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Abstract
This paper presents CPL-IQA, a novel semi-
supervised blind image quality assessment
(BIQA) framework for authentic distortion sce-
narios. To address the challenge of limited la-
beled data in IQA area, our approach leverages
confidence-quantifiable pseudo-label learning to
effectively utilize unlabeled authentically dis-
torted images. The framework operates through a
preprocessing stage and two training phases: first
converting MOS labels to vector labels via en-
tropy minimization, followed by an iterative pro-
cess that alternates between model training and
label optimization. The key innovations of CPL-
IQA include a manifold assumption-based label
optimization strategy and a confidence learning
method for pseudo-labels, which enhance reliabil-
ity and mitigate outlier effects. Experimental re-
sults demonstrate the framework’s superior perfor-
mance on real-world distorted image datasets, of-
fering a more standardized semi-supervised learn-
ing paradigm without requiring additional super-
vision or network complexity.

1. Introduction
Recent years have witnessed the proliferation of real-world
image datasets, which is the cornerstone of computer vi-
sion research and application (Yue et al., 2022). However,
there may occur distortions during the process of image
acquisition, transmission, and processing (Prabhakaran &
Swamy, 2023), leading to degradation in the visual quality
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Figure 1. Real-world images with similar MOS values may differ
greatly in score distribution and standard deviation (std), such
as images (A) and (C), as well as images (B) and (D). These
four images are all taken from the authentically distorted image
database KonIQ-10k (Hosu et al., 2020).

of the processed image. Therefore, plentiful image qual-
ity assessment (IQA) methods have emerged. According
to the amount of available reference images, existing ob-
jective IQA methods can be categorized as Full-Reference
approaches(FR-IQA), Reduced-Reference approaches(RR-
IQA) and No-Reference approaches (NR-IQA) (Zhai & Min,
2020). Since it is difficult to obtain the undistorted version
of authentically distorted images in practical applications,
growing attention has been given to NR-IQA (also termed as
Blind IQA, i.e.BIQA) (Su et al., 2020), which can be applied
in various domains, such as image denoising (Tian et al.,
2020), restoration (Li et al., 2023) and generation (Elasri
et al., 2022). In this work, we focus on BIQA methods for
authentically distorted images. Traditional BIQA methods
aim to predict the image quality scores (i.e. Mean Opin-
ion Scores, MOS) by manually extracting features from
distorted images (Liu et al., 2020; Zhou et al., 2017; Jiang
et al., 2017). While effective for synthesized distortions,
they struggle with authentic distortions. Therefore, there
have sprung up numerous studies about Deep Learning (DL)
-based BIQA methods for authentically distorted images,
due to its strong ability in learning and the success of fusing
discriminative features in visual domains (Fang et al., 2020;
Su et al., 2020; Talebi & Milanfar, 2018; Ying et al., 2020).
However, the training process of these methods requires
a large amount of data to prevent overfitting, while there
exists no large database of authentically distorted images
nowadays since the annotation process is expensive and
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time-consuming (Yue et al., 2022; Prabhakaran & Swamy,
2023; Zhang et al., 2022c).

To solve this problem in authentically distorted scenar-
ios, some researchers try to explore unsupervised or semi-
supervised BIQA methods (Prabhakaran & Swamy, 2023;
Yue et al., 2022; Saha et al., 2023), which can utilize
unlabeled images to boost the quality prediction perfor-
mance. For unsupervised strategy, the intuitive idea is to
train the BIQA model on large synthetically distorted image
databases first based on Contrastive Learning (Madhusu-
dana et al., 2022; Saha et al., 2023), then the pre-trained
model is fine-tuned on specific authentically distorted im-
age database (Prabhakaran & Swamy, 2023). Although this
approach performs well in synthetically distorted scenarios,
the performances on authentic images are not satisfactory.
For semi-supervised strategy, some works try to train BIQA
networks using both labeled and unlabeled samples based
on knowledge distillation (Yue et al., 2022), which requires
the score distribution of each image. However, only MOS
labels are available in most authentically distorted image
datasets (such as SPAQ (Fang et al., 2020)), while images
with similar MOS values may correspond to a variety of
score distributions (as shown in Figure 1). And the latest
semi-supervised BIQA methods SSLIQA (Yue et al., 2022)
and SS-IQA (Pan et al., 2024) both require additional net-
work branches and extra data during training, leading to
higher training costs. In general, the applicability of exist-
ing DL-based semi-supervised BIQA methods is limited
due to the rigorous training requirements and conditions.

Therefore, we propose a novel semi-supervised BIQA frame-
work named CPL-IQA1 based on label propagation (LP),
which can be effectively trained end-to-end only on a sin-
gle branch network without extra inputs. The idea of LP
is to first construct a nearest neighbor graph in the feature
space based on the manifold hypothesis (Zhou et al., 2003),
then the pseudo-labels of unlabeled samples are obtained
by the neighbor graph and labels of limited labeled samples.
However, there exists a severe obstacle to applying LP effec-
tively in the BIQA field: The approach of label propagation
is skilled in handling multi-label (vector-label) data (Zhong
et al., 2021), whereas MOS label in IQA datasets is a scalar.
Therefore, to train BIQA model using labeled and unlabeled
data simultaneously based on LP, CPL-IQA is required to
achieve two goals: (1) Reasonably convert the scalar MOS
labels of labeled samples into vector labels to meet the re-
quirement of LP. (2) Effectively predict the pseudo-labels
of unlabeled images and corresponding confidence levels,
which will be fed into the BIQA model for training.

For Goal (1), according to NIMA (Talebi & Milanfar, 2018),
training BIQA models with the MOS distribution of each
image outperforms training with the scalar label of MOS.

1CPL is short of confidence-quantifiable pseudo-label learning.

This fact motivates us to convert MOS label to the vector
label that can reasonably simulate the MOS distribution for
each sample. To achieve this, we propose a preprocessing
procedure named Label Conversion in CPL-IQA, which is
implemented based on entropy minimization.

For Goal (2), firstly, we predict the pseudo-labels of unla-
beled images following the process of label propagation.
Then, in order to eliminate the effects of some inaccurate
pseudo-labels, we propose an entropy-based confidence
learning method to distinguish the quality of these predicted
pseudo-labels, which can effectively improve the perfor-
mance of CPL-IQA. It is worth noting that no auxiliary
datasets and multiple network branches are required during
the training process of CPL-IQA. The main contributions
are summarized as follows:

• In this paper, we propose a novel and high-applicability
semi-supervised BIQA method named CPL-IQA for
authentic images according to learning the proper
pseudo-labels for unlabeled images based on label
propagation.

• We propose an effective strategy of Label Conversion
to address the obstacle to applying label propagation
effectively in the BIQA field, which is implemented
based on the technique of entropy minimization.

• We propose an effective confidence learning method,
which can eliminate outliers of pseudo-labels and en-
hance the generalization ability of CPL-IQA.

• Extensive experiments on authentically distorted image
databases are conducted to validate the applicability
and effectiveness of the proposed method.

