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Abstract

This paper explores the use of Hermite transform based reproducing kernel Banach
space methods to construct exact or un-approximated models of feedforward neural
networks of arbitrary width, depth and topology, including ResNet and Transform-
ers networks, assuming only a feedforward topology, finite energy activations and
finite (spectral-) norm weights and biases. Using this model, two straightforward
but surprisingly tight bounds on Rademacher complexity are derived, precisely (1)
a general bound that is width-independent and scales exponentially with depth; and
(2) a width- and depth-independent bound for networks with appropriately con-
strained (below threshold) weights and biases.

1 Introduction

A significant challenge in neural networks is understanding how large models, despite their high
capacity to overfit training data, can still generalize effectively (Neyshabur et al., 2014). Learning
theory tells us that inductive bias plays an important role in explaining this phenomena, where
inductive bias is the restriction of the space of potential learned functions (neural networks) to a small
subset F of the total space of space, either explicitly through regularization or implicitly through
the training algorithm used. Rademacher complexity (Bartlett & Mendelson, 2002; Steinwart &
Christman, 2008) is one measure of the complexity or expressive power of F that has been used to
understand inductive bias through the lens of uniform convergence - that is, the rate at which the
empirical risk (on the training dataset of N samples) converges to actual risk (on the data distribution)
(for a discussion of alternative approaches see (Valle-Pérez & Louis, 2020)). A representative
approach to Rademacher complexity analysis in neural networks is “peeling” (Neyshabur et al., 2015;
Golowich et al., 2018; Truong, 2022). In this approach, the total compexity is bounded by “peeling
off” the output layer D to extract factors due to that layer and thus express the total Racehmacher
complexity as a product of terms due to the output layer D and the Rademacher complexity of the
preceeding (D−1)-layer network. The process is then repeated, peeling off successive layers until the
process terminates at the input layer. This typically results in a bound that exhibits width independence
(assuming popular schemes such as LeCun, He or Glorot weight scaling) and exponential depth
dependence, and contains some (typically Lipschitz-type) scaling term due to the neural activations
as well a (typically depth-exponential) “nuisance factor”. For example in (Neyshabur et al., 2015) it
is shown that, for a simple unbiased layerwise network with spectral-norm bound weight matrices
W[j−1:j] and Lipschitz activations, the Rademacher complexity is bounded as:

RN
(
F :

∥∥W[j−1:j]
∥∥ ≤ ω[j−1:j]

)
∼ O

(
2D
∏D
j=1 ω

[j−1:j]

√
N

)
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This bound can be refined in various ways (eg. (Golowich et al., 2018)), but the basic form remains,
as do the nuisance factors (the term 2D in the above bound, for example) in one form or another.

An alternative approach is to construct a bilinear (dual) representation of the model that splits the
input x ∈ X and parameters Θ ∈W into separate terms in a dual representation:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]

where Ψ : W→W , φ : X→ X are feature maps and 〈·, ·] :W ×X → R is a continuous bilinear
product. Examples of this type of model are the neural network Gaussian process (Rasmussen &
Williams, 2006) (NNGP) models (Neal, 1996), which treat all layers prior to the output as fixed
and model the influence of the weights in the output layer; neural tangent kernel (NTK) models
(Jacot et al., 2018; Daniely, 2017; Daniely et al., 2016), which model the (first-order) variation of the
weights about their initial values in a reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950)
(see for example (Du et al., 2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al., 2020; Zou &
Gu, 2019; Arora et al., 2019b,a; Cao & Gu, 2019)); and reproducing kernel Banach space (RKBS)
(Lin et al., 2022; Zhang et al., 2009; Zhang & Zhang, 2012; Song et al., 2013; Sriperumbudur et al.,
2011; Xu & Ye, 2014) approaches such as (Shilton et al., 2023), which recursively construct feature
maps Ψ : W → W , φ : X → X to exactly model the neural network (beyond first-order).1 In all
cases the utility of the model in the context of Rademacher complexity analysis is that it makes the
construction of bounds straightforward through the use of either the Cauchy-Schwarz inequality (if
〈·, ·] is an inner product) or the continuity of the bilinear product; and moreover, as peeling is not
applied directly to the Rademacher complexity, nuisance factors arising from this procedure may be
avoided. However the assumptions made by these models (wide-networks, lazy training, restrictions
on neural activations and network topology etc (Arora et al., 2019b; Lee et al., 2019; Bai & Lee,
2019)) can complicate analysis and limit their applicability.

Our goal in this paper is to address two questions, (1) can we formulate an exact (non-approximate)
model for a wide class of neural networks, including ResNet and Transformers, avoiding entirely
the question of gaps between the performance of the neural network and its model; and (2) can such
a model be used to derive straightforward, non-vacuous, widely applicable, training-independent
bounds on Rademacher complexity without nuisance factors. We answer these questions with the
following contributions:

1. Exact RKBS model (Theorem 1): For feedforward neural network with arbitrary topology,
finite weight and biases and finite-energy neural activations, we construct an exact model
that recasts neural networks as elements in a reproducing kernel Banach space (RKBS)
defined by the bilinear product:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g

where Ψ : W → W is a weight/bias feature map, φ : X → X is a data feature map, and
〈·, ·]g :W ×X → R is a continuous bilinear form characterized by an indefinite metric g.

2. Rademacher Complexity Bound (Theorem 4): We observe that, for our RKBS model:

‖f (x; Θ)‖2 ≤ CΘ ‖φ (x)‖2

where CΘ ≤ 1 and, using this, derive a straightforward non-asymptotic bound for the
Rademacher complexity of a very general class of neural networks (including ResNet and
Transformers) that is width-independent, depth-exponential and contains no nuisance-factors.
For example for a scalar-valued, layerwise, fully-connected, unbiased ReLU network of
depth D, our bound is exactly:

RN
(
F : ‖W[j−1:j]‖2 ≤ ω[j−1:j]

)
≤
∏D
j=1ω

[j−1:j]

√
N

where ‖ · ‖2 is the spectral norm. More generally, we derive conditions under which the
Rademacher complexity bound is both width- and depth-independent, and subsequently
RN (F) ≤ 1√

N
, and discuss implications for ReLU, ResNet and Transformer networks.

1Beyond bilinear RKBS (Lin et al., 2022), more general RKBS models have been used in eg. (Bartolucci
et al., 2023; Sanders, 2020; Shilton et al., 2023; Parhi & Nowak, 2021; Unser, 2021, 2019; Spek et al., 2022).
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Figure 1: Layerwise feedforward neural network structure. Each layer ̇ ∈ ZD contains nodes L[ ̇ ],
where the output of the node is computed as shown in the inset. Note that a computational skeleton
(Daniely et al., 2016) with one input and one output can be modified to this form by inserting skip
nodes (nodes with A[j] = {̃}, W[̃:j] = I, b[j] = 0, τ [̃:j] = id) into the graph as required.

1.1 Mathematical Notations

Vectors and matrices: Column vectors are a,b with elements ai, bj . Matrices are A,B with
elements Ai,j , rows Ai: and columns A:j . |a| and sgn(a) are the elementwise norm and sign.
‖A‖2 = σmax(A) is the spectral norm and ‖A‖F is the Frobenius norm. A�B, A⊗B, A⊗lB
are Hadamard, Kronecker and columnwise Kronecker (Khatri-Rao) product. A⊕B = [AT BT]T is
columnar matrix concatenation. A#k = A#k times. . . #A is the exponentiation for operator #.

Products and norms: 〈·, ·〉, 〈〈·, ·, ·, . . .〉〉 and 〈·, ·] are inner, multilinear and bilinear products, where
〈a,b〉 =

∑
i aibi, 〈〈a,b, c, . . .〉〉 =

∑
i aibici . . ., 〈a,b]g =

∑
i giaibi and 〈A,b]g =

∑
i giAi:bi

throughout. We also find it convenient to define an operator form 〈〈·〉〉i ai = 〈〈a1,a2, . . .〉〉.
Sets and functions: N = {0, 1, . . .}, Z+ = {1, 2, . . .}, ZN = {1, . . . , N}. ∂A is the boundary of
A. id(a) = a. [a]+ = max{a, 0}, [a]+ = [[ai]+]i. a〈�b〉 = sgn(a) � |a|�b (Der & Lee, 2007).
L2(RH̃, e−‖ζ‖22)={τ :RH̃→RH |

∫
ζ∈RH̃‖τ (ζ)‖22e−‖ζ‖

2
2dζ<∞} are the finite-energy functions.

Multi-indices: Multi-indices are k, l ∈ Nn with elements ki, lj . |k| =
∑
i ki, k! =

∏
i ki!,

ak =
∏
i a
ki
i ,
(
k
l

)
=
∏
i

(
ki
li

)
. ∂k

∂xk =
∏
i
∂ki

∂x
ki
i

. We use the shorthands k �n l for k ∈ Nn and |k| > l,

k �n l for k ∈ Nn and |k| ≥ l, k ≺n l for k ∈ Nn and |k| < l, k �n l for k ∈ Nn and |k| ≤ l.
Hermite Polynomials: Hek(x) are the (probabilist’s) Hermite polynomials. Hek(x) =

∏
iHeki(xi)

are the multivariate Hermite polynomials. Hek = Hek(0), Hek = Hek(0) are the Hermite numbers
(Abramowitz et al., 1972; Morse & Feshbach, 1953; Olver et al., 2010; Rahman, 2017).

Indexing Conventions: Layers are ̇ ∈ ZD (there are D layers). Nodes are j ∈ ZE (there are E
nodes). Layer ̇ contains nodes L[ ̇ ] ⊆ ZE : ∪ ̇∈ZD L[ ̇ ] = ZE , L[ ̇ ] ∩ L[ ̇ ′] = ∅∀ ̇ 6= ̇ ′. Node j ∈
L[ ̇ ] in layer ̇ has parents ̃ ∈ A[j] ⊆ L[ ̇−1]. L[0] = {0}, L[D] = {E} are the input/output layers.

2 Setting and Assumptions

We consider layerwise feedforward neural networks as shown in Figure 1. This contains E nodes
j ∈ ZE arranged in D layers ̇ ∈ ZD and a virtual input node j = 0 (in virtual layer ̇ = 0), where
layer ̇ ∈ ZD contains nodes L[ ̇ ] ⊆ ZE and layerD contains a single output nodeE. A node j ∈ L[ ̇ ]

has parents A[j] ⊆ L[ ̇−1], with its function being specified by an operator #[j] ∈ {⊕,
∑
,⊗, 〈〈·〉〉}.

Given input x, data flows from node j = 0 to node j = E as per Figure 1:

x[0] = x
↓

x[j] = ©[j]

̃∈A[j]

W[̃:j]Tx[̃:j] + γ[j]b[j] ∈ RH[j]

x[̃:j] = τ [̃:j](x[̃]) ∈ RH[̃:j] ∀̃ ∈ A[j]

∀j ∈ ZE (a)

↓
f (x; Θ) = x[E]


(1)
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Figure 2: Residual, attention and LayerNorm blocks. In the residual block s ∈ (0, 1). The single-
query attention block (a) is for a single query x1,Q with keys x1,K , x2,K , . . . and values x1,V , x2,V ,
. . .. A single-head attention block (b) is formed from multiple single-query blocks (the usual (matrix)
output has been vectorized here). See Table 3 for definitions of neural activations used here.

where τ [̃:j] : RH[̃] → RH[̃:j]

are neural activation functions; W[̃:j] are weight matrices; b[j] biases;
γ[j] ∈ {0, 1} (unbiased and biased); and Θ = {W[̃:j],b[j] : j ∈ ZE , ̃ ∈ A[j]}. We assume that:

1. Bounded inputs: x ∈ X = {x ∈ Rn : ‖x‖2 ≤ 1}.
2. Finite weights/biases: Θ ∈W = {W[̃:j],b[j] :‖W[̃:j]‖2,‖b[j]‖2<∞ : ̃∈A[j], j∈ZE}.

3. Finite activations: τ [̃:j] ∈ L2(RH[̃]

, e−‖ζ‖
2
2) ∀̃ ∈ A[j], j ∈ ZE .

4.
(

Lipschitz/Bounded activations: τ [̃:j] is either Lipschitz or bounded ∀̃ ∈ A[j], j ∈ ZE ,
and x ∈ ∂X = {x ∈ Rn : ‖x‖2 = 1} if any τ [̃:j] are non-Lipschitz.

)
Note that assumption 4 is not required when constructing our bilinear feature space model of neural
networks, but is required to cast this model in RKBS and subsequently derive our Rademacher
complexity bound. The set of neural networks satisfying our assumptions is F , and its dual is F?:

F = { f (·; Θ) : X→ Rm| f as per (1) satisfying assumptions 1-4}
F? = { f (x; ·) : W→ Rm| f as per (1) satisfying assumptions 1-4} (2)

This model is rather general to encompass a wider variety of network architectures. Residual (He
et al., 2016) blocks can be built using additive nodes #[j] =

∑
as shown in Figure 2c. Single
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Neural Activation τ ∈ L2(RH , e−‖ζ‖22) Lipschitz (Lr) Bounded (B) Valid here
Linear τ [̃:j](ζ) = ζ X X (1) × X
ReLU τ [̃:j](ζ) = [ζ]+ X X (1) × X
Poly-ReLU τ [̃:j](ζ) = [ζ]

�p
+ X X (pap−1) × X

Tanh τ [̃:j](ζ) = [tanh(ζi)]i X X (1) - X

Sigmoid τ [̃:j](ζ) =
[

1
1+e−ζi

]
X X ( 1

2 ) - X

Softmax τ [̃:j](ζ) =
[

eλζi′∑
i′′ e

λζ
i′′

]
i′

X X (λ) - X

Softmax i τ [̃:j](ζ) =
[
δi,i′

eλζi′∑
i′′ e

λζ
i′′

]
i′

X X (λ) - X

Norm τ [̃:j](ζ) = ζ
‖ζ‖2 X × X (1) X

Figure 3: Characteristics of common neural activation functions. We include poly-ReLU (Cho &
Saul, 2009) here as an example where the Lipschitz constant La of τ |a depends on the radius a. See
(Gao & Pavel, 2017) for more detail regarding the softmax Lipschitz constant.

query attention blocks (Vaswani et al., 2017) can be constructed as shown in Figure 2a using not
just additive but also inner-product #[j] = 〈〈·〉〉, multiplicative #[j] = ⊗ and columnar concatenation
#[j] = ⊕ nodes. Full attention block can be constructed as shown in Figure 2b (and similarly multi-
head attention). Finally, a LayerNorm (layer normalization (Ba et al., 2016)) block is shown in Figure
2d. We note that blocks of this sort may be combined to form more general networks. Later, we find
it convenient to include non-trivial nodes or blocks in the network, so for example we may speak of
an “attention node” j that encompasses (abstracts away) a complete attention block (Figure 2b).

2.1 Characterization of Neural Activations

As noted previously, we assume all activation functions in the network are Lipschitz/bounded
and finite energy. The finite-energy assumption allows us to apply the Hermite transform to the
neural activation functions and subsequently construct our bilinear model of the network, while the
Lipschitz/bounded property suffices to ensure that the bilinear model is continuous. Starting with the
finite-energy assumption, the multivariate (probabilist’s) Hermite polynomials (Abramowitz et al.,
1972; Morse & Feshbach, 1953; Olver et al., 2010; Rahman, 2017) are, for multi-index k ∈ Nn:

Hek (ζ) = (−1)
|k|
e

1
2‖ζ‖

2
2
∂k

∂ζk
e−

1
2‖ζ‖

2
2 =

∑
0�nl≤k

(
k
l

)
Hek−lζ

l

where Hek = Hek(0) are Hermite numbers. These form an orthogonal basis of L2(Rn, e−‖ζ‖22)

(Appendix A). By assumption τ [̃:j] ∈ L2(RH[̃]

, e−‖ζ‖
2
2), and thus the Hermite transform exists:2

τ [̃:j](ζ) = τ [̃:j] (0) +
∑

k�
H[̃]0

a
[̃:j]
k

∑
0≺

H[̃]l≤k

(
k
l

)
Hek−lζ

l

where: a
[̃:j]
k = 1√

2πk!

