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Abstract

We consider the problem of scheduling m jobs on n unrelated strategic machines
to minimize the maximum load of any machine. As the machines are strategic they
may misreport processing times to minimize their own load. The pioneering work
of Nisan and Ronen gave an n-approximate deterministic strategyproof mechanism
for this setting, and this was recently shown to be best possible by the breakthrough
results of Christodoulou et al. This large approxation guarantee begs the question:
how can we avoid these large worst-case results. In this work, we use the powerful
framework of algorithms with (machine-learned) predictions to bypass these strong
impossibility results. We show how we can predict O(m + n) values to obtain a
deterministic strategyproof algorithm whose makespan is within a constant factor
of the optimal makespan when the predictions are correct, and O(n) times the
optimum no matter how poor the predictions are.

1 Introduction

We consider the NP-hard problem of scheduling jobs on unrelated machines to minimize the makespan,
i.e., the load of the most loaded machine, in the setting where the machines are agents which can
behave strategically. In this game-theoretic setting, introduced by |[Nisan and Ronen| (2001}, only
the machines know the processing times for the jobs. Since they suffer a cost for processing jobs
(i.e., the processing time/size of the job), they have an incentive to misreport sizes (i.e., to overstate
or understate them) to the mechanism in order to get a more desirable bundle of jobs. Our goal
is to design a mechanism that achieves (a) a good approximation ratio, so that we always find a
schedule with makespan comparable to that of the optimal solution on the true processing sizes, and
(b) strategyproofness, so that no machine has any incentive to misstate their processing times.

In the non-strategic setting of classical approximation algorithms, the unrelated machines scheduling
problem can be approximated to a factor of 2 (due to works of |Lenstra et al.|(1990) and Shmoys and
Tardos|(1993)), and it is NP-hard to approximate it better than a factor of 3/2, leaving a small gap
between the constants in the upper and lower bounds. But when the machines can behave strategically,
it is now known that the optimal approximation factor of any strategyproof mechanism is not a
constant, but exactly n. The paper of |[Nisan and Ronen| (2001) gave a mechanism achieving the
n-approximation, and now a matching lower bound of n for any strategyproof mechanism is known
due to|Christodoulou et al.|(2022| 2023). This leaves us with a large gap between the results that are
achievable in the non-strategic and strategic settings in the worst-case.

Since worst-case instances may be pathological and the analysis pessimistic, we can ask: how can
we give mechanisms that perform better in non-worst-case settings? An important approach of
algorithms with predictions or learning-augmented framework, has gained momentum, giving a
balance between the robustness guarantees of the worst-case model, and better results when given
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machine-learned information. Concretely, the model asks: can we perform better if we have some
(machine-learned) untrusted predictions about the instance? We seek the following two outcomes:

1. Robustness: this requires that the mechanism’s performance is not much worse than the perfor-
mance without predictions, regardless of whether the predictions are correct or not.

2. Consistency: this asks that if the predictions are indeed correct (i.e., the predictions indeed
conform to the parameters/features of the true instance they are supposed to be predicting), then the
mechanism’s performance is close to that achievable if it truly believed the predictions. We may also
ask for an error-tolerant version of consistency, where the algorithm’s performance relates to the
“error” in the predictions.

This line of work was initiated in the setting of online algorithms by Mahdian et al.| (2012}, [Purohit
et al.| (2018) and [Lykouris and Vassilvitskii (2021)) (see also the survey article by Mitzenmacher and
Vassilvitskii| (2022)); it was used in strategic settings by |Agrawal et al.|(2024), Xu and Lu|(2022)) and
Gkatzelis et al.| (2022). (See the annotated bibliography compiled by Balkanski et al.| (2024)).

The unrelated machine scheduling problem was studied in this learning-augmented setting by | Xu and
Lu/(2022) and|Agrawal et al.| (2024), who observed that following the predictions blindly gives an
excellent consistency of 1, but has arbitrarily poor robustness if the predictions are faulty; to remedy
this, they gave algorithms with bounded robustness and consistency. The current best result is due
to Balkanski et al.| (2023)), who gave the SCALED GREEDY algorithm that is (1 + ¢)n-robust and
(4 + 2/c)-consistent, for any ¢ > 0. Their algorithm uses the entire matrix p € R’,*™ of processing
times, where p;; is the prediction for the true processing time p;; of the job j on machine 4.

Christodoulou et al.| (2024) explore whether we can use a smaller set of predictions, namely output
predictions, where the mechanism is merely given the predicted machine for each job. They give an
algorithm that uses just these m many predictions, and that is O(1)-robust and (n?)-consistent. Their
algorithm—and indeed, all the above algorithms in this domain—compute machine “biases”. They
use a greedy-like algorithm using the reported processing times weighted by these biases to assign
the jobs. They also show that, given just assignment predictions, no such weighted VGC mechanism
can obtain much better trade-offs.

In light of these results, we ask: can we get a different set of linearly many predictions, i.e., O(n +m)
quantities, and achieve the same guarantees?

1.1 Our Results

Our main result answers this question in the affirmative, and gives nearly optimal robust-
ness/consistency tradeoffs with only a linear number of predictions.

Theorem 1.1 (Informal Main Theorem). There exists a strategyproof mechanism that takes predic-
tions for the value of the optimal makespan, a “bias” for each machine, and a “good” machine for
each job, and produces an assignment which is (1 + c)n-robust, and (2 + -5 )-consistent for any
choice of ¢ > 1.