2. Related Works
2.1. Blind Image Quality Assessment (BIQA)
Traditional BIQA methods focused on manually construct-
ing statistical features and predicting MOS labels of images
by linear mapping (Liu et al., 2018; Wang et al., 2002;
Saad et al., 2012; Moorthy & Bovik, 2010). With the de-
velopment and wide applications of deep learning (DL),
DL-based BIQA methods have become the mainstream di-
rection of BIQA research, while these BIQA methods are
”data hungry”. Therefore, some unsupervised BIQA meth-
ods have sprung up (Madhusudana et al., 2022; Prabhakaran
& Swamy, 2023; Saha et al., 2023; Zhao et al., 2023),
which are designed based on Contrastive Learning (Le-Khac
et al., 2020), and more complex BIQA network structures
are proposed to improve the generalization of BIQA (Liu
et al., 2017; Lin et al., 2020; Ma et al., 2017b; Zhou et al.,
2022). However, these methods are trained on syntheti-
cally distorted databases, leading to limited performance
on images with authentic distortions. More recently, some
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Figure 2. Overview of CPL-IQA. The overall training process is described in Section 3.2.

works (Zhang et al., 2024; Zhong et al., 2024a; Wang et al.,
2023; Yang et al., 2024; Zhang et al., 2022a;b) try to improve
the generalization of BIQA models by combining BIQA net-
works with specific learning paradigm, such as Continual
Learning, Causal Learning, Curriculum Learning, Adver-
sarial Learning and Semi-supervised Learning. However,
these methods require much higher training costs, including
the latest semi-supervised BIQA methods SSLIQA (Yue
et al., 2022) and SS-IQA (Pan et al., 2024), which both
require training with multiple network branches and addi-
tional datasets. Therefore, the motivation of this paper is to
design a semi-supervised BIQA method that can be effec-
tively trained end-to-end only on a single branch network
without extra inputs in authentically distorted scenarios. See
Appendix B.1 for more reviews.

2.2. Deep Semi-supervised Learning (D-SSL)
By designing different unsupervised losses for training with
unlabeled samples, existing D-SSL methods can effectively
deal with the scenarios of data scarcity in practical applica-
tions. One type of representative D-SSL method is known
as Transductive Semi-Supervised Learning (TSSL) (Wang
et al., 2016; Shi et al., 2018). Another type is designed based
on label propagation (Iscen et al., 2019; Douze et al., 2018;
Haeusser et al., 2017). More recently, some active learning-
based semi-supervised methods have been proposed (Fan
et al., 2024). Regrettably, these approaches are only suit-
able for classification problems and cannot be implemented
in regression tasks such as IQA. Therefore, some BIQA
works (Prabhakaran & Swamy, 2023; Yue et al., 2022) try
to construct the unsupervised contrastive loss that can be
trained with unlabeled samples, which inevitably require
additional training costs with lower applicability. Differ-
ent from these unsupervised methods, our proposed BIQA
method can achieve both high applicability and low com-
plexity with a more standard semi-supervised paradigm. For
a detailed literature review, please refer to Appendix B.2.

3. Methods
We first outline the preliminaries and the overview of CPL-
IQA, followed by detailed introductions of each module.

3.1. Preliminaries

We assume X := (x1, . . . , xl, xl+1, . . . , xn) is the authen-
tically distorted image dataset in the semi-supervised BIQA
domain, where the first l images are labeled and the remain-
ing n− l are unlabeled images. YL := (y1, . . . , yl) are the
MOS labels of the first l samples. The goal of our semi-
supervised BIQA method is to train an effective MOS predic-
tion model with unlabeled images XU := (xl+1, . . . , xn),
labeled images XL := (x1, . . . , xl) and their labels YL.

3.2. Overview of CPL-IQA

As shown in Figure 2, the basic idea of our approach is learn-
ing the confidence-quantifiable pseudo-labels for unlabeled
samples XU to deal with the insufficient label problem. The
whole framework consists of a preprocessing procedure
named Label Conversion and two training stages. Stage 2
includes two steps: Model Training and Label Optimizing,
which are iterated alternately until convergence.

In the Label Conversion procedure before training, due
to the superior values of score distributions of images in
training, we transform MOS labels into vector representa-
tions by entropy minimization, which can be regarded as the
simulation of score distributions. In Stage 1, the feature
extractor ϕθ1 and label predictor fθ2 are trained together
through labeled images XL, YL and Eq. 10, ResNet101 (He
et al., 2016) is chosen as the backbone. In the Label Op-
timizing step of Stage 2, the features of all the samples
X can be obtained according to the current feature extrac-
tor ϕθ1 . Then a nearest neighbor graph structure is con-
structed in the feature space based on the manifold assump-
tion (Zhou et al., 2003), through which the latent semantic
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representations of these samples can be created to learn
the proper pseudo-labels ŶU for unlabeled images. In the
Model Training step of Stage 2, the feature extractor ϕθ1

and predictor fθ2 are further trained with XL, YL, XU and
the predicted pseudo-labels ŶU . In order to improve the
utilization of pseudo-labels, we allot a confidence weight
for each pseudo-label during this training step in Stage 2.

3.3. Modules

In this section, we will introduce the details of each module
about our proposed CPL-IQA method, including modules
of Label Conversion, Nearest Neighbor Graph Construction,
Label Optimizing, Confidence of Labels, Loss Functions,
Alternate Iterative Training, Analysis and Discussion about
the proposed method CPL-IQA.

3.3.1. LABEL CONVERSION.

The motivations of this module lie in the two main aspects:
(1) The core idea of our method is to learn the pseudo-
label and corresponding confidence level for each unlabeled
training sample based on label propagation, which is par-
ticularly adept at handling multi-label or vector-label data.
(2) According to NIMA (Talebi & Milanfar, 2018), train-
ing with the vector label representing the MOS distribution
has demonstrated more advanced effectiveness compared
to training with the scalar label of MOS. Therefore, we as-
sume that the confidence levels of labels in labeled samples
are high enough, and the MOS labels of labeled samples
are converted into vector representations of simulated MOS
distribution labels for each sample by entropy minimization.
Although we admit that the conversion of MOS labels to vec-
tor labels of MOS distributions could be a one-to-many map-
ping without any prior information, entropy minimization is
reasonable since it results in a more concentrated simulated
label distribution, suggesting lower variance and higher con-
fidence, which fits well with the above assumption of high
confidence level, leading to a one-to-one mapping.

Concretely speaking, in order to press close to the artificially
subjective BIQA method (Fang et al., 2020), we uniformly
consider MOS labels as the average result of score sets
M = {1, 2, 3, ..., 99, 100}, hence the value range of the
specified MOS is the closed interval [1, 100]. For authen-
tically distorted image databases with different ranges of
MOS labels, we firstly normalize the MOS range to [1, 100]
by Max-min Normalization:

si = 1 +
zi −min (z)

max (z)−min (z)
× 99, (1)

where z = [z1, z2, ..., zn], and si is the normalized MOS
label of the i-th sample. Then, the MOS value is replaced
by a 100-dimensional vector v, where each element can be
viewed as a proportion of the corresponding score in the

score set M , so each element of the vector v is positive and
the sum of that is 1.

Since the distribution of MOS labels is unavailable in many
authentically distorted image databases, we can regard the
entropy of v as the degree of uncertainty of vector labels.
Therefore, the MOS labels of labeled samples are converted
to vector labels by entropy minimization.

vi =: argmin
1T vi=1,qT vi=si

H(vi), H(p) = −
∑
i

pi log pi,

(2)
where 1=[1, ..., 1]T ∈ R100×1, q=[1, ..., 100]T ∈ R100×1.
vi is the label vector converted from the MOS label si of
the i-th sample, with all elements being positive. We de-
note all the converted labels as VL = [v1; ...;vl] ∈ R100×l.
H(p) is information entropy (Greven et al., 2014) for an
arbitrary random vector p, also applying to the label vector
vi. According to Eq. 2, converting the GT MOS value to a
vector representation is a one-to-one problem without any
prior information. For example, an MOS value 2.4 and can
uniquely be converted to vector label [0; 0.6; 0.4; 0; ...; 0; 0].