∫
ζ∈RH[̃]

(
τ [̃:j] (ζ)− τ [̃:j] (0)

)
Hek (ζ) e−

1
2‖ζ‖

2
2dζ

(3)

From this we define the magnitude functions s[̃:j]
η : R+ → R+ (where η ∈ R+):

s
[̃:j]
η (ζ) = η2

∥∥τ [̃:j] (0)
∥∥2

2
+

∑
k�
H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

(
(1 + ηζ)

|k| − 1
)

(4)

which are monotonically increasing and superadditive on R+. Note that while the Hermite transform
terms and magnitude functions play an important role in the construction of our model, they play no
role in our subsequent analysis of Rademacher complexity (they vanish in our analysis in the limit
η → 0+). Thus, for our purposes, beyond their existence (which is guaranteed), their exact value/form
does not matter here. Nevertheless, see Appendix B for a full analysis of the ReLU activation.

Regarding assumptions 4, if τ [̃:j]|a (τ [̃:j] restricted to a ball of radius a) is Lipschitz then we denote
the Lipschitz constant by L[̃:j]

a . Conversely, if τ [̃:j] is absolutely bounded, we denote the bound
B[̃:j], where |τ [̃:j](ζ)| ≤ B[̃:j] ∀ζ. While assumption 4 is not required to construct our bilinear
dual representation we find it useful to include L[̃:j]

a here to simplify later results. When L[̃:j]
a is ill-

defined we use the nominal value L[̃:j]
a = B[̃:j]/φ[̃] in the bounded case, or L[̃:j]

a = 1 if assumption
4 is not satisfied. Table 3 provides Lipschitz constants/bounds for common neural activations.

2These are conditionally convergent series in general, so ordering of multi-indices k, l in sums and vectors
must be enforced consistently and must be compatible with the semi-ordering imposed by �H[̃] .
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0 E

𝑗𝑗𝐷𝐷−1,2

𝑗𝑗𝐷𝐷−1,1

𝑗𝑗1,2

𝑗𝑗1,1

𝚿𝚿[𝟎𝟎],𝝓𝝓[𝟎𝟎],𝒈𝒈[𝟎𝟎],𝜙𝜙[0] 𝚿𝚿[𝑬𝑬],𝝓𝝓[𝑬𝑬],𝒈𝒈[𝑬𝑬],𝜙𝜙[𝐸𝐸]

𝚿𝚿[𝚥̃𝚥],𝝓𝝓[𝚥̃𝚥],𝒈𝒈[𝚥̃𝚥],𝜙𝜙[𝚥̃𝚥]

𝚿𝚿[𝚥̃𝚥′],𝝓𝝓[𝚥̃𝚥′],𝒈𝒈[𝚥̃𝚥′],𝜙𝜙[𝚥̃𝚥′] 𝚿𝚿[𝒋𝒋],𝝓𝝓[𝒋𝒋],𝒈𝒈[𝒋𝒋],𝜙𝜙[𝑗𝑗]

Node j

See below

𝒙𝒙[𝑗𝑗] =< 𝚿𝚿[𝒋𝒋] 𝛩𝛩 ,𝝓𝝓[𝒋𝒋] 𝑥𝑥 ]𝒈𝒈[𝑗𝑗]

𝝓𝝓[𝒋𝒋] 𝑥𝑥 𝟐𝟐 ≤𝜂𝜂→0+ 𝜙𝜙[𝑗𝑗]

Ψ[0] (Θ) = In,φ
[0] (x) = x,g[0] = 1n, ψ

[0] = 1, φ[0] = 1

↓

Ψ[j](Θ) =


b[j]T

�[j]

̃∈A[j]

L
[̃:j]

ψ[̃]√
s
[̃:j]
η (1)


ηdiag

(
τ [̃:j] (0)〈�

1
2 〉
)diag

(
a

[̃:j]〈� 1
2 〉

k

)
⊗l
[(

k
l

)1
2
⊗

ı̃∈Z
H[̃]

(
√
ηΨ

[̃]
:̃ı (Θ))⊗lı̃

]
0≺
H[̃]l≤k


k�
H[̃]0

W[̃:j]



φ[j] (x) =


β[j]

�[j]

̃∈A[j]

L
[̃:j]

φ[̃]√
s
[̃:j]
η (1)

 η
∣∣τ [̃:j] (0)

∣∣� 1
2[ ∣∣∣a[̃:j]

k

∣∣∣� 1
2 ⊗

[(
k
l

) 1
2
(√
ηφ[̃] (x)

)⊗|l|]
0≺

H[̃]l≤k

]
k�

H[̃]0

ω[̃:j]



g[j] =


γ[j]

β[j]

�[j]

̃∈A[j]

s[̃:j]η (1)

L
[̃:j]

ψ[̃]
L

[̃:j]

φ[̃]


1
η2 1H[̃:j][

1H[̃:j] ⊗
[
Hek−l

(
1
ηg[̃]

)⊗|l|]
0≺

H[̃]l≤k

]
k�

H[̃]0

 1
ω[̃:j]


ψ[j]2 = β[j]2 +}[j]

̃∈A[j]

L
[̃:j]2

ψ[̃] ω
[̃:j]2ψ[̃]2, φ[j]2 = β[j]2 +}[j]

̃∈A[j]

L
[̃:j]2

φ[̃] ω
[̃:j]2φ[̃]2



∀j∈ZE (a)

↓
Ψ (Θ) = Ψ[E] (Θ) ,φ (x) = φ[E] (x) ,g = g[E], ψ = ψ[E], φ = φ[E]



Where: �[j] =


diag if©[j] =

⊕⊕
if©[j] =

∑⊗
if©[j] =

⊗
(
⊗l·)1 if©[j] = 〈〈·〉〉

, �[j] =

{⊕
if©[j] ∈ {

⊕
,
∑
}⊗

if©[j] ∈ {
⊗
, 〈〈·〉〉}

and}[j] =

{∑
if©[j] ∈ {

⊕
,
∑
}∏

if©[j] ∈ {
⊗
, 〈〈·〉〉}

(5)

Figure 4: Recursive definition of the bilinear representation f(x; Θ) = 〈Ψ(Θ),φ(x)]g. The upper
figure is a schematic representation of the formal definition (5), where the bilinear representation of the
output of each node is obtained, using (5a), from the bilinear representations of the inputs ̃ ∈ A[j] to
that node. Subsequently the bilinear representation of the network is defined recursively in terms of the
(trivial) bilinear representation of x = 〈I,x]1. η ∈ R+ is an (arbitrary) constant that will be helpful
in our Rademacher complexity analysis. With regard notation, we recall that node j is characterized
by its operation #[j] ∈ {⊕,

∑
,⊗, 〈〈·〉〉}, and subsequently the form of the feature-map recursion

(5a) depends on this operation as specified by the operators �[j] (weight map operator), �[j] (data
map/metric operator) and }[j] (norm bound operator) defined. For non-Lipschitz neural activations
we set L[̃:j]

a = B[̃:j]/φ[̃] in the bounded case and L[̃:j]
a = 1 if assumption 4 is not satisfied.
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3 Neural Networks in Reproducing Kernel Banach Space

As noted in our introduction, a recurring theme in the machine learning (most famously kernel
methods) is the use of bilinear (dual) representations to cleanly separate data and model parameters, ie:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]

Here the set of network parameters Θ, and the data x, are mapped entirely independently into
distinct feature spaces by, respectively, Ψ : W → W (weights and biases) and φ : X → X (data).
The bilinear product 〈·, ·] : W × X → Rm generalizes the inner product of eg SVMs (Cortes
& Vapnik, 1995; Burges, 1998; Cristianini & Shawe-Taylor, 2005; Steinwart & Christman, 2008)
without losing the very useful property of bilinearity that makes this formalism so convenient to work
with. Apart from the potential for constructing a representor theory (kernelization), if the bilinear
product is continuous (ie. if ∃C,C ′ ∈ R+ so that 〈Ψ,φ] ≤ C‖φ‖∀Ψ or 〈Ψ,φ] ≤ C ′‖Ψ‖∀φ) then
the existence of such a model significantly simplifies the development of Rademacher complexity
bounds. A model of this type was developed in (Shilton et al., 2023) using a recursive Taylor series
expansion of the neural activations - in brief, noting that 〈a,b]

n
g = 〈a⊗n,b⊗n]g⊗n , if the input to

a neuron can be represented bilinearly then so too could the output, which recursion defines the
model. Unfortunately this approach only works for continuous neural activations, and even then only
within the RoC of the Taylor expansion, rendering it inapplicable for common activations such as
ReLU. Alternatively, in this paper we propose using a Hermite polynomial expansion, which has two
benefits, precisely (1) the Hermite polynomial expansion exist for all finite-energy activations and
is convergent everywhere (applicability), and (2) as the Hermite polynomials are constructed from
monomials we can also use 〈a,b]

n
g = 〈a⊗n,b⊗n]g⊗n to construct our model (practicality).

We begin by constructing our dual representation:
Theorem 1. Let f : X ×W → Rm be a neural network (1) satisfying assumptions 1- 3. Assume
nominal bounds ‖W[̃:j]‖2 ≤ ω[̃:j] <∞ and ‖b[j]‖2 ≤ β[j] <∞ ∀j ∈ ZE , ̃ ∈ A[j]. Let η ∈ R+.
Defining feature maps Ψ : W→W ⊂ R∞×m (weights and biases) and φ : X→ X ⊂ R∞ (data)
and metric g ∈ R∞ as per (5) (Figure 4), the network may be written in bilinear form:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g (6)

where ‖Ψ(Θ)‖F ≤ ψη < ∞ ∀Θ ∈ W, ‖φ(x)‖2 ≤ φη < ∞ ∀x ∈ X, (the constants ψη, φη
are provided in Appendix C.1), where limη→0+ψη = ψ and limη→0+φη = φ; and we note that
limη→0+‖φ(x)‖2 = φ ∀x ∈ ∂X (ie. if ‖x‖2 = 1), and limη→0+‖φ(x)‖2 > 0 ∀x 6= 0.

A full inductive proof can be found in Appendix C.1. To summarize, picking a layer ̇ ∈ ZD, we as-
sume all nodes ̃ ∈ L[ ̇−1] in the preceding layer may be written x[̃] =

〈
Ψ[̃](Θ),φ[̃](x)

]
g[̃] , which

is trivial for the base case ̇ = 0. Then, using (ATb)�p = (A⊗
lp)T(b⊗p) in combination with the

Hermite (number) expansion of the neural activation function, we write the incoming edge activa-
tions x[̃:j] as bilinear products x[̃:j] =

〈
Ψ[̃:j](Θ),φ[̃:j](x)

]
g[̃:j] (see Appendix for full definitions).

This, combined with the observation that©[j]

̃∈A[j]W
[̃:j]Tx[̃:j] = (�[j]

̃∈A[j]W
[̃:j])T(�[j]

̃∈A[j]x
[̃:j]),

suffices to show that x[j] =
〈
Ψ[j](Θ),φ[j](x)

]
g[j] as given, and the result follows by induction.

As alluded to in section 2, we can readily incorporate non-trivial nodes into this framework. In the
recursive construction of the feature maps, (5a) is effectively a recipe for converting the bilinear
expansion of the inputs to that node to a bilinear expansion of the node’s output. As stated, (5a) is for
a trivial node of the type shown in Figure 1, but alternatively we could wrap an entire sub-network or
block inside this node (eg. an attention block - Figure 2b) and replace (5a) with the overall recipe
for converting bilinear expansions of its input to a bilinear expansion of its output. Thus we may
reasonably speak of an “attention node” in a Transformer network without needless clutter. For
example Figure 2d includes a table detailing calculations for φ for attention, residual and LayerNorm
blocks (nodes) (derivations for these can be found in Appendix D.1, D.2, D.3 and D.4).

Unfortunately the dual representation (6) is insufficient for Rademacher complexity analysis without
assumption 4, which requires that the neural activations be Lipschitz or bounded (and in the latter
case that ‖x‖2 = 1). This assumption is central to casting the dual model (6) into RKBS, precisely:
Definition 1 (Reproducing kernel Banach space (RKBS)). A RKBS on X is a Banach space B of
functions f : X→ Y, where Y is normed, for which the point evaluation functionals δx(f) = f(x)
on B are continuous (i.e. ∀x ∈ X ∃Cx ∈ R+ such that ‖δx(f)‖ ≤ Cx‖f‖B ∀f ∈ B).
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This is somewhat generic, so following (Lin et al., 2022) we focus on the special case:

B =
{
f (·; Θ) = 〈Ψ (Θ) ,φ (·)]W×X

∣∣Θ ∈W
}

(7)

where φ : X→ X is a data feature map, Ψ : W→W is a weight feature map, X andW are Banach
spaces, and 〈·, ·]W×X :W ×X → Rm is a continuous bilinear form. Given this prequel we have:
Corollary 2. The set F of networks (2) satisfying assumptions 1-4 with Lipschitz neural ac-
tivations and weights and biases bounded as per Theorem 1 is an RKBS with ‖f(·; Θ)‖F ,
limη→0+‖Ψ(Θ)‖F ≤ ψ <∞ and ‖f(x; Θ)‖2 ≤ Cx‖f(·; Θ)‖F , where Cx = 1 ∀x ∈ X.
Corollary 3. The set F? of networks (2) satisfying assumptions 1-4 with Lipschitz or bounded neural
activations and with weights and biases bounded as per Theorem 1 is an RKBS with ‖f(x; ·)‖F? ,
limη→0+‖φ(x)‖2 ≤ φ <∞ and ‖f(x; Θ)‖2 ≤ CΘ‖f(x; ·)‖F? , where CΘ = 1 ∀Θ ∈W .

See Appendix C.3 for proofs (the structure of which minics that of the proof of Theorem 1). It follows
from this that the model presented in Theorem 1 suffices to achieve our primary goal. Note that this
result applies to a very wide range of networks, including feedforward ReLU networks, convolutional
networks, residual networks (ResNet), and Transformer networks (see later discussion). We observe
that the conditions for F to be an RKBS are stricter than the conditions for F? to be an RKBS, as
non-Lipschitz neural activations appears incompatible with F being an RKBS. However as we will
see that we only require F? be an RKBS to proceed with our Rademacher complexity analysis.

4 Rademacher Complexity Bounds

We now address our secondary goal, namely using our dual model to bound the Rademacher
complexity of neural networks. For h : Rm → R, the Rademacher complexity is defined as:

RN (h ◦ F) = EνEε
[
sup
f∈F

1
N

∑N
i=1 εih (f (xi))

]
for Rademacher random variables εi ∈ {±1}, where x ∼ ν. We have:
Theorem 4. Let F be the set of networks (2) satisfying assumptions 1-4 with weights and biases
bounded as per Theorem 1, and let h : Rm → R be L-Lipschitz. Then:

RN
(
h ◦ F :

∥∥W[̃:j]
∥∥

2
≤ ω[̃:j],

∥∥b[j]
∥∥

2
≤ β[j]

)
≤ Hmφ√

N
(8)

where H1 = 1 if h = id, Hm =
√

2mL otherwise, and φ is defined in Figure 4.

