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ABSTRACT

Trajectory prediction is a core task in autonomous driving. However, training
advanced trajectory prediction models on existing large-scale datasets is both
time-consuming and computationally expensive. More critically, these datasets
are highly imbalanced in scenario density, with normal driving scenes (low-
moderate traffic) overwhelmingly dominating the datasets, while high-density
and safety-critical cases are underrepresented. As a result, models tend to over-
fit low/moderate-density scenarios and perform poorly in high-density scenar-
ios. To address these challenges, we propose the SSTP framework, which con-
structs a compact yet density-balanced dataset tailored to trajectory prediction.
SSTP consists of two main stages: (1) Extraction, where a baseline model is
pretrained for a few epochs to obtain stable gradient estimates, and the dataset
is partitioned by scenario density. (2) Selection, where gradient-based scores
and a submodular objective select representative samples within each density
category, while biased sampling emphasizes rare high-density interactions to
avoid dominance by low-density cases. This approach significantly reduces the
dataset size and mitigates scenario imbalance, without sacrificing prediction ac-
curacy. Experiments on the Argoverse 1 and Argoverse 2 datasets with recent
state-of-the-art models show that SSTP achieves comparable performance to full-
dataset training using only half the data while delivering substantial improve-
ments in high-density traffic scenes and significantly reducing training time. Ro-
bust trajectory prediction depends not only on data scale but also on balancing
scene density to ensure reliable performance under complex multi agent interac-
tions. The code is available at https://anonymous. 4open.science/r/
SSTP_v2-69E5/README . md.

1 INTRODUCTION

Trajectory prediction aims to predict the future locations of agents conditioned on their past ob-
servations, which plays a key role in the domain of autonomous driving. This task is essential yet
challenging due to the complex uncertain driving situations. With rapid developments in deep learn-
ing, various methods (Zhou et al.| 2022c} [Feng et al.,|2023}; |Chai et al.| | 2019; |Gu et al., 2021} Zhang
et al., |2021}; |Zhao et al.| |2021; [Ngiam et al.| [2021) have been proposed with promising trajectory
prediction performance. Meanwhile, more large-scale realistic datasets (Caesar et al., [2020j [Zhan
et al.|[2019;|Chang et al.|[2019;|Wilson et al., 2023}, |Sun et al., 2020) have been released by research
institutes and self-driving companies, which further push the boundary of this task.

However, one common issue is that training these data-driven methods requires enormous computa-
tional resources and is time-consuming due to the large scale of the datasets. For example, the recent
state-of-the-art method MTR (Ngiam et al.l 2021) has over 66 million model parameters, and the
Waymo Open Motion Dataset (WOMD) (Sun et al., [2020) has over 2.2 million trajectory samples.
Training the complete model on this dataset requires a substantial amount of GPU hours, posing a
significant computational burden.

Q1: To what extent does training on massive trajectory datasets improve performance, consider-
ing their high computational cost? Q2: How can we effectively reduce the training data volume
without significantly compromising model accuracy?
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Figure 1: Comparison of minADE across different scenario densities for HiVT and HPNet on Argoverse 1.
Models are trained with the full dataset, 50% randomly selected data, 50% cluster-based selected data, and 50%
SSTP (ours). SSTP consistently achieves lower errors in high-density scenarios.

Prompted by these questions, we take a deep dive into recent trajectory prediction benchmarks and
reveal one finding: the imbalance in the dataset. Specifically, the majority of scenarios involve only
a limited number of interacting agents, whereas high-density interaction scenarios are significantly
underrepresented. This imbalance is evident in both Argoverse 1 (Chang et al.,[2019) and Argoverse
2 (Wilson et al| 2023) (Figure [2), where most cases are low-density. Yet such high-density cases
are precisely the most safety-critical for autonomous driving, since they involve complex multi-
agent interactions where small prediction errors may directly compromise driving safety. Similar
long-tail phenomena have been observed in the literature (Makansi et al., 2021} |Wang et al.| 2023
Pourkeshavarz et al., 2023} |Chen et al.| 2024). From a conventional machine learning perspective,
standard tasks typically evaluate model performance using the average accuracy across all samples.
However, in autonomous driving trajectory prediction, this metric inherently biases models toward
driving scenarios with abundant data, leading to suboptimal performance in data-scarce scenarios.
For safe driving, an ideal trajectory predictor should exhibit robust performance across both data-
rich and data-scarce scenarios. However, due to the imbalanced distribution of driving scenarios,
state-of-the-art baselines such as HiVT (Zhou et al.} 2022c) and HPNet (Tang et al.,|[2024) struggle
to maintain consistent performance across diverse densities, as illustrated in Figure

To address this issue, we introduce the Sample Selection for Trajectory Prediction (SSTP) frame-
work, the first framework designed to construct a compact and balanced dataset for trajectory pre-
diction. SSTP consists of two main stages: extraction and selection. In the extraction stage, a
baseline model is pretrained on the full dataset for a few epochs to obtain stable gradient estimates,
and the dataset is partitioned by scenario density, measured by the number of agents. This design
mitigates the drawbacks of traditional trajectory prediction training: in rare high-density scenarios,
the scarcity of training data leads to systematic under-training. For Transformer-based architectures,
this issue is particularly pronounced. High-density scenarios require a model to accurately grasp the
complex agent—agent dependencies, yet are significantly underrepresented in the training dataset.
Consequently, the model does not have sufficient chances to learn such dependencies, leading to
poor performance at inference. Moreover, in standard Transformer self-attention, parameters are
shared across samples and rely on broad coverage for generalization. When high-density scenarios
are scarce, updates are dominated by low-density scenarios, further reinforcing systematic under-
training. In the selection stage, for each density category, we calculate gradient-based influence
scores for every sample, then apply a submodular objective that selects a subset that captures the
most representative cases while reducing redundancy. Across partitions, we employ biased sam-
pling to explicitly upweight rare but critical high-density scenarios, preventing dominance by the
majority of low-density scenarios. As shown in Figure [T} SSTP reduces data volume while main-
taining performance, and achieves even better results in high-density scenarios.