3.3.2. NEAREST NEIGHBOR GRAPH CONSTRUCTION.

In Stage 2 of CPL-IQA, features are extracted according to
the current parameters θ1, including the parameters of the
backbone and the following Fully Connected (FC) layer.
The role of FC is to realize the low dimensional repre-
sentation of extracted feature information and reduce the
computation complexity of graph construction, inspired by
low-rank learning (Hu et al., 2021). In our settings, the
backbone is ResNet101 (He et al., 2016) and the subse-
quent FC layer maps the learned 2048-dimensional features
extracted by ResNet101 into 256-dimensional features, de-
noted as Q = [q1, q2, . . . , qn] ∈ Rd×n (d = 256). We use
the kNN(Belkin & Niyogi, 2003) to construct the weight
matrix G, so sample point qi is linked to qj if and only if qi
is the k nearest neighbor of qj in kNN graphs. kNN graph
G is defined as:

Gij =

{
exp

(
−∥qi−qj∥2

σ2

)
, if qi is linked to qj ,

0 , otherwise ,
(3)

where σ is the hyper-parameter.

Note that qj is not necessarily one of the k nearest neighbors
of qi when qi is that of qj . Therefore, for the sake of the sub-
sequent learning, we construct the normalized symmetrical
graph matrix G̃ in our method:

Ĝ =
(
G+GT

)
/2, G̃ = D−1/2ĜD−1/2. (4)

The D in Eq. 4 is a diagonal matrix, where the element in
the i-th row and i-th column is the sum of the i-th row of Ĝ.
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3.3.3. LABEL OPTIMIZING.

Following the format of the converted vector labels, we
initialize the vector labels of the unlabeled images as
the zero vectors with 100 dimensions, denoted as VU =
[vl+1; vl+2; ...; vn]. According to the manifold hypothe-
sis (Zhou et al., 2003), the latent semantic representations
P ∈ Rn×100 of all samples can be learned through the
following iterative process, where t denotes the number of
iterations and all elements of P (0) are initialized to zero.

P (t+ 1) = γG̃P (t) + (1− γ)V, (5)

in which V=[VL;VU ] (VL is defined after Eq. 2), and γ is
a hyper-parameter between 0 and 1, which is set as 0.99 in
our method. To save computational costs, we can obtain P ∗

(i.e. the convergent P ) via the following assertion:
Assertion 3.1. Define sequence {P (t)} as Eq. 5 with G̃
obtained by Eq. 4, then {P (t)} converges to P ∗ in Eq. 6:

P ∗ = lim
t→∞

P (t) = (1− γ)(I − γG̃)−1V. (6)

See Appendix A.1 for the proof. Finally, we can normalize
P ∗ and obtain the predicted pseudo-labels ŶU :

P̂ = P ∗/∥P ∗∥2, W = P̂−1
L YL, ŶU = P̂UW, (7)

where P̂−1
L represents the pseudo-inverse of P̂L, since it

is not a square matrix. The intuition behind Eq. 7 is as
follows: After computing P and P̂ = [P̂L; P̂U ], we have
obtained the latent semantic representations for both labeled
and unlabeled samples within the same feature space. Then,
labels Y can be predicted using a weight matrix W as Y =
P̂W . Since the ground-truth labels YL for labeled samples
are known, we can calculate W from YL and P̂L, and then
use W to predict the labels YU for unlabeled samples. Based
on Eq. 7, our label optimizing method can handle regression
tasks such as IQA. While traditional label propagation is
only suitable for classification tasks (Iscen et al., 2019).

3.3.4. CONFIDENCE OF LABELS.

According to the normalized P̂ in Eq. 7, we can use infor-
mation entropy H(·) to estimate the confidence η of the
pseudo-labels learned in the module of Label Optimizing,
then the impact of pseudo-labels with high uncertainty can
be reduced for model training. For the j-th unlabeled sam-
ple, the confidence ηj can be defined as:

ηj = 1−H
(
P̂j

)
/ log(m), (j = l + 1, ..., n), (8)

where m = |M | is the size of set M . Thus, ηj ranges be-
tween 0 and 1, with higher ηj indicating greater confidence.
On the other hand, we assign high confidence to the ground
truth MOS labels of labeled samples, that is:

ηi = 1, (i = 1, ..., l). (9)

The setting of Eq. 9 echoes the operation of Label Conver-
sion for labeled samples.

3.3.5. LOSS FUNCTIONS.

As shown in Figure 2, our proposed CPL-IQA method in-
cludes two training stages.

Stage 1 of CPL-IQA is a supervised learning process trained
with labeled images XL and their labels YL, the loss func-
tion of which can be formulated as:

Ls1 (XL, YL; θ1, θ2) :=

l∑
i=1

loss1 (fθ2 [ϕθ1(xi)] , EM(yi)) ,

(10)
where EM(·) denotes the operation of Label Conversion
with entropy minimization, ϕ and f are feature extractor
and label predictor with parameters θ1 and θ2 respectively,
and loss1 represents the EMD (earth mover’s distance)
loss (Hou et al., 2016) with r = 2.

Stage 2 of CPL-IQA is trained with both labeled samples
XL, YL and unlabeled samples Xu and the loss function is:

Ls2

(
X,YL, ŶU ; θ1, θ2

)
:=

l∑
i=1

ηi loss2 (fθ2 [ϕθ1 (xi)] , yi)

+

n∑
j=l+1

ηj loss2 (fθ2 [ϕθ1 (xj)] , ŷj) ,

(11)
where ŶU := (ŷl+1, . . . , ŷn) denote the learned pseudo-
labels for unlabeled images XU in the Label Optimizing step
of Stage 2 . And loss2 represents a loss function designed
based on L1 loss (MAE loss).

3.3.6. ALTERNATE ITERATIVE TRAINING.

After Label Optimizing in Eq. 7 and confidence learning
in Eq. 8, we can further train the feature extractor ϕθ1 and
FC predictor fθ2 with Eq. 11. Since the predicted results of
fθ2 (with normalization) are m-dimensional vector labels,
the learned pseudo-labels are real numbers range in interval
[1, 100]. Therefore, loss2 in Eq. 11 can be measured by:

loss2 (dk, yk; g) = L1

(
dk ∗ gT , yk

)
, (k = 1, ..., n), (12)

where dk = normalize {fθ2 [ϕθ1 (xk)]} and g =
[1, 2, ...,m] is the vector of label levels, m = 100 in our
method. And L1(·) denotes the L1 loss (MAE loss).

Therefore, the process of alternate training in Stage 2 can
be iterated through the two steps: Step 1: Label Optimiz-
ing. According to image features extracted by the latest
updated model, a new kNN graph is constructed by Eqs. 3-4.
Then the pseudo-labels of unlabeled samples are learned
by Eqs. 6-7. Step 2: Model Training. After calculating the
confidence of pseudo-labels by Eq. 8, the current model is
further trained with Eqs. 11-12.
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The pseudo-code of CPL-IQA is summarized in Algorithm 1
in Appendix C, where line 1, lines 1-1. lines 1-1 and lines 1-
1 are the processes of Label Conversion, Stage 1, Step 1 and
Step 2 of Stage 2, respectively.

3.3.7. ANALYSIS AND DISCUSSION.

In the process of label propagation (Zhou et al., 2003), fea-
tures are normalized to construct the manifold structure of
samples (Iscen et al., 2019) by cosine similarity, which is
not suitable for regression and IQA tasks, since this kind of
manifold structure may wreak havoc on the distribution of
regression labels (see Appendix E.3 for details). Instead of
cosine similarity, we construct the nearest neighbor graph
by the original extracted feature information, which is more
compatible with IQA tasks. An interesting finding is that the
limiting value Eq. 6 in the iterative process of Eq. 5 can be
regarded as the optimal solution of a specific regularization
framework, which describes the process of label propaga-
tion from the perspective of optimization. Here we have the
following assertion.
Assertion 3.2. In the iterative process of Eq. 5, the limiting
value Eq. 6 can be regarded as the optimal solution of the
regularization framework Eq. 13 (with µ > 0 in Eq. 14).