The proof follows the usual template for RKHS models (see eg. (Bartlett & Mendelson, 2002))
using our feature map; replacing the Cauchy-Schwarz inequality with ‖f(x; Θ)‖2 ≤ CΘ‖φ(x)‖2;
taking the limit η → 0+; and recalling that CΘ = 1 and limη→0+‖φ(x)‖2 ≤ φ, so ‖f(x; Θ)‖2 ≤
CΘ‖φ(x)‖2 ≤ φ. See Appendix F for full details.

Considering this Rademacher complexity bound, we recall that typically neural network weights
and biases are initialized with magnitude proportional to 1√

H[j]
(LeCun initialization) or 1√

H[̃:j]
(He

initialization), and stay close to their initial values in the wide limit, assuming a convex objective. Thus
we would expect that ‖W[̃:j]‖2 (and hence its upper bound ω[̃:j]) should be independent of network
width, rendering the complexity bound in Theorem 4 (effectively) width-independent. We also observe
that the complexity bound does not contain any explicitly depth-dependent terms (nuisance terms that
are often present in such bounds as discussed in (Golowich et al., 2018)); however the bound will in
general grow exponentially with depth due to the multiplicative build-up of terms in φ from input to
output, which is typical of such results (Neyshabur et al., 2015; Golowich et al., 2018; Truong, 2022).
For a scalar-valued, unbiased, Lipschitz network with 1 node j = ̇ per layer, (8) becomes:3

RN
(
F :

∥∥W[j−1:j]
∥∥

2
≤ ω[j−1:j]

)
≤
∏D
j=1 L

[j−1:j]ω[j−1:j]

√
N

(9)

While this bound is depth-exponential in general, we can use to to derive conditions (on the weights)
under which this exponentiality can be (in effect) neutralised. Motivated by this, the following result
gives general, non-trivial threshold conditions for depth-independent Rademacher complexity:

3Conversely, we know thatRN (F : ‖W[j−1:j]‖2 ≤ ω[j−1:j]) ∼ Ω( 1√
N

∏D
j=1 ω

[j−1:j]) (Golowich et al.,

2018, Theorem 7), and henceRN (F :
∥∥∥W[j−1:j]

∥∥∥
2
≤ ω[j−1:j]) �

∏D
j=1 ω

[j−1:j]

√
N

.
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Node or Block Type Depth-Independence Condition Notes

Trivial
∥∥b[j]

∥∥2

2
+}[j]

̃∈A[j]L
[̃:j]2
1

∥∥W[̃:j]
∥∥2

2
≤ 1 See Figure 1 and equation (10).

Residual
∏
q∈Zdj

∥∥W[̃:j]q
∥∥

2
≤ s See Figure 2c. In this bound we denote the weight matrix for (internal) layer q as.

W[̃:j]q . See Appendix D.1 for the complete derivation.
Single-Query Attention λ ‖WV ‖2 ‖WQ‖2 ‖WK‖2 ≤ 1 See Figure 2a. In this bound λ is the heat parameter for the softmax. See Appendix

D.3 for a complete derivation.
Single- and Multi-Head Attention λ

√
dmodel ‖WV ‖2 ‖WQ‖2 ‖WK‖2 ≤ 1 See Figure 2b. In this bound λ is the heat parameter for the softmax. Here dmodel is

the product of the number of queries and the number of heads. See Appendix D.4
for a complete derivation.

Figure 5: Conditions for Depth Independent Rademacher Complexity Bounds for Typical Nodes.

Corollary 5. Let F be the set of networks (2) satisfying our assumptions with weights and biases
bounded as per Theorem 1, and let h : Rm → R be L-Lipschitz. If:∥∥φ[̃](x)

∥∥
2
≤ φ[̃] = 1∀̃ ∈ A[j] =⇒

∥∥φ[j](x)
∥∥

2
≤ φ[j] = 1 (10)

for all nodes j ∈ ZE , thenRN (h ◦ F) ≤ Hm√
N

, independent of both width and depth.

This follows from the recursive definition of φ in (5) (Figure 4) as a sufficient condition to ensure that
φ[j] = 1 given φ[̃] = 1 for all nodes j ∈ ZE , ̃ ∈ A[j], and subsequently (recursively) φ = φ[E] = 1.
In practice the interpretation of this result is node specific. Conditions for various nodes (in the
Lipschitz case) can be found in Table 5, where derivations may be found in the appendices noted.
The general, non-Lipschitz (bounded) case is somewhat more complicated. Recall that if there are
non-Lipschitz neural activations in the network we assume that x ∈ ∂X or, equivalently, ‖x‖2 = 1;
and for non-Lipschitz, bounded neural activations τ [̃:j], we set L[̃:j]

a = B[̃:j]/φ[̃]. Considering one
such non-Lipschitz neural activation τ [̃:j], in the recursive definition of the norm-bound φ in (5), the
corresponding term in the sum becomes L[̃:j]

a φ[̃] = B[̃:j] - so, for example, for a LayerNorm block
(Figure 2d) j ∈ ZE we see that φ[j] =

√
H [̃:j] (for full derivation see Appendix D.2), and moreover

if this is the only node in its layer then the Rademacher complexity bound will be independent of all
layers preceeding it. However we would advise caution here; the assumption x ∈ ∂X is quite strong
and may not be realistic in general. We will discuss how this assumption may be relaxed, along with
what impact this relaxation has on our Rademacher complexity bound, in section 4.1.

4.1 Generalizations and Standard Toplogies

In this section, we consider two more realistic relaxions assumption 1 - firstly expanding the bounds
on ‖x‖2, and secondly considering x ∼ X drawn from an unbounded distribution X such that it lies
in the bounded of case 1 with high probability (whp). Using these, we conclude the paper by analysing
a range of standard network topologies. Formally, we consider two generalization of assumption 1:

Strictly Bounded: x ∈ Xρ,r = {x ∈ Rn : ρ ≤ ‖x‖2 ≤ r}, where 0 ≤ ρ ≤ r ∈ R+ and ρ > 0 if
the network contains non-Lipschitz neural activations.

Distributional: x ∼ X for a distribution X for which there exists 0 ≤ ρ ≤ r ∈ R+ (ρ > 0 if the
network contains non-Lipschitz neural activations) such that x ∈ Xρ,r with high probability ≥ 1− ε.

In both cases we consider a mild modification of our feature map (5), precisely:4

Ψ[0] (Θ) = rIn,φ
[0] (x) = x,g[0] = 1

r1n, ψ
[0] = r, φ

[0]
↓ = ρ, φ[0] = r, φ↓ = φ

[E]
↓

φ
[j]2
↓ = β[j]2 +}[j]

̃∈A[j]ω
[̃:j]2

{
L

[̃:j]2

φ[̃] φ
[̃]2
↓ if τ [̃:j] is Lipschitz

B[̃:j]2 otherwise
∀j ∈ ZE ,

(11)

and moreover for non-Lipschitz, bounded neural activations τ [̃:j], we set L[̃:j]
a = B[̃:j]/φ

[̃]
↓ . For a

full discussion of this generalization see Appendix C. Observe that, in the limit η → 0+:

φ[j]2 = β[j]2 +}[j]

̃∈A[j]ω
[̃:j]2

 L
[̃:j]2

φ[̃] φ
[̃]2 if τ [̃:j] is Lipschitz

B[̃:j]2 φ
[̃]2

φ
[̃]2
↓

otherwise

φ
[j]
↓ ≤ limη→0+

∥∥φ[j] (x)
∥∥

2
≤ φ[j] ∀x ∈ Xρ,r

∀j ∈ ZE (12)

4In both the cases ρ = 0, r = 1 (the fully Lipschitz variant of assumption 1) and ρ = r = 1 (the non-
Lipschitz variant of assumption 1) this reduces to the standard feature map (5).

9



The Rademacher complexity bound (Theorem 8) takes the same form as usual. The exact impact of
letting r 6= 1 is dependent on the network topology. For a simple, layerwise, fully Lipschitz neural
network with 1 trivial node j = ̇ per layer, as demonstrated in Appendix E.1:5

RN
(
h ◦ F :

∥∥W[ ̇−1: ̇ ]
∥∥

2
≤ ω[ ̇−1: ̇ ]

)
≤ rHm

∏D
̇=1 L

[ ̇−1: ̇ ]ω[ ̇−1: ̇ ]

√
N

This bound is exponential in depth, as discussed previously. As a mild generalization of this scenario,
if we allow non-Lipschitz neural activations (for example LayerNorm blocks) in this simple network,
with the last such at layer ̇ = D↓, then, using (12) and noting that φ[ ̇ ]/φ

[ ̇ ]
↓ = r

ρ∀ ̇ ∈ ZD ∪ {0}:

RN
(
h ◦ F :

∥∥W[ ̇−1: ̇ ]
∥∥

2
≤ ω[ ̇−1: ̇ ]

)
≤ r

ρ

HmB
[D↓−1:D↓]ω[D↓−1:D↓]

∏D
̇=D↓+1 L

[ ̇−1: ̇ ]ω[ ̇−1: ̇ ]

√
N

where we note that this bound is exponential in the depth to the non-Lipschitz node D −D↓ and
proportional to r

ρ . The independence from the weights of layers preceeding D↓ is noteworthy, but if
we consider as an example a ReLU network terminated by a LayerNorm and observe that the scale of
these weights is entirely arbitrary, it perhaps not surprising. The 1

ρ term reflects the need to assume that,
in the worst-case, small inputs will be “amplified” (e.g. by LayerNorm) to the largest possible output.

The transformer can be similarly analysed. The catch in this case is that the attention block is
multiplicative. In particular (see Appendices D.3, D.4 for details), for an attention block:

φout

φout↓
=

φout,Q

φout,Q↓

φout,K

φout,K↓

φin,V

φin,V ↓

so, unlike the simpler case considered above, each attention block will cause polynomial growth in the
ratio φ

φ↓
. Subsequently, as shown in Appendix E.3, the overall bound (due to the final LayerNorm) is:

RN (h ◦ F : ‖Wout‖2 ≤ ω) ≤
(
ρ
r

)33M−1
Hm
√
dmodelω√
N

where Wout are the weights for the linear output layer of the transformer.6 If ρ = r (that is, x ∈ ∂X
as in assumption 1) this collapses to Hm

√
dmodelω√
N

, but in general, despite being independent of the
weights in all but the output layer of the network, this bound grows doubly-exponentially in depth,
dependent on the ratio r

ρ of smallest/largest inputs.

Finally, bounds for the distributional case follow the strictly bounded case, but only whp ≥ 1− ε. For
example, in Appendix C.4 we consider x ∼ X = N (0n, σ

2In), showing that ρ ≤ ‖x‖2 ≤ r, where:

ρ = 0, r =
√

2n ln
(

2
ε

)
σ or r

ρ =

√
n ln( 4

ε )

(Γ(n2 +1) ε2 )
1
n

whp ≥ 1− ε which apply, respectively, for the purely Lipchitz and bounded cases. In particular, the
latter result allows one to explore Rademacher complexity bounds in the general case without giving
ρ or r (the bounds on ‖x‖2, where ρ in particular may be difficult to quantify intuitively) a-priori.

5 Conclusions

In this paper we have constructed a dual model of a very general set of feedforward neural networks
that re-expresses them as a continuous bilinear product between a weight/bias feature map and a data
feature map - that is, a reproducing kernel Banach space (RKBS) model. This model is exact, with no
approximation or assumptions beyond bounded (norm) inputs, bounded (spectral norm) weights and
biases, and finite-energy neural activations, and incorporates networks ranging from simple layerwise
models (ReLU etc) to ResNet and Transformers. Subsequently, we have applied this model to the
analysis of the Rademacher complexity analysis of neural networks, giving a simple recursive bound
for the Rademacher complexity of all models neural network topologies covered by our model. This
bound is exact (non-asymptotic) and does not include depth- or width- dependent nuisance factors.
Moreover it is width-independent and, while exponential in depth (due to the multiplicative build-up
of terms through the layers of the networks), enables us to derive straightforward (spectral) threshold
conditions under which depth-dependence may be removed entirely.

5This also applies to ResNet, where for residual blocks ̇ with d internal layers we let ω[ ̇−1: ̇ ]2 =

(ω[̃−1:̃]d2 . . . ω[̃−1:̃]22ω[̃−1:̃]12 + 1− s2 as also described in Appendix E.1.
6M here is the size of the encoder/decoder stacks. We use M here rather than N as used in (Vaswani et al.,

2017) to avoid a notational ambiguity within our paper.
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A Properties of Hermite polynomials

A.1 Univariate Case

The (probabilist’s) Hermite polynomials are given by (Abramowitz et al., 1972; Morse & Feshbach,
1953; Olver et al., 2010; Courant & Hilbert, 1937):

Hek (ζ) = (−1)
k
e
ζ2

2
dk

dζk
e−

ζ2

2 ∀k ∈ N

or, explicitly:

Hek (ζ) = k!
∑

0≤2p≤k

(−1)p

2pp!(k−2p)!ζ
k−2p ∀k ∈ N (13)

and form an orthogonal basis of L2(R, e−x2

). For any f ∈ L2(R, e−x2

) there exist Hermite
coefficients a0, a1, . . . ∈ R (the Hermite transform of f ) such that:

f (ζ) =
∑
k∈N

akHek (ζ) ∀ξ, ζ ∈ R

where:

ak = 1
k!
√

2π

∫∞
−∞ f (ξ + ζ) e−

ζ2

2 Hek (ζ) dζ

and moreover the series representation converges everywhere on the real line.7

The Hermite numbers derive from the Hermite polynomials:8

Hek , Hek (0) =

{
(−1)k/2k!

k!! if k even
0 otherwise

(15)

where k!! = k(k − 2)(k − 4) . . . is the double-factorial. It is well known that (see eg. (Morse &
Feshbach, 1953)):

Hek (ξ + ζ) =
∑

0≤l≤k

(
k
l

)
Hek−l (ξ) ζ

l

and so:
Hek (ζ) =

∑
0≤l≤k

(
k
l

)
Hek−lζ

l

It follows that, taking care not to change or order of summation (remember this is an alternating
series, so convergence depends on the order of the summation):

f (ζ)− f (0) =
∞∑
k=1

ak
k∑
l=1

(
k
l

)
Hek−lζ

l

For later reference we also note that the Hermite polynomials satisfy the well-known recursion and
derivative relation for k > 1:

ζHk (ζ) = 1
2Hk+1 (ζ) + 1

2H
′
k (ζ)

= 1
2Hk+1 (ζ) + kHk−1 (ζ)

(16)

7Hille (1940); Boyd (1980) show that this series converges on a strip Xρ = {z ∈ C : −ρ < Im(z) < ρ} of
width ρ about the real axis in the complex plane, where (note that Hille (1940); Boyd (1980) use the normalized
physicist’s Hermite polynomials. The additional scale factor here arises in the translation to the un-normalized
probabilist’s Hermite polynomials used here):

ρ = − lim sup
k→∞

1√
2k+1

log

(∣∣∣∣ ak√
k!
√
π

∣∣∣∣) (14)

8Typically the Hermite numbers are defined from the physicist’s Hermite polynomials, but as we use the
Probabilist’s form as we find these more convenient for our purposes.
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A.2 Multivariate Case

The multivariate Hermite polynomials Hek : Rn → R, k ∈ Nn, are the functions (Rahman, 2017):

Hek (ζ) = (−1)
|k|

exp
(

1
2ζ

Tζ
)
∂k

∂ζk exp
(
− 1

2ζ
Tζ
)

=
∏
iHeki (ζi)

where we use multi-index notation |k| =
∑
i ki, ak =

∏
i a
ki
i , k! =

∏
i ki!, k!! =

∏
i ki!!, and

∂k

∂ζk =
∏
i
∂ki

∂ζ
ki
i

. For any f ∈ L2(Rn, e−ζTζ) there exists coefficients ak ∈ R : k �n i (the Hermite

transform of f ), where k �n i means k ∈ {k ∈ Nn : |k| ≥ i}, such that:

f (ζ) =
∑

k�n0

akHek (ζ) ∀ζ ∈ Rn

where:

ak = 1

k!(2π)
n
2

∫∞
−∞ f (ζ) e−

ζTζ
2 Hek (ζ) dζ

= 1
k1!
√

2π

∫
ζ1∈R e

− ζ
2
1
2 Hek1

(ζ1) 1
k2!
√

2π

∫
ζ2∈R e

− ζ
2
2
2 Hek2

(ζ2) . . . f (ζ) . . . dζ2dζ1

and the series representation converges everywhere on Rn.