This achieves essentially the same guarantees as the result of Balkanski et al.| (2023) (our results
replace a 1/c term in the consistency guarantee by 1/(c—1)), while using far fewer predictions—only
linearly many instead of quadratically many. And using these few extra predictions (corresponding to
the “biases” for each machines) to avoid the lower bounds of |Christodoulou et al.| (2024)).

Our approach is based on an essentially simple idea: instead of trying to predict the optimal machines
for each job, we predict the machines which would be output by an approximation algorithm. This
algorithm follows the “relax-and-round” approach: it solves a linear programming (LP) relaxation for
the unrelated machine scheduling problem, and then converts the fractional solution into an integral
one. Crucially, the assignments given by this rounding algorithm are supported by linear programming
duality. We use this in two ways: firstly, we use the machine variables of the dual program as the
machine biases. Secondly, we use the structure of the dual solutions (e.g., complementary slackness)
along with the output of the rounding process to prove robustness guaranteees.

While this approach leads to an O(n?)-robust algorithm, the dual structure of the classical LP
relaxation is not rigid enough. The next idea is to write a new LP relaxation for unrelated machine
scheduling problem, which allows us to ensure that the duals are bounded, which gives us more



control over the robustness. The final ingredient is showing a good approximation guarantee for this
new relaxation.

Finally, like [Balkanski et al.| (2023), we can extend our work to an error-tolerant version. In this
setting, we are given a parameter 7 > 1, and predictions are considered “n-good” if they correspond
to some processing times that are within a factor of 7 of the true processing times. The goal now is to
be consistent when the predictions are “n-good”, otherwise the algorithm is required to be robust.
The formal definitions and details of the following result appear in

Theorem 1.2 (Informal Error-Tolerant Theorem). There exists a strategyproof mechanism that takes
the above predictions for the value of the optimal makespan, the optimal dual solution and the
predicted rounded solution, and produces an assignment which is (1 + ¢) n? n-robust (when the
predictions are not n-good), and 1*~y(2 + cil )-consistent (when they are 1j-good for some 1) < 1)
for any choice of ¢ > 1.

Comparing the Prediction Models. An advantage of parsimonious predictions is that they require
only linear space to manipulate and store, compared to the quadratic storage used in the works ofXu
and Lu| (2022), Agrawal et al.|(2024), Balkanski et al.[(2023). It is an open problem to prove that
learning these smaller number predictions from data has a smaller sample complexity. (We briefly
discuss the learnability of the processing times in a PAC-like model in[Appendix A]) That said, we
can use the predictions given to Balkanski et al.|(2023)) (i.e., predictions for all the processing times)
to obtain our results by first computing the predictions that our mechanism expects (which are all
functions of the processing times), and using these 1 4+ n + m values for our mechanism.

1.2 Other Related Work

Strategyproof mechanisms are increasingly important in open and decentralized systems, since the
resources belong to different agents who may act in their own interest and may not cooperate unless
they are given the right incentives. In such settings, it is often important to ensure notions of non-
manipulability and fairness, either for reasons of social welfare, or because of legal requirements.
Strategyproof mechanisms can help ensure that no single agent can manipulate the outcome to their
advantage. Specifically for settings of scheduling jobs to machines, note that machines may misreport
processing times to reduce their workload, which could lead to poor scheduling decisions and delays
for jobs. The first work for the unrelated machine scheduling problem in the strategyproof setting
was due to |[Nisan and Ronen| (2001). The lower bounds were given by Nisan and Ronen| (2001)),
Christodoulou et al.| (2009), Koutsoupias and Vidali| (2013), \Giannakopoulos et al.| (202 1)), [Dobzinski
and Shaulker| (2020), |Ashlagi et al.| (2012}, Christodoulou et al.|(2007), culminating in a matching
lower bound of n in the recent works of |Christodoulou et al.| (2022} 2023)).

The work of|Christodoulou et al.| (2024)) considers the output predictions model, where the mechanism
is merely given a predicted output for each request: this corresponds to a predicted machine for each
job in our setting. They give an algorithm that is (/3 + 1)-robust and (n?/3)-consistent for any fixed
B € [1,n]; it assigns a bias of ;; = 1 for the predicted machine ¢, and r;/; = n/f3 for every other
machine ', and chooses the weighted minimizer of r;;p;;. They also show that, given just assignment
predictions, no weighted VGC mechanism can give a significantly better trade-off than 3 vs. n? /3.
In contrast, our work shows that if we are also given a prediction for OPT and the dual variables (one
for each machine), we can achieve much stronger results.

The use of linear programs and duality as predictions is widespread: they have been used, e.g., the
works of [Lavastida et al.|(2021)), Lattanzi et al.|(2020), L1 and Xian|(2021) uses linear/convex programs
and their duals to perform load balancing in the online setting. Moreover, linear programming duals
are used in the work of [Dinitz et al.|(2021); it uses learned duals as a “warm start” to speed up
algorithms for finding maximum weight bipartite matchings; these ideas are further explored by
Davies et al.|(2023), [Polak and Zub| (2024), |Sakaue and Oki (2022). However, our use in mechanism
design, and in particular, our approach of controlling the variation in the duals to make the mechanism
more “robust”, seems to not have been used before.