P ∗ = arg min
P∈P
H(P ), (13)

H(P )=

n∑
i,j=1

Gij

∥∥∥∥∥ 1√
Dii

Pi−
1√
Djj

Pj

∥∥∥∥∥
2

+µ

n∑
i=1

∥Pi−Vi∥2 .

(14)

See Appendix A.2 for proof. The first and second terms of
Eq. 14 can be regarded as the smoothness constraint and
fitting constraint (Zhou et al., 2003), respectively.

4. Experiments
In this section, we conduct experiments on authentically
distorted images to validate the superiority of CPL-IQA.

4.1. Experimental Settings

4.1.1. DATASETS AND EVALUATION METRICS

We perform the main experiments on four representative
authentically distorted image databases, including KonIQ-
10K (Hosu et al., 2020), LIVE-C (Ghadiyaram & Bovik,
2015), NNID (Xiang et al., 2019) and SPAQ (Fang et al.,
2020). More details of these datasets are shown in Appendix
D. In addition to the main experiments, more databases in
Table 9 are used in more extra experiments in Appendix E,
including BID (Ciancio et al., 2010) and KADID-10K (Lin
et al., 2019). We evaluate BIQA models by four typi-
cal metrics, including Pearson Linear Correlation Coeffi-
cient (PLCC), Spearman Rank-order Correlation Coeffi-

Table 1. Performance comparison on KonIQ-10K with the propor-
tion 1:3:1 of samples division. The best results are highlighted in
bold (same in the later tables).

Methods PLCC SRCC

Traditional
BIQA Supervised

NIQE 0.300 0.276
BRISQUE 0.581 0.541

GWH-GLBP 0.581 0.541
SSEQ 0.326 0.303

DL-based
BIQA

Supervised

CNNIQA 0.654 0.635
WaDIQaM 0.665 0.644
PAQ-2-PIQ 0.728 0.718
NSSADNN 0.665 0.549
GraphIQA 0.862 0.845
MB-CNN 0.609 0.600
MUSIQ 0.864 0.838

Causal-IQA 0.853 0.837

Unsupervised CONTRIQUE 0.768 0.775
Re-IQA 0.782 0.804

Semi-Supervised

SSLIQA 0.867 0.841
SS-IQA 0.854 0.829

Semi-IQA 0.864 0.839
Ours 0.873 0.845

cient (SRCC), Kendall Rank-order Correlation Coefficient
(KRCC), and Root Mean Squared Error (RMSE).

4.1.2. IMPLEMENTATION DETAILS

In the CPL-IQA, we choose ResNet101 as the backbone for
a compelling comparison with SSL-IQA (Yue et al., 2022),
which uses ResNet101 (He et al., 2016) as one branch. In La-
bel Conversion, we take score set M = {1, 2, 3, ..., 99, 100}
and m = 100 is the cardinality of M . k is set to 10 and
σ = 500 in the Nearest Neighbor Graph Construction with
kNN, and the graph G in Eq. 3 is computed with the FAISS
library (Johnson et al., 2019). We let γ = 0.99 in the pro-
cess of Label Optimizing. The dimension d of features
extracted by the FC layer after the backbone is 256, which
can improve computing efficiency in graph construction.

Our CPL-IQA is trained with Pytorch library on two Intel
Xeon E5-2609 v4 CPUs and four NVIDIA RTX 2080Ti
GPUs. The batch size B = 64 in Stage 1, and Stage 2 is
performed with B = BL +BU , where BL = 8 and BU =
56 denote the number of labeled and unlabeled images in
one batch. The training is conducted for just 10 epochs in
total with SGD optimization, including 5 epochs in Stage
1 and 5 epochs in Stage 2. Meanwhile, we resize all the
images into 256× 256 and randomly crop 10 sub-images to
the size of 224× 224, and we initialize the backbone by the
pre-training weights obtained by the classification task on
ImageNet (Deng et al., 2009) before training in Stage 1.

4.2. Performance Comparison

4.2.1. MAIN RESULTS

We divide the image set of KonIQ-10K by 1:3:1, which
corresponds to the ratio of the number of training im-
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Table 2. The test results of cross-data experiments conducted on
LIVE-C and NNID. All the CNN-based methods are trained with
20% labeled images and 60% unlabeled images sampling from
KonIQ-10K.

Methods LIVE-C NNID
PLCC SRCC PLCC SRCC

Supervised

CNNIQA 0.513 0.485 0.597 0.584
WaDIQaM 0.538 0.535 0.704 0.702
PAQ-2-PIQ 0.528 0.506 0.715 0.712
NSSADNN 0.439 0.426 0.733 0.731
GraphIQA 0.619 0.591 0.728 0.727
MB-CNN 0.481 0.459 0.553 0.548
MUSIQ 0.655 0.672 0.701 0.723

Causal-IQA 0.742 0.705 0.748 0.767

Unsupervised CONTRIQUE 0.598 0.612 0.584 0.679
Re-IQA 0.612 0.593 0.624 0.770

Semi-Supervised

SSLIQA 0.706 0.695 0.771 0.770
SS-IQA 0.731 0.705 0.743 0.759

Semi-IQA 0.718 0.684 0.723 0.735
Ours 0.777 0.721 0.772 0.773

ages with labels, training images without labels and test
images, respectively, to conduct the comparative experi-
ments to analyze the effectiveness of CPL-IQA. Sixteen
advanced BIQA methods are used to compare with CPL-
IQA, which consist of four traditional BIQA methods (in-
cluding NIQE (Mittal et al., 2012b), BRISQUE (Mittal
et al., 2012a), GWH-GLBP (Li et al., 2016) and SSEQ (Liu
et al., 2014)) and twelve DL-based BIQA methods (includ-
ing PAQ-2-PIQ (Ying et al., 2020), CNNIQA (Kang et al.,
2014), WaDIQaM (Bosse et al., 2017), NSSADNN (Yan
et al., 2019), GraphIQA (Sun et al., 2023a), MB-CNN (Pan
et al., 2022), CONTRIQUE (Madhusudana et al., 2022),
MUSIQ (Ke et al., 2021), Causal-IQA (Zhong et al., 2024a),
Re-IQA (Saha et al., 2023), SSLIQA (Yue et al., 2022),
SS-IQA (Pan et al., 2024)), and Semi-IQA (Li et al.,
2024). Semi-IQA, SS-IQA and Re-IQA are the SOTA semi-
supervised BIQA methods, CONTRIQUE and Re-IQA are
the SOTA unsupervised BIQA methods2. Other supervised
methods are trained with the corresponding 20% labeled
images for the sake of fairness. Finally, the comparison
results between CPL-IQA and other methods are displayed
in Table 1. We can observe that, compared with DL-based
methods, the general performances of traditional methods
are fairly unsatisfactory. And our CPL-IQA has achieved
better results than other competing methods. Besides, CPL-
IQA with only one branch performs better than SSLIQA
and SS-IQA (consisting of two network branches), which
illustrates the effectiveness of CPL-IQA.

4.2.2. CROSS-DATA EXPERIMENTS

In addition, we further perform a set of cross-data exper-
iments to examine the generalization ability of CPL-IQA.
Specifically, we directly test above mentioned CNN-based

2Unsupervised model is firstly trained on an unlabeled training
set, then fine-tuned on a labeled training set from the same dataset.

