
IDENTIFIABILITY IN NOISY LABEL LEARNING: A MULTINOMIAL MIXTURE MODELLING APPROACH

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Learning from noisy labels (LNL) is crucial in deep learning, in which one of
012 the approaches is to identify clean-label samples from poorly-annotated datasets.
013 Such an identification is challenging because the conventional LNL problem,
014 which assumes only one noisy label per instance, is non-identifiable, i.e., clean
015 labels cannot be estimated theoretically without additional heuristics. This paper
016 presents a novel data-driven approach that addresses this issue without requiring
017 any heuristics about clean samples. We discover that the LNL problem becomes
018 identifiable if there are at least $2C - 1$ i.i.d. noisy labels per instance, where
019 C is the number of classes. Our finding relies on the assumption of i.i.d. noisy
020 labels and multinomial mixture modelling, making it easier to interpret than pre-
021 vious studies that require full-rank noisy-label transition matrices. To fulfil this
022 condition without additional manual annotations, we propose a method that au-
023 tomatically generates additional i.i.d. noisy labels through nearest neighbours.
024 These noisy labels are then used in the Expectation-Maximisation algorithm to
025 infer clean labels. Our method demonstrably estimates clean labels accurately
026 across various label noise benchmarks, including synthetic, web-controlled, and
027 real-world datasets. Furthermore, the model trained with our method performs
028 competitively with many state-of-the-art methods.

1 INTRODUCTION

031 The significant advances in machine learning over the past decade have led to the development of
032 numerous applications that tackle increasingly-complex problems in many areas, such as computer
033 vision (Krizhevsky et al., 2012; Dosovitskiy et al., 2021), natural language processing (NLP) (Bah-
034 danau et al., 2015; Vaswani et al., 2017) and reinforcement learning (Silver et al., 2016; Jumper
035 et al., 2021). These solutions often rely on high-capacity models trained on vast amounts of anno-
036 tated data. The annotation of large datasets often relies on crowd-sourcing services, such as Amazon
037 Mechanical Turk, or automated approaches based on NLP or search engines. This might, generally,
038 produce poor-quality annotated labels, especially when data is ambiguous. Such a subpar anno-
039 tation, coupled with the well-known issue of deep neural networks being susceptible to overfitting to
040 randomly-labelled data (Zhang & Sabuncu, 2018), might lead to catastrophic failures, particularly
041 in critical applications such as autonomous vehicles or medical diagnostics. These challenges have
042 spurred research in the field of noisy label learning, aiming at addressing the problem of learning
043 from datasets with noisy annotations.

044 More specifically, learning from noisy labels (LNL) aims to employ mis-labelled training data to
045 train a classifier that can generalise well. One approach to accomplish this is to infer the clean label
046 Y of an instance X from an observed noisy label \hat{Y} . If C is the number of classes, then one can
047 relate Y and \hat{Y} through the sum rule of probability as follows:

$$\Pr(\hat{Y}|X) = \sum_{c=1}^C \Pr(\hat{Y}|X, Y = c) \Pr(Y = c|X). \quad (1)$$

049 In the literature, the clean label probability $\Pr(Y|X)$, the transition probability $\Pr(\hat{Y}|X, Y)$ and
050 the noisy label probability $\Pr(\hat{Y}|X)$ are modelled as categorical distributions. This, however, re-
051 sults in an ambiguous estimation because there are multiple combinations of hidden probability pair
052 $(\Pr(\hat{Y}|X, Y), \Pr(Y|X))$ leading to the same observed noisy label probability $\Pr(\hat{Y}|X)$. For ex-
053 ample, the following 3-class classification has at least two different solutions that result in the same

054 observed noisy label distribution $\Pr(\hat{Y}|X)$:
 055

$$056 \quad \Pr(\hat{Y}|X) = \begin{bmatrix} 0.25 \\ 0.45 \\ 0.3 \end{bmatrix} = \underbrace{\begin{bmatrix} 0.8 & 0.1 & 0.2 \\ 0.15 & 0.6 & 0.3 \\ 0.05 & 0.3 & 0.5 \end{bmatrix}}_{\Pr_1(\hat{Y}|X,Y)} \underbrace{\begin{bmatrix} 2/11 \\ 13/22 \\ 5/22 \end{bmatrix}}_{\Pr_1(Y|X)} = \underbrace{\begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.1 \\ 0.2 & 0.2 & 0.8 \end{bmatrix}}_{\Pr_2(\hat{Y}|X,Y)} \underbrace{\begin{bmatrix} 2/15 \\ 7/10 \\ 1/6 \end{bmatrix}}_{\Pr_2(Y|X)}.$$

057
 058
 059
 060

061 Failing to address the LNL identifiability issue might lead to estimating an undesirable model which
 062 may not be useful for making predictions or drawing conclusions. Existing LNL methods address
 063 the identifiability issue primarily through modelling-driven approaches, often by imposing ad-hoc
 064 priors in the form of heuristic assumptions and constraints, such as small-loss criterion (Han et al.,
 065 2018b), anchor points (Liu & Tao, 2015) or zero Bayes risk (Zhu et al., 2024)), feature-based meth-
 066 ods (Kim et al., 2021) or unique constraints on the modelling of transition matrix (Li et al., 2021;
 067 Zhang et al., 2021b). Other methods follow a data-driven approach with multiple noisy labels per
 068 sample (Liu et al., 2023). Although methods based on the modelling-driven approach have achieved
 069 successful results in several benchmarks, their heuristics are either (i) sub-optimal, e.g., small-loss
 070 criterion might under-select “hard examples” (i.e., samples that are near decision boundaries) that
 071 are informative for learning, or (ii) associated with assumptions that might not always hold in prac-
 072 tice, e.g., anchor points in (Liu & Tao, 2015), zero-error data in (Zhu et al., 2024), or “alignment
 073 clusterability” in (Kim et al., 2021). In contrast, the data-driven approach tackles the problem more
 074 fundamentally without relying on heuristic assumptions; however, current results in methods based
 075 on the data-driven approach are difficult to interpret (e.g., full-rank transition matrices (Liu et al.,
 076 2023)), reducing their applicability in practice.
 077

078 In this paper, we investigate the identifiability issue in LNL following the data-driven approach with
 079 multiple noisy labels per training sample. Specifically,
 080

- 081 • we formulate clean labels in LNL through multinomial mixture models and theoretically
 082 derive the identifiability condition, showing that at least $2C - 1$ i.i.d. noisy labels are
 083 required per training sample, and
- 084 • we propose a practical method based on nearest neighbours to generate additional i.i.d.
 085 noisy label to meet the identifiability condition.

086 The empirical evaluation of the proposed method evaluated on several LNL benchmarks (including
 087 synthetic, web-controlled and real-world label noise problems) demonstrates its capability to esti-
 088 mate clean labels without any heuristics. Furthermore, even though the main goal of this paper is
 089 the theoretical investigation of the identifiability condition, our practical method shows competitive
 090 results with several state-of-the-art techniques.

091 2 BACKGROUND

092 **Identifiability** studies whether the exact parameters of a model of interest can be uniquely re-
 093 covered from observed data. Generally, a model is identifiable if and only if its parameters can be
 094 uniquely determined from available data. In contrast, a non-identifiable model implies that there
 095 exists multiple sets of parameters, where each set can explain the observed data equally well. Identifi-
 096 ability is particularly important in statistical modelling, where statistical methods are used to infer
 097 the true set of parameters from data. Formally, the identifiability of a distribution $\Pr(X; \theta)$ over a
 098 random variable X , parameterised by $\theta \in \Theta$ with Θ denoting a parametric space, can be defined as:

099 **Definition 1.** $\Pr(X; \theta)$ is identifiable if it satisfies: $\Pr(X; \theta) = \Pr(X; \theta') \implies \theta = \theta', \forall \theta, \theta' \in \Theta$.

100 **Mixture models** A mixture of P distributions can be written as: $q(X) = \sum_{c=1}^P \pi_c \Pr(X; \theta_c)$,
 101 where X is a random variable in \mathcal{X} , π is the mixture coefficient vector in the $(P - 1)$ -dimensional
 102 probability simplex $\Delta^{P-1} = \{\mathbf{y} : \mathbf{y} \in [0, 1]^P \wedge \mathbf{1}^\top \mathbf{y} = 1\}$, and $\{\Pr(X; \theta_c)\}_{c=1}^P$ is a set of P distri-
 103 butions. Compared to a single distribution, mixture models are more flexible with higher modelling
 104 capacity, and hence, widely used to provide computationally convenient representation of complex
 105 data distributions. And since mixture models are an instance of latent variable models, the Expecta-
 106 tion - Maximisation (EM) algorithm (Dempster et al., 1977) can be used to infer their parameters.

107 **Identifiability issue in mixture models** is one of the most common problems in statistical in-
 108 ference. For example, if all of the P component distributions in a mixture model $q(X)$ belong

108 to the same parametric family, then $q(X)$ is invariant under $P!$ permutations by simply swapping
 109 the indices of the component distributions, a phenomenon known as *label-switching*. In practice,
 110 the identifiability issue due to *label-switching* (we will refer to this identifiability issue as label-
 111 switching from now on) is of no concern since one can impose an appropriate constraint on its
 112 parameters to obtain a unique solution. Nevertheless, parameter identifiability up to the permutation
 113 of class labels (we will refer this as identifiability in the remaining of this paper) is still a practi-
 114 cal problem, at least in maximum likelihood for mixture models where the distribution components
 115 of such mixtures belong to certain distribution families. According to (Titterington et al., 1985,
 116 Section 3.1), most mixture models supported on continuous space, e.g., Gaussian mixture models
 117 (excluding the mixture of uniform distributions), are identifiable. However, when the support space
 118 is discrete, the identifiability of such mixtures might not always hold. For example, a mixture of
 119 Poisson distribution (Teicher, 1961) or a mixture of negative binomial distribution (Yakowitz &
 120 Spragins, 1968) is identifiable, while a mixture of binomial distributions is only identifiable under
 121 certain conditions (Teicher, 1961, Proposition 4). Another example is multinomial mixture models
 122 which is, according to the Theorem 1 defined below, identifiable if and only if the number of samples
 123 is at least almost twice the number of mixture components.

124 **Theorem 1** ((Kim, 1984, Lemma 2.2), (Elmore & Wang, 2003, Theorem 4.2)). *The class of N -trial
 125 C -category multinomial mixture models: $\left\{M(\mathbf{x}) : M(\mathbf{x}) = \sum_{c=1}^C \pi_c \text{Mult}(\mathbf{x}; N, \rho_c)\right\}$ is identifi-
 126 able (up to label permutation) if and only if $N \geq 2C - 1$.*

128 3 METHODOLOGY

130 The first part of this section establishes the data-driven identifiability condition for the LNL problem
 131 in the setting where each training sample has multiple i.i.d. noisy labels. The second part introduces
 132 a practical method that satisfies the identifiability condition, enabling inference of the clean label
 133 distribution when only a single noisy label is available per training sample.