2 Definitions

An instance Z of the unrelated machine scheduling problem consists of (i) a set J of m jobs, (ii) a
collection M of n machines, and (iii) a processing time p;; for each job j € J and machine i € M.



Let p denote the vector of all processing times. Given an instance Z, an assignment of jobs to
machines is a vector ¢ € {0,1}"*™, where z;; = 1 if and only if job j is assigned to machine 4.
Such an assignment x satisfies ), z;; = 1, and induces a load of Zj Dij%;; on machine ¢ € M.

* The makespan of assignment  is MS(p, ) := max;e Zj DijTij.

* Define the optimal (integer) makespan to be OPT(p) := min,signments = MS(p, ), where
the minimum is taken over all possible assignments  of jobs to machines, and the optimal
(integer) assignment be denoted by =* = x*(p).

Given an assignment &, we can also associate an allocation function ¢ : J — M with it, where
©(j) =1 <= x;; = 1. We frequently move between allocation functions ¢ and assignments x, as
needed. (In some cases, we consider € {0, 1}"*™ vectors where ) . z;; > 1, but we can always
reduce some of the z;; values to zero and get ), x;; = 1, without increasing the machine loads and
the makespans.)

2.1 Strategyproofness

Consider an instance of the unrelated machine scheduling problem, where the machines report their
processing times for all the jobs. Let p € R*™ be the true processing times for all machine-job

pairs. (As is standard, we use p; to denote the i row of matrix p, and p_; to denote the rest of the
rows.) Now suppose some machine ¢ € M reports p; € R’" as its vector of processing times (where
p; may or may not equal p;), and the other machines truthfully report p_; € R7":

* let z(p}, p—;) € {0,1}™ be the assignment of jobs to machines, and

o let m(p}, p—;) € R*™ be the payments made by the mechanism to machines.

Define the utility of machine 7 to be

Ui(p;,p wa p;,P mew” Pi,P-i)- (D

Observe that while both the map @ and the payments 7 are functions of the reports (p;, p—;), the
second term in the definition of utility uses the true processing times.

Definition 2.1 (Strategyproofness). An allocation function ¢ is strategyproof if there exists payments
7 such that for any machine ¢ and for any misreport of the processing times vector p;, we have
Ui(pi,p—i) > Ui(p;, p—i).

Definition 2.2 (Monotonicity). Let x = x(p;, p—;) and ' = (p}, p_;) denote the allocations of the
mechanism when machine ¢ reports p; and pj respectively. An allocation mechanism is monotone if
for every machine ¢ and for every two reports of the machine p; and p/, the associated allocations
satisfy ;¢ ;(i; — 27;)(pij — pi;) < 0. Moreover, call the mechanism item-wise monotone if the
allocations satisfy (x;; — };)(pij — pj;) <0 vjeJ.

Theorem 2.3 (Nisan and Ronen|(2001)), [Saks and Yu|(2005)). For an allocation algorithm, there
exists a payment function T such that (@, ) is strategyproof if and only if the allocation algorithm
satisfies the monotonicity property.

Since any item-wise monotone mechanism is also monotone, the following corollary holds:

Corollary 2.4. An allocation algorithm is strategyproof if it satisfies the item-wise monotonicity
property. In other words, if for every machine i, suppose € = x(p;, p—;) and ' = (p}, p_;), and
suppose these allocations satisfy (v;; — x;;)(pij — pi;) < 0 for every job j. Then the allocation
algorithm is monotone, and hence there exists a payment function that gives strategyproofness.

3 A New Linear Program Relaxation

We now give a new linear programming relaxation for the scheduling problem, such that the dual
variables corresponding to the machines lie in some bounded range. It is this control on the dual
variables allows us to show strong robustness guarantees without losing much on the consistency.

The standard linear programming relaxation for the unrelated machine scheduling problem takes an
instance Z and a target makespan 7', and defines the set of permissible edges E(T,p) := {(i, ) |



pi; < T} by removing all the edges in M x J which correspond to processing times larger than the
target value T'. The feasibility linear program P(T, p) is then defined as follows:

Ditiyerrp) Tis = 1

2 (i.y)ep(T,p) Pij iy <T ¥V machines i € M )
x> 0.
Again, the first constraints allow the fractional assignment to allocate more than 1 unit of job 7, but

any such solution can be transformed into one that satisfies these constraints with equality. Using
inequalities simplifies the linear programming dual D(7, p):

maxzj Oéj — TZz 6,‘ (D(T,p))
aj_ﬁipijgo V(Z,j)GE(T,p)
a,f>0.

Our new linear programming relaxation for the unrelated machine scheduling problem takes an
instance Z and a target makespan 7, and defines the set of permissible edges E(T,p) := {(4,]) |
pi; < T} by removing all the edges in M x J which correspond to processing times larger than the
target value 7. Then for any a scalar ¢ > 1, the linear program relaxation P.(T, p) is the following:

min 7 —Yen 32, Y; (P.(T,p))
2.4 eB(Tp) Tij 2 1 Vjobs j € J
Zj;(i,j)eg(:r,p) pijTiyy — 4 +Y; <T V machines i € M
xz,Y,Z >0.