Table 3. Impacts of Label Conversion, the weight of Label Confi-
dence and Label Optimizing in Stage 2.

Methods Metrics KonIQ-10K
(1:3:1)

SPAQ
(1:8:1)

SPAQ
(2:7:1)

Label-only

PLCC 0.713 0.812 0.823
SRCC 0.719 0.813 0.818
KRCC 0.502 0.589 0.616
RMSE 9.979 13.267 11.665

Ours
(Stage 1)

PLCC 0.850 0.873 0.888
SRCC 0.822 0.869 0.887
KRCC 0.619 0.672 0.686
RMSE 7.288 10.284 9.466

Ours
(Full)

(weights ×)

PLCC 0.862 0.881 0.898
SRCC 0.829 0.883 0.897
KRCC 0.630 0.689 0.699
RMSE 7.068 10.009 8.953

Ours
(Full)

(weights ✓)

PLCC 0.873 0.896 0.903
SRCC 0.845 0.893 0.902
KRCC 0.652 0.703 0.709
RMSE 6.728 9.220 8.911

models trained on KonIQ-10K (sample proportion is 1:3:1)
on two unseen authentically distorted image databases:
LIVE-C and NNID. To echo models trained on KonIQ-
10K, the MOS labels of images in LIVE-C and NNID are
normalized to 1-100 by Eq. 1 and these images are randomly
cropped to the size of 224 × 224 before testing. And the
results are displayed in Table 2, which shows that CPL-IQA
can perform stably on unseen databases with one-up gener-
alization ability. Peculiarly, the PLCC value of CPL-IQA
on LIVE-C is more than 10% of the second place, which
indicates its advantage in generalization for the authentically
distorted IQA tasks.

4.3. Ablation Study
We investigate the impacts of different components of CPL-
IQA. Firstly, we record the impact of each stage on the
final results on KonIQ-10k and SPAQ with different split
ratios, which are shown in Table 3. The Label-Only (Fang
et al., 2020) method is trained by ResNet101 and L1 loss
only on labeled samples, and Ours (Stage 1) and Ours (Full)
denote the training results of CPL-IQA in Stage 1 and Stage
2, respectively. The “weights ×” denotes the confidence
of all samples set as 1 in Stage 2, and “weights ✓” means
confidence is calculated by Eq. 8. Looking down from the
top in Table 3, the performances are gradually improving,
illustrating the effectiveness of Label Conversion, the weight
of Label Confidence, and Label Optimizing in Stage 2.

In addition, we study the impact of cardinal number m of
the score set M mentioned in Section 3.3 and the split ratio
of image samples, the results of which are shown in Table 4
and Table 5. Looking from left to right, we can observe that
the larger the ratio of labeled training samples, the better
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Table 4. Impact of the cardinality m of score set M .
KonIQ-10K(1:3:1) SPAQ(1:8:1)

m 10 20 100 10 20 100

PLCC 0.850 0.872 0.873 0.884 0.892 0.896
SRCC 0.821 0.837 0.841 0.880 0.888 0.893
KRCC 0.627 0.644 0.652 0.686 0.697 0.703
RMSE 7.081 6.788 6.728 9.673 9.345 9.220

Table 5. Impact of the split ratio of datasets (fixed m = 20).
m=20 KonIQ-10K SPAQ

Ratio 1:7:2 2:6:2 3:5:2 1:8:1 2:7:1 3:6:1

PLCC 0.845 0.872 0.875 0.892 0.902 0.905
SRCC 0.813 0.837 0.848 0.888 0.901 0.903
KRCC 0.620 0.644 0.661 0.697 0.706 0.716
RMSE 7.284 6.788 6.700 9.345 8.935 8.746

performance, and the same goes for cardinal number m.

4.4. Visualized Analysis

We further investigate the quality of pseudo-labels learned
by Eq. 7 during each iteration in Stage 2. The whole visual
analysis experiments are conducted on KonIQ-10K (1:3:1)
with m = 100. On the one hand, we record the perfor-
mances of pseudo-labels learned by Eq. 7 in each epoch
of Stage 2, including PLCC, SRCC, KRCC and RMSE
according to ground-truth (GT) labels. Meanwhile, the per-
formances of directly predicted labels by the model in the
current epoch are recorded. The above results are shown
in Figure 3, from which we can observe that: (i) pseudo-
labels learned by Eq. 7 are almost always more effective
than that predicted by the network. (ii) the performance of
pseudo-labels predicted by the network is gradually improv-
ing. Therefore, the strategy of Alternate Iterative Training
and the method of Label Optimizing can be proven to be
effective. On the other hand, we make a comparison be-
tween the distribution of pseudo-labels learned by Eq. 7 and
that of ground-truth (GT) MOS labels, which are shown
in Figure 4. It can be observed that the distribution of
pseudo-labels is almost consistent with that of the GT ,
which proves the effectiveness of Label Optimizing once
again. Note that achieving the consistency between the
distributions of pseudo-labels and GT labels is not trivial.
Traditional label propagation methods, tailored for classi-
fication perform poorly (Appendix E.3), highlighting the
superior adaptability of our proposed methods to IQA tasks.

4.5. More Experimental Results
We also conducted additional experiments to further ex-
plore several aspects, including (1) the Results with Dif-
ferent Backbones, (2) the Visualization of Label Confi-
dence, (3) the impact of Cosine Similarity-based Manifold
Structure on the experimental outcomes, (4) the Impact
on CPL-IQA of k in Eq. 3, (5) performances of CPL-IQA

(a) PLCC (b) SRCC

(c) KRCC (d) RMSE

Figure 3. Comparison of performances between pseudo-labels
learned by Eq. 7 (blue lines) and network prediction (yellow lines)
according to ground-truth MOS labels on KonIQ-10K (1:3:1) in
each epoch of Stage 2.

(a) Pseudo-labels via Eq. 7 (b) Ground-truth (GT) labels

Figure 4. The distribution contrast of pseudo-labels obtained by
Eq. 7 for unlabeled training samples and the corresponding GT-
labels, validating the accuracy of the predicted pseudo-labels.

trained with labeled and unlabeled samples from different
datasets, and (6) Evaluating CPL-IQA with unlabeled train-
ing data from multiple sources. More details are shown in
Appendixes E.1, E.2, E.3, E.4, E.5, and E.6 respectively.

5. Conclusions
This paper proposes a novel semi-supervised BIQA method
CPL-IQA for real-world images with authentic distortions
based on confidence-quantifiable pseudo-label learning,
which includes a preprocessing procedure (Label Conver-
sion) and a two-stage training process. In the preprocessing
procedure of Label Conversion, MOS labels are transformed
into vector labels according to entropy minimization, then a
basic feature extractor is trained with limited labeled sam-
ples in Stage 1, based on which the proper pseudo-labels are
learned for unlabeled images in the Label Optimizing step
of Stage 2, which is executed alternately and iteratively with
the step of Model Updating for continuous training until
convergence. Extensive experiments are conducted to prove
the superiority of the proposed CPL-IQA.
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A. Proofs
A.1. The Proof of Assertion 3.1

Proof. Without loss of generality, let P (0) = V , according
to Eq. 5, we have:

P (t) = (γG̃)t−1V + (1− γ)

t−1∑
j=0

(γG̃)jV. (15)

Note that 0 < γ < 1, and the eigenvalues of G̃ are in the
interval [−1, 1], then

lim
t→∞

(γG̃)t−1 = 0, (16)

lim
t→∞

t−1∑
j=0

(γG̃)j = (I − γG̃)−1. (17)

Hence we can obtain:

P ∗ = lim
t→∞

P (t) = (1− γ)(I − γG̃)−1V, (18)

which proves up Assertion 3.1.