135 3.1 IDENTIFIABLE CONDITION FOR NOISY LABEL LEARNING

137 In LNL, the clean label Y is often considered as a latent variable, and hence, the noisy label distri-
 138 bution $\Pr(\hat{Y}|X = \mathbf{x}_i)$ can be modelled as a mixture of C distributions $\Pr(\hat{Y}|Y = c, X = \mathbf{x}_i), \forall c \in$
 139 $\{1, \dots, C\}$ as in Eq. (1). Conventionally, each of the C distributions $\Pr(\hat{Y}|Y = c, X = \mathbf{x}_i)$ is
 140 assumed to be a categorical distribution. Here, we expand the capability of such a modelling to
 141 the setting of multiple noisy labels by considering each $\Pr(\hat{Y}|Y = c, X = \mathbf{x}_i)$ as a multinomial
 142 distributions. Specifically, we model $\Pr(\hat{Y}|Y = c, X = \mathbf{x}_i) = \text{Mult}(\hat{Y}; N, \rho_{ic})$ as an N -trial multi-
 143 nomial component, and $\Pr(Y = c|X = \mathbf{x}_i) = \pi_{ic}$ as the corresponding mixture coefficient, where
 144 $N \in \mathbb{Z}_+$ is the number of trials in the multinomial components (or number of noisy labels per training
 145 sample), $\rho_{ic} \in \Delta^{C-1}$ is the probability parameter of the multinomial component, $\pi_i \in \Delta^{C-1}$ is
 146 the clean label probability and $c \in \{1, \dots, C\}$ is the class index. Eq. (1) can, therefore, be written
 147 in the form of a multinomial mixture model as:

$$148 \Pr(\hat{Y} | X = \mathbf{x}_i) = \sum_{c=1}^C \pi_{ic} \text{Mult}(\hat{Y}; N, \rho_{ic}). \quad (2)$$

150 The modelling assumption in Eq. (2) allows to determine the identifiable condition in LNL by lever-
 151 aging the result in Theorem 1 as follows:

153 **Identifiability Condition** (Corollary of Theorem 1). *Any noisy label learning problem where the
 154 noisy label distribution is modelled as a multinomial mixture model shown in Eq. (2) is identifiable
 155 if and only if there are at least $2C - 1$ i.i.d. noisy labels \hat{Y} of an instance \mathbf{x} sampled from the noisy
 156 label multinomial distribution $\Pr(\hat{Y}|X = \mathbf{x})$. In other words, $N \geq 2C - 1$.*

158 For example, the conventional LNL setting has only one noisy label per sample: $N = 1$, and hence,
 159 is non-identifiable for $C \geq 2$ unless additional assumptions or constraints are introduced. Another
 160 example is that binary classification on noisy labels, corresponding to $C = 2$, is identifiable if
 161 $N \geq 3$, or in other words, there must be at least 3 noisy labels per sample. This agrees with previous
 162 studies identifiability for the LNL problem (Zhu et al., 2021b; Liu et al., 2023).

162 **Table 1:** Comparison of identifiability conditions: Liu et al. (2023) vs. our approach.
163

Aspect	(Liu et al., 2023)	Ours
Assumption	Full-rank transition matrix annotators \Leftrightarrow experts whose annotations have high probability of matching ground truths	i.i.d. noisy labels from $\Pr(\hat{Y} X)$
Min. Nº of labels per instance	3 expert annotations	$2C - 1$ i.i.d. annotations
Pros & cons	<ul style="list-style-type: none"> ✓ Few annotations per instance ✗ Expert recruitment is costly and hard to meet for large number of classes C \rightarrow prioritise annotator quality to minimise annotation quantity 	<ul style="list-style-type: none"> ✗ Higher number of annotations ✓ Easy to achieve (e.g., crowdsourcing) \rightarrow trade annotator quality for annotation quantity

175
176 **Remark 1.** Previous work by Liu et al. (2023) establishes an identifiability condition that requires
177 at least three noisy labels per instance, each provided by a highly skilled annotator whose associated
178 transition matrix is full rank. This assumption, while theoretically appealing, imposes a significant
179 practical burden: recruiting such highly competent experts is costly and becomes increasingly infea-
180 sible as the number of classes C grows. In contrast, our result “transposes” the previous condition,
181 in which at least $2C - 1$ i.i.d. noisy labels from the same noisy label distribution $\Pr(\hat{Y}|X)$ are
182 required per instance, without any requirement on annotator expertise beyond independence. Al-
183 though our condition is less optimistic in terms of the number of labels needed, it eliminates the
184 stringent high-skill (i.e., full rank) assumption. Intuitively, Liu et al. (2023) relies on a small set
185 of expert annotators, whereas our result trades annotator quality for quantity, enabling the use of
186 large-scale crowdsourcing. The differences between these two studies are summarised in Table 1.

187 According to the identifiability condition, at least additional $2C - 2$ i.i.d. noisy labels per training
188 sample must be available to solve the LNL in its standard setting. One can naively request more
189 noisy labels per training sample, e.g., via crowd-sourcing, that satisfies the identifiability condition.
190 Such an approach is, however, costly, time-consuming and poorly scalable, especially when the
191 number of classes C is large. For example, WebVision dataset (Li et al., 2017) with $C = 1,000$
192 classes will require at least an addition of 1,998 noisy labels per sample, resulting in an impractical
193 solution. To address this issue, we propose a practical method in Section 3.2 to generate additional
194 noisy labels to address the identifiability issue in LNL.

195
196 **3.2 PRACTICAL METHOD TO FULFIL THE IDENTIFIABILITY CONDITION**
197

198 To obtain additional noisy labels per sample without additional labelling resources, we propose to
199 approximate the noisy label distribution $\Pr(\hat{Y}|X)$ by taking the similarity between the features of
200 training samples into account. Our assumption is that training samples with similar features tend
201 to be annotated similarly. In other words, similar instances have similar noisy labels (Table 5 em-
202 pirically verifies this claim on Cifar-10N). Thus, we can leverage the single noisy label per training
203 sample available in the training dataset to approximate the noisy label distribution $\Pr(\hat{Y}|X)$. The
204 approximated distribution is then used to generate many i.i.d. noisy labels that meet the identifi-
205 ability condition specified in Section 3.1. Subsequently, the EM algorithm is employed to infer
206 the parameters of the multinomial mixture model in Eq. (2), including the clean label distribution
207 $\Pr(Y|X)$. Appendix C presents a discussion on alternative ways to approximate $\Pr(\hat{Y}|X)$.

208
209 **3.2.1 APPROXIMATING THE MULTI-MODAL NOISY LABEL DISTRIBUTION $\Pr(\hat{Y}|X)$**
210

211 To generate additional i.i.d. noisy labels, we approximate the noisy label distribution of each train-
212 ing sample by exploiting the information of its nearest neighbours. The approximated noisy label
213 distribution of an instance, denoted as $\widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_i)$, is derived not only from its own noisy label
214 but also from the noisy labels of other instances whose features are similar to the instance:

215
$$\widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_i) \leftarrow \mu \widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_i) + (1 - \mu) \sum_{j \neq i, j=1}^K \mathbf{A}_{ij} \widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_j), \quad (3)$$

216 where μ is a hyper-parameter in $[0, 1]$ reflecting the trade-off between the noisy labels of the
 217 instance and its neighbours, K is the number of nearest neighbours, and $\mathbf{A}_{ij} \in [0, 1]$ is a coefficient
 218 representing the similarity between \mathbf{x}_i and \mathbf{x}_j . Note that $\sum_{j \neq i, j=1}^K \mathbf{A}_{ij} = 1$.
 219

220 There are several ways to find the similarity matrix $[\mathbf{A}_{ij}]$, $\mathbf{A}_{ii} = 0, i \in \{1, \dots, M\}, j \in$
 221 $\{1, \dots, K\}$. For example, the study in (He et al., 2017) employs sparse subspace clustering
 222 method (Elhamifar & Vidal, 2013) to approximate the label distribution when learning human age
 223 from images. In this paper, we use a slightly similar but more efficient method that utilises the
 224 nearest neighbour information: locality-constrained linear coding (LLC) (Wang et al., 2010). In
 225 particular, the coefficient \mathbf{A}_{ij} can be determined via the following optimisation:
 226

$$\min_{\mathbf{A}_i} \|\mathbf{x}_i - \mathbf{B}_i \mathbf{A}_i\|_2^2 + \lambda \|\mathbf{d}_i \odot \mathbf{A}_i\|_2^2 \quad \text{s.t.: } \mathbf{1}^\top \mathbf{A}_i = 1, \mathbf{A}_{ij} \geq 0, \forall j \in \{1, \dots, K\}, \quad (4)$$

227 where \mathbf{B}_i is a matrix containing the K nearest neighbours of instance \mathbf{x}_i (each column is a nearest-
 228 neighbour instance), $\mathbf{A}_i = [\mathbf{A}_{i1} \ \mathbf{A}_{i2} \ \dots \ \mathbf{A}_{iK}]^\top$ is the K -dimensional vector representing
 229 the coding coefficients, \odot is the element-wise multiplication (a.k.a. Hadamard product), $\mathbf{d}_i =$
 230 $\exp(\text{dist}(\mathbf{x}_i, \mathbf{B}_i)/\sigma)$ is the locality adaptor with $\text{dist}(\mathbf{x}_i, \mathbf{B}_i)$ being a vector of Euclidean distances
 231 from \mathbf{x}_i to each of its nearest neighbours, and σ being used for adjusting the weight decay speed for
 232 the locality adaptor. Nevertheless, since our interest is locality, not sparsity, in our implementation,
 233 we ignore the second term in Eq. (4) by setting $\lambda = 0$.
 234

235 Note that the optimisation in (4) is slightly different from the original LLC due to the additional
 236 constraint of non-negativity of \mathbf{A}_{ij} . Nevertheless, the optimisation resembles a quadratic program,
 237 and therefore, can be efficiently solved by off-the-shelf solvers, such as OSQP (Stellato et al., 2020).
 238

239 To efficiently find nearest neighbours, we utilise TPU-KNN (Chern et al., 2022) – an efficient ap-
 240 proximation to search for nearest neighbours with GPU acceleration capabilities. To optimise com-
 241 putational efficiency and memory usage, we employ the features extracted from training samples in
 242 the nearest neighbour search. Furthermore, to enhance the scalability of our method when dealing
 243 with large datasets containing millions of training samples, we perform the nearest neighbour search
 244 in a subset (about 15,000 training samples) that is randomly sampled from the training set.
 245

246 **Validity of i.i.d. assumption in generated noisy labels** The i.i.d. assumption in the identifiability
 247 condition is applied on noisy labels of training samples. It does not have any requirements on
 248 the estimation of the noisy label distribution $\Pr(\hat{Y}|X)$ or the dependence between neighbouring
 249 samples. Once this distribution is estimated via Eq. (3), noisy labels are i.i.d. sampled from the
 250 approximated distribution, and hence, satisfy the identifiability condition.
 251