In other words, the primal constraint for machine ¢ € M says:
Y erap Pig i +Yi < T+ 2. 3)

The first constraints assigns each job to some machine, and is a natural one. But the second constraint
is mysterious due to the variables Y; and Z: to demystify this, let us write its dual program D.(T, p):

maXZjEJ Q; *TZieM B; (D.(T,p))
a; — Bipi; <0 v(i,j) € E(T,p)
DiemBi <1 )
Bi > Yen Vie M 5)
a, 8> 0.

Note that the dual program has variables o; for each job j € J, and variables j3; for each machine
1 € M; the latter should be thought of as machine “weights”. Observe that this LP is very similar
to the dual for the natural relaxation, where constraints @) and (3)) are the new constraints added to
control the range of the /3; values. Moreover, complementary slackness says that z;; (o; — 8; pi;) = 0.

Proposition 3.1. If T > OPT(p), then both the primal and dual linear programs above are feasible.

Proof. Indeed, consider the assignment x*(p) that achieves the optimal makespan for input p; it is
a feasible solution to the primal program. Moreover, the all-zero solution is feasible for the dual
program. O

3.1 Properties of the New Programs

The optimal solution for the new dual program D, (T, p) has a value no larger than that of the standard
dual, since it is a maximization problem with more constraints. Of course, the added constraints
could conceivably make the dual infeasible, but we now show that this is not possible.

Lemma 3.2 (LPs are Bounded). For any ¢ > 1 and any T > OPT(p), the primal P.(T,p) is
feasible, and any (fractional) solution (x,Y , Z) to it has value at least Z(1 — /c) — T/c > =T/
Moreover; its dual D (T, p) is feasible and bounded as well.



Proof of[Lemma 3.2} The original primal P (T, p) is feasible because of [Proposition 3.1f moreover,

any solution for the original primal LP is also feasible for the new primal P.(7’, p) by just setting
Z =Y; = 0. To show the bound on the primal objective value, consider the constraint . The
non-negativity of the sum ) | p;;x;; implies that Y; < T+ Z. Consequently, the primal objective
value is

Z-GmnYizZ- MGl =Z(0-Y)-T2-%,
where we used the non-negativity of the Z variable in the final step. Since the primal P.(T,p) is
feasible and bounded from below, we can use strong duality to infer that the dual D. (T, p) is also
feasible and bounded, which completes the proof.

While the objective function for the primal P.(7, p) is not meaningful per se, we can also show that
the optimal fractional solution has small makespan.

Lemma 3.3 (Fractional Makespan). For ¢ > 1 and target T > OPT(p), an optimal fractional
solution (,Y | Z) for the linear program P.(T, p) has (fractional) makespan

o~ C
max ;. penrp) Pisis < T35

Proof. Since any solution to the classical primal is also a solution to the new primal (by setting
7 =Y; = 0), the optimal solution to the primal P.(7T', p) has objective value at most zero. Moreover,

implies that the optimal solution to P, (T, p) has objective value at least Z(1—1/¢)—T'/c.
Combining these facts,

Z1-H<T = z< 1.

Using constraint (3) again, but this time ignoring the non-negative Y; terms, we get that

Y itiyermp Pitiy ST +Z <T (1+ 25)

for each machine 7 € M, as claimed. O

In other words, any optimal fractional solution & for P.(T,p) is also a solution to the following
relaxed version of the original linear program P (T, p):

Yitijyermrp) Tis =1 Vjobsj e J @x(T,p))
> i) eB(Tp) Pij Tij < AT Vmachines i € M (6)
x>0,
as long as we set A = ;. (Note that when the relaxation parameter A = 1, then Q,(T,p) =

P(T,p), i.e., we get back the original primal linear program.)

3.2 Rounding Algorithm

Assume that T > OPT(p). In this case, the rounding algorithms of |Lenstra et al.|(1990) and |Shmoys
and Tardos|(1993) take a fractional solution & > 0 satisfying the relaxed LP (T, p) and output an
integer assignment ' € {0, 1}"*™ with the following properties:

1>, xjj = 1 so that each job is assigned to exactly one machine,

2. each job j is assigned to some machine 7 to which it was originally fractionally assigned in
z (ie., fUsz =1 = z;; > 0), and moreover

3. x' is also a solution to @/ (T, p) but now with \’ = X + 1.

In other words, this map satisfies
MS(p,z') <max Y pyzl <A +1)T= @2+ Y1) T @)
J:(4,5)EE(T,p)

This analysis can be tightened a bit to make the additive loss depend on the largest processing time of
any job in the optimal solution, but we stick to the analytical form (/) for simplicity.



4 The Mechanism and the Predictions

Our mechanism takes the following predictions: (i) a predicted threshold T, (ii) predicted dual
variables 5; € [1/cn, 1] for each machine ¢ € M, and (iii) a predicted assignment  : J — M. In the
ideal solution, the threshold T should equal OPT(p), the variables (3 should be an optimal solution
to the modified dual program D, (T, p), and the predicted assignment Z should be the assignment a
arising from optimally solving the modified primal P, (T, p) and then rounding it as in[Section 3.2}
The predicted assignment $ corresponds to a vector & € {0, 1}"*™, and henceforth we will use
the two objects interchangeably. Finally, observe that if we are instead given a prediction p of
the processing times, we can compute the values above—as described in[Section 3}—and use them
instead.