We evaluate our proposed method on the Argoverse 1 (Chang et al.|[2019) and Argoverse 2 (Wilson
et al.| [2023)) datasets with multiple baseline methods. Empirical results demonstrate that SSTP suc-
cessfully constructs a compact and well-balanced dataset. In high-density scenarios, training on the
selected subset significantly outperforms using the full dataset, demonstrating the effectiveness of
our method. Moreover, our work offers a resource-efficient dataset that maintains balanced perfor-
mance across various driving scenarios, making it well-suited for training state-of-the-art trajectory
prediction models. The main contributions are summarized as follows:
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Figure 2: Visualization of different-density scenarios in trajectory prediction datasets. Left shows examples
from Argoverse 1, and right shows examples from Argoverse 2.

* We reveal that modern trajectory prediction datasets are heavily skewed, with scene density
and other long-tailed factors biasing models toward majority regimes and limiting perfor-
mance in safety-critical, rare scenarios.

* We introduce SSTP, a framework that partitions data by scene density and applies sub-
modular selection with gradient-based influence scores, combined with biased sampling to
emphasize underrepresented yet safety-critical cases.

* By selecting only 50% of the data, SSTP achieves performance comparable to or better than
full-data training, substantially reduces computational cost, reduces error in high-density
interaction scenes, and transfers robustly across diverse model architectures.

2 METHOD

Denote the training set as D = {S;}}Z,. Each sample is represented as a triple S = (X,Y,0),
where X and Y denote the observed trajectories and future trajectories of all agents, and O the
driving context information (e.g., maps). The goal is to estimate Y conditioned on X and O. We
aim to construct a compact subset C C D of target size B.

A model tra.injcd on C is expected to achieve tra-  Algorithm 1 Sample Selection for Trajectory
jectory prediction performance comparable to that Prediction

obtained from training on the full dataset D. Our Input: Full Dataset D, interval 7, ratio ¢, submod-
method is formally described in Algorithm[I] Next, ular function P(-)

we explain the key algorithmic components in our Output: Target dataset C

methods. : Initialize: C < 0;

e . . . . : Initialize: B + «|D]|; > Set target size
Data Partitioning. As pointed out in Section [I] : Partitioning: Dy;

1
2
3
data imbalance in agent density is a common char- 4. For k € {K, K —1,...,1}: > Reverse order
acteristic of datasets in the autonomous navigation  5: Cr <~ 0;
6
7
8

domain. The impacts of such an imbalance are par- nk < DynamicSelect(B,k);
ticularly pronounced when Transformer architec- if n;, = |Dy| then: > Include all samples

tures or GNNSs that rely on self-attention or graphs C <+ CUDy;

to capture dependencies among agents (Zhou etal, 9 else: )

2022¢; 2023} [Tang et al., [2024; [Zhang et al}; 2025). %" Forn =1tons: b lterate ny times

Without density-based partitioning, gradient up- I §j « argmins, ep,\c, P(5));
12: Cr <—CkU{Sj};

dates are dominated by abundant low-density sce- 13 end for
narios, leading to overfitting on sparse interactions |- C « CUCk:
and systematic under-training of high-density sce- 15: B« B—| Ck|', b Update remaining size
narios. This imbalance prevents the model from ¢. ond for ’

learning robust attention patterns. According to this 7. Return C

observation, we first compute a density level p(.S;) ) ) )

for each sample S; € D based on the number of }g funfftlrg ?iNf g/llgjsfﬁfnc_T(B’ k):

agents present. Then, we use a fixed interval 7 to ni; < [Dl: '

partition the dataset into K disjoint subsets Dy, for 5. else: ’

k € [K] based on these density values such that 75. nk < |B/k);

S € Dy if p(5) € [pmin + (k= 1)7, pmin +£T), 3.

. oh . X Return ny
where p,,;, 1s the minimum density level in D.
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Gradient Extraction. We calculate the total loss as follows:
L= Ereg + ‘Cclsa (D

where £,.., measures the L2 norm between the best mode prediction and the ground truth trajectory,
and L5 aligns the mode predicted probabilities 7w with the best mode. By backpropagating loss L,
we obtain the gradient with respect to Y as follows:

VYA' L= VY (E’reg + 5515). (2)

Finally, we perform an element-wise multiplication of the calculated gradient with the corresponding
decoder latent vector E as follows:

g=V¢LOE, 3)
where g captures the joint variations in the gradient and embedding spaces. In this manner, for
each subset with |Dy| > nj, we construct a set of gradient feature vectors G = {g;}s,ep, forall
trajectory samples in that group.

Sample Selection. Recall that B is the target size of the constructed training subset. To ensure fair
representation across scene complexities, we adopt a dynamic allocation strategy. For each partition
Dy, a local budget ny, is assigned by the DynamicSelect function (see Algorithm [I). This
mechanism prioritizes high-density subsets that naturally contain fewer samples, preventing them
from being underrepresented when the global budget is small. Formally, the allocation satisfies:

K
> k=B, ny>0. )
k=1

Given total K disjoint subsets and the corresponding gradient feature vectors Gy, we present a
submodular gain function P(-) to evaluate the contribution of each sample:

P(S;) = Z _8Bi 8 Z _8i 8 (5)

- )
SieCh llgillllg; | S;E€DR\Ch llilllle;ll

where we use a cosine similarity kernel to measure the similarity between the sample S; and other
samples. We then apply a greedy optimization strategy, iteratively selecting the sample as follows:
% .

