective function is similar to the one in Appendix B.1, except including the prior on πi and ρi
as follows:

max
πi,ρi

Q :=

L∑
l=1

C∑
c=1

πicMult(Ŷ = yl;N, ρic) + ln p(πi;α) +

C∑
c=1

ln p(ρic;β), (17)

where the two priors are:

p(πi;α) = Dir(πi;α) (18)
p(ρic;β) = Dir(ρic;β). (19)

The E-step in this case remains unchanged from (7).
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The derivative of the Lagrangian for π can be written as:

∂QMAP
πi

∂πic
=

1

πic

(
L∑

l=1

γlc + αc − 1

)
− λ. (20)

Thus:

π
(t+1)
ic =

∑L
l=1 γlc + αc − 1

L+
∑C

c=1 αc − C
. (21)

Similarly for ρicc′ :

∂QMAP
ρ

∂ρicc′
=

1

ρicc′

(
L∑

l=1

γlcŷlc′ + βc′ − 1

)
− ηc. (22)

Thus:

ρ
(t+1)
icc′ =

∑L
l=1 γlcŷlc′ + βc′ − 1

N
∑L

l=1 γlc +
∑C

c′=1 βc′ − C
. (23)

C ALTERNATIVE WAYS TO APPROXIMATE THE NOISY LABEL DISTRIBUTION

There might be different ways to approximate p(Ŷ |X), e.g., simply using a neural network trained
directly on noisy-label data {(xi, ŷi)}Mi=1. This approach is, however, sub-optimal since the noisy
label distribution p(Ŷ |X) is modelled as a simple categorical distribution (represented by the soft-
max output of the neural network). Inferring a mixture of multinomial distributions from samples
generated from such a less expressive distribution may potentially result in a single-component mix-
ture (i.e., component collapse), making the estimation inaccurate. Another way is to train a neural
network to explicitly output p(Y |X) and p(Ŷ |X,Y ) (Goldberger & Ben-Reuven, 2017), which is
equivalent to learn a mixture of categorical distributions. This would, however, be subjected to the
identifiability issue in LNL. In contrast, our approach exploits the noisy labels of nearest neighbours
to approximate the noisy label distribution. In particular, we model the distribution of noisy label of
each instance as a mixture of C multinomial components, and hence, the approximated noisy label
distribution obtained through K nearest neighbours would be a mixture of (K + 1)C multinomial
distributions (please refer to Eq. (3)). In addition, exploiting nearest neighbours in the feature space
results in more consistent label distributions across samples (Iscen et al., 2022). Furthermore, the
nearest-neighbour based approach has been demonstrated to be effective and widely-used in label
distribution learning (He et al., 2017).

D PROPOSED LEARNING ALGORITHM TO OVERCOME THE IDENTIFIABILITY
IN LABEL NOISE

The proposed learning algorithm to augment the noisy labels is shown in Algorithm 1.

E RUNNING TIME COMPLEXITY ANALYSIS

We analyse the complexity of our proposed method, in which the pseudo-clean labels are inferred
from the noisy label distributions. Our analysis focuses on the “pre-processing” step right before
calculating loss and back-propagation because this is the main difference between these methods
(the loss calculation and gradient update for the model’s parameters are similar). Hence, in the
following analysis, we omit the complexity of relating to the loss calculation and parameter update.

Another note is that the complexity is analysed for one epoch. For the convenience, the notations
used are explicitly defined in Table 6.
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Algorithm 1 Progressively clean noisy labels

1: procedure TRAIN(X, Ŷ, µ, η γ)
2: ▷ X ∈ Rd×M : matrix of M instances ◁

3: ▷ Ŷ ∈ RC×M : M one-hot noisy labels ◁
4: ▷ K: № nearest neighbours ◁
5: ▷ L: № N -trial multinomial samples ◁
6: ▷ µ: trade-off coefficient ◁
7: ▷ η: № EM iterations ◁
8: ▷ γ: a weighting factor to update multinomial mixture model’s parameters ◁
9: initialise Π = {πi : πi ← SOFT LABEL(ŷi)}Mi=1

10: initialise P = {ρi : ρi ← IC×C}Mi=1 ▷ Random diagonal-dominant matrices
11: initialise feature extractor θ and a classifier w
12: warm-up: (θ,w)← TRAIN(X,Π, (θ,w))
13: while (π, ρ) not converged do
14: Π′ ← ∅, P ′ ← ∅ ▷ store inferred parameters of p(Y |X) and p(Ŷ |X,Y )
15: for each xi ∈ X do
16: extract features: f(xi; θ)
17: find K nearest neighbours: Bi ← KNN(f(xi; θ))

18: calculate similarity matrix: Ai ← LLC(f(xi; θ),Bi) ▷ Eq. (4)
19: approximate noisy label distribution p̃(Ŷ |X = xi) ▷ Eq. (3)