3.2.2 INFER CLEAN LABEL POSTERIOR WITH EM

252 Once the noisy label distribution $\widetilde{\Pr}(\hat{Y}|X)$ is approximated as a $(K+1)C$ -multinomial mixture, we
 253 can generate L sets, each consisting of N noisy labels, with $N \geq 2C - 1$, for each instance. The
 254 EM algorithm is then used to infer the parameter of the multinomial mixture model in Eq. (2). In
 255 particular, the objective function for the i -th sample can be written as:
 256

$$\max_{\pi_i, \rho_i} 1/L \sum_{l=1}^L \ln \Pr(\hat{Y} = \hat{y}_l | X = \mathbf{x}_i; \pi_i, \rho_i) + \ln \Pr(\pi_i; \alpha) + \ln \Pr(\rho_i; \beta), \quad (5)$$

257 where: $\hat{y}_l \sim \widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_i)$ is an N -trial multinomial vector (e.g., sum of N one-hot noisy labels of
 258 an instance), and α and β are the parameters of the priors of π_i and ρ_i , respectively. The parameters
 259 π_i and ρ_i in (5) can be optimised via the EM algorithm.
 260

261 According to Eq. (3), additional multinomial noisy labels are sampled from a $(K+1)C$ -multinomial
 262 mixture, $\widetilde{\Pr}(\hat{Y}|X = \mathbf{x}_i)$. Such a sampling process, however, has a complexity of $\mathcal{O}((K+1)C^2)$,
 263 which is expensive when C – the number of classes – is large. That is because the mixture co-
 264 efficient (or pseudo-clean label probability), $\pi_i = \Pr(Y|X = \mathbf{x}_i)$, is assumed to be dense with
 265 C components, while in practice, $\Pr(Y|X = \mathbf{x}_i)$ is often sparse with only C_0 components where
 266 $C_0 \ll C$ (Han et al., 2018a). We therefore exploit this observation to mitigate the issue of high
 267 complexity due to sampling. Appendix F provides further details on the reduction of number of
 268 noisy labels needed in our practical implementation.
 269

The proposed method (see Algorithm 1 in Appendix D) relies on the extracted features to perform
 nearest neighbour search. Thus, if the features extracted are biased, it will worsen the quality of the

270 Table 2: The running time complexity per epoch of the data pre-processing step of the proposed
 271 algorithm and existing methods, where: $|\theta|$ is the number of model’s parameters, M is the total
 272 number of training samples, B is the mini-batch size, C is the number of classes, K is the number
 273 of nearest neighbours, L is the set of multiple noisy labels (e.g., $2C - 1$ per training samples), d is
 274 the dimension of input samples, n_{augment} is the number of data augmentations, n_{iter} , n_{osqp} , n_{em} are
 275 the number of optimisation iterations used within each method.

Method	Complexity
DivideMix (Li et al., 2020)	$\mathcal{O}(6 \theta + [4 + 2/B(n_{\text{augment}}d + 2C)]M)$
HOC (Zhu et al., 2021b)	$\mathcal{O}(\theta + 3M + 2\ln M + n_{\text{iter}}C^2)$
Ours	$\mathcal{O}(2 \theta + 2\ln M + 2n_{\text{osqp}}Kd + 2(L + n_{\text{em}})C^2)$

282 nearest neighbours, reducing the effectiveness of the proposed method. To avoid such confirmation
 283 bias, we follow the *co-teaching* approach (Han et al., 2018b) that trains two models simultaneously
 284 where the noisy labels being cleaned by one model are used to train the other model and vice
 285 versa. We also analyse the complexity (only the “data pre-processing step” and excludes the loss
 286 calculation and model training because they are almost identical) of the proposed algorithm (see
 287 Algorithm 1) and present the result in Table 2 (see Appendix E for the detailed analysis). In general,
 288 the bottleneck of our method is at the sampling of i.i.d. noisy labels and the EM algorithm due to
 289 its quadratic complexity with respect to the number of classes C . Readers are referred to Table 9 in
 290 Appendix E for the details of actual running time.

291 4 EXPERIMENTS

294 We employ several LNL benchmarks to evaluate the robustness of the proposed learning method
 295 when dealing with the most realistic type of label noise, namely: the instance-dependent noise.
 296 In particular, the experiments are performed on both synthetic and real-world instance-dependent
 297 label noise benchmarks. In addition, because our focus is on the theory of the identifiability in the
 298 LNL problem, we show that the proposed method is effective and competitive to other state-of-the-
 299 art (SOTA) methods without resorting to fine-tuning or employing highly-complex neural network
 300 architectures. The details of datasets, hyper-parameters and models used are shown in Appendix G.

301 4.1 COMPARISON WITH IDENTIFIABILITY-BASED METHODS

303 Since both (Liu et al., 2023) and our study tackle the same identifiability issue in LNL, but follow
 304 different approaches, it is important to evaluate the performance of practical methods derived from
 305 the two approaches. More specifically, we compare HOC (Zhu et al., 2021b), representing (Liu
 306 et al., 2023), with our method presented in Section 3.2. The comparison is conducted on multiple
 307 noisy-label datasets, namely: three human-annotated noisy labels in CIFAR-10N (Wei et al., 2022).
 308 The results of HOC are obtained through its official implementation, which is publicly available.

309 For the real-world dataset CIFAR-10N, we evaluate on all of the available settings, including a single
 310 label for each of the three annotation cases, the *aggregate* which randomly selects one label from
 311 the three noisy labels, and the *worst* which selects the noisy label among the three labels annotated.
 312 We also consider the case of combining three noisy labels together by aggregating them into a soft
 313 label in the case of the cross-entropy baseline and our method, or passing all three into the model of
 314 interest to learn higher-order statistics in the case of HOC.

315 As shown in Table 3, our method outperforms the cross-entropy baseline and HOC in all CIFAR-
 316 10N settings. The performance gap between HOC and our method may be attributed to HOC’s
 317 dependence on *k-NN label clusterability* (Zhu et al., 2021b, Definition 1), which requires that the
 318 k-nearest neighbours of an instance must belong to the same true class. This is evident from the
 319 improvement of HOC’s performance when using three noisy labels per training sample, as shown
 320 in the last column of Table 3. In contrast, our method does not rely on the strong assumption of k-
 321 NN label clusterability and can consistently perform well with either single or multiple noisy labels
 322 per training sample. Note that when using all three available noisy labels, the performance gap
 323 between the baseline (training model directly on noisy label data), HOC and our method vanishes.
 This might be because the assumption of three noisy labels in HOC becomes valid. In addition, the

Table 3: Prediction accuracy on human-annotation CIFAR-10N.

CIFAR-10N						
Setting	Aggregate	Random 1	Random 2	Random 3	Worst	3 noisy labels
Noise rate	0.09	0.17	0.18	0.18	0.40	0.02
Cross-entropy (Wei et al., 2022)	87.77 ± 0.38	85.02 ± 0.65	86.46 ± 1.79	85.16 ± 0.61	77.69 ± 1.55	92.24 ± 0.66
HOC (Zhu et al., 2021b)	83.34 ± 0.09	81.92 ± 0.18	81.76 ± 0.12	81.31 ± 0.17	62.31 ± 0.14	91.94 ± 0.73
Ours	89.69 ± 1.15	90.00 ± 0.23	89.79 ± 0.18	88.69 ± 0.23	89.89 ± 0.45	92.41 ± 0.79

Table 4: Prediction accuracy (%) on real-world noisy label datasets: *(left)* Red CNWL, *(middle)* mini-WebVision and ImageNet and *(right)* Animal-10N. Best result in **bold**, 2nd best in *italics*.

Method	Noise rate of CNWL			Method	WebVision	ImageNet	Method	Animal-10N	
(no pre-trained)	0.2	0.4	0.6	mixup	74.96	-	Cross entropy	79.40	
Cross-entropy	47.36	42.70	37.30	Co-teaching	63.58	61.48	Nested-Dropout	81.30	
mixup	49.10	46.40	40.58	DivideMix	77.32	75.20	CE + Dropout	81.30	
DivideMix	50.96	46.72	43.14	ELR	76.26	68.71	SELFIE	81.80	
MentorMix	51.02	47.14	43.80	MOIT	78.36	-	PLC	83.40	
FaMUS	51.42	48.06	45.10	NCR	77.10	-	Nested-CE	84.10	
SSR*	52.18	48.96	42.42	ASL	66.68	64.12	ASL	77.70	
LSL	54.68	49.80	45.46	ROBOT	68.24	65.20	ROBOT	83.52	
Ours	52.78	49.18	46.00	PCSE	70.48	67.72	PCSE	83.82	
				Ours	80.48	74.63	Ours	85.96	

label noise rate in this case is too small (approximately 0.02), and hence, makes the comparison less distinguishable. Note that in this experiment, our method relies on a PreAct Resnet-18 pre-trained on the training set of CNWL using SimCLR ([Chen et al., 2020](#)) for 500 epochs with a similar data augmentation policy (random crop and resize, colour jittering, grey or colourise and Gaussian blur), while the nearest neighbours in HOC rely on a Resnet-34 pre-trained on ImageNet.

4.2 RESULTS ON LNL COMMON BENCHMARKS

For Red CNWL, we follow the experimental setup from (Xu et al., 2021) and present results in Table 4 (*left*). This benchmark includes widely used SOTA methods evaluated on low-resolution (32-by-32 pixel²) images to ensure a fair comparison. While our goal is not to outperform existing methods, these results illustrate that generating multiple noisy labels per sample shows competitive performance, supporting our theoretical claims. We further evaluate the method on real-world noisy label datasets, mini-WebVision and Animal-10N, with results shown in Table 4 (*middle*) and (*right*). For mini-WebVision, we initialise the model with a ResNet-50 pre-trained for 100 epochs using DINO (Caron et al., 2021). For Animal-10N, we use a VGG-19 pre-trained with DINO for 800 epochs. Again, the results are not intended to be SOTA but to show that the proposed approach is robust and performs comparably under realistic noisy conditions. Additional results on CIFAR-10 and CIFAR-100 are provided in Appendix H (see Table 10). Table 10 (*top*) compares our method to other approaches on synthetic noise settings. On CIFAR-10, our method performs on par with SOTA methods, and on CIFAR-100, it slightly outperforms them. These results further support the core claim: that leveraging a sufficient number of noisy labels per sample can effectively address the noisy-label problem.

4.3 ABLATION STUDIES

We further study the effect of the number of noisy labels per sample, the number of nearest neighbours and the effectiveness of our relabelling. Note that no self-supervised learning is used for pre-training the model in the ablation studies to avoid potential confounding factors.