S argsjénl)l,?\ck P(S;). (6)
At each iteration, the selected sample S* is added to Ci. This process continues until the number
of selected samples reaches the budget n;, for subset Dj,. Greedy optimization guarantees that the
selected set C satisfies:

PEC) > (1-3)P(C), (7
where C* denotes the optimal subset under target size B. Notably, we process the subsets starting
with those having higher density levels, as these subsets tend to be scarce and underrepresented.
This prioritization is consistent with our dynamic allocation strategy, which ensures that complex,
high-density scenarios are not discarded in early pruning and that long-tailed scenarios remain ad-
equately represented. For subsets Dy where |Dy| < ny, we directly set C;, = Dy. Finally, we

can yield the target dataset C = Ule Ck. By incorporating gradient-based similarity into sub-
modular greedy selection, our method maximizes coverage of the gradient space while maintain-
ing diversity, producing a smaller dataset that remains representative and informative. In addition,
we account for efficiency: the additional cost of sample selection is dominated by gradient com-
putation and submodular updates. The overall computational complexity can be approximated as
O(selection) = O(|D| - d) + O(B - d), where d is the dimension of the gradient feature vectors.

Why Naive Strategies Fall Short. To motivate the necessity of density-aware, gradient-guided
selection, we examine several alternative strategies: Re-weighting: assigns larger loss weights to
high-density samples while retaining the full dataset; Augmenting: duplicates high-density samples
to artificially increase their proportion; High-density+Random preserves all high-density samples
first and fills the remainder via random sampling; Epoch-wise: dynamically re-selects half the data at
the start of each training epoch. These alternatives highlight critical limitations. Both random down-
sampling and epoch-wise re-selection significantly reduce training data, but the former discards
informative scenarios (Table[T] line 4) while the latter introduces instability despite added diversity
(line 3). Simple re-weighting or duplication naively equalizes sample presence but often introduces
redundancy, showing that effective density balancing requires more than adjusting counts (line 1-2).
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Preservation of high-density scenarios ;-4 | #Samples | mADE| | mFDE| | MR
is intuitively beneficial, yet without a

principled mechanism to regulate re- Augmenting 220k 0.718 | 1.106 |0.115
dundancy and ensure representative- Veighting 190k 1 0.715 | 1.108 | 0.114
ness, gains remain limited (line 5). Eggggglse ggi 8;5& ng 832
Importantly, in trajectory prediction, gy jengityiRandom| 95k | 0.724 | L.111 |0.117
the scarcity of high-density scenarios  ggTp 95Kk 0704 | 1.073 |0.111

is critical, as reliable performance re-

quires learning complex multi-agent in- Table 1: Comparison with other selection strategies on Argov-

teractions ,that canpot bef gaptured by erse 1. All methods are evaluated at 50% budget (95k samples)
oversampling or naive mixing. A CeN- ypless otherwise specified.

tral observation is that competence in

complex, high-density interactions transfers naturally to simpler scenarios as shown in Figure [2}
whereas the reverse does not hold. This asymmetry motivates SSTP, which partitions by density and
uses gradient-based selection to preserve scarce high-density scenarios while avoiding redundant
low-density ones.

3 EXPERIMENTS

3.1 BENCHMARKS AND SETUP

Datasets. We evaluated the effectiveness of our proposed SSTP method on Argoverse Motion Fore-
casting Dataset 1.1 (Chang et al., 2019) and Argoverse 2 (Wilson et al., 2023). The Argoverse 1
dataset contains 323,557 real-world driving scenarios. All the training and validation scenarios are
5-second sequences sampled at 10 Hz. The length of the historical trajectory for each scenario is
2 seconds, and the length of the predicted future trajectory is 3 seconds. The Argoverse 2 dataset
contains 250,000 scenarios, with the same sampling frequency of 10 Hz. Each trajectory has a larger
observation window with 5 seconds and a longer prediction horizon with 6 seconds.

Baselines. For Argoverse 1, we validate our SSTP method on two SOTA models HiVT (Zhou
et al.| 2022c) and HPNet (Tang et al.| 2024)) for evaluation. For Argoverse 2, we evaluate our SSTP
method using two SOTA models QCNet (Zhou et al., [2023)) and DeMo (Zhang et al., 2025). For a
more comprehensive comparison, we also include three following data selection approaches:

(1) Random Selection (Rebuffi et al.| 2017): randomly selects a certain proportion of training sam-
ples from the original training set.

(2) K-Means Clustering (Likas et al 2003): clusters trajectories within the observation window
based on their features, and then selects the trajectory sample closest to the cluster center in each
cluster as a representative.

(3) Herding Selection (Castro et al.| |2018): a greedy strategy that first computes the mean feature
of all trajectories within the observation window and then iteratively selects trajectory samples that
bring the mean of the selected subset as close as possible to the overall mean.

Metrics. Following the baselines, we also generate a total 6 future trajectories and use the metrics
minimum Average Displacement Error (minADE), minimum Final Displacement Error (minFDE),
and Missing Rate (MR) to evaluate the prediction performance.

Implementation Details. We primarily utilized the pre-trained HiVT-64 and QCNet as backbone
models to perform sample selection on the Argoverse 1 and Argoverse 2 datasets, respectively.
To evaluate the performance of the selected subset, we follow their official training and validation
protocols. We experimented with different selection ratios, different intervals, and assessed the
prediction accuracy of the trajectory models after training on the corresponding subsets. Further
implementation details are provided in Appendix [A.T]

3.2 MAIN RESULTS

We present the primary experimental results in this section, while a comprehensive ablation study,
including analyses of alternative strategies and design choices, is provided in Appendix [A.3] In
addition, qualitative results and visual analyses are presented in Appendix
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HiVT-64 HiVT-128 HPNet
mADE| mFDE| MR| mADE| mFDE, MR| mADE| mFDE| MR/
Argoverse 1| 100 | 0.695 1037 0.109 | 0.666 0.978 0.091 | 0.647 0.871 0.070

Methods (%)