4.1 The Mechanism

To begin, the DUAL-PREDICTOR mechanism checks whether the predicted dual variables satisfy
>; Bi < 1land min; 3; > 1/cn. If not, it rejects the predictions and just runs the greedy algorithm,

which is n-robust and truthful Nisan and Ronen|(2001). If the E values are in the correct range, the
mechanism considers the reported processing times p € R™*™ along with the predictions and does
the following:

Mechanism 1: DUAL-PREDICTOR

Input: Reported values p;; for all (i,j) € M x J, predictions 3 € R?, map ¢ : J — M, and
T e R;.
Output: Assignment = € {0, 1}"*™.
for each job j do
Let small(j) := {i | p;; < Th.
if small(j) = & then
| »(j) + argmin; p;;.
else
L ©(j) < argmin;{S; p;; | i € small(j)}. // breaking ties in favor of p(j).

return the vector x corresponding to this allocation ¢.

In words, the DUAL-PREDICTOR mechanism builds a set of machines small(j) := {j | p;; < T} on
which the job is “small” compared to our prediction for the optimal makespan, based on the reported
sizes p and the prediction 7" for the optimal makespan. If this set is empty (a sure indicator of the
predictions being incorrect), it assigns the job to the machine on which it has the smallest reported
size. Else it assigns it to a machine in small(j) that minimizes sz”, breaking ties in favor of the
predicted machine @(j).

A technical observation: our mechanism uses the reported p;; values to define the set small(j) (which
can be thought of as modifying the biases [3;). This is a departure from previous algorithms, which
define the biases 7;; based on the predictions and the reported processing times.

5 The Analysis

We now analyze the quality of the assignment ¢ returned by the DUAL-PREDICTOR mechanism: our
proof proceeds in three natural steps.

We first show (1 4 ¢)n-robustness of the mechanism by proving that no matter what the predictions
are, the makespan of the assignment produced by the mechanism is at most (1 + ¢)n - OPT(p).

Next, we show (2 + 1/ (c—1))-consistency. We say that when the predictions are correct (i.e., when
T ~ OPT(p), and the BZ values correspond to an optimal solution to the dual D, (T, p), and also the
predlcted assignment @ corresponds to the 1nteger allocation 2" obtained taking an optimal solution

& to the primal P.(7', p) and rounding it as in[Section 3.2), then our algorithm achieves a makespan
of at most (2 + 1/c—1) - T’; i.e., a nearly optimal solution.



Finally we show that the mechanism is strategyproof, by showing that the mechanism is monotone.

5.1 Robustness

For robustness, we show that no matter what the predictions are, the mechanism’s assignment &
has makespan MS(p, ) that is at most O(n) times the optimal makespan. Let * be the optimal
assignment, so that OPT(p) = MS(p, *).

Theorem 5.1. Given any predictions, MS(p, ) < (1 + ¢)n - MS(p, ).
Proof. Let ¢ and ¢* be maps from J to M that correspond to the assignments  and «* in the natural
way. Define r; := max(1, cn - B+ (;)). To begin, we claim that for any job j,

Poi)g STi Por(3).d- ®)
Indeed, consider the various cases:
L. If small(j) = @, then p,(;) ; < p;,; for all machines ¢, and hence also for machine * ().
2. Else if |small(j)| > 1, we consider two subcases.

(a) If ¢*(j) & small(j), then T < Py (j),;- Moreover, we assign job j to some job in small(;j), and
therefore py,(;),; < T'. Chaining the two implies p,(jy,; < Pe=(5),5-
(b) Else both ¢(j) and ¢*(j) belong to small(j). The mechanism’s selection criterion ensures

that B,5) Po(i).i < Ber(j) Per(5),- Since the 3 values range between 1/cn and 1, the claim
immediately follows.

This proves the claim (8). Now consider any machine 7, and let J; := {j | ¢(j) = i} be the jobs
assigned to machine 7 by the mechanism. The load of machine ¢ is

-~ ~
Zpi,j ” Z(1+cn~ﬂw(j)) Do (g = Z (14+cn-Bir)- Z Pirj

JEJ: Jj€Ji i'eM JEJip* (§)=1"
<Y (I+en- By) -MS(p,¢*) = (n+ cn) - MS(p, z*),
ireM
where we use Zl BZ < 1 in the final step. O

5.2 Consistency

We now show the consistency guarantees: when the predictions are correct, the makespan of the
mechanism’s assignment is at most (2 + Cil ) times the optimal makespan. We consider the following
slightly relaxed definition:

~

Definition 5.2 (y-Correct Predictions). For v > 1, the predictions (JA“, B,9) are y-correct for
processing times p if the following conditions hold:

* T €[OPT(p),7OPT(p)l. .

* 3 = 3 for an optimal solution (&, 3) to the dual program D.(T, p), and

* the assignment Z corresponding to the prediction @ is the assignment ' obtained by
rounding an optimal solution & to the primal P,.(T, p), as in[Section 3.2

When predictions are 1-correct, we refer to them as correct predictions. We show that ~y-correct
predictions imply a good makespan.