Number of noisy labels per sample We run experiments on the 100-class LNL problem of the Red CNWL dataset at 0.6 noise rate with various number of noisy labels per sample $N \in \{3, 20, 100, 199, 400\}$. We plot the results in Fig. 1 (left), where L is the number of N multinomial noisy labels defined in Algorithm 1. When L is small, the more noisy labels per sample or larger N , the more effective, and the effectiveness diminishes after the threshold of $2C - 1$, which in this case is 199. This empirically confirms the validity of Section 3.1 about the identifiability in noisy label learning. However, when L is large, the performance difference when varying N is not as noticeable. In this regime (of large L), Section 3.1 might result in a conservative requirement in terms of number of noisy labels per sample. The current LNL setting might contain some common

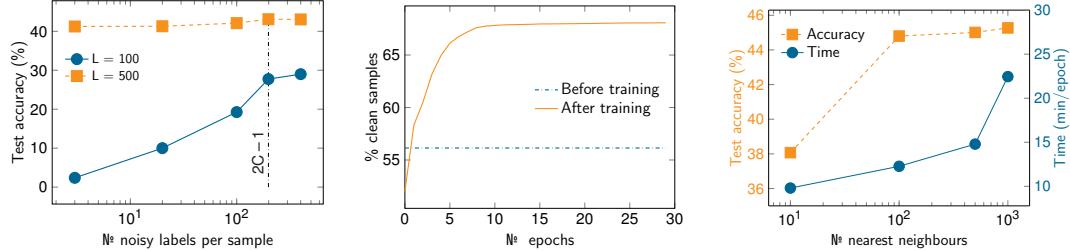


Figure 1: Ablation studies on: (left) the effect of number of noisy labels per sample on Red CNWL at a noise rate of 0.6, (middle) and (right) the accuracy of the relabelling and the influence of nearest neighbours on CIFAR-100.

Table 5: *Averaged label agreement (in percentage) of K nearest neighbours on CIFAR-10N to verify the assumption of label consistency.*

Settings	K = 10		K = 100	
	Train until converged	Warmup	Train until converged	Warmup
3 labels (2% noise)	97.96	65.49	62.10	55.25
Random 1 (17% noise)	89.04	60.95	54.29	42.52
Random 2 (18 % noise)	88.68	59.70	54.36	42.58
Random 3 (18% noise)	88.79	59.73	54.79	42.48
Worst label (40% noise)	53.73	45.05	43.15	33.65

latent structure between samples (e.g., limited number of candidate labels per instance), which we have not exploited yet to bring down the number of required noisy labels per sample. Future work will need to address such issue to make the problem more practical.

Effectiveness of label cleaning is investigated by measuring the accuracy on the training set between the pseudo labels “cleaned” by EM and the ground truth labels on CIFAR-100 at a noise rate of 0.5. We also include the percentage of clean samples before training to compare more easily. Note that despite the nominal noise rate of 0.5, the “empirical” noise rate measured on the generated noisy labels following (Xia et al., 2020) before training is 0.44 (corresponding to 56 percent clean samples). The results in Fig. 1 (middle) show that the proposed method can improve from the initial dataset with 56 percent of clean samples to 68 percent. This 12 percent improvement is equivalent to cleaning 27 percent of noisy labels that are initially present in the training set.

Number of nearest neighbours We also investigate the effect of the number of nearest neighbours K to our proposed method by evaluating on CIFAR-100 at a noise rate of 0.5. The results in Fig. 1 (right) show that the larger K , the more accurate the testing accuracy. However, the trade-off is the running time shown in the right axis of Fig. 1 (right). Since $K = 100$ gives a good balance between the performance and running time, this value is used in all of our experiments.

Label consistency of KNN We verify the label consistency of nearest neighbours with features extracted from our models. It is measured as the average label agreement between the sample of interest and its nearest neighbours. Table 5 shows the label agreement evaluated at two checkpoints: (i) training the model directly on noisy labels until convergence (*train directly*), and (ii) training the model for only 10 epochs (*warm-up*). In general, approximately more than two thirds of the nearest neighbours of each sample share the same class label at the beginning of the training. This means that the assumption of label consistency, in which similar instances have similar noisy labels, made in Section 3.2.1 holds with adequate probability. *Additional results on class-dependent (or asymmetric) label noise are included in Appendix I.*

5 RELATED WORK

LNL has been studied since the 1980s with some early works focusing on the statistical point of view (Angluin & Laird, 1988; Bshouty et al., 2002), such as determining the number of samples to achieve certain prediction accuracy under certain types of label noise. The field has then attracted more research interest, especially in the era of deep learning where an increasing number of anno-

tated data is required to train large deep learning models. Learning from noisy labels is inherently challenging due to the issue of identifiability. Despite its importance, the identifiability issue in LNL remains a partially-addressed problem that requires the introduction of model-driven ad-hoc constraints or exploration through the use of data-driven multiple noisy labels.

Ad-hoc constraints Many studies have implicitly or partially discussed the identifiability issue in the LNL problem and proposed practical methods designed with different heuristic criteria (Menon et al., 2015) to make the problem identifiable. The most widely-used constraint is the *small loss criterion* where the labels of samples with small loss values are assumed to be clean (Han et al., 2018b). Training is then carried out either on only those low-risk samples (Han et al., 2018b) or cast as a semi-supervised learning approach with those clean samples representing labelled data while the others denoting un-labelled data (Li et al., 2020). Although this line of research achieves remarkable results in several benchmarks, they still lack theoretical foundations that explain why the *small loss criterion* is effective. There is one recent attempt that theoretically investigates the *small loss hypothesis* (Gui et al., 2021), but the study is applicable only to the class-dependent (a.k.a. instance-independent) label noise setting that assumes the presence of “anchor points”, i.e., samples that are guaranteed to have clean labels. Other methods propose different ad-hoc constraints based on observations in matrix decomposition and geometry. For instance, Lin et al. (2015); Li et al. (2021) suggest the minimal volume of the simplex formed from the columns of transition matrices. Zhang et al. (2021b) present a matrix decomposition approach and employ total variation regularisation to ensure the uniqueness of the solution. Cheng et al. (2022) impose similarity of transition matrices between samples that are close to each other.

Multiple noisy labels per instance Learning from multiple noisy labels per instance has recently emerged as one approach to theoretically address the identifiability issue. The most relevant study in this area is the investigation of identifiability of transition matrices in noisy label learning (Liu et al., 2023). In that paper, the authors implicitly extend the conventional 2-D transition matrix to a 3-D tensor with the third dimension representing annotators and exploit the results in 3-D arrays (Kruskal, 1976; 1977) to find the condition of identifiability. Similar to a study in crowdsourcing literature (Traganitis et al., 2018, Lemma 1), the authors in (Liu et al., 2023) conclude that at least 3 “informative” noisy labels per instance are needed. Although the finding is more optimistic than ours, it relies on the assumption of “informative” noisy labels, which requires a full-rank transition matrix for each annotator on each instance. The assumption of full-rank transition matrices implicitly depends on the number of classes as a larger number of classes increases the difficulty to make each C -by- C transition matrix full-rank. Moreover, that assumption lacks clarity since it is unclear how to translate the full-rankness required for a transition matrix to a property an annotator must have. In contrast, our result does not rely on those assumptions, such as the “informativeness” of noisy labels nor full-ranked transition matrices, except that the multiple noisy labels should be i.i.d., and that we rely on a multinomial mixture modelling. Another related study is the Higher-Order-Consensus (HOC) (Zhu et al., 2021b), which is a practical method present in (Liu et al., 2023). To address the identifiability issue in LNL, HOC also relies on the full-rank transition matrices (Zhu et al., 2021b, Assumption 1) and the 2-NN *label clusterability* (Zhu et al., 2021b, Definition 1) where the sample of interest and its two nearest neighbours belong to the same true class. HOC, however, mainly relies on instance-independent label noise, which may limit its applicability. Furthermore, the assumptions of clusterability in HOC does not always hold in practice (Zhu et al., 2021b, Table 3), especially at larger noise rates. Compared to HOC, our method presented in Section 3.2 requires a less restricted assumption where similar samples are annotated similarly (see Table 5 for our empirical verification). We also provide an empirical comparison between HOC and our practical method in Section 4.1 to understand further the differences.

6 CONCLUSION

This study has conducted a formal investigation into the identifiability of noisy label learning using multinomial mixture models. Specifically, the LNL problem has been formulated as a multinomial mixture model, where the clean label probability is represented as the mixture coefficient and each column in the transition matrix is represented as each multinomial component. Such modelling reveals that LNL is identifiable when there are at least $2C - 1$ i.i.d. noisy labels per sample provided; otherwise, the problem becomes non-identifiable unless additional assumptions or constraints are employed. This result agrees with previous studies on the identifiability of label noise learning, where the conventional setting of a single noisy label per training sample is non-identifiable. To

486 practically address the LNL problem, we propose to leverage nearest neighbours to generate ad-
487 ditional noisy labels to fulfill the identifiability requirement. The clean label distribution is then
488 inferred through the EM algorithm for multinomial mixture models. Even though our goal was not
489 to outperform SOTA methods, the experimental results show that generating multiple noisy labels
490 per sample yields competitive performance on various challenging benchmarks, particularly in sce-
491 narios involving instance-dependent and real-world label noises, supporting our theoretical claims.
492 The proposed method also out-performs HOC – a practical method that deals with the identifiability
493 in noisy label learning – in several settings, including the one with multiple noisy labels per training
494 sample. Despite the promising finding, the number of noisy labels required to make the LNL identifi-
495 able in Section 3.1 is still impractical in several applications where the number of classes is large,
496 if we require additional manual labels. Future work will focus on the relation between class labels
497 to further reduce this number, making it more practical.
498

499 REFERENCES

500 Dana Angluin and Philip Laird. Learning from noisy examples. *Machine Learning*, 2(4):343–370,
501 1988.

502

503 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
504 learning to align and translate. In *International Conference on Learning Representations*, 2015.

505

506 Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
507 Lopez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
508 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
509 Neural Information Processing Systems*, volume 35, pp. 5230–5242. Curran Associates, Inc.,
510 2022.

511 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
512 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
513 Zhang. JAX: composable transformations of Python + NumPy programs. software, 2018. URL
514 <http://github.com/google/jax>.

515

516 Nader H Bshouty, Nadav Eiron, and Eyal Kushilevitz. PAC learning with nasty noise. *Theoretical
517 Computer Science*, 288(2):255–275, 2002.

518

519 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
520 Armand Joulin. Emerging properties in self-supervised vision transformers. In *International
521 Conference on Computer Vision*, 2021.

522 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
523 contrastive learning of visual representations. In *International Conference on Machine Learning*,
524 pp. 1597–1607. PMLR, 2020.

525

526 Yingyi Chen, Xi Shen, Shell Xu Hu, and Johan AK Suykens. Boosting co-teaching with compres-
527 sion regularization for label noise. In *Conference on Computer Vision and Pattern Recognition*,
528 pp. 2688–2692, 2021.

529

530 De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, and
531 Masashi Sugiyama. Instance-dependent label-noise learning with manifold-regularized transition
532 matrix estimation. In *Conference on Computer Vision and Pattern Recognition*, pp. 16630–16639,
533 2022.