20: generate multinomial noisy labels: Ỹi = {ŷl : ŷl ∼ p̃(Ŷ |X = xi)}Ll=1

21: infer mixture model parameters: π′
i, ρ

′
i ← EM(Ỹi, η)

22: update clean label: πi ← γπi + (1− γ)π′
i

23: update parameters of multinomial components: ρi ← γρi + (1− γ)ρ′i

24: store clean label: Π′ ← Π′ ∪ πi

25: store probability vectors of multinomial components: P ′ ← P ′ ∪ ρi

26: update parameters of clean labels and multinomial components: Π← Π′, P ← P ′

27: train model: (θ,w)← TRAIN(X,Π, (θ,w))
28: return (θ,w)

E.1 COMPLEXITY OF OUR PROPOSED METHOD

The complexity of each step in Algorithm 1 for each model can be written as:

• Extract features: O(|θ|)

• Fast nearest neighbour search ≈ O(K lnM) (Johnson et al., 2019) or just O(lnM) with
GPU

Table 6: The notations used in the complexity analysis.

Notations Description
|θ| the number of model’s parameters
M the total number of training samples
C the number of classes
K the number of nearest neighbours
N number of noisy labels per training samples (e.g., N = 2C − 1)
L the set of N noisy labels per sample (applicable to ours only)
nosqp, nem, nem the number of iterations used in optimisation
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• Finding similarity matrix A in (4) with OSQP (Blondel et al., 2022): ≈ O(nosqpKd),
where: nosqp is the number of iterations and d is the dimension of X

• Sampling L sets of N -categorical samples where N ≥ 2C−1 (in parallel for N ): O
(
LC2

)
• Running EM: O(nemNC) ≈ O

(
nemC

2
)
.

Thus, the complexity of Algorithm 1 per iteration is: O
(
2|θ|+ 2 lnM + 2nosqpKd+ 2(L+ nem)C

2
)

since C ≪ M,d. Nevertheless, the most expensive operation is the sampling that generates addi-
tional noisy labels to perform EM with a quadratic complexity in terms of the number of classes
C. To facilitate the comparison with existing works, we provide a summary of their complexity in
Table 2. In general, our method has a higher complexity compared to DivideMix and HOC due to
its nature of re-labelling data. The bottle-neck of our proposed method lies at the sampling where L
sets of N -trial multinomial noisy labels are generated.

E.2 COMPLEXITY OF DIVIDEMIX

The complexity of DivideMix for each model can be presented in

Table 7: Running time complexity of data processing in DivideMix

Step Complexity Comment
Cluster with Gaussian mixture model O(M)
Augment data O

(
naugment

M
B d
)

vectorise over each mini-batch
Average prediction loss O(|θ|+ C +M) parallel forward pass
Refine ground truth O

(
M
B C

)
vectorise over each mini-batch

Co-guessing O(2|θ|+ 2M)
Sharpen guessed labels O

(
M
B C

)
vectorise over each mini-batch

Total per model O
(
3|θ|+ (2 + 1

B (naugmentd+ 2C))M + C
)

Because the number of class C is small compared to the number of samples M or the sample
dimension d, one can simplify the complexity of the pre-processing step in dual-model DivideMix
as follows:

O
(
6|θ|+

[
4 +

2

B
(naugmentd+ 2C)

]
M

)
. (24)

E.3 COMPLEXITY OF HOC

The running time complexity of HOC (Zhu et al., 2021b) is presented in Table 8.

Table 8: Running time complexity of HOC

Step Complexity Comment
Extract representation O(|θ|) assume d,M ≪ |θ|
Get 2-NN O(2 lnM)
Count frequency O(3M)
Solve for transition matrix O

(
niterC

2
)

Total O
(
|θ|+ 3M + 2 lnM + niterC

2
)

E.4 ACTUAL RUNNING TIME

We also provide the running time in practice for these methods in Table 9. Our proposed method
takes longer time to run than DivideMix or HOC. For DivideMix, it relies on the small-loss hypoth-
esis to separate which samples are clean or noisy. The bottle-neck in DivideMix properly lies at
the dual models used to avoid confirmation bias. For HOC, it relies on nearest-neighbours to obtain
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higher-order statistics to determine the transition matrix of interest. That explains why it is the most
efficient method. However, the trade-off is that it relies on the class-dependent instant-independent
assumption to determine a single transition matrix. That might deteriorate the performance when
such an assumption does not hold. For our method, it has the two bottle-necks of DivideMix (2
models) and HOC (nearest-neighbour search). In addition, it also requires to sample a large number
of categorical samples. That explains why the method has a longer running time compared to Di-
videMix and HOC. In practice, we use 2 GPUs and hence, reduce the running time to 50 percent.
The reported results in Table 9 are multiplied by 2 (i.e., GPU-h) to be fair when comparing with
DivideMix and HOC.