Lemma 5.3 (Consistency). If the predictions (f, B, ©) are y-correct for processing times p, then
MS(p, ) < (2+1/(c-1) - T < (2+/(e-1) - 7 OPT(p).
Proof. Observe that the set small() is exactly the set of permissible edges from E(T,p) := {(4,7) |

pi; < T} which are incident to job j. Since 7' > OPT(p), the set small(j) is non-empty since it
contains the machine that j is assigned to in the optimal integer solution z*. The mechanism now



assigns job j to the machine ¢(j) € small(j) minimizing j; p;; = B; pi;. We claim that this machine
is in fact ¢(j). The claim implies that « (the output of the mechanism) equals Z (the assignment
corresponding to the predicted allocation), which in turn equals ' (the rounded solution). Hence
gives us MS(p, ) = MS(p, ) < (2 + /(c-1)) - T, which completes the proof.

We now prove the claim that ¢(j) = @(j). By the property of the rounding algorithm, we know that
Z;; = Lonlyif z; ; > 0. Moreover, we have z; ; > 0 only for (¢, j) € E(T,p) and hence ()
belongs to small(j). We now claim that

Be().i Pa(i).g < Bij Pij ©)

for all ¢ € small(j). Indeed, observe that o; < Bi pi; for all (4,7) € small(j) because of dual
feasibility. Moreover, complementary slackness implies that z;;(a; — ; p;;) for all ¢ € small(j).

Since Z5(;),; > 0 we have that thAat a; = Ba(j) pa(j),j- Moreover, using that 3 = 3, we get that
©(7) is one of the minimizers of 3; p;;, proving (9). Finally, our tie-breaking strategy ensures that
the mechanism assigns the job j to (7). O

As an aside, note that while we used the fact that ¢ is obtained from the rounding algorithm of
Section 3.2} any { satisfying the properties above (in particular, that . > 0), and having low
oad, could be used instead.

?(4).d

5.3 Strategyproofness

To show that the the mechanism above is strategyproof, recall the results from and
specifically which shows that an item-size monotone mechanism is strategyproof.

Theorem 5.4 (Strategyproofness). The Dual-Predictor mechanism is item-size monotone and hence
strategyproof.

Proof. Let the true processing times be given by p, and consider any other report p; made by
machine . If x = x(p;, p—;) and ' = x(p}, p—;) are the allocations under the correct reports and
the misreport respectively, we want to show that

(zij — xi;) (pij — piy) <O. (10)

Let small(5) and small’(j) denote the sets corresponding to the runs of the mechanism when given
reports (p;, p—;) and (p}, p_;) respectively.

1. Case I: Suppose z;; = 1, i.e., the job j is assigned to machine ¢ under the correct reports. Since
x;; € {0, 1}, (10) follows immediately in case p;; < p;;, so it suffices to show that p;; < p;; ==
x;; = 1. We consider two cases based on the size of small(j).

Suppose small (j) = @, then for machine 7 to be assigned job j, it must be that ¢ = arg min; py ;.
Since pj; < T, it must be the case that lsmall’(j)| < 1. If small’(j) = @, then p;; < pij means we
still have ¢ = arg min; pj, ;. Else small’(j) = {4}, and then the mechanism always allocates job
j to the unique machine i in small’(j). This means z ; = 1, proving the claim for the case when
small(j) = 2.

Else |[small(j)| > 1. Since j is assigned to machine 4, we infer that ¢ € small(j) and B: pij < Bir Dir
for all ¢ € small(j). (This is vacuously true when [small(j)| = 1.) Since p}; < p;; and the other

sizes p;s j remain unchanged for i’ # i, we get small’(j) = small(j). Moreover, since 3; > 0, the
job j will continue to be assigned to machine ¢, and hence x ;=1

2. Case II: Suppose z;; = 0. Since :c;j € {0,1}, follows immediately in case pgj < pij, soit
suffices to show that p;; > p;; = i; = 0.

Let i; be the machine that is assigned the job j in the assignment z: i.e., ;; ; = 1. If small(j) = &,
then p;; > p;,; since it is not assigned the job j. Now, p;j is even higher, and hence x;j =0.



Else, small(j) # @, which means that i; € small(j) with ,@-j Pi;; < Bir pir; for all machines
i' € small(j). In case pj; > T, we have that p;; ¢ small’(j) and therefore z;; = 0. Else if

pij < pi; < T, then we have that

Bi; piyi < Bipis < Bipiy

and therefore, zj; = 0.

This case analysis implies that any machine ¢ misreporting its processing time for job j leads to an

allocation satisfying the item-wise monotonicity property (I0). Now [Corollary 2.4]implies that the
mechanism is strategyproof. O

6 Closing Remarks

This work extends the investigation of learning-augmented algorithms for optimization problems for
which the pessimistic lower bounds can be circumvented using machine-learned predictions. We
considered the unrelated machine scheduling problem in the strategic settings, where the agents
(machines) can lie about the sizes of jobs to get an allocation with lower load. We show how to use
only a linear number of predictions (essentially one value for each job and for each machine) to get
constant consistency and optimal O(n) robustness, improving on previous work that either achieved
suboptimal robustness with linearly many predictions, or used quadratically many predictions for the
optimal results. Our approach used a new LP relaxation with small integrality gap that also controlled
the range of the dual values.