A.2. The Proof of Assertion 3.2

Proof. We set the derivative ofH(P ) w.r.t P equal to zero,
to obtain the optimal P (denoted as P ∗):

∂H
∂P

∣∣∣∣
P=P∗

= P ∗ − G̃P ∗ + µ (P ∗ − V ) = 0, (19)

which is equivalent to:

P ∗ − 1

1 + µ
G̃P ∗ − µ

1 + µ
V = 0. (20)

Hence we have:

(I − 1

1 + µ
G̃)P ∗ =

µ

1 + µ
V, (21)

where I is the identity matrix. Note that I − 1
1+µ G̃ is a

symmetric and invertible matrix, then we have:

P ∗ =
µ

1 + µ
(I − 1

1 + µ
G̃)−1V. (22)

Note that µ > 0, so we can regard 1/(1+µ) and µ/(1+µ)
as γ and 1− γ respectively, then Eq. 22 can be rewritten as:

P ∗ = (1− γ)(I − γG̃)−1V, (23)

which is the same as Eq. 6 in the submitted version, and
proves up Assertion 3.2.
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B. More detailed Related Works
B.1. Blind Image Quality Assessment

Blind Image Quality Assessment (BIQA) has attracted wide
attention in recent year since reference images are unavail-
able in authentically distorted image datasets (Wang et al.,
2002). Traditional BIQA methods focused on manually
constructing statistical features and predicting MOS labels
of images by linear mapping (Wang et al., 2002; Liu et al.,
2018; Saad et al., 2012; Moorthy & Bovik, 2010). With
the development and wide applications of convolutional
neural networks (CNNs) and deep learning (DL) (Chen
et al., 2024; 2025; Zhong et al., 2025b; Ma et al., 2025;
2024b;a; Zhao et al., 2024; Zhong et al., 2024b), DL-based
or CNN-based BIQA methods have become the mainstream
direction of BIQA research (Zhu et al., 2024a;b; 2022),
while these BIQA methods are ”data hungry”. Therefore,
some works (Kang et al., 2014; Bosse et al., 2016; Ding
et al., 2021) try to cope with the insufficient labeled data
by dividing the image into several patches with the same
MOS label. Although different weighting strategies can be
utilized to integrate local scores, this operation still leads to
the loss of global information. So, more complex networks
are proposed to improve the generalization of BIQA (Liu
et al., 2017; Lin et al., 2020; Ma et al., 2017b; Zhou et al.,
2022). For example, RankIQA (Liu et al., 2017) proposed
a Siamese Network to rank image pairs that are syntheti-
cally distorted, and MEON (Ma et al., 2017b) is pre-trained
for distortion identification tasks. However, these methods
are trained on synthetically distorted databases, leading to
limited performance on images with authentic distortions.

To train the BIQA model with enough distorted image
samples, some unsupervised BIQA methods have sprung
up (Madhusudana et al., 2022; Prabhakaran & Swamy,
2023; Saha et al., 2023; Zhao et al., 2023), which are de-
signed based on Contrastive Learning (Le-Khac et al., 2020),
among which CONTRIQUE (Madhusudana et al., 2022)
and (Prabhakaran & Swamy, 2023) can only be trained on
the synthetically distorted databases, while Re-IQA (Saha
et al., 2023) and (Zhao et al., 2023) can be trained directly
on images with authentic distortions. Additionally, some
of them try to make the most of existing supervisory sig-
nals, such as multi-task learning (Li et al., 2022; Ma et al.,
2023), rank learning (Li et al., 2020), training with mixed-
dataset (Sun et al., 2023b) and Multimode signals (Zhang
et al., 2023). More recently, some works (Zhang et al., 2024;
Wang & Ma, 2021; Wang et al., 2021; 2023; Yang et al.,
2024; Zhang et al., 2022a;b) try to improve the generaliza-
tion and robustness of BIQA models by combining BIQA
networks with specific learning paradigm, such as Continual
Learning, Active Learning, Curriculum Learning and Ad-
versarial Learning. However, these methods require much
higher training costs, including the latest semi-supervised

BIQA methods SSLIQA (Yue et al., 2022) and SS-IQA (Pan
et al., 2024), which both require training with multiple net-
work branches and additional datasets. Therefore, the mo-
tivation of this paper is to design a semi-supervised BIQA
method that can be effectively trained end-to-end only on a
single branch network without extra inputs in authentically
distorted scenarios.

It is noteworthy to mention that the methodology proposed
in this paper represents the current SOTA BIQA method.
Although methods such as DEIQT (Qin et al., 2023), Re-
IQA (Saha et al., 2023), CONTRIQUE (Madhusudana et al.,
2022), and GRepQ (Srinath et al., 2024) utilize a limited
labeled dataset for training, their core approach involves pre-
training on a large-scale dataset followed by fine-tuning on a
smaller dataset. Consequently, these methods are inherently
not comparable to semi-supervised IQA approaches. Nev-
ertheless, in the experiments detailed in the main text, we
have compared our method with SOTA unsupervised IQA
methods, including Re-IQA and CONTRIQUE, thereby
thoroughly validating the efficacy of the proposed method.
Moreover, although the work presented in (Zeng et al.,
2018) also suggests transforming scalar Mean Opinion
Score (MOS) labels into vector labels for the training of
IQA models, it achieves this transformation into a normal
distribution through a pre-defined variance. This approach
not only is exclusively suitable for fully supervised training
but also may lead to suboptimal performance due to the
potential inaccuracy of the pre-set variance. In contrast, our
proposed method, based on entropy minimization, is effec-
tively applicable to semi-supervised IQA learning, offering
a more adaptable and potentially more accurate framework
for quality assessment.

B.2. Deep Semi-supervised Learning

According to designing different unsupervised losses for
training with unlabeled samples, existing Deep Semi-
Supervised Learning (D-SSL) methods can effectively deal
with the scenarios of data scarcity in practical applications.
One type of representative D-SSL method is known as Trans-
ductive Semi-Supervised Learning (TSSL), which regards
the labels of unlabeled samples as optimization variables,
and iteratively updates them in the training process (Wang
et al., 2016; Shi et al., 2018; Zhong et al., 2025a). Another
type of D-SSL method is designed based on label propaga-
tion, which propagates labels of labeled data to nearby unla-
beled data by constructing the Manifold Graph in the sample
space (Iscen et al., 2019; Douze et al., 2018; Haeusser et al.,
2017). More recently, some active learning-based semi-
supervised methods have been proposed (Fan et al., 2024).
Regrettably, these approaches are only suitable for classifi-
cation problems and cannot be implemented in regression
tasks such as IQA. Therefore, some BIQA works (Prab-
hakaran & Swamy, 2023; Yue et al., 2022) try to construct
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Algorithm 1 Training Process of CPL-IQA
Input: Parameters σ, γ;

The dimension number of score sets m;
Nearest neighbor parameter k in kNN;
the vector of label levels g = [1, 2, ...,m];
Unlabeled images XU := (xl+1, xl+2, . . . , xn);
Labeled images XL := (x1, x2, . . . , xl), and their
MOS labels YL := (y1, y2, . . . , yl).