Random 0.745 1.163 0.132 | 0.719 1.078 0.129 | 0.680 0951 0.091
Cluster 60 0.716  1.097 0.121 | 0.697 1.025 0.108 | 0.673 0.930 0.081
Herding 0.723  1.101 0.125 | 0.685 1.018 0.106 | 0.666 0922  0.085
SSTP 0.702 1.064 0.110 | 0.674 0994 0.093 | 0.653 0901 0.071
Random 0.750  1.175 0.137 | 0.728 1.098 0.126 | 0.687 0.967 0.091
Cluster 50 0.725 1.117 0.124 | 0.692 1.033 0.118 | 0.676 0952  0.085
Herding 0.728 1.107 0.126 | 0.698 1.036 0.119 | 0.674 0938 0.089
SSTP 0.706 1.074 0.110 | 0.684 1.022 0.101 | 0.661 0913 0.074
Random 0752  1.183 0.139 | 0.727 1.109 0.126 | 0.696 0987  0.099
Cluster 40 0.732  1.141 0.127 | 0703 1.058 0.121 | 0.681 0962 0.089
Herding 0722 1.123 0.128 | 0.704 1.056 0.119 | 0.684 0956  0.093
SSTP 0.711 1.088 0.114 | 0.696 1.048 0.106 | 0.671 0.931 0.076

Table 2: Performance comparison results on Argoverse 1 with data retention ratios of 60%, 50%, and 40%.
The compared methods include Random Selection, K-Means Clustering, and Herding Selection. The model
used for data selection is HiVT-64, while the evaluation is conducted on HiVT-64, HiVT-128, and HPNet. «
(%) represents the proportion of retained data relative to the full training set.

Agent<40 Agent>=40 Agent>=60 Agent>=80
mADE| mFDE| MR| |mADE| mFDE| MR| |[mADE| mFDE| MR| |mADE| mFDE| MR
Full 0.700 1.071 0.108| 0.950 1.456 0.171| 1.248 1.898 0.283| 1.450 2.059 0.361

Random| 0.734 1.127 0.119| 0.997 1.552 0.193| 1.287 1.989 0.315| 1.638 2.359 0.389
Cluster | 0.719 1.121 0.115| 0.971 1.501 0.188| 1.251 1.898 0.304| 1.568 2.257 0.376
Herding | 0.726 1.122 0.116| 0.980 1.528 0.190| 1.258 1.922 0.310| 1.581 2.381 0.372
SSTP 0.714 1.098 0.113| 0962 1.497 0.183]| 1.219 1.835 0.280| 1.373 1.762 0.277

Table 3: Comparison of model performance across scenario densities when trained on the full dataset, a 50%
random subset, and a 50% SSTP subset, where SSTP consistently achieves superior results.

Table 2] showcases the strong performance of our selected subset on the Argoverse 1 dataset across
all compression rates. Following the same experimental setup as the baseline models, we trained
HiVT and HPNet from scratch on the subset. Our method significantly reduces data volume while
maintaining nearly lossless performance. Even with only half of the data, models trained on our
selected subset still perform comparably to those trained on the full dataset and consistently outper-
form random selection, clustering, and herding. Furthermore, our subset also demonstrates strong
results on larger models such as HiVT-128 and HPNet. Additional results for other data retention
ratios are provided in Appendix with detailed numbers reported in Table 6]

Performance Enhancement. Scene density in autonomous driving varies substantially, yet most
existing trajectory prediction datasets are dominated by low-density scenarios. From a safety per-
spective, however, an ideal trajectory predictor must perform reliably across the full spectrum of
scene complexities. To this end, we evaluate our proposed method on multiple models and across
different density levels. As shown in Table[3] our method consistently outperforms models trained
on the full dataset, particularly in high-density scenarios, on both the Argoverse 1 and Argoverse 2
datasets. In low-density settings (fewer than 40 agents), our selected subset achieves performance
nearly identical to the full dataset, with only marginal increases of minADE and minFDE, while MR
remains almost unchanged, which is negligible given the limited interactions in such scenes.

When the agent density increases, our method brings the most substantial gains. Compared to all
other baselines, SSTP achieves lower displacement errors and notably reduces MR. For example,
when the number of agents exceeds 80, SSTP cuts the missing rate by more than 8% relative to
random selection, and also outperforms clustering and herding by clear margins. These results high-
light that while clustering and herding provide partial improvements by ensuring representativeness,
they are still insufficient for handling highly complex traffic scenes. In contrast, SSTP effectively
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QCNet DeMo
mADE, mFDE, MR/ mADE, mFDE|, MR/
Argoverse2 | 100 | 0.724 1258 0162 | 0.657 1254  0.163

Method (%)

Random 0.787 1.419 0.208 0.755 1.433 0.198
Cluster 60 0.773 1.406 0.192 0.693 1.386 0.187
Herding 0.778 1.402 0.191 0.701 1.494 0.189
SSTP 0.740 1.316 0.163 0.682 1.344 0.164
Random 0.805 1.447 0.219 0.756 1.448 0.203
Cluster 50 0.798 1.435 0.193 0.732 1.437 0.191
Herding 0.782 1.407 0.190 0.731 1.434 0.190
SSTP 0.754 1.352 0.172 0.704 1.414 0.173
Random 0.811 1.471 0.226 0.763 1.475 0.202
Cluster 40 0.813 1.495 0.214 0.732 1.456 0.195
Herding 0.807 1.454 0.198 0.739 1.460 0.197
SSTP 0.778 1.410 0.183 0.723 1.450 0.191

Table 4: Performance comparison results on Argoverse 2 with data retention ratios of 60%, 50%, and 40%.
The compared methods include Random Selection and K-means clustering. The model used for data selection
is QCNet, while the evaluation is conducted on QCNet and DeMo.