As in the univariate case, the multivariate Hermite numbers are defined as:

Hek , Hek (0) =
∏
i Heki =

{
(−1)|k|/2k!

k!! if k0, k1, . . . are all even
0 otherwise

where in the final step we have used (15). Subsequently:

f (ζ)− f (0) =
∑

k�n0
ak

∑
0≺nl≤k

(
k
l

)
Hek−lζ

l

where k �n i means k ∈ {k ∈ Nn : |k| > i}.
Finally, if we consider a vector-valued function f : Rn → Rm then it is not hard to see that scalar-
valued expansion can be extended to:

f (ζ)− f (0) =
∑

k�n0
ak

∑
0≺nl≤k

(
k
l

)
Hek−lζ

l
(17)

where ak,i are the Hermite coefficients of fi. We note that if n = m and f(ζ) = [g(ζi)]i acts
elementwise (for example a neural activation that acts elementwise) then:

ak,i = δ|k|,kib|k| (18)

where b0, b1, . . . are the (univariate) Hermite coefficients of g : R→ R.

B ReLU Activation Function Analysis

In this section we derive the Hermite-polynomial expansion of the ReLU activation function:

τ [ReLU] (ζ) = [ζ]+

We find it convenient to work in terms of the physicists Hermite polynomials Hk to suit (Gradshteyn
& Ryzhik, 2000). So:

b
[ReLU]
k = 1√

2πk!

∫∞
0
ζe−

ζ2

2 Hek (ζ) dζ

= 1√
2πk!

∫∞
0
ζe−

ζ2

2
1√
2
kHk

(
ζ√
2

)
dζ

=
√

2
π

1
k!

∫∞
0

ζ√
2
e
−
(
ζ√
2

)2

1√
2
kHk

(
ζ√
2

)
d ζ√

2

=
√

2
π

1√
2
k
k!

∫∞
0
ζe−ζ

2

Hk (ζ) dζ

and hence, using (16) and (Gradshteyn & Ryzhik, 2000, (7.373)):

b
[ReLU]
k = k+1√

π
1√

2
k+1

(k+1)!

∫∞
0
e−ζ

2

Hk+1 (ζ) dζ + 1√
π

1√
2
k−1

(k−1)!

∫∞
0
e−ζ

2

Hk−1 (ζ) dζ
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and using (Gradshteyn & Ryzhik, 2000, (7.373)) again:

b
[ReLU]
k = 1√

π
1√

2
k+1

(k+1)!
(k + 1)

(
e0Hk (0)− e−∞

2

2 Hk

(
∞√

2

))
+ . . .

. . . 1√
π

1√
2
k−1

(k−1)!

(
e0Hk−2 (0)− e−∞

2

2 Hk−2

(
∞√

2

))
= 1√

2π

(
k+1√

2
k
(k+1)!

Hk (0) + 1√
2
k−2

(k−1)!
Hk−2 (0)

)
If k = 2p and p > 0 then, noting that Hk(0) =

√
2
k
Hek:

b
[ReLU]
2p = 1√

2π

(
1√

2
2p

(2p+1)!
(2p+ 1)H2p (0) + 1√

2
2p−2

(2p−1)!
H2p−2 (0)

)
= 1√

2π

(
1√

2
2p

(2p+1)!
(2p+ 1)H2p (0) + 1√

2
2p−2

(2p−1)!
H2p−2 (0)

)
= (−1)p+1

√
2π(2p−1)2pp!

(
(−1)p+1(2p−1)p!

(2p)! H2p (0) + (−1)p+12p!
(2(p−1))! H2p−2 (0)

)
= (−1)p+1

√
2π(2p−1)2pp!

e−
ξ2

2

(
(−1)p+1(2p−1)p!

(2p)! 2p (−1)p(2p)!
2pp! + (−1)p+12p!

(2(p−1))! 2p−1 (−1)p+1(2p−2)!
(p−1)!2p−1

)
= (−1)p+1

√
2π(2p−1)2pp!

If k = 2p+ 1 and p > 0 then:

b
[ReLU]
2p+1 = 1√

2π

(
1√

2
2p+1

(2p+2)!
(2p+ 2)H2p+1 (0) + 1√

2
2p−1

(2p)!
H2p−1 (0)

)
= 1√

2π

(
− 1√

2
2p+1

(2p+2)!
(2p+ 2)H2p+1 (0)− 1√

2
2p−1

(2p)!
H2p−1 (0)

)
= 1√

2π

(
−

√
2

2p+1(2p+1)!H2p+1 (0)−
√

2
2p(2p)!H2p−1 (0)

)
= 0

For the cases k = 0, 1 we use the result:∫ b
a
ζme−ζ

2

dζ = 1
2Γ
(
m+1

2 , a2
)
− 1

2Γ
(
m+1

2 , b2
)

and so: ∫∞
a
ζme−ζ

2

dζ = 1
2Γ
(
m+1

2 , a2
)

In the case k = 0:
b
[ReLU]
0 =

√
2
π

∫∞
0
ζe−ζ

2

dζ

= 1√
2π

Γ (1, 0)

= 1√
2π

and in the case k = 1:
b
[ReLU]
1 = 2√

π

∫∞
0
ζ2e−ζ

2

dζ

= 1√
π

Γ
(

3
2 , 0
)

= 1
2

Subsequently, for the elementwise ReLU neural activaiton, using (18):

ak =
[
δ|k|,kib|k|

]
i

(19)

Next we derive the magnitude functions for the ReLU. Using integration by parts, we see that:

1√
2π

∫ ζ
c

1
ξ2

(
e

1
2 ξ

2 − 1
)
dξ = 1√

2π
1√
2

∫ ζ
c

2
ξ2

(
e

1
2 ξ

2 − 1
)
d ξ√

2

= 1√
2π

1√
2

∫ ζ√
2
c√
2

1
ξ2

(
eξ

2 − 1
)
dξ

= − 1√
2π

1
ζ

(
e

1
2 ζ

2 − 1
)

+ 1√
2π

1
c

(
e

1
2 c

2 − 1
)

+ 1√
π

∫ ζ√
2
c√
2

eξ
2

dξ

= − 1√
2π

1
ζ

(
e

1
2 ζ

2 − 1
)

+ 1√
2π

1
c

(
e

1
2 c

2 − 1
)

+ 1
2

2√
π

∫ ζ√
2
c√
2

eξ
2

dξ

= − 1√
2π

1
ζ

(
e

1
2 ζ

2 − 1
)

+ 1
2erfi

(
ζ√
2

)
− 1

2

(
erfi
(

c√
2

)
− 1√

2π
2
c

(
e

1
2 c

2 − 1
))
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So:
∞∑
k=1

∣∣∣b[ReLU]
k

∣∣∣ ζk = 1
2ζ + 1√

2π

∞∑
p=1

ζ2p

(2p−1)2pp!

= 1
2ζ + 1√

2π
ζ
∞∑
p=1

ζ2p−1

(2p−1)2pp!

= 1
2ζ + 1√

2π
ζ
∫ ζ
c

(
∂
∂ξ

∞∑
p=1

ξ2p−1

(2p−1)2pp!

)
dξ

= 1
2ζ + 1√

2π
ζ
∫ ζ
c

(
∞∑
p=1

ξ2p−2

2pp!

)
dξ

= 1
2ζ + 1

2
√

2π
ζ
∫ ζ
c

(
∞∑
p=1

1
p!

(
1
2ξ

2
)p−1

)
dξ

= 1
2ζ + 1√

2π
ζ
∫ ζ
c

1
ξ2

(
∞∑
p=1

1
p!

(
1
2ξ

2
)p)

dξ

= 1
2ζ + 1√

2π
ζ
∫ ζ
c

1
ξ2

(
e

1
2 ξ

2 − 1
)
dξ

= 1
2ζ
(

erfi
(
ζ√
2

)
+ 1− erfi

(
c√
2

)
+ 1√

2π
2
c

(
e

1
2 c

2 − 1
))

+ 1√
2π

(
1− e 1

2 ζ
2
)

Select c so that the first derivative is 1
2ζ:

−erfi
(

c√
2

)
+ 1√

2π
2
c

(
e

1
2 c

2 − 1
)

= 0 if c = 0

Hence:

s
[ReLU]
η (ζ) ,

∞∑
k=1

∣∣∣b[ReLU]
k

∣∣∣ (1 + ηζ)
k −

∞∑
k=1

∣∣∣b[ReLU]
k

∣∣∣
= 1

2 (1 + ηζ)
(

erfi
(

1+ηζ√
2

)
+ 1
)

+ 1√
2π

(
1− e 1

2 (1+ηζ)2
)
− 1

2

(
erfi
(

1√
2

)
+ 1
)
− . . .

. . . 1√
2π

(
1− e 1

2

)
= 1

2ηζ
(

erfi
(

1+ηζ√
2

)
+ 1
)

+ 1√
2π

(
e

1
2 − e 1

2 (1+ηζ)2
)

+ 1
2

(
erfi
(

1+ηζ√
2

)
− erfi

(
1√
2

))
(20)

C Bilinear Representation - Proofs, Bounds and Generalizations

In this section we present proof of theorems, bounds and generalizations related to the bilinear
representation. To avoid repeating work we consider a mild generalization of the map presented in
the body of the paper, as shown in Figure 6. The key generalizations here over the main body of the
paper are:

1. We let x ∈ Xρ,r = {x ∈ Rn : ρ ≤ ‖x‖2 ≤ r} for some 0 ≤ ρ ≤ r ∈ R+. In the main body
of the paper we let ρ = 0, r = 1 for simplicity when all neural activations are Lipschitz, and
ρ = r = 1 otherwise. In general we require ρ > 0 when considering a network containing
non-Lipschitz neural activations.

2. We use base-case Ψ[0](Θ) = rIn, g[0] = 1
r1n here (recall r = 1 in the main body).

3. We use L[̃:j]

ψ
[̃]
η

, L[̃:j]

φ
[̃]
η

to scale the feature map here rather than L[̃:j]

ψ[̃] and L[̃:j]

φ[̃] . Note, however,

that (as we demonstrate) limη→0 ψ
[̃]
η = ψ[̃] and limη→0 φ

[̃]
η = φ[̃], so the definitions

coincide in the limit η → 0+, which is the case we are primarily concerned with (as it is
used in our Rademacher complexity bound).

4. For non-Lipschitz, bounded neural activations (edges), we let L[̃:j] = B[̃:j]

φ
[̃]2
↓η

, where φ[̃]
↓η is a

lower bound on ‖φ[̃](x)‖2 (recall that ρ = 1 in the main body of the paper, and note that we
will prove that φ[̃]

↓η = φ
[̃]
η in this case). More generally for neural activations that are neither

bounded or Lipschitz we let L[̃:j] = 1. Note, however, that we cannot prove continuity of
our bilinear product in this case, so the relevant parts of the proof do not apply for this.
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Layer 0 Layer 1 Layer DLayer D-1

0 E

𝑗𝑗𝐷𝐷−1,2

𝑗𝑗𝐷𝐷−1,1

𝑗𝑗1,2

𝑗𝑗1,1

𝚿𝚿[𝟎𝟎],𝝓𝝓[𝟎𝟎],𝒈𝒈[𝟎𝟎],𝜙𝜙[0] 𝚿𝚿[𝑬𝑬],𝝓𝝓[𝑬𝑬],𝒈𝒈[𝑬𝑬],𝜙𝜙[𝐸𝐸]

𝚿𝚿[𝚥̃𝚥],𝝓𝝓[𝚥̃𝚥],𝒈𝒈[𝚥̃𝚥],𝜙𝜙[𝚥̃𝚥]

𝚿𝚿[𝚥̃𝚥′],𝝓𝝓[𝚥̃𝚥′],𝒈𝒈[𝚥̃𝚥′],𝜙𝜙[𝚥̃𝚥′] 𝚿𝚿[𝒋𝒋],𝝓𝝓[𝒋𝒋],𝒈𝒈[𝒋𝒋],𝜙𝜙[𝑗𝑗]

Node j

See below

𝒙𝒙[𝑗𝑗] =< 𝚿𝚿[𝒋𝒋] 𝛩𝛩 ,𝝓𝝓[𝒋𝒋] 𝑥𝑥 ]𝒈𝒈[𝑗𝑗]

𝝓𝝓[𝒋𝒋] 𝑥𝑥 𝟐𝟐 ≤𝜂𝜂→0+ 𝜙𝜙[𝑗𝑗]

Ψ[0] (Θ) = rIn,φ
[0] (x) = x,g[0] = 1

r1n

ψ
[0]
η = r

φ
[0]
↓η = ρ

ψ
[0]
η = r

−→
η→0+

ψ[0] = r

φ
[0]
↓ = ρ

ψ[0] = r

↓

Ψ[̃:j] (Θ) =
L

[̃:j]

ψ
[̃]
η√

s
[̃:j]
η (1)


ηdiag

(
τ [̃:j] (0)〈�

1
2 〉
) diag

(
a

[̃:j]〈� 1
2 〉

k

)
⊗l
[(

k
l

) 1
2
⊗

ı̃∈N
H[̃]

(√
ηΨ

[̃]
:̃ı (Θ)

)⊗lı̃]
0≺

H[̃]l≤k


k�

H[̃]0


φ[̃:j] (x) =

L
[̃:j]

φ
[̃]
η√

s
[̃:j]
η (1)

 η
∣∣τ [̃:j] (0)

∣∣� 1
2[ ∣∣∣a[̃:j]

k

∣∣∣� 1
2 ⊗

[(
k
l

) 1
2
(√
ηφ[̃] (x)

)⊗|l|]
0≺

H[̃]l≤k

]
k�

H[̃]0


g[̃:j] =

s[̃:j]η (1)

L
[̃:j]

ψ
[̃]
η

L
[̃:j]

φ
[̃]
η


1
η2 1H[̃:j][

1H[̃:j] ⊗
[
Hek−l

(
1
ηg

[̃]
)⊗|l|]

0≺
H[̃]l≤k

]
k�

H[̃]0


ψ

[̃:j]2
η = L

[̃:j]2

ψ
[̃]
η

s[̃:j]η (ψ[̃]2
η )

s
[̃:j]
η (1)

φ
[̃:j]2
↓η = L

[̃:j]2

φ
[̃]
η

s[̃:j]η

(
φ

[̃]2
↓η

)
s
[̃:j]
η (1)

φ
[̃:j]2
η = L

[̃:j]2

φ
[̃]
η

s[̃:j]η (φ[̃]2
η )

s
[̃:j]
η (1)

−→
η→0+

ψ[̃:j]2 = L
[̃:j]2

ψ[̃] ψ
[̃]2

φ
[̃:j]2
↓ = L

[̃:j]2

φ[̃] φ
[̃]2
↓

φ[̃:j]2 = L
[̃:j]2

φ[̃] φ
[̃]2



∀̃ ∈ A[j]

(edges) (a)

↓

Ψ[j] (Θ) =

 b[j]T

�[j]

̃∈A[j]