Output: Feature extractor ϕθ1 , MOS label predictor fθ2 .
1: Initialize θ1 and θ2;
2: VL = EM(YL);
3: For epoch ∈ [1, ..., T1] do:
4: J1 = loss1 (XL, VL; θ1, θ2);
5: θ ← θ − α∇J1/∇θ, (θ = {θ1, θ2});
6: End for.
7: Repeat:
8: Extract the features of all images: Q = fθ1(X);
9: Construct nearest neighbor graph G̃ by Eqs. 3-4;

10: Learn pseudo-labels ŶU by Eqs. 6-7;
11: Compute confidence η of pseudo-labels by Eq. 8;
12: J2=loss2 (XL, YL; θ, g)+loss2

(
XU , ŶU ; θ, η, g

)
;

loss2 is defined in Eq. 12.
13: θ ← θ − α∇J2/∇θ;
14: Until convergence.

the unsupervised contrastive loss that can be trained with
unlabeled samples. However, the training processes require
additional supervisory information or network branches in
these methods, which inevitably leads to additional training
costs and lower applicability. Different from these unsu-
pervised methods designed by Contrastive Learning, our
proposed BIQA method can achieve both high applicability
and low complexity with a more standard semi-supervised
paradigm.

C. Algorithm
The pseudo-code of CPL-IQA is summarized in Algo-
rithm 1, where line 2, lines 3-6. lines 8-11 and lines 12-13
are the processes of Label Conversion, Stage 1, Step 1 and
Step 2 of Stage 2, respectively.

D. Datasets
In this paper, we perform experiments on four representative
authentically distorted image databases:

• KonIQ-10K (Hosu et al., 2020). It includes
10,073 images with authentic distortions chosen from
YFCC100M (Thomee et al., 2016). Eight depth feature-
based content or quality metrics are used in the sam-
pling process to ensure a wide and uniform distribution

Table 6. The detailed attributes of four authentically distorted
image databases used in experiments.

Databases Number MOS Range Distribution

KonIQ-10K 10,073 [1,5] Yes
LIVE-C 1,162 [0,100] No
NNID 2,240 [0,1] No
SPAQ 11,125 [0,100] No

of image content and quality in terms of brightness,
color, contrast, and sharpness. And its quality is re-
ported by MOS with the range of [1, 5].

• LIVE-C (Ghadiyaram & Bovik, 2015). LIVE-C con-
sists of 1162 authentically distorted images captured
from many diverse mobile devices. Each image was
assessed on a continuous quality scale by an average
of 175 unique subjects, and the MOS labels range in
[0, 100].

• NNID (Xiang et al., 2019). NNID contains 2240 im-
ages with 448 different image contents captured by
different photographic equipment in real-world scenar-
ios. And the MOS labels of NNID range in [0, 1].

• SPAQ (Fang et al., 2020). SPAQ includes 11,125 im-
ages taken by 66 mobile phones, which contain a wide
range of distortions during shooting, such as sensor
noise, blurring due to out-of-focus, motion blurring,
over- or under-exposure, color shift, and contrast re-
duction. And the MOS labels range in [0, 100].

The details of these datasets are shown in Table 6, where
Distribution denotes whether the database provides the dis-
tribution information of the opinion scores for each image.
In fact, there is no Distribution information in most authen-
tically distorted image databases

E. More Experimental Results
E.1. Results of Different Backbones

In our experimental settings in Section 4, the backbone of
CPL-IQA is set as ResNet101. And we make comparisons
among the performances of CPL-IQA trained with different
backbones, including ResNet18, ResNet50, ResNet101, and
Vision Transformer-base (ViT-base).

As shown in Table 7, we can observe that these CPL-IQA
models with different backbones all perform well, and the
deeper the backbone (the more parameters), the better the
experimental results. The results of ViT-base are just slightly
better than that of ResNet101, but not significantly so, pos-
sibly due to the large number of parameters in ViT and the
limited amount of training data, which led to overfitting.
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Table 7. Comparison of the performances of CPL-IQA trained with
different backbones.

Methods Metrics KonIQ-10K (1:3:1) SPAQ (1:8:1)

Ours
(Full)

(weights ✓)
(AlexNet)

PLCC 0.841 0.869
SRCC 0.812 0.868
KRCC 0.605 0.673
RMSE 7.287 10.101

Ours
(Full)

(weights ✓)
(ResNet18)

PLCC 0.852 0.886
SRCC 0.810 0.884
KRCC 0.621 0.694
RMSE 7.126 9.892

Ours
(Full)

(weights ✓)
(ResNet50)

PLCC 0.870 0.892
SRCC 0.842 0.886
KRCC 0.649 0.695
RMSE 6.734 9.445

Ours
(Full)

(weights ✓)
(ResNet101)

PLCC 0.873 0.896
SRCC 0.845 0.893
KRCC 0.652 0.703
RMSE 6.728 9.220

Ours
(Full)

(weights ✓)
(ViT-base)

PLCC 0.871 0.895
SRCC 0.852 0.898
KRCC 0.646 0.715
RMSE 6.692 9.004

(a) (b)

Figure 5. Comparison of (a). confidence weights of pseudo-labels
and (b). L1 loss between pseudo-labels and corresponding GT
labels in feature space.

E.2. Visualization of Label Confidence

In this subsection, we visualize the confidence of pseudo-
labels learned by the module of Label Optimizing in Sec-
tion 3.3 for the 60% unlabeled training images sampled
from KonIQ-10K (1:3:1). To be specific, through feature
dimensionality reduction by t-SNE, we visualize these 60%
unlabeled samples in a two-dimensional space, and make
a comparison between the confidence coefficients of their
pseudo-labels and the differences from corresponding GT
MOS labels (measured by L1 loss).

According to Figure 5, the higher the confidence (left is
smaller than right), the smaller the corresponding L1 loss
(left is greater than right) on the whole, which proves the
validity of Confidence of Labels illustrated in Section 3.3.

Figure 6. The schematic diagram of standardized feature extrac-
tor designed for Cosine similarity (CS)-based manifold structure,
where the extracted features are standardized.

(a) (b)

Figure 7. Comparison of distributions between (a). Pseudo-labels
learned based on the CS-based manifold and (b). Ground-truth
(GT) MOS labels of the 60% unlabeled training images sampled
from KonIQ-10K (1:3:1).

E.3. Cosine Similarity-based Manifold Structure

In the module of Analysis and Discussion of Section 3.3
in the submitted version, we claimed that the distribution
of the predicted MOS labels will be damaged if the sample
features are standardized to construct the manifold struc-
ture by cosine similarity (abbreviated to CS-based manifold
structure for convenience). Here we conduct the following
experiments to verify this point.

E.3.1. EXPERIMENT SETTINGS.

In order to make a clear comparison with the results of
kNN-based manifold structure in Figure 4 in the submit-
ted version, we train our model on KonIQ-10K (1:3:1)
with m = 100 according to standardized features ex-
tracted by ResNet101 and its subsequent FC layer (mapping
2048-dimensional vectors to 256-dimensional features). As
shown in Figure 6, different from the feature extractor used
in Figure 2 in the submitted version, an operation of feature
standardization is embedded in the feature extractor ϕθ1 .

Note that standardization is different from the normalization
after predictor fθ2 in Figure 6. Standardization means stan-
dardizing to unit vectors, and normalization means the op-
eration of Softmax. After training the standardized feature
extractor, the image quality features can be obtained with
norms equal to 1. Therefore, we can define the CS-based
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Table 8. The impact on CPL-IQA of the number of nearest neighbors k in Eq. 3.

k 2 4 6 8 9 10 11 12 14

PLCC 0.812 0.847 0.838 0.859 0.865 0.873 0.870 0.864 0.868
SRCC 0.785 0.823 0.840 0.836 0.840 0.845 0.837 0.832 0.851

manifold structure based on the cosine similarity between
pairwise sample features:

Gij :=

{
q⊤i qj , if qi is linked to qj ,

0 , otherwise,
(24)

where qi is linked to qj means qi is the k nearest neighbor
of qj in this manifold graph. Everything else stays the same
except that Eq. 24 replaces Eq. 2 in the submitted version.