(A) minADE HiVT64 (B) minADE HPNet (A) Before (B) After
0.80 0.75 34.19 2526 2526
27 31.16 24
- 19.82
LS 0.76 EJ 0.71 . = = 1741
2 . 2 N <18 19.82 <6 1225
= . E - g % .
g 072 s E067 g g
= o B
g 612 g
068 20 30 40 s0 60 %% 20 30 40 s0 6 =
Data Retention Ratio (%) Data Retention Ratio (%) 0 10 20 30 40 S0 0 10 20 30 40 50
~= Random Cluster Herding -=- SSTP Full Number of Agents Number of Agents

Figure 3: Performance of HiVT and HPNet trained ~ Figure 4: Distribution of scenarios categorized by
on subsets selected by different methods at varying re- ~ agent density in Argoverse 1 before (left) and after
tention ratios, evaluated with minADE. (right) applying SSTP with 50% data retention ratio.

balances scene density while selecting informative samples, leading to consistently superior perfor-
mance across all density levels. Similarly, the SOTA model HPNet, when trained on our selected
subset, even outperforms its counterpart trained on the full dataset. Detailed results are provided in
Appendix [A:2.2] with comprehensive numbers reported in Table|[]

Generalization Across Datasets. We further evaluated our proposed method on the Argoverse
2 dataset, which presents greater challenges due to its more diverse driving scenarios and longer
prediction horizons. As shown in Table @] our method consistently outperforms other data selection
strategies across all data retention rates, achieving lower minADE and minFDE while maintaining
a lower MR. These results further validate the robustness of our approach, as it maintains strong
performance across different datasets. This demonstrates that our method is not only effective within
a specific dataset but also generalizes well to more complex and diverse trajectory scenarios, such
as those found in Argoverse 2. Additional results for other data retention ratios are provided in
Appendix [A.2.1] with detailed numbers reported in Table [7]

Data Retention Ratio. To examine the impact of different data retention ratios on model perfor-
mance, we conducted experiments with retention rates of o = 60, 50, 40, 30, 20, 10% as shown in
Figure 3] When higher model performance is required, retaining 50% of the data already achieves
results comparable to training with the full dataset. This demonstrates the effectiveness of our SSTP
method, as the selected subset is of higher quality compared to equally sized subsets chosen by other
methods. Furthermore, under limited computational resources, even retaining only 20% of the data
still yields reasonably good results. We further analyze the behavior under extremely low retention
ratios, with detailed results provided in Appendix[A.2.3]and Table ]
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Vari Data Distribution(%) Model Performance
ariants

Agent<40 Agent>=40 mADE| mFDE| MR]
Full dataset | 93.88 6.12 | 0.692 1.047  0.104
Random 85.16 14.84 0.741 1.164  0.125
SSTP w/ Submodular 93.88 6.12 0.724 1.115  0.116
SSTP w/ Partition 70.35 29.65 0.729 1.116  0.118
SSTP 70.35 29.65 0.704 1.073  0.111

Table 5: Performance comparison of data selection strategies on HiVT trained with Argoverse 1. This table
shows the impact of partitioning and selection with Submodular Gain strategies on data distribution and model
performance. The whole dataset and random selection serve as baselines, while different variations of SSTP are
evaluated. Our method (SSTP), integrates both strategies, achieves the best results by maintaining a balanced
data distribution and reducing minADE, minFDE, and MR.

Density Balancing. Our method explicitly controls scene density distribution during selection, en-
suring a more balanced dataset, as illustrated in Figure E} In contrast, random selection fails to
maintain this balance, leading to uneven representation of scenarios with varying complexity and
weaker generalization. As shown in Table [5] line 4, applying scene balancing alone already im-
proves performance compared to random selection, demonstrating that controlling scene density
enhances the effectiveness of trajectory prediction models. However, balancing alone remains in-
sufficient. By further integrating submodular selection to account for sample informativeness, our
method achieves the best performance across all metrics. These findings indicate that while scene
balancing is beneficial, it is insufficient to achieve optimal performance without also considering
sample informativeness.

Training Cost (Time)

Efficiency. Our method significantly

reduces computational time while Train HiVT 7.78  Model minADE
maintaining strong performance, as  [SSTP(60%)|+ Train 0.6/ 2.30 435 ;2?;1 HPNet 8:22;
shown in Figure [5] Training the

HiVT model on the full dataset re- Train HPNet 268.8
quires 7.78 hours. In contrast, uti- Train

lizing our SSTP method to select a 147.13

60% subset requires only 0.6 hour
for pre-training and 2.30 hours for
selection, reducing the overall train-
ing time. When training on the se-

Figure 5: Training time comparison of HiVT and HPNet. Our
method achieves over 50% reduction in time while maintaining
comparable accuracy.

lected subset, the total training time
decreases to 7.25 hours (0.6 + 2.30 + 4.35), with only a minor increase of 0.007 in minADE.

Beyond efficiency on the original backbone, a key advantage of SSTP is that the selected subset is
model-agnostic and can be directly reused to train other trajectory predictors. For instance, when
applied to HPNet, training on the full dataset takes 307.2 hours, whereas training with the selected
subset reduces the time by over 100 hours, cutting the training cost by nearly 45%, while achieving
comparable or even better accuracy. This decisively confirms the superior efficiency of our approach
in balancing training cost and model performance.

Generalizability across Backbones. To further assess the generalizability of our method, we eval-
uated its performance with different backbone models. Specifically, we used pre-trained HiVT-64
and HPNet as feature extractors on the Argoverse 1 dataset and conducted experiments under vary-
ing data retention ratios. Detailed results are provided in Appendix with numerical values
reported in Table @} As shown, regardless of the backbone used for subset selection, the final
trajectory prediction performance remains nearly identical. This demonstrates that our subset selec-
tion strategy is largely backbone-agnostic, underscoring its robustness and broad applicability for
optimizing diverse trajectory prediction models.