534

535 Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, and Sanjiv Kumar. Tpu-
536 knn: K nearest neighbor search at peak flop/s. In *Advances in Neural Information Processing
537 Systems*, volume 35, pp. 15489–15501, 2022.

538

539 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the EM algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1):
1–22, 1977.

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
542 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
543 scale. In *International Conference on Learning Representations*, 2021.

544 Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
545 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(11):2765–2781, 2013. doi:
546 10.1109/TPAMI.2013.57.

548 Ryan T Elmore and Shaoli Wang. Identifiability and estimation in finite mixture models with multi-
549 nomial components. Technical report, Technical Report 03-04, Pennsylvania State University,
550 2003.

551 Chen Feng, Georgios Tzimiropoulos, and Ioannis Patras. SSR: An efficient and robust framework
552 for learning with unknown label noise. In *British Machine Vision Conference*, 2022.

554 Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
555 layer. In *International Conference on Learning Representations*, 2017.

556 Xian-Jin Gui, Wei Wang, and Zhang-Hao Tian. Towards understanding deep learning from noisy
557 labels with small-loss criterion. In *International Joint Conference on Artificial Intelligence*, 2021.

559 Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama.
560 Masking: A new perspective of noisy supervision. In *Advances in Neural Information Processing
561 Systems*, volume 31, 2018a.

562 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
563 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
564 *Advances in Neural Information Processing Systems*, volume 31, 2018b.

565 Zhouzhou He, Xi Li, Zhongfei Zhang, Fei Wu, Xin Geng, Yaqing Zhang, Ming-Hsuan Yang, and
566 Yueling Zhuang. Data-dependent label distribution learning for age estimation. *IEEE Transac-
567 tions on Image Processing*, 26(8):3846–3858, 2017.

569 Ahmet Iscen, Jack Valmadre, Anurag Arnab, and Cordelia Schmid. Learning with neighbor con-
570 sistency for noisy labels. In *Conference on Computer Vision and Pattern Recognition*, pp. 4672–
571 4681, 2022.

572 Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning data-
573 driven curriculum for very deep neural networks on corrupted labels. In *International Conference
574 on Machine Learning*, pp. 2304–2313. PMLR, 2018.

576 Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise: Deep learning on con-
577 trolled noisy labels. In *International Conference on Machine Learning*, pp. 4804–4815. PMLR,
578 2020.

579 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
580 Transactions on Big Data*, 7(3):535–547, 2019.

581 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
582 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
583 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
584 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
585 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
586 bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
587 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
588 *Nature*, 596(7873):583–589, 2021.

589 Byung Soo Kim. *Studies of multinomial mixture models*. PhD thesis, The University of Northern
590 Carolina, 1984.

592 Noo-ri Kim, Jin-Seop Lee, and Jee-Hyong Lee. Learning with structural labels for learning with
593 noisy labels. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 27610–
27620, 2024.

594 Taehyeon Kim, Jongwoo Ko, JinHwan Choi, and Se-Young Yun. FINE samples for learning with
595 noisy labels. In *Advances in Neural Information Processing Systems*, volume 34, pp. 24137–
596 24149, 2021.

597 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep con-
598 volutional neural networks. In *Advances in Neural Information Processing Systems*, volume 25,
599 2012.

600 Joseph B Kruskal. More factors than subjects, tests and treatments: an indeterminacy theorem
601 for canonical decomposition and individual differences scaling. *Psychometrika*, 41(3):281–293,
602 1976.

603 Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
604 cation to arithmetic complexity and statistics. *Linear algebra and its applications*, 18(2):95–138,
605 1977.

606 Junnan Li, Richard Socher, and Steven CH Hoi. DivideMix: Learning with noisy labels as semi-
607 supervised learning. In *International Conference on Learning Representations*, 2020.

608 Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. WebVision database: Visual
609 learning and understanding from web data. *arXiv preprint arXiv:1708.02862*, 2017.

610 Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end label-
611 noise learning without anchor points. In *International Conference on Machine Learning*, pp.
612 6403–6413. PMLR, 2021.

613 Chia-Hsiang Lin, Wing-Kin Ma, Wei-Chiang Li, Chong-Yung Chi, and ArulMurugan Ambikapathi.
614 Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing:
615 The no-pure-pixel case. *IEEE Transactions on Geoscience and Remote Sensing*, 53(10):5530–
616 5546, 2015.

617 Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
618 regularization prevents memorization of noisy labels. In *Advances in Neural Information Pro-
619 cessing Systems*, volume 33, pp. 20331–20342, 2020.

620 Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. *IEEE
621 Transactions on Pattern Analysis and Machine Intelligence*, 38(3):447–461, 2015.

622 Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing noise
623 rates. In *International Conference on Machine Learning*, pp. 6226–6236. PMLR, 2020.

624 Yang Liu, Hao Cheng, and Kun Zhang. Identifiability of label noise transition matrix. In *Inter-
625 national Conference on Machine Learning*, 2023.

626 Wenshui Luo, Shuo Chen, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama, Dacheng Tao,
627 and Chen Gong. Estimating per-class statistics for label noise learning. *IEEE Transactions on
628 Pattern Analysis and Machine Intelligence*, 2024.

629 Eran Malach and Shai Shalev-Shwartz. Decoupling “when to update” from “how to update”. In
630 *Advances in Neural Information Processing Systems*, volume 30, 2017.

631 Aditya Menon, Brendan Van Rooyen, Cheng Soon Ong, and Bob Williamson. Learning from cor-
632 rupted binary labels via class-probability estimation. In *International Conference on Machine
633 Learning*, pp. 125–134. PMLR, 2015.

634 Diego Ortego, Eric Arazo, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Multi-objective
635 interpolation training for robustness to label noise. In *Conference on Computer Vision and Pattern
636 Recognition*, pp. 6606–6615, 2021.

637 Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Mak-
638 ing deep neural networks robust to label noise: A loss correction approach. In *Conference on
639 Computer Vision and Pattern Recognition*, pp. 1944–1952, 2017.

648 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
649 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander Berg, and Fei-Fei Li.
650 ImageNet large scale visual recognition challenge. *International Journal of Computer Vision*,
651 115(3):211–252, 2015.

652 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
653 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
654 Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
655 Leach, Koray Kavukcuoglu, and Demis Graepel, Thore Hassabis. Mastering the game of Go with
656 deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.

657 Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing unclean samples for robust
658 deep learning. In *International Conference on Machine Learning*, 2019.

659 Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
660 An operator splitting solver for quadratic programs. *Mathematical Programming Computation*,
661 12(4):637–672, 2020.

662 Henry Teicher. Identifiability of mixtures. *The Annals of Mathematical Statistics*, 32(1):244–248,
663 1961.

664 DM Titterington, A Smith, and U Makov. *Statistical Analysis of Finite Mixture Distributions*. New
665 York: Wiley, 1985.

666 Panagiotis A. Traganitis, Alba Pagès-Zamora, and Georgios B. Giannakis. Blind multiclass en-
667 semble classification. *IEEE Transactions on Signal Processing*, 66(18):4737–4752, 2018. doi:
668 10.1109/TSP.2018.2860562.

669 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
670 ImageNet to image classification: Contextualizing progress on benchmarks. In *International
671 Conference on Machine Learning*, pp. 9625–9635, 2020.

672 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
673 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
674 mation Processing Systems*, volume 30, 2017.

675 Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong. Locality-
676 constrained linear coding for image classification. In *Conference on Computer Vision and Pattern
677 Recognition*, pp. 3360–3367. IEEE, 2010.

678 Yuan Wang, Huixin Pang, Ying Qin, Shikui Wei, and Yao Zhao. Adaptive estimation of instance-
679 dependent noise transition matrix for learning with instance-dependent label noise. *Neural Net-
680 works*, pp. 107464, 2025.

681 Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A
682 joint training method with co-regularization. In *Conference on Computer Vision and Pattern
683 Recognition*, pp. 13726–13735, 2020.

684 Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
685 noisy labels revisited: A study using real-world human annotations. In *International Conference
686 on Learning Representations*, 2022.

687 Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama.
688 Are anchor points really indispensable in label-noise learning? In *Advances in Neural Information
689 Processing Systems*, volume 32, 2019.

690 Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu,
691 Dacheng Tao, and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent
692 label noise. In *Advances in Neural Information Processing Systems*, volume 33, pp. 7597–7610,
693 2020.

694 Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. \mathcal{L}_{DMI} : A novel information-theoretic loss
695 function for training deep nets robust to label noise. In *Advances in Neural Information Process-
696 ing Systems*, volume 32, 2019.

702 Youjiang Xu, Linchao Zhu, Lu Jiang, and Yi Yang. Faster meta update strategy for noise-robust
703 deep learning. In *Conference on Computer Vision and Pattern Recognition*, pp. 144–153, 2021.
704

705 Sidney J Yakowitz and John D Spragins. On the identifiability of finite mixtures. *The Annals of*
706 *Mathematical Statistics*, 39(1):209–214, 1968.

707 Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, and Kun Zhang. Instance-dependent
708 label-noise learning under a structural causal model. In *Advances in Neural Information Process-*
709 *ing Systems*, volume 34, 2021.

710 LIN Yong, Renjie Pi, Weizhong Zhang, Xiaobo Xia, Jiahui Gao, Xiao Zhou, Tongliang Liu, and
711 Bo Han. A holistic view of label noise transition matrix in deep learning and beyond. In *The*
712 *Eleventh International Conference on Learning Representations*, 2022.

713

714 Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
715 agreement help generalization against label corruption? In *International Conference on Machine*
716 *Learning*, pp. 7164–7173. PMLR, 2019.

717

718 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
719 risk minimization. In *International Conference on Learning Representations*, 2018.

720

721 Ruiheng Zhang, Zhe Cao, Shuo Yang, Lingyu Si, Haoyang Sun, Lixin Xu, and Fuchun Sun.
722 Cognition-driven structural prior for instance-dependent label transition matrix estimation. *IEEE*
723 *Transactions on Neural Networks and Learning Systems*, 2024.

724

725 Yikai Zhang, Songzhu Zheng, Pengxiang Wu, Mayank Goswami, and Chao Chen. Learning with
726 feature-dependent label noise: A progressive approach. In *International Conference on Learning*
727 *Representations*, 2021a.

728

729 Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning noise transition matrix from only noisy
730 labels via total variation regularization. In *International Conference on Machine Learning*, pp.
731 12501–12512. PMLR, 2021b.

732

733 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
734 with noisy labels. In *Advances in Neural Information Processing Systems*, volume 31, 2018.

735

736 Xiong Zhou, Xianming Liu, Deming Zhai, Junjun Jiang, and Xiangyang Ji. Asymmetric loss func-
737 tions for noise-tolerant learning: Theory and applications. *IEEE Transactions on Pattern Analysis*
738 *and Machine Intelligence*, 45(7):8094–8109, 2023.