Ψ[̃:j] (Θ) W[̃:j]


φ[j] (x) =

 β[j]

�[j]

̃∈A[j]

φ[̃:j] (x)ω[̃:j]


g[j] =

 1
β[j] γ

[j]

�[j]

̃∈A[j]

1
ω[̃:j] g

[̃:j]


ψ

[j]2
η = β[j]2 +}[j]

̃∈A[j]

ω[̃:j]2ψ
[̃:j]2
η

φ
[j]2
↓η = β[j]2 + }

̃∈A[j]

ω[̃:j]2φ
[̃:j]2
↓η

φ
[j]2
η = β[j]2 + }

̃∈A[j]

ω[̃:j]2φ
[̃:j]2
η

−→
η→0+

ψ[j]2 = β[j]2 +}[j]

̃∈A[j]

ω[̃:j]2ψ[̃:j]2

φ
[j]2
↓ = β[j]2 + }

̃∈A[j]

ω[̃:j]2φ
[̃:j]2
↓

φ[j]2 = β[j]2 + }
̃∈A[j]

ω[̃:j]2φ[̃:j]2



(node) (b)



∀j ∈ L[ ̇ ]

(block)



Layers ̇ ∈ ZD
(sequentially)

↓

Ψ (Θ) = Ψ[E] (Θ) ,φ (x) = φ[E] (x) ,g = g[E]

ψη = ψ
[E]
η

φ↓η = φ
[E]
↓η

φη = φ
[E]
η

−→
η→0+

ψ = ψ[E]

φ↓ = φ
[E]
↓

φ = φ[E]

Where: �[j] =



diag if©[j] =
⊕⊕

if©[j] =
∑⊗

if©[j] =
⊗⊗l if©[j] =
⊙

(
⊗l·)1 if©[j] = 〈〈·〉〉

, �[j] =

{⊕
if©[j] ∈ {

⊕
,
∑
}⊗

if©[j] ∈ {
⊗
,
⊙
, 〈〈·〉〉}

and}[j] =

{∑
if©[j] ∈ {

⊕
,
∑
}∏

if©[j] ∈ {
⊗
,
⊙
, 〈〈·〉〉}

(21)

Figure 6: Complete version of Figure 4 (recursive definition of bilinear representation) splitting
edge/node maps, showing limits and including correct weights (the main body uses simplified weights
that are correct in the limit and sets r = 1, ρ = 0 (or ρ = 1 if non-Lipschitz neurons are present). For
non-Lipschitz, bounded neural activations τ [̃:j] we set L[̃:j]

a = B[̃:j]/φ
[̃]2
↓η , and for non-Lipschitz

and unbounded neural activations we set L[̃:j]
a = 1.

18



Note that for each j ∈ ZE the feature map construction is split into two steps - a construction (21a)
for the incoming edges [̃ : j], which we refer to as the edge case; and a construction (21b) for the
(core of the) node itself, which we refer to as the node case. This split will simplify our proofs and
improve clarity by separating the key steps therein. As in the main body of the paper the overall
representation is:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g (22)
We will also show that:

x[̃:j] =
〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j] ∀j ∈ ZE , ̃ ∈ A[j]

x[j] =
〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] ∀j ∈ ZE ∪ {0}

(23)

where the following bounds hold:∥∥Ψ[̃:j] (Θ)
∥∥
F
≤ ψ[̃:j]

η ∀j ∈ ZE , ̃ ∈ A[j],Θ ∈W∥∥φ[̃:j] (x)
∥∥

2
∈
[
φ

[̃:j]
η↓ , φ

[̃:j]
η

]
∀j ∈ ZE , ̃ ∈ A[j],x ∈W∥∥Ψ[j] (Θ)

∥∥
F
≤ ψ[j]

η ∀j ∈ ZE ∪ {0},Θ ∈W∥∥φ[j] (x)
∥∥

2
∈
[
φ

[j]
η↓, φ

[j]
η

]
∀j ∈ ZE ∪ {0},x ∈ X

(24)

noting that φ[̃:j]
η↓ , φ

[j]
η↓ > 0 if ρ > 0 and:∥∥φ[̃:j] (x)

∥∥
2

= φ
[̃:j]
η↓ ∀j ∈ ZE , ̃ ∈ A[j],x ∈W : ‖x‖2 = ρ∥∥φ[̃:j] (x)

∥∥
2

= φ
[̃:j]
η ∀j ∈ ZE , ̃ ∈ A[j],x ∈W : ‖x‖2 = r∥∥φ[j] (x)

∥∥
2

= φ
[j]
η↓ ∀j ∈ ZE ∪ {0},x ∈ X : ‖x‖2 = ρ∥∥φ[j] (x)

∥∥
2

= φ
[j]
η ∀j ∈ ZE ∪ {0},x ∈ X : ‖x‖2 = r

(25)

C.1 Proof of Theorem 1 - Bilinear Representation

Recalling that the network is arranged in layers ̇ = 0, 1, 2, . . . , D, and given that we know the
feature map representation for the input layer ̇ = 0 is, tivially:

x[0] =
〈
Ψ[0] (Θ) ,φ[0] (x)

]
g[0]

where Ψ[0](Θ) = rI, φ[0](x) = x and g[0] = 1
r1, it suffices to show that if all outputs of all nodes

̃ ∈ L[ ̇−1] (L[0] = {0}) in layer ̇ − 1 can be expressed in terms of bilinear products:

x[̃] =
〈
Ψ[̃] (Θ) ,φ[̃] (x)

]
g[̃] (26)

then all nodes j ∈ L[ ̇ ], using the definitions given, can be written:

x[̃:j] =
〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j] ∀̃ ∈ A[j] (27)

and:
x[j] =

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] (28)

We call (27) the edge case and (28) the node case, and will treat them separately.

Edge case: We are given that (26) is correct. Substituting (21a) into the bilinear product and using
(26), (3) and (17), we find that:〈

Ψ[̃:j] (Θ) ,φ[̃:j] (x)
]
g[̃:j] =

〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j]

= τ [̃:j] (0) +
∑

k�
H[̃]0

a
[̃:j]
k

∑
0≺

H[̃]l≤k

(
k
l

)
Hek−l

〈 ⊗
ı̃∈N

H[̃]

Ψ
[̃]
:i̃

(Θ)
⊗li̃ ,φ[̃] (x)

⊗|l|

]
g[̃]⊗|l|


i̃

= τ [̃:j] (0) +
∑

k�
H[̃]0

a
[̃:j]
k

∑
0≺

H[̃]l≤k

(
k
l

)
Hek−l

〈
Ψ[̃] (Θ) ,φ[̃] (x)

]l
g[̃]

= τ [̃:j] (0) +
∑

k�
H[̃]0

a
[̃:j]
k

∑
0≺

H[̃]l≤k

(
k
l

)
Hek−lx

[̃]l

= x[̃:j]

which is the desired result (27).
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Node case: We have shown that (27) is correct. Substituting (21b) into the bilinear product and using
(27), we find that, for columnar concatenation nodes©[j] =

⊕
(so�[j] = diag, �[j] =

⊕
):

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γ[j]b[j] +

〈
�[j]

̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],�[j]

̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
�[j]

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

〈
1

ω[̃1:j] Ψ
[̃1:j] (Θ) W[̃1:j] 0 . . .

0 1
ω[̃2:j] Ψ

[̃2:j] (Θ) W[̃2:j] . . .
...

...
. . .

 ,
 ω[̃1:j]φ[̃1:j] (x)
ω[̃2:j]φ[̃1:j] (x)

...




1
ω[̃1:j] g

[̃1:j]

1
ω[̃2:j] g

[̃2:j]

...



= γ[j]b[j] +


〈
Ψ[̃1:j] (Θ) W[̃1:j],φ[̃1:j] (x)

]
g[̃1:j]〈

Ψ[̃2:j] (Θ) W[̃2:j],φ[̃2:j] (x)
]
g[̃2:j]

...


= γ[j]b[j] +

 W[̃1:j]Tx[̃1:j]

W[̃2:j]Tx[̃2:j]

...


= γ[j]b[j] +

⊕
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

For additive nodes©[j] =
∑

(so�[j] =
⊕

, �[j] =
⊕

):

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γ[j]b[j] +

〈
�[j]

̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],�[j]

̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
�[j]

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

〈
1

ω[̃1:j] Ψ
[̃1:j] (Θ) W[̃1:j]

1
ω[̃2:j] Ψ

[̃2:j] (Θ) W[̃2:j]

...

 ,
 ω[̃1:j]φ[̃1:j] (x)
ω[̃2:j]φ[̃1:j] (x)

...




1
ω[̃1:j] g

[̃1:j]

1
ω[̃2:j] g

[̃2:j]

...


= γ[j]b[j] +

∑
̃∈A[j]

〈
Ψ[̃:j] (Θ) W[̃:j],φ[̃:j] (x)

]
g[̃:j]

= γ[j]b[j] +
∑
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

For Kronecker-product nodes©[j] =
⊗

(so�[j] =
⊗

, �[j] =
⊗

):

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γ[j]b[j] +

〈
�[j]

̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],�[j]

̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
�[j]

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

〈 ⊗
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],
⊗
̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
⊗

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

( ⊗
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j]

)T(( ⊗
̃∈A[j]

φ[̃:j] (x)

)
�

( ⊗
̃∈A[j]

g[̃:j]

))
= γ[j]b[j] +

⊗
̃∈A[j]

(
1

ω[̃:j] Ψ
[̃:j] (Θ) W[̃:j]

)T (
φ[̃:j] (x)� g[̃:j]

)
= γ[j]b[j] +

⊗
̃∈A[j]

W[̃:j]T
〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j]

= γ[j]b[j] +
⊗
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]
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For Hadamard product nodes©[j] =
⊙

(so�[j] =
⊗l, �[j] =

⊗
):

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γ[j]b[j] +

〈
�[j]

̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],�[j]

̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
�[j]

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

〈⊗l
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],
⊗
̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
⊗

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

(⊗l
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j]

)T(( ⊗
̃∈A[j]

φ[̃:j] (x)

)
�

( ⊗
̃∈A[j]

g[̃:j]

))

= γ[j]b[j] +

[ ( ⊗
̃∈A[j]

(
Ψ[̃:j] (Θ) W

[̃:j]
:ij

))T( ⊗
̃∈A[j]

(
φ[̃:j] (x)� g[̃:j]

)) ]
ij

= γ[j]b[j] +

[ ∏
̃∈A[j]

(
Ψ[̃:j] (Θ) W

[̃:j]
:ij

)T (
φ[̃:j] (x)� g[̃:j]

) ]
ij

= γ[j]b[j] +

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

Ψ[̃:j] (Θ)
T (
φ[̃:j] (x)� g[̃:j]

) ]
ij

= γ[j]b[j] +

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j]

]
ij

= γ[j]b[j] +

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

x[̃:j]
]
ij

= γ[j]b[j] +
⊙
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

For multi-inner-product nodes©[j] = 〈〈·〉〉 (so�[j] =
⊗l

(·) 1, �[j] =
⊗

):

〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γ[j]b[j] +

〈
�[j]

̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j],�[j]

̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
�[j]

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

〈⊗l
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j]1,
⊗
̃∈A[j]

ω[̃:j]φ[̃:j] (x)

]
⊗

̃∈A[j]

1

ω[̃:j]
g[̃:j]

= γ[j]b[j] +

(⊗l
̃∈A[j]

1
ω[̃:j] Ψ

[̃:j] (Θ) W[̃:j]1

)T(( ⊗
̃∈A[j]

φ[̃:j] (x)

)
�

( ⊗
̃∈A[j]

g[̃:j]

))

= γ[j]b[j] + 1T

[ ( ⊗
̃∈A[j]

(
Ψ[̃:j] (Θ) W

[̃:j]
:ij

))T( ⊗
̃∈A[j]

(
φ[̃:j] (x)� g[̃:j]

)) ]
ij

= γ[j]b[j] + 1T

[ ∏
̃∈A[j]

(
Ψ[̃:j] (Θ) W

[̃:j]
:ij

)T (
φ[̃:j] (x)� g[̃:j]

) ]
ij

= γ[j]b[j] + 1T

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

Ψ[̃:j] (Θ)
T (
φ[̃:j] (x)� g[̃:j]

) ]
ij

= γ[j]b[j] + 1T

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

〈
Ψ[̃:j] (Θ) ,φ[̃:j] (x)

]
g[̃:j]

]
ij

= γ[j]b[j] + 1T

[ ∏
̃∈A[j]

W
[̃:j]T
:ij

x[̃:j]
]
ij

= γ[j]b[j] + 1T
⊙
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

= γ[j]b[j] + 〈〈·〉〉
̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

where on the final line we use 〈〈·〉〉 as an operator (see notation section). So, in all cases:〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γb[j] + ©[j]

̃∈P̃[j]

W[̃:j]Tx[̃:j] = x[j]

which is the desired result (28) for the node case.
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C.2 Proof of Theorem 1 - Norm-Bounds

Recalling that the network is arranged in layers ̇ = 0, 1, 2, . . . , D, and noting that for the input layer
̇ = 0 is, tivially from our assumptions:

∥∥Ψ[0] (Θ)
∥∥
F

= ψ
[0]
η

φ
[0]
↓η ≤

∥∥φ[0] (x)
∥∥
F

= φ
[0]
η

where ψ[0]
η = r, φ[0]

↓η = ρ and φ[0]
η = r, it suffices to show that if all outputs of all nodes ̃ ∈ L[ ̇−1] in

layer ̇ − 1 satisfy:

∥∥Ψ[̃] (Θ)
∥∥
F

= ψ
[̃]
η

φ
[̃]
↓η ≤

∥∥φ[̃] (x)
∥∥
F

= φ
[̃]
η

(29)

then all nodes j ∈ L[ ̇ ], using the definitions given, satisfy:

∥∥Ψ[̃:j] (Θ)
∥∥
F

= ψ
[̃:j]
η

φ
[̃:j]
↓η ≤

∥∥φ[̃:j] (x)
∥∥
F

= φ
[̃:j]
η

∀̃ ∈ A[j] (30)

and:

∥∥Ψ[j] (Θ)
∥∥
F

= ψ
[j]
η

φ
[j]
↓η ≤

∥∥φ[j] (x)
∥∥
F

= φ
[j]
η

(31)

We call (30) the edge case and (31) the node case, and will treat them separately.