4 RELATED WORK

Trajectory Prediction. Trajectory prediction infers an agent’s future motion from its historical
observations. In recent years, research has increasingly concentrated on capturing complex multi-
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agent interactions, driving advances in various predictive methods (Wang et al.| [2024; |Giuliari et al.}
2021;|Xu et al.L[2020; Liu et al.L[2021; Ngiam et al., 20215 [Zhou et al., 2022¢; 2023}, Tang et al., 2024;
Zhang et al.| 2025} |Liang et al., [2020). Furthermore, novel approaches including pretraining (Chen
et al.} 2023} (Cheng et al.| 2023} |Lan et al., | 2023)), historical prediction structure design (Park et al.,
2024} Tang et al., [2024), GPT-style next-token prediction (Philion et al.l 2023; |Seff et al., |2023)),
and post-processing optimization (Zhou et al., |2024; (Chot et al.| 2023)) have significantly enhanced
model performance, demonstrating strong results across various datasets. However, most state-of-
the-art methods rely on training with large-scale datasets (Caesar et al., [2020; Chang et al., 2019;
Sun et al.,[2020; Wilson et al., 2023} [Ettinger et al., [202 1)), leading to significant computational costs.
In contrast, we propose a pioneering data selection strategy in the trajectory prediction domain that
constructs a compact, balanced, yet highly representative dataset, significantly reducing training
time while preserving model performance.

Long-Tail in Trajectory Prediction Dataset The performance of the trajectory prediction models
is evaluated on the overall average. While they excel on benchmarks, these models often struggle
with challenging scenarios (Makansi et al., |2021; |Wang et al., 2023} [Pourkeshavarz et al., [2023)
due to the long-tail data distribution, where common cases dominate and complex or rare situations
are underrepresented (Chen et al., [2024). Recent studies (Wang et al., [2023} [Zhang et al., [2024;
Zhou et al.| 2022a; Lan et al.||2024) have started addressing the long-tail problem in trajectory pre-
diction, primarily by leveraging contrastive learning to enhance feature representations. However,
these methods mainly focus on optimizing feature-level learning while overlooking scenario level
distribution and the importance of individual samples. In contrast, our proposed method assesses the
contribution of each sample and applies a refined selection strategy to build a balanced and compact
dataset. Experimental results show that it significantly boosts performance in complex scenarios.

Training Sample Selection Deep neural networks, especially Transformers, depend on large
datasets and incur high computational costs. To reduce these costs and shorten training time, various
methods to improve data efficiency have been proposed, including frequent parameter updates (Rob-
bins & Monro} [1951])), fewer iterations (Sutskever et al. 2013)), and dynamic learning rate adjust-
ments (Kingma, 2014} Duchi et al.l 2011). To directly reduce data volume, dataset condensation
compresses raw data into compact synthetic samples (Wang et al., 2018} |Zhao et al., [2020; [Zhao &
Bilen, 2021} Kim et al.| [2022; [Wang et al., 2022;|Zhao & Bilen, 2023} (Cazenavette et al.|[2022). An-
other widely studied approach is coreset selection, which constructs a weighted subset that closely
approximates the statistical distribution of the original dataset (Har-Peled & Mazumdar, |2004; Cole-
man et al., 2019 Margatina et al.l [2021; [Mirzasoleiman et al., |2020). However, those approaches
on dataset condensation (Nguyen et al.| |2020; |Loo et al., 2022} [Zhou et al., 2022b} [Sajedi et al.,
2023} |Zhao et al.l [2023)) and coreset selection (Killamsetty et al., 2021} [Paul et al., [2021]) has been
predominantly focused on image classification. In contrast, we propose a sample selection strategy
based on submodular functions for the trajectory prediction domain. As a pioneering method, our
approach significantly reduces the training data required while maintaining model performance.

5 CONCLUSION

In this paper, we presented the Sample Selection for Trajectory Prediction (SSTP) framework, a
novel, data-centric approach that constructs a compact yet balanced dataset for trajectory predic-
tion. SSTP effectively tackles the challenges posed by data imbalance and the high training costs
inherent in large-scale trajectory datasets. By significantly reducing the training data volume while
maintaining, and even enhancing the model performance in high-density scenarios. SSTP not only
accelerates training but also delivers results comparable to, or better than, those achieved with full-
dataset training. Extensive evaluations on the Argoverse 1 and Argoverse 2 benchmarks across a
wide range of state-of-the-art models underscore the practical value of our approach in improving
both efficiency and robustness in trajectory prediction for autonomous driving.

Limitations. While effective, our method still incurs non-negligible computational overhead during
the gradient extraction and submodular optimization stages of sample selection. Although this is a
one-time cost, further optimization to reduce its complexity would be desirable. Moreover, model
performance degrades under extremely low data retention ratios (e.g., 10%), highlighting the chal-
lenge of preserving robustness when only very limited data are available. Finally, the present study
is restricted to trajectory prediction tasks on the Argoverse benchmarks; extending SSTP to other
autonomous driving tasks and additional datasets remains an important avenue for future research.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

During the dataset selection stage, we employ HiVT (Zhou et al.| 2022c]), HPNet (Tang et al.,|2024),
and QCNet (Zhou et al., 2023) as backbones with batch sizes of 16, 4, and 4, respectively, selected
using the NaiveGreedy algorithm. For model evaluation, one mainstream model and one SOTA
model are chosen per dataset: HiVT and HPNet for Argoverse 1 (Chang et al., 2019), and QCNet
and DeMo (Zhang et al.,[2025]) for Argoverse 2 (Wilson et al.,|2023)). All models follow their official
experimental settings and are trained on both selected subsets and complete datasets.

HiVT: Batch size 32, LR 3 x 104, weight decay 1 x 10~4, dropout 0.1. Its architecture includes
1 interaction module, 4 temporal and 3 global modules, 8-head attention (50 m radius), 6 prediction
modes, and hidden sizes of 64/128.

HPNet: Batch size 16, LR 5 x 10~ (same weight decay and dropout). It has 1 spatiotemporal and
2 tri-factor attention layers (50 m radius, 20-frame windows) with data augmentation: horizontal
flipping (0.5), agent (0.05) and lane (0.2) occlusion.