Table 9: Running time of some LNL methods.

Method Time (GPU-h)
DivideMix - CIFAR-10 6.45
HOC - CIFAR-10 2.65
Ours - CIFAR-10 6.14
Ours - CIFAR-100 19.17

F REDUCING NUMBER OF NOISY LABELS

As mentioned in Section 3.2.2, the space of a noisy label Ŷ of an instance X in practice is not often
arbitrary (e.g., does not necessary in {1, . . . , C}), but may be in a much small set with C0 classes,
where C0 ≪ C. In that case, the noisy label distribution is no longer a dense mixture of C multino-
mial distributions, but it is sparse with only C0 components. By exploiting this observation, we can
reduce the complexity of the proposed method. In particular, the C-component multinomial noisy
label distribution, p(Ŷ |X,Y ), obtained through the EM algorithm is truncated to a C0-component
mixture where C0 ≪ C. The approximation can be summarised as:

• At the initialisation stage (steps 9 and 10 in Algorithm 1 in Appendix D), the noisy label dis-
tribution of each sample is instantiated as a multinomial mixture model of C0 components
(πi is C-dimensional vector with only C0 non-zero components), where each component
still has C categories (ρic ∈ ∆C−1).

• Because the noisy label distribution of each sample is a multinomial mixture model of C0

components, the approximation of noisy label distribution obtained in Eq. (3) results in a
multinomial mixture model of (K + 1)C0 components. Such a mixture model can effi-
ciently generate noisy labels with a complexity of O((K + 1)C0C) given the reasonable
size C0.

• The generated noisy labels are passed to the EM algorithm to infer πi and ρi, which rep-
resent the multinomial mixture model p(Ŷ |X = xi) as shown in Eq. (2). The mixture
coefficient πi (also known as the clean label probability) is a C-dimensional vector, which
may or may not be sparse. We then enforce its sparsity by picking the top C0 components,
normalising them to 1, while setting the remaining components to zero. As a result, πi

is a C-dimensional probability vector with C0 non-negative components. In other words,
p(Ŷ |X = xi) is a multinomial mixture model of C0 components.

G DATASETS AND EXPERIMENT SETTINGS

Datasets For the synthetic instance-dependent label noise setting, we use CIFAR-10 and CIFAR-
100 datasets and follow (Xia et al., 2020) to generate synthetic instance-dependent noisy labels. For
the real-world label noise setting, we use three common benchmarks, namely: Controlled Noisy Web
Labels (CNWL) (Jiang et al., 2020), mini-WebVision (Li et al., 2017) with additional evaluation on
the validation of ImageNet ILSVRC 2012 (Russakovsky et al., 2015), and Animal-10N (Song et al.,
2019). For CNWL, we use the web label noise (or red noise) setting where the labels of internet-
queried images are annotated manually. For mini-WebVision, we follow previous works that take a
subset containing the first 50 classes in the WebVision 1.0 dataset for training and evaluate on the
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clean validation set. The model trained on mini-WebVision is also evaluated on the clean validation
set of ImageNet ILSVRC 2012. Finally, we evaluate the proposed method on Animal-10N dataset
that contains 5 pairs of similar-looking animals.

Models We follow the same setting in previous studies (Li et al., 2020; Xu et al., 2021) that use
PreAct Resnet-18 as the backbone to evaluate the proposed method on CIFAR-10, CIFAR-100 and
Red CNWL datasets. For CNWL, input images are resized from 84-by-84 pixel2 to 32-by-32 pixel2
to be consistent with previous evaluations (Xu et al., 2021). For mini-WebVision, we follow the
setting in DivideMix (Li et al., 2020) by resizing images to 224-by-224 pixel2 before passing the
images into a Resnet-50. For Animal-10N, we follow experiment setting specified in (Song et al.,
2019) by training a VGG-19 backbone on 64-by-64 images to obtain a fair comparison with existing
baselines.

Hyper-parameters The model of interest is warmed-up for 10 epochs with a mini-batch size of
128 training samples and trained for 150 epochs in total. The optimiser used is the stochastic gradient
descent (SGD) with a momentum of 0.9 and an initial learning rate of 0.02. The learning rate is
decayed following a cosine annealing with a cycle of 106 iterations (gradient update steps). For the
priors defined in (5), we assume both priors on the mixture coefficient (or clean label posterior) πi

and the probability vector ρic of the multinomial components as symmetric Dirichlet distributions
with α = 1.1 and β = 1.1. For the nearest neighbours, we first randomly sample a subset of
15,000 samples then perform nearest neighbour search and select the 10 nearest samples for LLC.
The parameters µ = 0.5 and γ = 0.95 are used across all of the experiments.