739

740 Yilun Zhu, Jianxin Zhang, Aditya Gangrade, and Clay Scott. Label noise: Ignorance is bliss. In
741 *Advances in Neural Information Processing Systems*, volume 37, pp. 116575–116616, 2024.

742

743 Zhaowei Zhu, Tongliang Liu, and Yang Liu. A second-order approach to learning with instance-
744 dependent label noise. In *Conference on Computer Vision and Pattern Recognition*, pp. 10113–
745 10123, 2021a.

746

747 Zhaowei Zhu, Yiwen Song, and Yang Liu. Clusterability as an alternative to anchor points when
748 learning with noisy labels. In *International Conference on Machine Learning*, pp. 12912–12923.
749 PMLR, 2021b.

750

751

752

753

754

755

756 A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE 757

758 Portions of the text in this paper were revised through the usage of large language models to im-
759 prove clarity. The original idea, formulation, experiments and conclusion were done by the authors
760 themselves.

762 B EM FOR MULTINOMIAL MIXTURE MODELS 763

764 This appendix presents the EM algorithm for multinomial mixture models mentioned in Sec-
765 tion 3.2.2.

766 Recall that a mixture of multinomial distributions in the LNL problem can be written as:

$$768 \quad p(\hat{Y}|X = \mathbf{x}_i) = \sum_{c=1}^C p(Y = c|X = \mathbf{x}_i) p(\hat{Y}|X = \mathbf{x}_i, Y = c) = \sum_{c=1}^C \pi_{ic} \text{Mult}(\hat{Y}; N, \rho_{ic}). \quad (2)$$

771 The aim here is to infer the parameters of the multinomial mixture model. In particular, we want
772 to exploit the given L noisy labels $\{\hat{y}_l\}_{l=1}^L$ of an instance $X = \mathbf{x}_i$ to infer $p(Y|X = \mathbf{x}_i)$ and
773 $p(\hat{Y}|X = \mathbf{x}_i, Y)$.

775 We note that despite the identifiable condition in Section 3.1 requiring $N \geq 2C - 1$, we still need
776 multiple sets of such N -trial noisy labels for inference. If only a single set of N noisy labels is
777 given, the inference will have a very large uncertainty although the problem is identifiable.

778 B.1 MAXIMUM LIKELIHOOD

780 Given L noisy labels $\{\hat{y}_l\}_{l=1}^L$ of an instance $X = \mathbf{x}_i$, the objective in terms of maximum likelihood
781 estimation can be written as:

$$783 \quad \max_{\pi_i, \rho_i} \sum_{l=1}^L \ln p(\hat{Y} = \hat{y}_l | X = \mathbf{x}_i) = \max_{\pi_i, \rho_i} \sum_{l=1}^L \sum_{c=1}^C \pi_{ic} \text{Mult}(\hat{Y} = \hat{y}_l; N, \rho_{ic}). \quad (6)$$

786 B.1.1 E-STEP

787 This step is to calculate the posterior of the latent variable \mathbf{z}_n given the data \mathbf{x}_n :

$$789 \quad \gamma_{lc} = p(Y = c | \hat{Y} = \hat{y}_l, X = \mathbf{x}_i; \pi_i^{(t)}, \rho_i^{(t)}) \\ 790 \quad = \frac{p(\hat{Y} = \hat{y}_l | Y = c, X = \mathbf{x}_i; \rho_i^{(t)}) p(Y = c | X = \mathbf{x}_i; \pi_i^{(t)})}{\sum_{c=1}^C p(\hat{Y} = \hat{y}_l | Y = c, X = \mathbf{x}_i; \rho_i^{(t)}) p(Y = c | X = \mathbf{x}_i; \pi_i^{(t)})} \\ 793 \quad = \frac{\pi_c^{(t)} \text{Mult}(\hat{Y} = \hat{y}_l; N, \rho_{ic}^{(t)})}{\sum_{c=1}^C \pi_{ic}^{(t)} \text{Mult}(\hat{Y} = \hat{y}_l; N, \rho_{ic}^{(t)})}. \quad (7)$$

796 B.1.2 M-STEP

798 In the M-step, we maximise the following expected completed log-likelihood w.r.t. π_i and ρ_i :

$$800 \quad Q = \sum_{l=1}^L \mathbb{E}_{p(Y|\hat{Y}=\hat{y}_l, X=\mathbf{x}_i; \pi_i^{(t)}, \rho_i^{(t)})} \left[\ln p(\hat{Y}, Y|X=\mathbf{x}_i; \pi_i, \rho_i) \right] \\ 803 \quad = \sum_{l=1}^L \mathbb{E}_{p(Y|\hat{Y}=\hat{y}_l, X=\mathbf{x}_i; \pi_i^{(t)}, \rho_i^{(t)})} \left[\ln p(Y|X=\mathbf{x}_i; \pi_i) + \ln p(\hat{Y}=\hat{y}_l|Y, X=\mathbf{x}_i; \rho_i) \right] \\ 806 \quad = \sum_{l=1}^L \sum_{c=1}^C \mathbb{E}_{p(Y=c|\hat{Y}=\hat{y}_l, X=\mathbf{x}_i; \pi_i^{(t)}, \rho_i^{(t)})} \left[\ln \pi_{ic} + \ln \text{Mult}(\hat{Y}=\hat{y}_l; N, \rho_{ic}) \right] \\ 809 \quad = \sum_{l=1}^L \sum_{c=1}^C \gamma_{lk} \left[\ln \pi_{ic} + \sum_{c'=1}^C \hat{y}_l \ln \rho_{ic'} + \text{const.} \right]. \quad (8)$$

810 The Lagrangian for π can be written as:
811

$$812 \quad 813 \quad 814 \quad Q_{\pi_i} = Q - \lambda \left(\sum_{c=1}^C \pi_{ic} - 1 \right), \quad (9)$$

815 where λ is the Lagrange multiplier. Taking derivative of the Lagrangian w.r.t. π_{ic} gives:
816

$$817 \quad 818 \quad 819 \quad \frac{\partial Q_{\pi_i}}{\partial \pi_{ic}} = \frac{1}{\pi_{ic}} \sum_{l=1}^L \gamma_{lc} - \lambda. \quad (10)$$

820 Setting the derivative to zero and solving for π_{ic} gives:
821

$$822 \quad 823 \quad 824 \quad \pi_{ic} = \frac{1}{\lambda} \sum_{l=1}^L \gamma_{lc}. \quad (11)$$

825 And since $\sum_{c=1}^C \pi_{ic} = 1$, one can substitute and find that $\lambda = L$. Thus:
826

$$827 \quad 828 \quad 829 \quad \boxed{\pi_{ic}^{(t+1)} = \frac{1}{L} \sum_{l=1}^L \gamma_{lc}.} \quad (12)$$

830 Similarly, the Lagrangian of $\rho_{icc'}$ can be expressed as:
831

$$832 \quad 833 \quad 834 \quad Q_{\rho_{icc'}} = Q - \sum_{c=1}^C \eta_c \left(\sum_{c'=1}^C \rho_{icc'} - 1 \right), \quad (13)$$

835 where η_c is the Lagrange multiplier. Taking derivative w.r.t. $\rho_{icc'}$ gives:
836

$$837 \quad 838 \quad 839 \quad \frac{\partial Q_{\rho_{icc'}}}{\partial \rho_{icc'}} = \frac{1}{\rho_{icc'}} \sum_{l=1}^L \gamma_{lc} \hat{\mathbf{y}}_{lc'} - \eta_c. \quad (14)$$

840 Setting the derivative to zero and solving for $\rho_{icc'}$ gives:
841

$$842 \quad 843 \quad 844 \quad \rho_{icc'} = \frac{1}{\eta_c} \sum_{l=1}^L \gamma_{lc} \hat{\mathbf{y}}_{lc'}. \quad (15)$$

845 The constraint on ρ_{ic} as a probability vector leads to $\eta_c = N \sum_{l=1}^L \gamma_{lc}$. Thus:
846

$$847 \quad 848 \quad 849 \quad \boxed{\rho_{icc'}^{(t+1)} = \frac{\sum_{l=1}^L \gamma_{lc} \hat{\mathbf{y}}_{lc'}}{N \sum_{l=1}^L \gamma_{lc}}.} \quad (16)$$

851 B.2 MAXIMUM A POSTERIOR (MAP)

853 The objective function is similar to the one in Appendix B.1, except including the prior on π_i and ρ_i
854 as follows:
855

$$856 \quad 857 \quad 858 \quad \max_{\pi_i, \rho_i} Q := \sum_{l=1}^L \sum_{c=1}^C \pi_{ic} \text{Mult}(\hat{\mathbf{Y}} = \mathbf{y}_l; N, \rho_{ic}) + \ln p(\pi_i; \alpha) + \sum_{c=1}^C \ln p(\rho_{ic}; \beta), \quad (17)$$

859 where the two priors are:
860

$$861 \quad p(\pi_i; \alpha) = \text{Dir}(\pi_i; \alpha) \quad (18)$$

$$862 \quad p(\rho_{ic}; \beta) = \text{Dir}(\rho_{ic}; \beta). \quad (19)$$

863 The E-step in this case remains unchanged from (7).

864 The derivative of the Lagrangian for π can be written as:
 865

$$866 \frac{\partial Q_{\pi_i}^{\text{MAP}}}{\partial \pi_{ic}} = \frac{1}{\pi_{ic}} \left(\sum_{l=1}^L \gamma_{lc} + \alpha_c - 1 \right) - \lambda. \quad (20)$$

$$867$$

$$868$$

869 Thus:
 870

$$871 \pi_{ic}^{(t+1)} = \frac{\sum_{l=1}^L \gamma_{lc} + \alpha_c - 1}{L + \sum_{c=1}^C \alpha_c - C}. \quad (21)$$

$$872$$

$$873$$

874 Similarly for $\rho_{icc'}$:
 875

$$876 \frac{\partial Q_{\rho}^{\text{MAP}}}{\partial \rho_{icc'}} = \frac{1}{\rho_{icc'}} \left(\sum_{l=1}^L \gamma_{lc} \hat{\mathbf{y}}_{lc'} + \beta_{c'} - 1 \right) - \eta_c. \quad (22)$$

$$877$$

$$878$$

879 Thus:
 880

$$881 \rho_{icc'}^{(t+1)} = \frac{\sum_{l=1}^L \gamma_{lc} \hat{\mathbf{y}}_{lc'} + \beta_{c'} - 1}{N \sum_{l=1}^L \gamma_{lc} + \sum_{c'=1}^C \beta_{c'} - C}. \quad (23)$$

$$882$$

$$883$$

884 C ALTERNATIVE WAYS TO APPROXIMATE THE NOISY LABEL DISTRIBUTION

$$885$$

$$886$$

887 There might be different ways to approximate $p(\hat{Y}|X)$, e.g., simply using a neural network trained
 888 directly on noisy-label data $\{(\mathbf{x}_i, \hat{y}_i)\}_{i=1}^M$. This approach is, however, sub-optimal since the noisy
 889 label distribution $p(\hat{Y}|X)$ is modelled as a simple categorical distribution (represented by the soft-
 890 max output of the neural network). Inferring a mixture of multinomial distributions from samples
 891 generated from such a less expressive distribution may potentially result in a single-component mix-
 892 ture (i.e., component collapse), making the estimation inaccurate. Another way is to train a neural
 893 network to explicitly output $p(Y|X)$ and $p(\hat{Y}|X, Y)$ (Goldberger & Ben-Reuven, 2017), which is
 894 equivalent to learn a mixture of categorical distributions. This would, however, be subjected to the
 895 identifiability issue in LNL. In contrast, our approach exploits the noisy labels of nearest neighbours
 896 to approximate the noisy label distribution. In particular, we model the distribution of noisy label of
 897 each instance as a mixture of C multinomial components, and hence, the approximated noisy label
 898 distribution obtained through K nearest neighbours would be a mixture of $(K + 1)C$ multinomial
 899 distributions (please refer to Eq. (3)). In addition, exploiting nearest neighbours in the feature space
 900 results in more consistent label distributions across samples (Iszen et al., 2022). Furthermore, the
 901 nearest-neighbour based approach has been demonstrated to be effective and widely-used in label
 902 distribution learning (He et al., 2017).