QCNet: Trained for 64 epochs with AdamW (batch size 32, LR 5 x 10~4, weight decay 1 x 1074,
dropout 0.1). It uses a 128-dim hidden space, gated 8-head attention, layer normalization on MLP
and attention layers, 3 iterations for the trajectory proposal, and 2 multi-context attention modules
in both encoder and decoder.

DeMo: Trained for 60 epochs with AdamW (batch size 16 per GPU, LR 0.003, weight decay 0.01,
cosine annealing with 10 warm-up epochs). No data augmentation is applied.

A.2 ADDITIONAL EXPERIMENTS
A.2.1 ADDITIONAL RESULTS ON ARGOVERSE 1 AND ARGOVERSE 2.

We present comprehensive results for different models and data retention ratios on SSTP-selected
datasets for both Argoverse 1 and Argoverse 2. The results, shown in Table [6] and Table [7] follow
trends consistent with those observed in the 60%, 50%, and 40% retention settings, further validating
the effectiveness of our approach.

HiVT-64 HiVT-128 HPNet

Methods (%)

mADE| mFDE| MR| mADE| mFDE| MR] mADE| mFDE| MR/|
Random 0.76 1.21 0.13 0.73 1.13 0.12 0.69 0.98 0.09
Cluster 30 0.74 1.14 0.12 0.71 1.07 0.11 0.68 0.97 0.08
Herding 0.73 1.14 0.12 0.71 1.07 0.11 0.69 0.96 0.09
SSTP 0.72 1.12 0.12 0.70 1.06 0.11 0.68 0.95 0.07
Random 0.78 1.25 0.14 0.75 1.18 0.13 0.71 1.01 0.10
Cluster 20 0.76 1.21 0.14 0.72 1.11 0.12 0.69 0.98 0.09
Herding 0.76 1.19 0.13 0.74 1.14 0.13 0.70 0.99 0.09
SSTP 0.74 1.16 0.12 0.72 1.11 0.11 0.69 0.97 0.08
Random 0.84 1.40 0.16 0.80 1.29 0.15 0.88 1.40 0.18
Cluster 10 0.82 1.37 0.16 0.76 1.20 0.13 0.87 1.39 0.17
Herding 0.80 1.29 0.14 0.80 1.29 0.14 0.81 1.26 0.13
SSTP 0.78 1.25 0.13 0.75 1.17 0.12 0.78 1.17 0.12

Table 6: Performance comparison results on Argoverse 1 with data retention ratios of 30%, 20%, and 10%.
Pretrained HiVT-64 is used for sample selection. Evaluation conducted on HiVT-64, HiVT-128, and HPNet.
A.2.2 PERFORMANCE ENHANCEMENT ON HPNET.

To further validate the generalization capability of the SSTP method, we conducted the same ex-
perimental setup on HPNet. The test set was partitioned based on different scene densities, and the
model was evaluated on these subdivided datasets. The results, presented in Table |8 demonstrate
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Methods (%) QCNet DeMo

mADE| mFDE] MR| mADE| mFDE] MR|
Random 0.827 1.486 0.224 0.779 1.547 0.216
Cluster 30 0.821 1.523 0.222 0.765 1.498 0.207
Herding 0.819 1.505 0.213 0.762 1.506 0.204
SSTP 0.794 1.453 0.192 0.743 1.501 0.192
Random 0.878 1.586 0.242 0.827 1.645 0.238
Cluster 20 0.843 1.561 0.222 0.794 1.618 0.229
Herding 0.844 1.545 0.222 0.801 1.625 0.227
SSTP 0.832 1.530 0.211 0.783 1.591 0.212
Random 0.944 1.797 0.272 0.918 1.817 0.263
Cluster 10 0.911 1.772 0.251 0.878 1.779 0.247
Herding 0.908 1.743 0.246 0.882 1.774 0.243
SSTP 0.891 1.684 0.241 0.871 1.770 0.241

Table 7: Performance comparison results on Argoverse 2 with data retention ratios of 30%, 20%, and 10%.
Pretrained QCNet is used for sample selection. Evaluation conducted on QCNet and DeMo.

Agent<40 Agent>=40 Agent>=60 Agent>=80
mADE| mFDE| MR| mADE| mFDE| MR| mADE| mFDE| MR| mADE| mFDE| MR

Full 0.611 0.833 0.062/0.875 1.202 0.127|1.111 1463 0.201|1.596 1.771 0.276
Random|0.652 0.903 0.071/0.932 1.336 0.147|1.267 1.850 0.274{1.649 2.086 0.375
Cluster |0.642 0.889 0.069/0.916 1.291 0.143|1.193 1.669 0.250{1.636 1.977 0.325
Herding |0.650 0.901 0.070{0.921 1.303 0.145|1.215 1.673 0.252{1.637 2.001 0.342
SSTP |0.630 0.861 0.064/0.878 1.210 0.132{1.110 1.461 0.198/1.574 1.698 0.241

HPNet

Table 8: Performance Comparison of HPNet across different scene densities when trained on different sample
set with & = 50%.

the effectiveness of our approach. When the agent density is below 40, our method achieves per-
formance comparable to models trained on the full dataset, with only slight increases of 0.019 in
minADE and 0.028 in minFDE, while MR remains nearly unchanged. However, in high-density
scenarios where the number of agents exceeds 60, models trained on our selected subset exhibit
notable improvements, with minADE and minFDE reduced by 0.001 and 0.002, respectively. This
advantage becomes even more pronounced in scenarios with more than 80 agents, where minADE
is reduced by approximately 0.022, minFDE by nearly 0.073, and MR by nearly 3.5%. These find-
ings confirm that SSTP effectively maintains dataset diversity while preserving model performance,
regardless of the model used.

A.2.3 Low DATA RETENTION SETTING.