Our implementation is in JAX (Bradbury et al., 2018) and can be accessed at https://
anonymous.4open.science/r/identifiable_label_noise/. All experiments are
performed on a computer with a Intel 10th-gen i7 CPU, 32 GB RAM and NVIDIA A6000 GPU.

H ADDITIONAL RESULTS ON COMMON LNL BENCHMARKS

We provide additional results on the common LNL benchmarks with synthetic instant-dependent
label noise on the two datasets CIFAR-10 and CIFAR-100 in Table 10.

Table 10: Comparison of prediction accuracy (%) on various instance-dependent label noise rates
for CIFAR-10 and CIFAR-100 with different network architectures including self-supervised on the
corresponding un-labelled datasets. The majority of results are adopted from (Yao et al., 2021) with
† denoting results from their respective papers and * denoting results reported in (Zhu et al., 2021b);
the bold numbers denote the maximum mean values across all methods considered. Best result in
bold, 2nd best in italics.

CIFAR-10 CIFAR-100
Noise rate 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
Cross-entropy (Yao et al., 2021) 75.81 69.15 62.45 39.42 30.42 24.15 21.45 14.42
mixup (Zhang et al., 2018) 73.17 70.02 61.56 48.95 32.92 29.76 25.92 21.31
Forward (Patrini et al., 2017) 74.64 69.75 60.21 46.27 36.38 33.17 26.75 19.27
T-Revision (Xia et al., 2019) 76.15 70.36 64.09 49.02 37.24 36.54 27.23 22.54
Reweight (Liu & Tao, 2015) 76.23 70.12 62.58 45.46 36.73 31.91 28.39 20.23
Decoupling (Malach & Shalev-Shwartz, 2017) 78.71 75.17 61.73 50.43 36.53 30.93 27.85 19.59
Co-teaching (Han et al., 2018b) 80.96 78.56 73.41 45.92 37.96 33.43 28.04 23.97
MentorNet (Jiang et al., 2018) 81.03 77.22 71.83 47.89 38.91 34.23 31.89 24.15
CausalNL (Yao et al., 2021) 81.79 80.75 77.98 78.63 41.47 40.98 34.02 32.13
CAL (Zhu et al., 2021a)† 92.01 - 84.96 - 69.11 - 63.17 -
PTD-R-V (Xia et al., 2020)† 76.58 72.77 59.50 56.32 65.33 64.56 59.73 56.80
Peer loss (Liu & Guo, 2020)* 89.52 ± 0.22 - 83.44 ± 0.30 - 61.13 ± 0.48 - 48.01 ± 0.12 -
LDMI (Xu et al., 2019)* 88.67 ± 0.70 - 83.65 ± 1.13 - 57.36 ± 0.97 - 43.06 ± 2.39 -
Lq (Zhang & Sabuncu, 2018)* 85.66 ± 1.09 - 75.24 ± 1.07 - 56.92 ± 0.24 - 40.17 ± 1.52 -
Co-teaching+ (Yu et al., 2019)* 89.82 ± 0.39 - 73.44 ± 0.38 - 41.62 ± 1.05 - 24.74 ± 0.85 -
JocoR (Wei et al., 2020)* 88.82 ± 0.20 - 71.13 ± 1.94 - 44.55 ± 0.62 - 23.92 ± 0.32 -
HOC global (Zhu et al., 2021b)† 89.71 ± 0.51 - 84.62 ± 1.02 - 68.82 ± 0.26 - 62.29 ± 1.11 -
HOC local (Zhu et al., 2021b)† 90.03 ± 0.15 - 85.49 ± 0.80 - 67.47 ± 0.85 - 61.20 ± 1.04 -
kMEIDTM (Cheng et al., 2022)† 92.26 90.73 85.94 73.77 69.16 66.76 63.46 59.18
IDNT (Wang et al., 2025) 83.68 ± 0.72 79.93 ± 0.65 75.57 ± 0.57 67.23 ± 0.46 54.68 ± 1.38 46.93 ± 0.85 43.57 ± 0.37 38.23 ± 0.76
STMN (Zhang et al., 2024) 80.10 ± 0.45 76.66 ± 2.19 71.88 ± 2.19 57.14 ± 3.38 – 42.65 ± 0.49 – 31.12 ± 0.63
Ours 92.39 ± 0.85 90.14 ± 1.22 85.78 ± 1.27 62.07 ± 1.64 69.02 ± 1.44 66.80 ± 1.92 60.85 ± 1.95 41.42 ± 1.30
Ours (DINO) 91.16 ± 0.64 89.67 ± 1.13 86.85 ± 1.80 76.03 ± 3.68 75.45 ± 0.94 73.69 ± 1.23 70.32 ± 1.62 58.02 ± 2.01
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