Edge case: We are given that (29) is correct. By direct calculation, for incoming edges (21a), using
the multinomial theorem at step (∗):

∥∥Ψ[̃:j](Θ)
∥∥2

F
=

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∥∥∥∥∥∥∥
 diag

(
a

[̃:j]〈� 1
2 〉

k

)
⊗l
[(

k
l

) 1
2
⊗

ı̃∈N
H[̃]

(√
ηΨ

[̃]
:̃ı (Θ)

)⊗lı̃]
l�
H[̃] 0,

l≤k


k�

H[̃]0

∥∥∥∥∥∥∥
2

F


=

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∥∥∥∥∥∥∥
[(

k
l

) 1
2
⊗

ı̃∈N
H[̃]

(√
ηΨ

[̃]
:̃ı (Θ)

)⊗lı̃]
l�
H[̃] 0,

l≤k

∥∥∥∥∥∥∥
2

2


=

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∑
0≺

H[̃]l≤k

(
k
l

) ∥∥∥∥∥ ⊗
ı̃∈N

H[̃]

(√
ηΨ

[̃]
:̃ı (Θ)

)⊗lı̃∥∥∥∥∥
2

2


=

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∑
0≺

H[̃]l≤k

(
k
l

) ∏
ı̃∈N

H[̃]

(√
η
∥∥∥Ψ[̃]

:̃ı (Θ)
∥∥∥

2

)2lı̃

)

=
L

[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

(( ∑
0�

H[̃]l≤k

(
k
l

)
1|k|−|l|

∏
ı̃∈N

H[̃]

(
η
∥∥∥Ψ[̃]

:̃ı (Θ)
∥∥∥2

2

)lı̃)
− 1

))

=(∗)
L

[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

(1 +
∑

ı̃∈N
H[̃]

η
∥∥∥Ψ[̃]

:̃ı (Θ)
∥∥∥2

2

)|k|
− 1


=

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

((
1 + η

∥∥Ψ[̃] (Θ)
∥∥2

F

)|k|
− 1

))
= L

[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)
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and:

∥∥φ[̃:j](x)
∥∥2

2
=

L
[̃:j]2

φ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∥∥∥∥∥∥
[ ∣∣∣a[̃:j]

k

∣∣∣� 1
2 ⊗

[(
k
l

) 1
2
(√
ηφ[̃] (x)

)⊗|l|]
l�
H[̃] 0,

l≤k

]
k�

H[̃]0

∥∥∥∥∥∥
2

2


=

L
[̃:j]2

φ
[̃]
η

s
[̃:j]
η (1)

η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∥∥∥∥∥[(kl) 1
2
(√
ηφ[̃] (x)

)⊗|l|]
l�
H[̃] 0,

l≤k

∥∥∥∥∥
2

2


=

L
[̃:j]2

φ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∑
0≺

H[̃]l≤k

(
k
l

) ∥∥∥(√ηφ[̃] (x)
)⊗|l|∥∥∥2

2

)

=
L

[̃:j]2

φ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

∑
0≺

H[̃]l≤k

(
k
l

) (√
η
∥∥φ[̃] (x)

∥∥
2

)2|l|)

=(∗)
L

[̃:j]2

φ
[̃]
η

s
[̃:j]
η (1)

(
η2
∥∥τ [̃:j] (0)

∥∥2

2
+

∑
k�

H[̃]0

∥∥∥a[̃:j]
k

∥∥∥
1

((
1 + η

∥∥φ[̃] (x)
∥∥2

2

)|k|
− 1

))
= L

[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

which we may bound as (using that s[̃:j]
η is increasing on R+):

∥∥Ψ[̃:j](Θ)
∥∥2

F
= L

[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

≤ ψ[̃:j]2
η∥∥φ[̃:j](x)

∥∥2

2
= L

[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

∈
[
φ

[̃:j]
↓η , φ

[̃:j]2
η

]
which is the desired result (30).

Node case: We have shown that (30) is correct. For columnar concatenation nodes©[j] =
⊕

(so

�[j] = diag, �[j] =
⊕

):

∥∥Ψ[j] (Θ)
∥∥2

F
=
∥∥b[j]

∥∥2

2
+
∑

̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∑
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2

For additive nodes©[j] =
∑

(so�[j] =
⊕

, �[j] =
⊕

):

∥∥Ψ[j] (Θ)
∥∥2

F
=
∥∥b[j]

∥∥2

2
+
∑

̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∑
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2

For Kronecker-product nodes©[j] =
⊗

(so�[j] =
⊗

, �[j] =
⊗

):

∥∥Ψ[j] (Θ)
∥∥2

F
=
∥∥b[j]

∥∥2

2
+

∏
̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∏
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2

For Hadamard product nodes©[j] =
⊙

(so�[j] =
⊗l, �[j] =

⊗
):

∥∥Ψ[j] (Θ)
∥∥2

F
≤
∥∥b[j]

∥∥2

2
+

∏
̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∏
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2
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For multi-inner-product nodes©[j] = 〈〈·〉〉 (so�[j] =
⊗l

(·) 1, �[j] =
⊗

):

∥∥Ψ[j] (Θ)
∥∥2

F
≤
∥∥b[j]

∥∥2

2
+

∏
̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∏
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2

Thus in general, for all nodes considered here:∥∥Ψ[j] (Θ)
∥∥2

F
≤
∥∥b[j]

∥∥2

2
+

∏
̃∈A[j]

L
[̃:j]2

ψ
[̃]
η

s[̃:j]η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

∥∥W[̃:j]
∥∥2

2∥∥φ[j] (x)
∥∥2

2
= β[j]2 +

∏
̃∈A[j]

L
[̃:j]2

φ
[̃]
η

s[̃:j]η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

ω[̃:j]2

which we may bound as: ∥∥Ψ[j] (Θ)
∥∥2

F
≤ ψ[j]2

η∥∥φ[j] (x)
∥∥2

2
∈
[
φ

[j]2
↓η , φ

[j]2
η

]
which is the desired result (31) for the node case.

We observe that the data-feature-map bound is tight:

‖φ (x)‖22 = φ2
↓η if ‖x‖2 = ρ, and φ2

↓η > 0 if ρ > 0

‖φ (x)‖22 = φ2
η if ‖x‖2 = r

In the limit η → 0, identifying ψ[j] = ψ
[j]
0+ , φ[j]

↓ = φ
[j]
↓0+ , φ[j] = φ

[j]
0+ ; ψ = ψ0+ , φ↓ = φ↓0+ ,

φ = φ0+ ; ψ = ψ[E], φ↓ = φ
[E]
↓ , φ = φ[E]; where, recursively ∀j ∈ ZE :

ψ[j]2 , β[j]2 +}[j]

̃∈A[j]

ω[̃:j]2

 L
[̃:j]2

ψ[̃] ψ
[̃]2 if τ [̃:j] Lipschitz

B
[̃:j]2

ψ[̃]

ψ[̃]2

φ
[̃]2
↓

otherwise

φ
[j]2
↓ , β[j]2 + }

̃∈A[j]

ω[̃:j]2

{
L

[̃:j]2

ψ[̃] φ
[̃]2
↓ if τ [̃:j] Lipschitz

B
[̃:j]2

ψ[̃] otherwise

φ[j]2 , β[j]2 + }
̃∈A[j]

ω[̃:j]2

 L
[̃:j]2

φ[̃] φ
[̃]2 if τ [̃:j] Lipschitz

B
[̃:j]2

φ[̃]

φ[̃]2

φ
[̃]2
↓

otherwise

(32)

(here we have used that limη→0
s[̃:j]η (z)

s
[̃:j]
η (1)

= z by observation of the definition), which justifies our

simplification in the main body of the paper.

C.3 Proof of Corollaries 2 and 3 - Continuity Bounds

Our approach here mimics the previous two proofs. For the input node j = 0, for a given Θ ∈W:

sup
x∈X

∥∥∥〈Ψ[0](Θ),φ[0](x)]
g[0]

∥∥∥2

2

‖φ[0](x)‖2
2

= sup
x∈X

‖x‖22
‖x‖22

= C
[0]2
Θ,η , 1 for given Θ ∈W

sup
x∈X

∥∥∥〈Ψ[0](Θ),φ[0](x)]
g[0]

∥∥∥2

2

‖φ[0](x)‖2
2

= sup
x∈X

‖x‖22
‖x‖22

= C
[0]2
W,η , 1 ∀Θ ∈W

sup
Θ∈W

∥∥∥〈Ψ[0](Θ),φ[0](x)]
g[0]

∥∥∥2

2

‖Ψ[0](Θ)‖2
F

=
‖x‖22
r2 ≤ C [0]2

x,η , 1 for given x ∈ X

sup
Θ∈W

∥∥∥〈Ψ[0](Θ),φ[0](x)]
g[0]

∥∥∥2

2

‖Ψ[0](Θ)‖2
F

=
‖x‖22
r2 ≤ C [0]2

X,η , 1 ∀x ∈ X
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As in the previous section consider a single node j ∈ L[ ̇ ] in layer ̇ . Assume that, for all nodes in the
previous layer ̃ ∈ L[ ̇−1]:

sup
x∈X

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖φ[̃](x)‖2
2

≤ C [̃]2
Θ,η for given Θ ∈W

sup
x∈X

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖φ[̃](x)‖2
2

≤ C [̃]2
W,η ∀Θ ∈W

 C
[̃]2
Θ,η ≤ C

[̃]2
W,η

sup
Θ∈W

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖Ψ[̃](Θ)‖2
F

≤ C [̃]2
x,η for given x ∈ X

sup
Θ∈W

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖Ψ[̃](Θ)‖2
F

≤ C [̃]2
X,η ∀x ∈ X

 C
[̃]2
x,η ≤ C [̃]2

X,η

Edge case: for a Lipschitz neural activation τ [̃:j], for incoming edges (21a), for fixed Θ ∈W:

sup
x∈X

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖φ[̃:j](x)‖2
2

= sup
x∈X

‖τ [̃:j](x[̃])‖2
2

‖φ[̃:j](x)‖2
2

= sup
x∈X

‖τ [̃:j](x[̃])‖2
2

L
[̃:j]2

φ
[̃]
η

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

≤ sup
x∈X

L
[̃:j]2

C
[̃]
Θ,η

φ
[̃]
η

‖x[̃]‖2
2

L
[̃:j]2

φ
[̃]
η

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

≤
L

[̃:j]2

C
[̃]
Θ,η

φ
[̃]
η

L
[̃:j]2

φ
[̃]
η

sup
x∈X

‖φ[̃](x)‖2
2

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

(sup
x∈X

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖φ[̃](x)‖2
2

)

≤
L

[̃:j]2

C
[̃]
Θ,η

φ
[̃]
η

L
[̃:j]2

φ
[̃]
η

sup
x∈X

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖φ[̃](x)‖2
2

and similarly for fixed x ∈ X:

sup
Θ∈W

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖Ψ[̃:j](Θ)‖2
F

= sup
Θ∈W

‖τ [̃:j](x[̃])‖2
2

‖Ψ[̃:j](Θ)‖2
F

= sup
Θ∈W

‖τ [̃:j](x[̃])‖2
2

L
[̃:j]2

ψ
[̃]
η

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

≤ sup
Θ∈W

L
[̃:j]2

C
[̃]
x,ηψ

[̃]
η

L
[̃:j]2

ψ
[̃]
η

‖x[̃]‖2
2

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

≤
L

[̃:j]2

C
[̃]
x,ηψ

[̃]
η

L
[̃:j]2

ψ
[̃]
η

 sup
Θ∈W

‖Ψ[̃](Θ)‖2
F

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

( sup
Θ∈W

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖Ψ[̃](Θ)‖2
F

)

≤
L

[̃:j]2

C
[̃]
x,ηψ

[̃]
η

L
[̃:j]2

ψ
[̃]
η

sup
Θ∈W

∥∥∥〈Ψ[̃](Θ),φ[̃](x)]
g[̃]

∥∥∥2

2

‖Ψ[̃](Θ)‖2
F
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Alternatively, for bounded (non-Lipschitz) neural activations:

sup
x∈X

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖φ[̃:j](x)‖2
2

= sup
x∈X

‖τ [̃:j](x[̃])‖2
2

B[̃:j]2

φ
[̃]2
↓η

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

= sup
x∈X

1

B[̃:j]2 ‖τ [̃:j](x[̃])‖2
2

1

φ
[̃]2
↓η

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
s
[̃:j]
η (1)

≤ sup
x∈X

s[̃:j]η (1)

1

φ
[̃]2
↓η

s
[̃:j]
η

(
‖φ[̃](x)‖2

2

)
=(∗) s[̃:j]η (1)

1

φ
[̃]2
↓η

s
[̃:j]
η

(
φ

[̃]2
↓η

)

which is finite; and:

sup
Θ∈W

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖Ψ[̃:j](Θ)‖2
F

= sup
Θ∈W

‖τ [̃:j](x[̃])‖2
2

B[̃:j]2

φ
[̃]2
↓η

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

= sup
Θ∈W

1

B[̃:j]2 ‖τ [̃:j](x[̃])‖2
2

1

φ
[̃]2
↓η

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)
s
[̃:j]
η (1)

≤ sup
Θ∈W

s[̃:j]η (1)

1

φ
[̃]2
↓η

s
[̃:j]
η

(
‖Ψ[̃](Θ)‖2

F

)

which is unbounded in general. It follows that:

sup
x∈X

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖φ[̃:j](x)‖2
2

≤ C [̃:j]2
Θ,η ,


L

[̃:j]2

C
[̃]
Θ,η

φ
[̃]
η

L
[̃:j]2

φ
[̃]
η

C
[̃]2
Θ,η if τ [̃:j] is Lipschitz

s[̃:j]η (1)

1

φ
[̃]2
↓η

s
[̃:j]
η

(
φ

[̃]2
↓η

) otherwise
for given Θ ∈W

sup
x∈X

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖φ[̃:j](x)‖2
2

≤ C [̃:j]2
W,η ,


L

[̃:j]2

C
[̃]
W,ηφ

[̃]
η

L
[̃:j]2

φ
[̃]
η

C
[̃]2
W,η if τ [̃:j] is Lipschitz

s[̃:j]η (1)

1

φ
[̃]2
↓η

s
[̃:j]
η

(
φ

[̃]2
↓η

) otherwise
∀Θ ∈W



C
[̃:j]
Θ,η ≤ C

[̃]
W,η

sup
Θ∈W

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖Ψ[̃:j](Θ)‖2
F

≤ C [̃:j]2
x,η ,


L

[̃:j]2

C
[̃]
x,ηψ

[̃]
η

L
[̃:j]2

ψ
[̃]
η

C
[̃]2
x,η if τ [̃:j] is Lipschitz

∞ otherwise

for given x ∈ X

sup
Θ∈W

∥∥∥〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

‖Ψ[̃:j](Θ)‖2
F

≤ C [̃:j]2
X,η ,


L

[̃:j]2

C
[̃]
X,ηψ

[̃]
η

L
[̃:j]2

ψ
[̃]
η

C
[̃]2
X,η if τ [̃:j] is Lipschitz

∞ otherwise

∀x ∈ X


C

[̃:j]
x,η ≤ C [̃:j]

X,η
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Edge case: using (21b), for columnar concatenation nodes©[j] =
⊕

(so�[j] = diag, �[j] =
⊕

):

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

‖x[j]‖2
2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊕

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊕

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]Tx[̃:j]‖2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

= sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]

∥∥∥W[̃:j]T〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2
C

[̃:j]2
Θ,η

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
Θ,η

}}
= max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
Θ,η

}}
and:

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ sup
Θ∈W

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖Ψ[̃:j](Θ)‖2

F
C[̃:j]2
x,η

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

≤
‖b[j]‖2

2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
x,η

}}
≤ max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
x,η

}}
For additive nodes©[j] =

∑
(so�[j] =

⊕
, �[j] =

⊕
):

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

‖x[j]‖2
2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
∑

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
∑

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]Tx[̃:j]‖2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

= sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]

∥∥∥W[̃:j]T〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2
C

[̃:j]2
Θ,η

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

β[j]2+
∑

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
Θ,η

}}
= max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
Θ,η

}}

27



and:

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ sup
Θ∈W

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖Ψ[̃:j](Θ)‖2

F
C[̃:j]2
x,η

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

≤
‖b[j]‖2

2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

‖b[j]‖2
2
+
∑

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
x,η

}}
≤ max

{
γ[j], max

̃∈A[j]

{
C

[̃:j]2
x,η

}}

For Kronecker-product nodes©[j] =
⊗

(so�[j] =
⊗

, �[j] =
⊗

):

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

‖x[j]‖2
2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊗

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊗

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]Tx[̃:j]‖2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

= sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]

∥∥∥W[̃:j]T〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2
C

[̃:j]2
Θ,η

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}

= max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}

and:

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ sup
Θ∈W

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖Ψ[̃:j](Θ)‖2

F
C[̃:j]2
x,η

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

≤
‖b[j]‖2

2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}

≤ max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}

For Hadamard product nodes©[j] =
⊙

(so�[j] =
⊗l, �[j] =

⊗
), using that the norm of the
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Hadamard product of unit vectors is ≤ 1:

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

‖x[j]‖2
2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊙

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥∥∥∥b[j]+
⊙

̃∈A[j]

W[̃:j]Tx[̃:j]

∥∥∥∥∥∥
2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]Tx[̃:j]‖2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

= sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]

∥∥∥W[̃:j]T〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2
C

[̃:j]2
Θ,η

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}

= max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}

and:

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ sup
Θ∈W

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖Ψ[̃:j](Θ)‖2

F
C[̃:j]2
x,η

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

≤
‖b[j]‖2

2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}

≤ max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}

For multi-inner-product nodes©[j] = 〈〈·〉〉 (so�[j] =
⊗l

(·) 1, �[j] =
⊗

), using that the multi-
inner-product of (2-norm) unit vectors is at most 1:

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

‖x[j]‖2
2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥b[j]+〈〈W[̃:j]Tx[̃:j]〉〉
̃∈A[j]

∥∥∥2

2

‖φ[j](x)‖2
2

= sup
x∈X

∥∥∥b[j]+〈〈W[̃:j]Tx[̃:j]〉〉
̃∈A[j]

∥∥∥2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]Tx[̃:j]‖2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

= sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]

∥∥∥W[̃:j]T〈Ψ[̃:j](Θ),φ[̃:j](x)]
g[̃:j]

∥∥∥2

2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2
C

[̃:j]2
Θ,η

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

≤ sup
x∈X

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

β[j]2+
∏

̃∈A[j]

ω[̃:j]2‖φ[̃:j](x)‖2
2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}

= max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
Θ,η

}
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and:

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ sup
Θ∈W

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖Ψ[̃:j](Θ)‖2

F
C[̃:j]2
x,η

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

≤
‖b[j]‖2

2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

‖b[j]‖2
2
+
∏

̃∈A[j]
‖W[̃:j]‖2

2
‖φ[̃:j](x)‖2

2

max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}

≤ max

{
γ[j],

∏
̃∈A[j]

C
[̃:j]2
x,η

}
Thus in general, for all nodes considered here:

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

≤ C [j]2
Θ,η , max

{
γ[j],�[j]

̃∈A[j]

C
[̃:j]2
Θ,η

}
for given Θ ∈W

sup
x∈X

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖φ[j](x)‖2
2

≤ C [j]2
W,η , max

{
γ[j],�[j]

̃∈A[j]

C
[̃:j]2
W,η

}
∀Θ ∈W

 C
[j]
Θ,η ≤ C

[j]
W,η

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ C [j]2
x,η , max

{
γ[j],�[j]

̃∈A[j]

C
[̃:j]2
x,η

}
for given x ∈ X

sup
Θ∈W

∥∥∥〈Ψ[j](Θ),φ[j](x)]
g[j]

∥∥∥2

2

‖Ψ[j](Θ)‖2
F

≤ C [j]2
X,η , max

{
γ[j],�[j]

̃∈A[j]

C
[̃:j]2
X,η

}
∀x ∈ X

 C
[j]
x,η ≤ C [j]

X,η

where we have defined:

�[j] =

{
max if©[j] ∈ {

⊕
,
∑
}∏

if©[j] ∈ {
⊗
, 〈〈·〉〉}

Consequently, defining CΘ,η = C
[E]
Θ,η , CW,η = C

[E]
W,η , Cx,η = C

[E]
x,η , and CX,η = C

[E]
X,η:

sup
x∈X

‖〈Ψ(Θ),φ(x)]g‖22
‖φ(x)‖22

≤ C2
Θ,η for given Θ ∈W

sup
x∈X

‖〈Ψ(Θ),φ(x)]g‖22
‖φ(x)‖22

≤ C2
W,η ∀Θ ∈W

 CΘ,η ≤ CW,η

sup
Θ∈W

‖〈Ψ(Θ),φ(x)]g‖22
‖Ψ(Θ)‖2F

≤ C2
x,η for given x ∈ X

sup
Θ∈W

‖〈Ψ(Θ),φ(x)]g‖22
‖Ψ(Θ)‖2F

≤ C2
X,η ∀x ∈ X

 Cx,η ≤ CX,η

where CW,η is finite in general and CX,η is finite if all neural activations are Lipschitz.

The limit case η → 0+ is of particular interest here. Defining CΘ = limη→0+ CΘ,η, C [j]
Θ =

limη→0+ C
[j]
Θ,η , CW = limη→0+ CW,η , C [j]

W = limη→0+ C
[j]
W,η , we observe that, using the form of the

base case and recursion:

CΘ = C
[j]
Θ = CW = C

[j]
W = 1 if all neural activations are Lipschitz or bounded

Cx = C
[j]
x = CX = C

[j]
X = 1 if all neural activations are Lipschitz

∀j ∈ ZE

This result, combined with Theorem 1, suffices to prove Corollaries 2 and 3.

C.4 Bounds for Data Drawn from a Distribution

A common variation of our assumption x ∈ Xρ,r - that is, the assumption that x is hard-limited in
terms of its 2-norm - is that x ∼ X is drawn from some data distribution X . With regard to our
analysis, for arbitrary data distributions it is not possible to extend our analysis; however if it can be
proven that x ∈ Xρ,r with-high-probability ≥ 1− ε for suitable ρ, r then our results will follow whp
≥ 1− ε. To take a simple example, suppose we draw data from an n-dimensional normal distribution:

x ∼ X = N
(
0n, σ

2In
)
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𝑾𝑾[1:2] 𝑰𝑰

ReLU id

𝑾𝑾[𝑑𝑑−1:𝑑𝑑] 1 − 𝑠𝑠2𝑰𝑰

𝑰𝑰

�

𝑾𝑾[0:1] 𝑰𝑰

ReLU id

id id

ReLU

𝜙𝜙in

𝜙𝜙1𝐿𝐿 𝜙𝜙1𝑅𝑅

𝑾𝑾[2:3] 𝑰𝑰
ReLU id

𝜙𝜙2𝐿𝐿 𝜙𝜙2𝑅𝑅

𝜙𝜙3𝐿𝐿 𝜙𝜙3𝑅𝑅

𝜙𝜙𝑑𝑑−1𝐿𝐿 𝜙𝜙𝑑𝑑−1𝑅𝑅

𝜙𝜙𝑑𝑑

𝜙𝜙out

Figure 7: Calculation of φout in a residual network block.

Trivially, for x ∼ X :

Pr [‖x‖2 ≤ ρ] ≤ 1

2n/2σΓ(n2 +1)
ρn

Pr [‖x‖2 ≥ r] ≤ 2e−
r2

2nσ2

Thus we have x ∈ Xρ,r with high probability ≥ 1− ε, where:

r =

√
2n ln

(
2

(1−υ)ε

)
σ

ρ =
√

2
(
Γ
(
n
2 + 1

)
υε
) 1
n σ

for some υ ∈ [0, 1), In the purely Lipschitz case we can simplify this by setting υ = 0 (so ρ = 0):

r =
√

2n ln
(

2
ε

)
σ (33)

and more generally, if we allow non-Lipschitz neural activations, whp ≥ 1− ε:

r
ρ =

√
n ln( 2

(1−υ)ε )

(Γ(n2 +1)υε)
1
n

(34)

D Non-Trivial Blocks

In this section we consider norm- and continuity- bounds for particular common neural network
archictectural blocks. Note that in all cases the continuity bounds CΘ, CW, Cx, CX are well-behaved,
so our task is to analyse the norm-bound φ. In this regard we refer the reader to (21) in Figure 6.
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Norm

𝑰𝑰 −
1
𝐻𝐻
𝟏𝟏𝟏𝟏𝑻𝑻

id

𝐻𝐻𝑰𝑰𝑻𝑻

𝜙𝜙mid

𝜙𝜙out

𝜙𝜙in

Figure 8: Calculation of φout in a residual network block.

D.1 Residual Block Bounds

In this section we consider the calculation of φ for a residual block. Figure 7 shows the notation we
use here. All neural activations in this block are 1-Lipschitz so trivially, using our bounds:

ψR
d−1 = ψR

d−2 = ψR
d−3 = . . . = ψR

2 = ψR
1 = ψin

φR
d−1↓ = φR

d−2↓ = φR
d−3↓ = . . . = φR

2↓ = φR
1↓ = φin↓

φR
d−1 = φR

d−2 = φR
d−3 = . . . = φR

2 = φR
1 = φin

and:
ψL
d−1 = ω[d−2:d−1]ψL

d−2

= ω[d−2:d−1]ω[d−3:d−2]ψL
d−3 = . . .

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]ψL
1

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]ω[0:1]ψin

φL
d−1↓ = ω[d−2:d−1]φL

d−2↓
= ω[d−2:d−1]ω[d−3:d−2]φL

d−3↓ = . . .

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]φL
1↓

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]ω[0:1]φin↓
φL
d−1 = ω[d−2:d−1]φL

d−2

= ω[d−2:d−1]ω[d−3:d−2]φL
d−3 = . . .

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]φL
1

= ω[d−2:d−1]ω[d−3:d−2] . . . ω[1:2]ω[0:1]φin

and subsequently:

ψ2
out = ψ2

d

= ψL2
d−1 +

(
1− s2

)
ψR2
d−1

=
(
ω[d−1:d]2 . . . ω[1:2]2ω[0:1]2 + 1− s2

)
ψ2

in

φ2
out↓ = φ2

d↓
= φL2

d−1↓ +
(
1− s2

)
φR2
d−1↓

=
(
ω[d−1:d]2 . . . ω[1:2]2ω[0:1]2 + 1− s2

)
φ2

in↓
φ2

out = φ2
d

= φL2
d−1 +

(
1− s2

)
φR2
d−1

=
(
ω[d−1:d]2 . . . ω[1:2]2ω[0:1]2 + 1− s2

)
φ2

in

(35)

where we note that, for ρ > 0:
φout

φout↓
= φin

φin↓

D.2 LayerNorm Block Bounds

As shown in Figure 8, the LayerNorm block is distinct insofar as it is non-Lipschitz. First we note that
that ‖

√
HI‖2 =

√
H , ‖I − 1

H 11T‖2 = 1, so we may set ω[in:mid] = 1, ω[mid:out] =
√
H . Noting
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id id

Σ

𝑰𝑰 𝑰𝑰
id id

�

id

𝑰𝑰 𝑰𝑰
id id

id

⊕

𝒙𝒙𝑄𝑄
𝒙𝒙1,𝐾𝐾 𝒙𝒙2,𝐾𝐾

id id

⨂

𝑰𝑰

𝑰𝑰
id

𝑰𝑰
id

𝑰𝑰
id

𝑰𝑰
id

𝒙𝒙1,𝑉𝑉 𝒙𝒙2,𝑉𝑉

id id

1
𝑑𝑑𝐾𝐾

 𝑰𝑰

𝑰𝑰 𝑰𝑰

𝑰𝑰

idid
𝑰𝑰 𝑰𝑰

softmax1
𝑰𝑰

softmax2
𝑰𝑰

𝑰𝑰 𝑰𝑰

�

1
𝑑𝑑𝐾𝐾

 𝑰𝑰

⨂

Figure 9: Single-query attention block.

that the Norm activation is non-Lipschitz and bounded by B[Norm] = 1, we see that:

ψout = ω[mid:out] ψmid

φ↓mid
=
√
H ψmid

φmid↓

φout↓ = ω[mid:out] =
√
H

φout = ω[mid:out] φmid

φ↓mid
=
√
H φmid

φmid↓

and trivially ψmid = ω[in:mid]ψin = ψin, φmid↓ = ω[in:mid]φin↓ = φin↓ and φmid = ω[in:mid]φin =
φin. Hence, overall:

ψout =
√
H ψin

φin↓

φout↓ =
√
H

φout =
√
H φin

φin↓

(36)

where we note that, for ρ > 0:
φout

φout↓
= φin

φin↓
(37)

D.3 Single-query Attention Block Bounds

The standard bounds as presented in (21) are needlessly pessimistic for softmax nodes in attention
blocks (Figure 2) as they are derived without taking into account the operation of the softmax in layer
3, which is a full softmax that has been split into components here - so while we can bound the set
of all QK outputs, the standard bounds only bound the individual components without taking into
account the interaction between then. The following more nuanced analysis gives a tighter bound.

In the following analysis we make the simplifying assumption ψη,̃ı,V = ψη,V , φη,̃ı,V ↓ = φη,V ↓,
φη,̃ı,V = φη,V ; ψη,̃ı,K = ψη,K , φη,̃ı,K↓ = φη,K↓, φη,̃ı,K = φη,K . Given this:

Layer 1: following the standard approach:

ψ
[1]
η,̃ı,V = ψη,V

φ
[1]
η,̃ı,V ↓ = φη,V ↓

φ
[1]
η,̃ı,V = φη,V
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ψ
[1]
η,̃ı,QK = ψη,Qψη,K

φ
[1]
η,̃ı,QK↓ = φη,Q↓φη,K↓

φ
[1]
η,̃ı,QK = φη,Qφη,K

Layer 2: following the standard approach:

ψ
[2]
η,̃ı,V = ψ

[1]
η,̃ı,V = ψη,V

φ
[2]
η,̃ı,V ↓ = φ

[1]
η,̃ı,V ↓ = φη,V ↓

φ
[2]
η,̃ı,V = φ

[1]
η,̃ı,V = φη,V

ψ
[2]2
η,QK = 1

dK

∑
ı̃ ψ

[1]2
η,̃ı,QK = ψ2

η,Qψ
2
η,K

φ
[2]2
η,QK↓ = 1

dK

∑
ı̃ φ

[1]2
η,̃ı,QK↓ = φ2

η,Q↓φ
2
η,K↓

φ
[2]2
η,QK = 1

dK

∑
ı̃ φ

[1]2
η,̃ı,QK = φ2

η,Qφ
2
η,K

Layer 3: we need to take some care with this layer. In particular, noting that the output of the layer is
effectively the softmax split componentwise, we can constrain the sum of φ[3]

η,̃ı,QK as:

ψ
[3]
η,̃ı,V = ψ

[2]
η,̃ı,V = ψη,V

φ
[3]
η,̃ı,V ↓ = φ

[2]
η,̃ı,V ↓ = φη,V ↓

φ
[3]
η,̃ı,V = φ

[2]
η,̃ı,V = φη,V

ψ
[3]2
η,̃ı,QK = λ2

s[2:3]
η

(
ψ

[2]2
η,QK

)
s
[2:3]
η (1)

= λ2 s
[2:3]
η (ψ2

η,Qψ
2
η,K)

s
[2:3]
η (1)

φ
[3]2
η,̃ı,QK↓ = c2ı̃λ

2
s[2:3]
η

(
φ

[2]2
η,QK↓

)
s
[2:3]
η (1)

= c2ı̃λ
2 s

[2:3]
η (φ2

η,Q↓φ
2
η,K↓)

s
[2:3]
η (1)

φ
[3]2
η,̃ı,QK = c2ı̃λ

2
s[2:3]
η

(
φ

[2]2
η,QK

)
s
[2:3]
η (1)

= c2ı̃λ
2 s

[2:3]
η (φ2

η,Qφ
2
η,K)

s
[2:3]
η (1)

for some c1, c2, . . . ≥ 0 :
∑
ı̃ c

2
ı̃ = 1 (in the standard analysis we would let c1 = c2 = . . . = 1).