903 D PROPOSED LEARNING ALGORITHM TO OVERCOME THE IDENTIFIABILITY 904 IN LABEL NOISE

$$905$$

$$906$$

907 The proposed learning algorithm to augment the noisy labels is shown in Algorithm 1.
 908

909 E RUNNING TIME COMPLEXITY ANALYSIS

$$910$$

$$911$$

912 We analyse the complexity of our proposed method, in which the pseudo-clean labels are inferred
 913 from the noisy label distributions. Our analysis focuses on the “pre-processing” step right before
 914 calculating loss and back-propagation because this is the main difference between these methods
 915 (the loss calculation and gradient update for the model’s parameters are similar). Hence, in the
 916 following analysis, we omit the complexity of relating to the loss calculation and parameter update.

917 Another note is that the complexity is analysed for one epoch. For the convenience, the notations
 918 used are explicitly defined in Table 6.

Algorithm 1 Progressively clean noisy labels

```

918
919
920 1: procedure TRAIN( $\mathbf{X}, \hat{\mathbf{Y}}, \mu, \eta, \gamma$ )
921 2:    $\mathbf{X} \in \mathbb{R}^{d \times M}$ : matrix of  $M$  instances
922 3:    $\hat{\mathbf{Y}} \in \mathbb{R}^{C \times M}$ :  $M$  one-hot noisy labels
923 4:    $K$ :  $\mathbb{N}$  nearest neighbours
924 5:    $L$ :  $\mathbb{N}$   $N$ -trial multinomial samples
925 6:    $\mu$ : trade-off coefficient
926 7:    $\eta$ :  $\mathbb{N}$  EM iterations
927 8:    $\gamma$ : a weighting factor to update multinomial mixture model's parameters
928 9: initialise  $\Pi = \{\pi_i : \pi_i \leftarrow \text{SOFT LABEL}(\hat{\mathbf{y}}_i)\}_{i=1}^M$ 
929 10: initialise  $P = \{\rho_i : \rho_i \leftarrow \mathbf{I}_{C \times C}\}_{i=1}^M$   $\triangleright$  Random diagonal-dominant matrices
930 11: initialise feature extractor  $\theta$  and a classifier  $\mathbf{w}$ 
931 12: warm-up:  $(\theta, \mathbf{w}) \leftarrow \text{TRAIN}(\mathbf{X}, \Pi, (\theta, \mathbf{w}))$ 
932 13: while  $(\pi, \rho)$  not converged do
933 14:    $\Pi' \leftarrow \emptyset, P' \leftarrow \emptyset$   $\triangleright$  store inferred parameters of  $p(Y|X)$  and  $p(\hat{Y}|X, Y)$ 
934 15:   for each  $\mathbf{x}_i \in \mathbf{X}$  do
935 16:     extract features:  $f(\mathbf{x}_i; \theta)$ 
936 17:     find  $K$  nearest neighbours:  $\mathbf{B}_i \leftarrow \text{kNN}(f(\mathbf{x}_i; \theta))$ 
937 18:     calculate similarity matrix:  $\mathbf{A}_i \leftarrow \text{LLC}(f(\mathbf{x}_i; \theta), \mathbf{B}_i)$   $\triangleright$  Eq. (4)
938 19:     approximate noisy label distribution  $\tilde{p}(\hat{Y}|X = \mathbf{x}_i)$   $\triangleright$  Eq. (3)
939 20:     generate multinomial noisy labels:  $\tilde{\mathbf{Y}}_i = \{\hat{\mathbf{y}}_l : \hat{\mathbf{y}}_l \sim \tilde{p}(\hat{Y}|X = \mathbf{x}_i)\}_{l=1}^L$ 
940 21:     infer mixture model parameters:  $\pi'_i, \rho'_i \leftarrow \text{EM}(\tilde{\mathbf{Y}}_i, \eta)$ 
941
942 22:     update clean label:  $\pi_i \leftarrow \gamma\pi_i + (1 - \gamma)\pi'_i$ 
943 23:     update parameters of multinomial components:  $\rho_i \leftarrow \gamma\rho_i + (1 - \gamma)\rho'_i$ 
944
945 24:     store clean label:  $\Pi' \leftarrow \Pi' \cup \pi_i$ 
946 25:     store probability vectors of multinomial components:  $P' \leftarrow P' \cup \rho_i$ 
947
948 26:   update parameters of clean labels and multinomial components:  $\Pi \leftarrow \Pi', P \leftarrow P'$ 
949 27:   train model:  $(\theta, \mathbf{w}) \leftarrow \text{TRAIN}(\mathbf{X}, \Pi, (\theta, \mathbf{w}))$ 
950 28: return  $(\theta, \mathbf{w})$ 

```

E.1 COMPLEXITY OF OUR PROPOSED METHOD

The complexity of each step in Algorithm 1 for each model can be written as:

- Extract features: $\mathcal{O}(|\theta|)$
- Fast nearest neighbour search $\approx \mathcal{O}(K \ln M)$ (Johnson et al., 2019) or just $\mathcal{O}(\ln M)$ with GPU

Table 6: The notations used in the complexity analysis.

Notations	Description
$ \theta $	the number of model's parameters
M	the total number of training samples
C	the number of classes
K	the number of nearest neighbours
N	number of noisy labels per training samples (e.g., $N = 2C - 1$)
L	the set of N noisy labels per sample (applicable to ours only)
$n_{\text{osqp}}, n_{\text{em}}, n_{\text{em}}$	the number of iterations used in optimisation

972 • Finding similarity matrix \mathbf{A} in (4) with OSQP (Blondel et al., 2022): $\approx \mathcal{O}(n_{\text{osqp}} Kd)$,
 973 where: n_{osqp} is the number of iterations and d is the dimension of X
 974 • Sampling L sets of N -categorical samples where $N \geq 2C - 1$ (in parallel for N): $\mathcal{O}(LC^2)$
 975 • Running EM: $\mathcal{O}(n_{\text{em}} NC) \approx \mathcal{O}(n_{\text{em}} C^2)$.
 976

977 Thus, the complexity of Algorithm 1 per iteration is: $\mathcal{O}(2|\theta| + 2 \ln M + 2n_{\text{osqp}} Kd + 2(L + n_{\text{em}})C^2)$
 978 since $C \ll M, d$. Nevertheless, the most expensive operation is the sampling that generates additional
 979 noisy labels to perform EM with a quadratic complexity in terms of the number of classes
 980 C . To facilitate the comparison with existing works, we provide a summary of their complexity in
 981 Table 2. In general, our method has a higher complexity compared to DivideMix and HOC due to
 982 its nature of re-labelling data. The bottle-neck of our proposed method lies at the sampling where L
 983 sets of N -trial multinomial noisy labels are generated.
 984

985 E.2 COMPLEXITY OF DIVIDEMIX
 986

987 The complexity of DivideMix for each model can be presented in
 988

989 Table 7: Running time complexity of data processing in DivideMix
 990

991 Step	992 Complexity	993 Comment
994 Cluster with Gaussian mixture model	$\mathcal{O}(M)$	
995 Augment data	$\mathcal{O}(n_{\text{augment}} \frac{M}{B} d)$	vectorise over each mini-batch
996 Average prediction loss	$\mathcal{O}(\theta + C + M)$	parallel forward pass
997 Refine ground truth	$\mathcal{O}(\frac{M}{B} C)$	vectorise over each mini-batch
998 Co-guessing	$\mathcal{O}(2 \theta + 2M)$	
999 Sharpen guessed labels	$\mathcal{O}(\frac{M}{B} C)$	vectorise over each mini-batch
Total per model	$\mathcal{O}(3 \theta + (2 + \frac{1}{B}(n_{\text{augment}}d + 2C))M + C)$	

1000 Because the number of class C is small compared to the number of samples M or the sample
 1001 dimension d , one can simplify the complexity of the pre-processing step in dual-model DivideMix
 1002 as follows:
 1003

$$1004 \quad \mathcal{O}\left(6|\theta| + \left[4 + \frac{2}{B}(n_{\text{augment}}d + 2C)\right]M\right). \quad (24)$$

1007 E.3 COMPLEXITY OF HOC
 1008

1009 The running time complexity of HOC (Zhu et al., 2021b) is presented in Table 8.
 1010

1011 Table 8: Running time complexity of HOC
 1012

1013 Step	1014 Complexity	1015 Comment
1016 Extract representation	$\mathcal{O}(\theta)$	assume $d, M \ll \theta $
1017 Get 2-NN	$\mathcal{O}(2 \ln M)$	
1018 Count frequency	$\mathcal{O}(3M)$	
1019 Solve for transition matrix	$\mathcal{O}(n_{\text{iter}} C^2)$	
Total	$\mathcal{O}(\theta + 3M + 2 \ln M + n_{\text{iter}} C^2)$	

1021 E.4 ACTUAL RUNNING TIME
 1022

1023 We also provide the running time in practice for these methods in Table 9. Our proposed method
 1024 takes longer time to run than DivideMix or HOC. For DivideMix, it relies on the small-loss hypothesis
 1025 to separate which samples are clean or noisy. The bottle-neck in DivideMix properly lies at
 the dual models used to avoid confirmation bias. For HOC, it relies on nearest-neighbours to obtain

higher-order statistics to determine the transition matrix of interest. That explains why it is the most efficient method. However, the trade-off is that it relies on the class-dependent instant-independent assumption to determine a single transition matrix. That might deteriorate the performance when such an assumption does not hold. For our method, it has the two bottle-necks of DivideMix (2 models) and HOC (nearest-neighbour search). In addition, it also requires to sample a large number of categorical samples. That explains why the method has a longer running time compared to DivideMix and HOC. In practice, we use 2 GPUs and hence, reduce the running time to 50 percent. The reported results in Table 9 are multiplied by 2 (i.e., GPU-h) to be fair when comparing with DivideMix and HOC.