E.3.2. EXPERIMENT RESULT.

As shown in Figure 7, the distribution of the predicted
pseudo-labels becomes high on both sides and low in the
middle, which is a far cry from the GT distribution. This
supports our earlier mention in the main text that during
label propagation (Zhou et al., 2003), features are normal-
ized to construct the manifold structure of samples (Iscen
et al., 2019) using cosine similarity, which is not suitable
for regression and IQA tasks.

E.4. The Impact on CPL-IQA of The Number of
Nearest Neighbors k in Eq. 3

In Section 3.3.2, the number of nearest neighbors k in Eq. 3
is by default set to 10 in the proposed CPL-IQA. To validate
its effectiveness, we conduct experiments with different val-
ues of k on the KonIQ-10K dataset. Except for the variation
in k, the experimental setup remains consistent with that in
Table 1. The PLCC and SRCC results with different settings
of k are summarized in Table 8.

According to Table 8, it can be observed that when k exceeds
10, there is little to no improvement in PLCC and SRCC.
Therefore, we choose to set k = 10 as the default value.

E.5. Performances of CPL-IQA Trained with Labeled
and Unlabeled Samples from Different Datasets

In a standard semi-supervised learning framework, the train-
ing dataset typically comprises both labeled and unlabeled
samples. In our experiments in the main text, we exclusively
investigated the scenario where both labeled and unlabeled
samples were drawn from the same dataset. To further vali-
date the effectiveness of our proposed semi-supervised CPL-
IQA approach, we extended our investigation to a more chal-
lenging cross-dataset setting, where labeled and unlabeled
training samples are sourced from different datasets. Specif-
ically, we conducted comprehensive experiments to com-

pare the performance of our method against some advanced
baselines under this cross-dataset configuration. Specifi-
cally, we select 80% from BID (Ciancio et al., 2010), 70%
from KonIQ-10k (Hosu et al., 2020), 10% from KonIQ-
10k, and the remaining 20% from two datasets as labeled,
unlabeled, validation, and test sets, respectively. Among
them, the labeled dataset contains 469 images, which is also
much smaller than the unlabeled dataset, including 7051
images. The details of dataset BID are shown in Table 9.
In this experimental setup, we compared our approach with
the following baseline methods: BRISQUE (Mittal et al.,
2012a), CORNIA (Ye et al., 2012), NIQE (Mittal et al.,
2012b), ILNIQE (Zhang et al., 2015), HOSA (Xu et al.,
2016), dipIQ (Ma et al., 2017a), DB-CNN (Zhang et al.,
2018), Meta-IQA (Zhu et al., 2020), HyperIQA (Su et al.,
2020), UNIQUE (Zhang et al., 2021), and Semi-IQA (Li
et al., 2024). The results are shown in Table 10.

From Table 10 we can observe that: (1) Comprehensive
experimental results demonstrate the superior performance
and robustness of our proposed method in cross-dataset
scenarios, where labeled and unlabeled training samples
originate from different datasets. (2) The comparative anal-
ysis reveals that CPL-IQA achieves more significant per-
formance improvements on KonIQ-10k compared to Semi-
IQA, which substantiates the effectiveness of our proposed
label propagation-based semi-supervised IQA framework.
The relatively marginal improvement on BID can be at-
tributed to the substantial disparity between the number
of labeled and unlabeled samples. Unlike conventional
methods that directly predict pseudo-labels using the ini-
tial model, CPL-IQA’s label propagation mechanism en-
ables more accurate pseudo-label estimation. This charac-
teristic makes CPL-IQA particularly effective in leveraging
large-scale unlabeled datasets like KonIQ-10k, where it can
fully exploit the abundant unlabeled samples through its
propagation-based learning paradigm.

E.6. Evaluating CPL-IQA Performance with Unlabeled
Training Data from Multiple Sources

To systematically investigate the impact of different sources
of unlabeled training samples on the performance of the
CPL-IQA model, we conducted comparative experiments
by adjusting the source of unlabeled training samples while
maintaining the experimental setup of Table 1. Specifically,
during the training process, we consistently used 20% of
the KonIQ-10k dataset as labeled training samples and an
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Table 9. The detailed attributes of three image databases used in
experiments in Appendix E.5 and Appendix E.6. Same to the
experiments in the main text, MOS labels are firstly normalized to
the MOS range [1, 100] by Max-min Normalization Eq. 1 before
training.

Databases Number MOS Range Distortion Type

KonIQ-10K 10,073 [1,5] Authentic
BID 586 [0,5] Authentic

SPAQ 11,125 [0,100] Authentic
KADID-10k 10,125 [1,5] Synthetic

Table 10. Correlation between model predictions and MOSs on the
test sets of BID and KonIQ-10k, respectively. Top two correlations
are highlighted in boldface.

Methods BID KonIQ-10k
PLCC SRCC PLCC SRCC

BRISQUE 0.602 0.581 0.079 0.020
CORNIA 0.619 0.591 0.534 0.418

NIQE 0.453 0.440 0.531 0.524
ILNIQE 0.526 0.502 0.530 0.505
HOSA 0.561 0.501 0.652 0.633
dipIQ 0.152 0.018 0.434 0.228

DB-CNN 0.705 0.683 0.688 0.635
MetaIQA 0.686 0.653 0.623 0.570
HyperIQA 0.827 0.797 0.715 0.661
UNIQUE 0.666 0.662 0.749 0.713
Semi-IQA 0.811 0.801 0.775 0.750

Ours 0.819 0.784 0.780 0.772

additional 20% as test samples. For the unlabeled training
samples, we designed three experimental scenarios (with
consistent numbers of unlabeled samples across scenarios):
(1) Same-source dataset scenario: Unlabeled samples were
drawn from the same dataset as labeled samples, utiliz-
ing the remaining 60% (6044 samples) of the KonIQ-10k
dataset; (2) Same-type distortion dataset scenario: Both la-
beled and unlabeled samples were from authentic distortion
datasets but different sources, with 6044 samples randomly
selected from the SPAQ dataset (Fang et al., 2020); (3)
Different-type distortion dataset scenario: Unlabeled sam-
ples were from a synthetic distortion dataset, with 6044 sam-
ples randomly selected from the KADID-10K dataset (Lin
et al., 2019).

The detailed characteristics of the SPAQ and KADID-10K
datasets are presented in Table 9. The experimental results
are documented in Table 11, revealing the following key
observations: (1) The CPL-IQA model achieves optimal per-
formance when the unlabeled training set shares the same
dataset source with both the test samples and labeled train-
ing samples. (2) The model demonstrates superior perfor-
mance with SPAQ as the unlabeled training set compared to
KADID-10K, which can be attributed to the fact that SPAQ,
similar to the test samples and labeled training samples,

Table 11. PLCC and SRCC Results of CPL-IQA on 20% KonIQ-
10k Dataset with Different Unlabeled Training Samples. During
the training process, labeled samples were consistently maintained
at 20% of the KonIQ-10k dataset across all three experimental
settings. The unlabeled training samples were respectively derived
from: (1) 60% of KonIQ-10k (6044 samples), (2) an equivalent
number of samples from SPAQ dataset, and (3) an equivalent
number of samples from KADID-10K dataset.

Unlabeled Training Sets KonIQ-10k SPAQ KADID-10k

PLCC 0.873 0.844 0.832
SRCC 0.845 0.833 0.817

belongs to the category of authentically distorted datasets.
These findings collectively suggest that the model’s perfor-
mance on the test set (from the same dataset as the labeled
training samples) improves when the unlabeled training set
exhibits closer similarity to the labeled training samples.
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