Layer 4: following the standard approach:

ψ
[4]2
η,̃ı = ψ

[3]2
η,̃ı,V ψ

[3]2
η,̃ı,QK = λ2ψ2

η,V

s[2:3]
η (ψ2

η,Qψ
2
η,K)

s
[2:3]
η (1)

φ
[4]2
η,̃ı↓ = φ

[3]2
η,̃ı,V ↓φ

[3]2
η,̃ı,QK↓ = λ2c2ı̃φ

2
η,V ↓

s[2:3]
η (φ2

η,Q↓φ
2
η,K↓)

s
[2:3]
η (1)

φ
[4]2
η,̃ı = φ

[3]2
η,̃ı,V φ

[3]2
η,̃ı,QK = λ2c2ı̃φ

2
η,V

s[2:3]
η (φ2

η,Qφ
2
η,K)

s
[2:3]
η (1)

Layer 5: recalling that c1, c2, . . . ≥ 0 satisfy
∑
ı̃ c

2
ı̃ = 1:

ψ
[5]2
η =

∑
ı̃ ψ

[4]2
η,̃ı = dKλ

2ψ2
η,V

s[2:3]
η (ψ2

η,Qψ
2
η,K)

s
[2:3]
η (1)

φ
[5]2
η,↓ =

∑
ı̃ φ

[4]2
η,̃ı↓ = λ2φ2

η,V ↓
s[2:3]
η (φ2

η,Q↓φ
2
η,K↓)

s
[2:3]
η (1)

φ
[5]2
η =

∑
ı̃ φ

[4]2
η,̃ı = λ2φ2

η,V

s[2:3]
η (φ2

η,Qφ
2
η,K)

s
[2:3]
η (1)

Taking the limit η → 0+ we summarise the overall operation of this block as:

ψout =
√
dKλψin,V ψin,Qψin,K

φout↓ = λφin,V ↓φin,Q↓φin,K↓
φout = λφin,V φin,Qφin,K

where we note that, for ρ > 0:

φout

φout↓
=

φin,V

φin,V ↓

φin,Q

φin,Q↓

φin,K

φin,K↓
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1111 2222
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𝑾𝑾𝑄𝑄 𝒙𝒙1,𝑄𝑄𝒙𝒙1,𝑉𝑉

id
𝑾𝑾𝐾𝐾 𝒙𝒙1,𝐾𝐾𝒙𝒙1,𝑄𝑄𝒙𝒙1,𝑉𝑉

id
𝑾𝑾𝐾𝐾

1 2
1 2

⊕

Figure 10: Single-Head attention block.

D.4 Single-Head and Multi-Head Attention Block Bounds

The standard single-head attention block is constructed from from single-query attention blocks as
shown in figure 10. Multi-head attention is similar, with an additional h concatenations. Making the
additional assumption, over section D.3, that ψη,̃ı,V = ψη,V , φη,̃ı,V ↓ = φη,V ↓, φη,̃ı,V = φη,V , it is
not difficult to see that:

ψout =
√
hdKdQλψin,V ψin,Qψin,K

φout↓ =
√
hdQλφin,V ↓φin,Q↓φin,K↓

φout =
√
hdQλφin,V φin,Qφin,K

where dQ is the number of queries and h is the number of heads. We note that, for ρ > 0:

φout

φout↓
=

φin,V

φin,V ↓

φin,Q

φin,Q↓

φin,K

φin,K↓
(38)

E Bounds for Standard Network Toplogies

In this section we apply our results, and in particular our norm-bound ‖φ(x)‖2 ≤ φ ∀x ∈ Xρ,r
which is central in our Rademacher complexity bound, to standard network topologies.

E.1 Simple Unbiased Lipschitz Layerwise Network and ResNet

Consider a simple network with 1 unbiased node with L-Lipschitz activations per layer, so D = E,
j = ̇ ∈ ZD, and A[ ̇ ] = { ̇ − 1}. In this case, using (21), ∀ ̇ ∈ ZD:

φ[ ̇ ] = Lω[ ̇−1: ̇ ]φ[ ̇−1]

and hence, using that φ[0] = r:

φ = rLD
∏
̇∈ZD ω

[ ̇−1: ̇ ]

and we find that the norm-bound φ (and hence our Rademacher complexity bound) is proportional to
the product of the weight-matrix norms, the maximum input norm r, and the exponentiated Lipschitz
constant. In the distributional case, assuming x ∼ N (0n, σ

2In) and using (33), whp ≥ 1− ε:

φ = σLD
√

2n ln
(

2
ε

)∏
̇∈ZD ω

[ ̇−1: ̇ ]

We can also bound the residual network (ResNet) norm with this by including residual blocks as
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nodes in the network. For example, if node ̇ is a residual block then the effective weight-norm bound
ω[ ̇−1: ̇ ] becomes, for that non-trivial block, using (35):

ω[ ̇−1: ̇ ] =
(
ω[ ̇−1: ̇ ]d2 . . . ω[ ̇−1: ̇ ]22ω[ ̇−1: ̇ ]12 + 1− s2

)
where ω[ ̇−1: ̇ ]k is the norm-bound for the kth weight matrix W[ ̇−1: ̇ ]k in the residual block ̇ .

E.2 Simple Unbiased non-Lipschitz Layerwise Network and LayerNorm

In this section we consider the same network as in the previous section E.1, excepting that we assume
at least 1 non-Lipschitz, bounded neural activation. In this case, using (21), ∀ ̇ ∈ ZD:

φ
[ ̇ ]
↓ = ω[ ̇−1: ̇ ]

{
L

[ ̇−1: ̇ ]

φ[ ̇−1] φ
[ ̇−1]
↓ if τ [ ̇−1: ̇ ] is Lipschitz

B
[ ̇−1: ̇ ]

φ[̃] otherwise

φ[ ̇ ] = ω[ ̇−1: ̇ ]

 L
[ ̇−1: ̇ ]

φ[ ̇−1] φ
[ ̇−1] if τ [ ̇−1: ̇ ] is Lipschitz

B
[ ̇−1: ̇ ]

φ[ ̇−1]

φ[ ̇−1]

φ
[ ̇−1]
↓

otherwise

(39)

where φ[0]
↓ = ρ and φ[0] = r. We immediately observe that:

φ[D]

φ
[D]
↓

= φ[D−1]

φ
[D−1]
↓

= . . . = φ[0]

φ
[0]
↓

= r
ρ ∀ ̇ ∈ ZD

and hence (39) simplifies to:

φ
[ ̇ ]
↓ = ω[ ̇−1: ̇ ]

{
L

[ ̇−1: ̇ ]

φ[ ̇−1] φ
[ ̇−1]
↓ if τ [ ̇−1: ̇ ] is Lipschitz

B[ ̇−1: ̇ ] otherwise

φ[ ̇ ] = ω[ ̇−1: ̇ ]

{
L

[ ̇−1: ̇ ]

φ[ ̇−1] φ
[ ̇−1] if τ [ ̇−1: ̇ ] is Lipschitz

B[ ̇−1: ̇ ] r
ρ otherwise

(40)

If we further assume that node ̇ = D↓ is the non-Lipschitz node closest to the output node, bounded
by B[D↓−1:D↓], the norm bound becomes:

φ = r
ρB

[D↓−1:D↓]LD−D↓
∏D
̇=D↓

ω[ ̇−1: ̇ ]

The first thing to note with this bound is that it is no longer depth exponential, but rather depth-to-
non-Lipschitz (D −D↓) exponential. This may appear surprising at first, but it is perhaps not so
surprising when we note that the Lipschitz norm-bound scales with the max weight-matrix norm-
bound, while a bounded neural-activation displays attributes that, in a crude sense, flatten out the
magnitude of their input from previous layers. The obvious extreme case is a network combining
ReLU and LayerNorm nodes, in which case we can scale weight matrices preceeding the LayerNorm
arbitrarily without affecting the operation of the network in any way. This is directly reflected in the
above expression, where the norm-bound φ is independent of the magnitude (matrix norm) of the
weight-matrices in layers 1, 2, . . . , D↓ − 1 before the LayerNorm.

The ratio r
ρ in the bound is perhaps less intuitive. In particular, while we would expect that the norm

bound of ‖φ(x)‖2 should scale (increase) as ‖x‖2 ≤ r increases (which the norm-bound does), it is
less obvious that the bound should increase as the lower bound ‖x‖2 ≥ ρ decreases. To understand
this behaviour, recall that we only characterise neural activation τ [D↓−1:D↓] by its upper bound
B[D↓−1:D↓] (1 for simplicity), so we must make a worst-case assumption that ‖x[D↓]‖2 = 1 for all
x ∈ Xρ,r. If ‖x‖2 = ρ then, in our worst-case analysis, the node must, in effect, amplify the input so
that ‖x[D↓]‖2 = 1; the smaller ρ, the larger the amplification required.9 This is why we take care not
to over-claim in the case ρ = r = 1 in the main body of the paper.

Another apparent difficulty with this norm-bound is that one may argue that the lower bound ‖x‖2 ≥ ρ
is artificial, and that real data may not satisfy this bound. To cover this, we may use the distributional

9In the limit ρ→ 0+ the amplication must approach∞, which is why we insist ρ > 0 in this case.
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case. For example, if node D↓ is a LayerNorm node and assuming x ∼ N (0n, σ
2I) then, using (36)

and (34), with high probability ≥ 1− ε:

φ =

√
nH ln( 4

ε )

(Γ(n2 +1) ε2 )
1
n
LD−D↓

∏D
̇=D↓

ω[ ̇−1: ̇ ]

We observe that this bound is scale-independent, both in terms of the “size” σ of the data distribution
and weight-norm bounds for layers prior to the final non-Lipschitz node D↓. The proportionality to√
H arises from the choice of LayerNorm, and the exact form of the new scaling arises from our

choice of distribution.10

E.3 Transformers

Finally we may consider the Transformer. For concreteness we will assume the structure described in
(Vaswani et al., 2017, Figure 1); and for tractability we will ignore the input/output embedding and
positional encoding, and instead assume inputs and outputs (post-embedding/encoding) xI ,xO ∈
Xρ,r = {x ∈ RdK : ρ ≤ ‖x‖2 ≤ r}.
Encoder: The first layer in the encoder stack consists of a multi-head attention block inside a residual
block, followed by a LayerNorm block. Using (38), the output norm-bound of the multihead attention
block will satisfy:

φmha

φmha↓
=
(
ρ
r

)3
Subsequently, the output norm-bound of the residual block will satisfy:

φres

φres↓
= φin+φmha

φin↓+φmha↓
= φmha

φmha↓

φin
φmha

+1

φin↓
φmha↓

+1
=
(
ρ
r

)3
and we see from (37) that the output of the LayerNorm will satisfy:

φm

φm↓
=
(
ρ
r

)3
This is followed by a feed-forward network inside a residual block, again followed by a LayerNorm
block. The analysis of this is similar to the above, excepting that, because the block inside the residual
block is additive, there is no need to cube the ratio. The output of the LayerNorm in this layer will
therefore satisfy:

φl

φl↓
=
(
ρ
r

)3
At total of11 M = 6 of these layers occur sequentially, where for each the ratio is cubed due to the
presence of the multi-head attention block. Subsequently, for the output of the encoder, we find:

φenc

φenc↓
=
(
ρ
r

)3M
Decoder: The decoder is similar, with some important caveats. Perhaps most importantly, in the
first layer the output of the second attention block (and therefore the output of the first layer in the
decoder) will satisfy:

φMHA

φMHA↓
=
(
ρ
r

)3+2.3M ≤
(
ρ
r

)3M+1

This is followed by (M − 1) = 5 additional layers, and so it may be seen that the output of the
decoder, prior to the final linear and softmax, will satisfy:

φdec

φdec↓
≤
(
ρ
r

)3M+132M−2

=
(
ρ
r

)33M−1

and, using (36):

φdec ≤
(
ρ
r

)33M−1 √
dmodel

Subsequently, assuming the weights in the linear output layer of the Transformer satisfy ‖W‖2 ≤ ω
and assuming λ = 1 in the final softmax we find that the overall norm-bound for the Transformer is:

φ ≤
√
dmodelω

(
ρ
r

)33M−1

10It may be informative to investigate the impact of the distribution x ∼ X on this bound in future work.
11We use M here rather than N due to the notational clash between (Vaswani et al., 2017) and our use of N .
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F Proof of Theorem 4 - Rademacher Complexity

We are concerned with calculating the Rademacher complexity of:

RN (F) = EνEε
[

sup
Θ∈W

1
N

∑
i,k εkh (f (xk))

]
where h is L-Lipschitz. We have from (Maurer, 2016) that:

RN (F) ≤
∑
i

√
2LEνEε

[
sup
Θ∈W

1
N

∑
k εkfi (xk)

]
Thus we reduce the dimensionality of the problem to 1-dimension. Proceeding with the standard
argument:

EνEε
[

sup
Θ∈W

1
N

∑
k εkfi (xk)

]
= 1

NEνEε

[√
sup
Θ∈W

(
∑
k εkfi (xk))

2

]

≤Jensen′s−inequality 1
NEν

[√
Eε sup

Θ∈W
(
∑
k εkfi (xk))

2

]
= 1

NEν
[√

Eε sup
Θ∈W

(∑
k,l εkεlfi (xk) fi (xl)

)]
=Eεεkεl=δk,l 1

NEν

[√∑
k sup

Θ∈W
f2
i (xk)

]

= 1
NEν

[√∑
k sup

Θ∈W
〈Ψ:i (Θ) ,φ (xk)]

2
g

]

= 1
NEν

[√∑
k sup

Θ∈W

( 〈Ψ:i(Θ),φ(xk)]g
‖φ(xk)‖2

)2

‖φ (xk)‖22

]
and so:

RN (F) ≤
√

2L
N Eν

[∑
i

√∑
k sup

Θ∈W

( 〈Ψ:i(Θ),φ(xk)]g
‖φ(xk)‖2

)2

‖φ (xk)‖22

]

≤1−norm−2−norm−inequality
√

2mL
N Eν

[√∑
i

∑
k sup

Θ∈W

( 〈Ψ:i(Θ),φ(xk)]g
‖φ(xk)‖2

)2

‖φ (xk)‖22

]

=
√

2mL
N Eν

[√∑
k sup

Θ∈W

‖〈Ψ:i(Θ),φ(xk)]g‖22
‖φ(xk)‖22

‖φ (xk)‖22

]

=bilinear−continuity
√

2mL
N Eν

[√∑
k sup

Θ∈W
C2

Θ,η ‖φ (xk)‖22

]
=norm−bounding

√
2mL
N Eν

[√∑
k C

2
W,ηφ

2
η

]
=cleanup

√
2mL√
N
CW,ηφη

and the final result follows in the limit η → 0+, recalling limη→0+CW,η = 1, limη→0+φη = φ:

RN (F) ≤
√

2mL√
N
φ

NB: in the special case m = 1, h = id, we can skip the first step which contributed the factor
√

2L
and the 1-norm-2-norm-inequality.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the abstract/introduction were written after the key contributions were com-
pleted specifically to reflect them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: the limitations of the work are clearly outlined in the Setting and Assumptions
section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (eg., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, eg., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are clearly stated in the body of the paper. Most (non-trivial)
proofs are summarised in the body, with reference to relevant appendices for details.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a purely theoretical work. Results will apply to any network satisfying
our assumption, which are analytic in nature: network topology, bounds on weights/biases
that are translated to the final result, and requirements on neural network activation functions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (eg., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (eg., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a purely theoretical work. As noted previously, results will apply to any
network satisfying our assumption, which are analytic in nature: network topology, bounds
on weights/biases that are translated to the final result, and requirements on neural network
activation functions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: See previous justification re results, data and code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: See previous justification re results, data and code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: See previous justification re results, data and code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is purely theory, so I cannot foresee specific societal impacts beyond
improved performance in neural networks.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: see previous responses.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: this is a theory paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: this is a theory paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not core to this method, though the complexity bounds derived
herein may apply to them.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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