Several tantalizing directions remain open: can we improve the bounds even further? Since a typical
case is when the number of machines is much smaller than the number of jobs, can we use only O(n)
predictions and get similar algorithmic guarantees? Can we predict these predictions much faster
than predicting job sizes? Finally, what other algorithmic problems can use this “range-controlled
dual” idea to get improvements?
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A Learnability of Predictions

Let us show how we can learn predictions of the processing time, say in a PAC setting, where each
instance p is obtained by first drawing a context/feature a from a distribution D over some set A, and
getting the matrix n x m of processing times using an unknown map f(a) € P := R’*"™. Our goal

is to learn some map f: A — P such that
Pr [Vi,j, |log fij(a) —log fij(a)| < €] = 1—34.

Then, at the time the mechanism is run on the true input, we suppose that the predictor sees the actual

~

contexts/features a, and gives the prediction f(a) to the algorithm. The guarantee above ensures that
Pr|D(f(a), f(a)) > es} < 4, where the error parameter e /2 (1 + ¢) for small ¢.

Let us sketch one way to solve this learning problem. First, we can focus on each coordinate f;;
separately and learn it with confidence 1 — ¢’ := 1 — §/(mmn); a trivial union bound then gives the
claim. The goal now becomes that of learning a real-valued univariate function g : A — R, where
g(a) =1n f;;(a), to an additive accuracy of ¢ with high confidence 1 — ¢’. At this point, we can use
standard tools from machine learning theory to give bounds on the number of samples that suffice to
learn g to an additive error of €. Of course, one needs to make some assumptions on the complexity
of the map g, which would depend on the applications at hand.

As a concrete example of these results, let us assume that the processing times lie in the range
[1,...,eX], and define §(a) := [g(a)], then the function § becomes {0, 1,..., K }-valued. Fur-
thermore, the gap due to this approximation |§ — g| < 1; translating back via the definitions, the
true processing time f;;(a) and its estimate f;;(a) = exp(g(a)), would differ by at most a constant
factor. Finally, given this {0, 1, ..., K }-valued function g, we can use the results of Ben-David et al.
(1995) on learning such functions exactly with high confidence; this work reduces the learning of this
function to showing the finiteness of VC-dimension of some related binary classification problems.
In all these cases, the sample complexity behaves like O((dy /?)log 1/§), where the parameter dy
is some notion of the dimension of associated concept classes.

B Error tolerant Dual-Predictor Mechanism

It can be shown that the DUAL-PREDICTOR mechanism is somewhat brittle — even in the presence
of minor errors, the mechanism achieves the robustness guarantee. In this section, we design an error
tolerant mechanism that builds on the previous mechanism and achieves a constant approximation
factor not only when the predictions are accurate, but also when the predictions are approximately
accurate.

Specifically, our strategyproof mechanism ERROR-TOLERANT DUAL-PREDICTOR will take as input
an error threshold > 1 in addition to the predictions used in it will output an
allocation with consistency guarantees if the error of the prediction is at most 7, and it will always
ensures the robustness guarantees. (Both the guarantees now depend on 7.)

B.1 Approximately Correct Predictions

To begin, define the following “distortion” between two vectors p, q of processing times:
D(p,q) == ma.xmax{p”,q”}. (11)
2% qij DPij
Observe that distortion is symmetric, so that D(p, q) = D(q, p).

Definition B.1 ((y, 77)-Approximate Correctness). We now say that predictions (f B, ®) are (y,m)-
approximately correct with respect to the (true) processing times p if there exist

(a) processing times g such that the distortion D(q, p) < 7, and

(b) predictions (7ﬂA“7 B ,p) are y-correct for processing times g, where ~y-correctness is defined
as inDefinition 5.21

We say that the processing times g and estimate T certify (y,n)-approximate correctness.

12



B.2 Error-Tolerant Mechanism

The error-tolerant mechanism ERROR-TOLERANT DUAL-PREDICTOR is given a parameter n > 1,
along with predictions that are claimed to be (7, ~y)-approximately correct, and it proceeds very
similarly to the original DUAL-PREDICTOR mechanism: building a set of “small” machines for each
job and then using a weighted greedy mechanism to assign to one of them (or to the machine with
smallest reported processing time) if the set is empty.

Mechanism 2: Error-Tolerant Dual-Predictor

Input: Reported values p;; for all (¢,5) € M x J, predictions 8 € R}, map ¢ : J — M, and
T eR,.
Output: Assignment x € {0, 1}™*™.
for each job j do R
Let small(y) ::,\{i | pij < T
| small(j) < small(j) U {¢(j)}
if small(j) = @ then
| @(j) - argmin, p;;.
else
let ﬂ@(j) — [‘3@(]) and Bv — 172['37; for all ¢ 7& L/ﬁ(])
©(j) < argmin{B; pi; | i € small(j)}. // breaking ties in favor of @(j).

return the vector x corresponding to this allocation ¢.

There are two differences between the DUAL-PREDICTOR mechanism and this error-tolerant version:
first, we now add in the predicted machine () to the set small(j) even if the reported size pg(;) ; is
larger than the threshold 7', as long as it is not too large. Secondly, we modify the multipliers 3 to
give the predicted machine an advantage, before choosing the machine for job j. Observe that for the
setting of = 1, the two mechanisms coincide.

B.3 Robustness

The proof of robustness is quite similar to that of the original mechanism.
Theorem B.2. Given any predictions, MS(p,z) < (1 + ¢)n -n? - MS(p, *).