Table 9: Running time of some LNL methods.

Method	Time (GPU-h)
DivideMix - CIFAR-10	6.45
HOC - CIFAR-10	2.65
Ours - CIFAR-10	6.14
Ours - CIFAR-100	19.17

F REDUCING NUMBER OF NOISY LABELS

As mentioned in Section 3.2.2, the space of a noisy label \hat{Y} of an instance X in practice is not often arbitrary (e.g., does not necessary in $\{1, \dots, C\}$), but may be in a much small set with C_0 classes, where $C_0 \ll C$. In that case, the noisy label distribution is no longer a dense mixture of C multinomial distributions, but it is sparse with only C_0 components. By exploiting this observation, we can reduce the complexity of the proposed method. In particular, the C -component multinomial noisy label distribution, $p(\hat{Y}|X, Y)$, obtained through the EM algorithm is truncated to a C_0 -component mixture where $C_0 \ll C$. The approximation can be summarised as:

- At the initialisation stage (steps 9 and 10 in Algorithm 1 in Appendix D), the noisy label distribution of each sample is instantiated as a multinomial mixture model of C_0 components (π_i is C -dimensional vector with only C_0 non-zero components), where each component still has C categories ($\rho_{ic} \in \Delta_{C-1}$).
- Because the noisy label distribution of each sample is a multinomial mixture model of C_0 components, the approximation of noisy label distribution obtained in Eq. (3) results in a multinomial mixture model of $(K + 1)C_0$ components. Such a mixture model can efficiently generate noisy labels with a complexity of $\mathcal{O}((K + 1)C_0C)$ given the reasonable size C_0 .
- The generated noisy labels are passed to the EM algorithm to infer π_i and ρ_i , which represent the multinomial mixture model $p(\hat{Y}|X = \mathbf{x}_i)$ as shown in Eq. (2). The mixture coefficient π_i (also known as the clean label probability) is a C -dimensional vector, which may or may not be sparse. We then enforce its sparsity by picking the top C_0 components, normalising them to 1, while setting the remaining components to zero. As a result, π_i is a C -dimensional probability vector with C_0 non-negative components. In other words, $p(\hat{Y}|X = \mathbf{x}_i)$ is a multinomial mixture model of C_0 components.

For example, in CIFAR-100, although there is a total of 100 classes, these classes are grouped into 20 superclasses, which is equivalent to $C_0 = 5$. This significantly reduces the running complexity of the proposed method by a factor of 20. For web-scale datasets, such as ImageNet, some previous studies partitioned the 1,000 classes into 11 superclasses (Tsipras et al., 2020), reducing 11 times the complexity of the proposed method if it is used for training.

G DATASETS AND EXPERIMENT SETTINGS

Datasets For the synthetic instance-dependent label noise setting, we use CIFAR-10 and CIFAR-100 datasets and follow (Xia et al., 2020) to generate synthetic instance-dependent noisy labels. For

1080 the real-world label noise setting, we use three common benchmarks, namely: Controlled Noisy Web
1081 Labels (CNWL) (Jiang et al., 2020), mini-WebVision (Li et al., 2017) with additional evaluation on
1082 the validation of ImageNet ILSVRC 2012 (Russakovsky et al., 2015), and Animal-10N (Song et al.,
1083 2019). For CNWL, we use the web label noise (or red noise) setting where the labels of internet-
1084 queried images are annotated manually. For mini-WebVision, we follow previous works that take a
1085 subset containing the first 50 classes in the WebVision 1.0 dataset for training and evaluate on the
1086 clean validation set. The model trained on mini-WebVision is also evaluated on the clean validation
1087 set of ImageNet ILSVRC 2012. Finally, we evaluate the proposed method on Animal-10N dataset
1088 that contains 5 pairs of similar-looking animals.

1089 **Models** We follow the same setting in previous studies (Li et al., 2020; Xu et al., 2021) that use
1090 PreAct Resnet-18 as the backbone to evaluate the proposed method on CIFAR-10, CIFAR-100 and
1091 Red CNWL datasets. For CNWL, input images are resized from 84-by-84 pixel² to 32-by-32 pixel²
1092 to be consistent with previous evaluations (Xu et al., 2021). For mini-WebVision, we follow the
1093 setting in DivideMix (Li et al., 2020) by resizing images to 224-by-224 pixel² before passing the
1094 images into a Resnet-50. For Animal-10N, we follow experiment setting specified in (Song et al.,
1095 2019) by training a VGG-19 backbone on 64-by-64 images to obtain a fair comparison with existing
1096 baselines.

1097 **Hyper-parameters** The model of interest is warmed-up for 10 epochs with a mini-batch size of
1098 128 training samples and trained for 150 epochs in total. The optimiser used is the stochastic gradient
1099 descent (SGD) with a momentum of 0.9 and an initial learning rate of 0.02. The learning rate is
1100 decayed following a cosine annealing with a cycle of 10^6 iterations (gradient update steps). For the
1101 priors defined in (5), we assume both priors on the mixture coefficient (or clean label posterior) π_i
1102 and the probability vector ρ_{ic} of the multinomial components as symmetric Dirichlet distributions
1103 with $\alpha = 1.1$ and $\beta = 1.1$. For the nearest neighbours, we first randomly sample a subset of
1104 15,000 samples then perform nearest neighbour search and select the 10 nearest samples for LLC.
1105 The parameters $\mu = 0.5$ and $\gamma = 0.95$ are used across all of the experiments.

1106 Our implementation is in JAX (Bradbury et al., 2018) and can be accessed at https://anonymous.4open.science/r/identifiable_label_noise/. All experiments are
1107 performed on a computer with a Intel 10th-gen i7 CPU, 32 GB RAM and NVIDIA A6000 GPU.
1108

1110 H ADDITIONAL RESULTS ON COMMON LNL BENCHMARKS

1111 We provide additional results on the common LNL benchmarks with synthetic instant-dependent
1112 label noise on the two datasets CIFAR-10 and CIFAR-100 in Table 10.

1113 I ADDITIONAL RESULTS OF LABEL CONSISTENCY ON CLASS-DEPENDENT 1114 SETTINGS

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139

1140 Table 10: Comparison of prediction accuracy (%) on various instance-dependent label noise rates
1141 for CIFAR-10 and CIFAR-100 with different network architectures including self-supervised on the
1142 corresponding un-labelled datasets. The majority of results are adopted from (Yao et al., 2021) with
1143 \dagger denoting results from their respective papers and $*$ denoting results reported in (Zhu et al., 2021b);
1144 the bold numbers denote the maximum mean values across all methods considered. Best result in
1145 **bold**, 2nd best in *italics*.

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

Noise rate	CIFAR-10				CIFAR-100			
	0.2	0.3	0.4	0.5	0.2	0.3	0.4	0.5
Cross-entropy (Yao et al., 2021)	75.81	69.15	62.45	39.42	30.42	24.15	21.45	14.42
mixup (Zhang et al., 2018)	73.17	70.02	61.56	48.95	32.92	29.76	25.92	21.31
Forward (Patrini et al., 2017)	74.64	69.75	60.21	46.27	36.38	33.17	26.75	19.27
T-Revision (Xia et al., 2019)	76.15	70.36	64.09	49.02	37.24	36.54	27.23	22.54
Reweighting (Liu & Tao, 2015)	76.23	70.12	62.58	45.46	36.73	31.91	28.39	20.23
Decoupling (Malah & Shalev-Shwartz, 2017)	78.71	75.17	61.73	50.43	36.53	30.93	27.85	19.59
Co-teaching (Han et al., 2018b)	80.96	78.56	73.41	45.92	37.96	33.43	28.04	23.97
MentorNet (Jiang et al., 2018)	81.03	77.22	71.83	47.89	38.91	34.23	31.89	24.15
CausalNL (Yao et al., 2021)	81.79	80.75	77.98	78.63	41.47	40.98	34.02	32.13
CAL (Zhu et al., 2021a) \dagger	92.01	-	84.96	-	69.11	-	63.17	-
PTD-R-V (Xia et al., 2020) \dagger	76.58	72.77	59.50	56.32	65.33	64.56	59.73	56.80
Peer loss (Liu & Guo, 2020)*	89.52 ± 0.22	-	83.44 ± 0.30	-	61.13 ± 0.48	-	48.01 ± 0.12	-
L_{DMI} (Xu et al., 2019) \dagger	88.67 ± 0.70	-	83.65 ± 1.13	-	57.36 ± 0.97	-	43.06 ± 2.39	-
L_q (Zhang & Sabuncu, 2018)*	85.66 ± 1.09	-	75.24 ± 1.07	-	56.92 ± 0.24	-	40.17 ± 1.52	-
Co-teaching+ (Yu et al., 2019)*	89.82 ± 0.39	-	73.44 ± 0.38	-	41.62 ± 1.05	-	24.74 ± 0.85	-
JocoR (Wei et al., 2020)*	88.82 ± 0.20	-	71.13 ± 1.94	-	44.55 ± 0.62	-	23.92 ± 0.32	-
HOC global (Zhu et al., 2021b) \dagger	89.71 ± 0.51	-	84.62 ± 1.02	-	68.82 ± 0.26	-	62.29 ± 1.11	-
HOC local (Zhu et al., 2021b) \dagger	90.03 ± 0.15	-	85.49 ± 0.80	-	67.47 ± 0.85	-	61.20 ± 1.04	-
kMEDITM (Cheng et al., 2022) \dagger	92.26	90.73	85.94	73.77	69.16	66.76	<i>63.46</i>	59.18
IDNT (Wang et al., 2025)	83.68 ± 0.72	79.93 ± 0.65	75.57 ± 0.57	67.23 ± 0.46	54.68 ± 1.38	46.93 ± 0.85	43.57 ± 0.37	38.23 ± 0.76
STMN (Zhang et al., 2024)	80.10 ± 0.45	76.66 ± 2.19	71.88 ± 2.19	57.14 ± 3.38	-	42.65 ± 0.49	-	31.12 ± 0.63
Ours	92.39 ± 0.85	<i>90.14 ± 1.22</i>	85.78 ± 1.27	62.07 ± 1.64	69.02 ± 1.44	66.80 ± 1.92	60.85 ± 1.95	41.42 ± 1.30
Ours (DINO)	91.16 ± 0.64	89.67 ± 1.13	86.85 ± 1.80	76.03 ± 3.68	75.45 ± 0.94	73.69 ± 1.23	70.32 ± 1.62	58.02 ± 2.01

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1174 Table 11: Label consistency for class-conditioned (or asymmetric noise) label noise on CIFAR-10.

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Method	Noise rate		
	0.2	0.3	0.4
Cross-entropy	82.35	78.14	72.02
F-correction	-	-	83.10
Ours	90.21	<i>87.82</i>	79.14
Ours (with SimCLR)	92.60	89.07	84.59