Proof. Let ¢ and ¢* be maps from J to M that correspond to the assignments & and «* in the natural
way. Define

rj i=max(1,cen - Bu«j)) - n° (12)
To begin, we claim that for any job j,
Po().g S5 Por(5).g- (13)

Indeed, consider the various cases:

1. If small(j) = @, then p,(;) ; < p;,; for all machines ¢, and hence also for machine * ().

2. Else if |small(j)| > 1, we consider two subcases.

(a) If *(j) & small(j), then T < Py (j),;- Moreover, we assign job j to some job in small(;j), and
therefore p, ;)5 < n?T. Chaining the two implies Do) < n? P ()4
(b) Else both ¢(j) and ¢*(j) belong to small(;). The mechanism’s selection criterion ensures that

_ _ —~ PN
By Peti)d < Bor () Per(i)d = Beoli) Peti)g < "B () Per ().
Since the B values range between 1/cn and 1, the claim immediately follows.

This proves the claim (T3). Finally a calculation similar to the proof from shows that
the load of machine i is at most * - (n + cn) - MS(p, *), completing the proof. O
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B.4 Consistency

Now suppose that the predictions (ZA“, B, ) are (v, n)-approximately correct, and let g be the pro-
cessing times that certify this (v, n)-approximate correctness. (Note that ¢ is not known to the
mechanism.) Unwrapping the definition, we get that

1. D(p,q) <, s0 that p/n < q <p,

2. OPT(g) <nT < yOPT(q),
3. B = 3 corresponds to an optimal dual solution (&, 3) to the dual D.(n f, q), and
4,

o~/ .

?(j) corresponds to the solution ' obtained by rounding an optimal fractional solution Z
to the primal P.(nT,q).

Lemma B.3 (Consistency). If the predictions are (vy,n)-approximately correct, then
MS(¢,p) <7*- (24 1) - T < 7% (2+ Y(e-1)) - OPT(p),
where D(p,q) =1 <.

Proof. We first argue that the set small(j) is non-empty. Indeed, the machine @(j) lies in the support
of some primal solution to the linear program P.(n T, q) and hence gg(;y ; <1 T. Since p; j < ¢ ;

for all (i, ), we have pg(;); < n*T. By the definition of the mechanism, the machine $(j) is
added to the set small(j) if it satisfies this last inequality, thereby ensuring that small(;) is non-empty.
Hence, the mechanism assigns to the machine in small(j) minimizing 5; p;;.

Now consider the machines in small(j) = {i | p;; < TYU{3(j)}. Since p > p/n, the former set is

contained in {4 | ¢;; < nT'}. Morever, as argued in the previous paragraph, ¢(j) also belongs to this
set. In other words, the pairs {(¢,7) | « € small(j)} are contained in the permissible edges F(nT, q).

Next, the feasibility for the dual program Dc(n’f7 g) means that &; < B; gij forall (7,j) € E (nf, q);
moreover, complementary slackness implies that &; = f3; ¢;; for machines ¢ € small(j) with z;; > 0,
i.e., in the support of the optimal fractional solution. Hence, the machine @(j) is a minimizer of
Bi¢i,; = Pigi,; over machines ¢ € small(j). However, we do not have access to the processing times
¢i; but only to p;;. To fix this issue, we use (i) the fact that ¢;;/n < p;; < np;; and (ii) the definition
of A (as in in the mechanism) to infer that (3() is the minimizer of 3,p;; over machines i € small(j).
This means ¢ = = = .

Now suppose that D(p, q) = 1 < 7. Then the resulting makespan is
max > pi <7 max > a; =7-MS(,q)

Jrp(g)=i J:@(j)=i
<A 2+ Yem1) T
<7 (2+Ye1)-vOPT(q)
<7+ (24 Ye-1) -y OPT(p),
which completes the proof. O

B.5 Strategyproofness
Theorem B.4 (Strategyproofness). The error-tolerant Dual-Predictor mechanism is strategyproof.

The proof is essentially identical to the proof of so we only sketch it here.

Proof. (Sketch) For a job j, if a machine ¢ was not in small(j), the only way for machine ¢ to
become part of small’(j) is to reduce its processing time for the job j. Likewise, the only way to be
removed from small() is to increase its processing time. Therefore, if machine 7 already had the job
j (x5 = 1), reducing its processing time ensures that it still receives the job, irrespective of whether
small(j) is empty or not.

On the other hand, if machine ¢ did not receive the job, the case when small(j) = @ is trivial. If
small(j) # @, increasing its processing time can only increase its scaled processing time until it
eventually does not belong to small’(j); this shows z;; = z;; = 0 as required. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As the abstract and introduction claims, we designed a learning-augmented
job scheduling mechanism for unrelated machines that requires only ©(n + m) predictions
and achieves nearly optimal consistency and robustness. Both consistency and robustness
are proved thoroughly.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: It is clearly stated in "Our Results" section that we achieve marginally worse
consistency than |Balkanski et al.| (2023) while using far fewer predictions—Ilinear instead of
quadratic.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper ensures that each theoretical result has clearly stated assumptions
and provides a formal proof. The proofs are well organized and broken up into supporting
lemmas wherever required to make them more readable. Due to space limitations, we
provide an intuitive proof sketch in the main body and detail the complete proof in the
supplemental material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper respects NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents theoretical results for a foundational theoretical problem
in algorithmic game theory and has no foreseeable societal impact.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not contain any result or data that poses such a risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use any existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs were used for any of the results in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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