We further studied the extremely low-budget regime with o € {10,5,2,1}%. As shown in Ta-
ble[9] the performance of all methods drops sharply below 10%. Nevertheless, our SSTP method
consistently outperforms random selection at the same budget levels. In particular, at 1% retention,
SSTP reduces minADE from 2.033 to 1.589 and MR from 0.452 to 0.386, showing that even with
very limited data, informative subset selection remains beneficial. This advantage comes from pri-
oritizing scarce high-density scenes during budget allocation, ensuring long-tailed scenarios remain
represented.

A.2.4 GENERALIZABILITY AND ROBUSTNESS.

To further assess the generalizability and robustness of our proposed method, we evaluate the impact
of different data retention ratios on SSTP-selected datasets using various backbone networks. The
results, presented in Table demonstrate that SSTP is not only adaptable across a diverse range
of trajectory prediction models but also effectively reduces dataset size while maintaining model
performance across different feature extractors. These findings underscore SSTP’s robustness and
broad applicability in real-world autonomous driving scenarios.
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a(%) | Method | mADE| | mFDE| | MR}

10 Random 0.818 1.329 0.167
SSTP 0.781 1.253 0.132

5 Random 0.869 1.484 0.183
SSTP 0.843 1.416 0.161

5 Random 1.055 1.902 0.245
SSTP 1.015 1.871 0.220

1 Random 2.033 4.613 0.452

SSTP 1.589 3.416 0.386

Table 9: Performance comparison under extremely low data retention settings (o < 10%). For each retention
ratio, SSTP consistently outperforms random selection, though performance degrades sharply when the data
retention ratio drops below 10%.

HiVT-64 HPNet
mADE, mFDE| MR| mADE| mFDE| MR]

10 0.786 1.254 0.138 0.782 1.172 0.121
20 0.749 1.167 0.125 0.691 0.970 0.081
30 0.727 1.120 0.120 0.678 0.951 0.079

Backbone  a(%)

HIVI64 |y, 0712 1089 0114 | 0671 0931 0076
50 | 0704 1073 0111 | 0661 0913 0074
60 | 0703 1065 0111 | 0654 0901 0072
10 | 079 1277 0143 | 0739 1050  0.095
20 | 0753 1193 0125 | 0699 0975  0.082
PNt 30 | 0732 1143 0119 | 0681 0943 0078

40 0.717 1.087 0.112 0.670 0.924 0.075
50 0.708 1.079 0.111 0.664 0.917 0.074
60 0.703 1.067 0.108 0.657 0.910 0.075

Table 10: Performance comparison of different backbone models, HiVT-64 and HPNet, trained on subsets
selected by different strategies at varying data retention ratios.

A.3 ABLATION STUDY

Effectiveness of Submodular Gain. To isolate the effect of submodular gain, we conducted an
experiment where data selection was based solely on submodular importance scores, without con-
sidering scene density balancing, as shown in Table [5|line 3. The results indicate that using only
submodular selection achieves a minADE of 0.724, lower than the 0.741 obtained through random
selection, demonstrating that submodular-based sample selection improves data quality. However,
it still underperforms compared to our full method. This is because prioritizing sample informa-
tiveness without adjusting for scene density leads to a dataset biased toward certain complexity
levels, ultimately hindering the model’s generalization ability. In contrast, our full method, which
integrates scene balancing with submodular gain, achieves the best performance across all metrics.
These findings highlight the necessity of jointly considering both scene distribution balance and
sample informativeness to construct an effective training dataset.

Impact of Pretrained Backbone Epochs. To examine the influence of the pretrained backbone
on subset selection, we conducted a series of experiments using models initialized identically but
trained with different numbers of pretraining epochs. Taking HiVT-64 as an example, the official
training setup involves training the model for 64 epochs using the full dataset. In our experiments,
we varied the number of pretraining epochs as {0, 5, 8, 10, 15, 64} and analyzed its impact on subset
selection, as shown in Table[TT] The results indicate that moderate pretraining is crucial for effective
subset selection. When the number of pretraining epochs is set to 5, the subset selection achieves op-
timal performance, consistently outperforming other configurations across all data retention ratios.
As the pretraining epochs increase, subset selection continues to provide significant advantages over
other data selection methods but does not surpass the performance observed at epoch 5. For models
without pretraining, minADE degrades noticeably compared to models pretrained for 5 epochs. In
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Epoch | 0 5 8 10 15 64

mADE| | 0.713 0.704 0.707 0.708 0.710 0.712
mFDE| | 1.083 1.073 1.076 1.074 1.083 1.080
MR| | 0.112 0.111 0.111 0.111 0.111 0.111

Partition | mADE| mFDE| MR]|

T=5 0.703 1.056  0.110
T=10 0.702 1.064 0.111
7=20 0.707 1.081  0.113

Table 11: Performance comparison of models pretrained on
the full dataset for different numbers of epochs. The pre-
trained weights are then used to initialize the model for SSTP,
selecting 50% of the data.

Table 12: Comparison of SSTP with different
partition intervals 7 and its impact on HiVT
performance using the Argoverse 1.

Figure 6: Visualization of different agent density scenarios in Argoverse 1.

contrast, at 64 pretraining epochs, as the model has already converged, the impact of sample selec-
tion on gradient updates diminishes. Although subset selection performance remains competitive, it
does not yield further improvements over moderate pretraining.

Partition Interval. Given the number of agents in different trajectory prediction scenarios varies
significantly, we examine the impact of scene density partition intervals on the selected subset to
validate the generalizability of our method. Specifically, we divide the scenes in the Argoverse
1 dataset based on agent counts with partition intervals 7 of {5, 10, 20}, forming multiple scene
density categories. Within each category, we perform data selection. As shown in Table [I2] the
subsets selected using different partition intervals result in comparable model performance, with
minimal variations in minADE and minFDE. This consistency across different settings highlights the
robustness of our method. This suggests that our approach generalizes well to other datasets. When
applying this method, the partition interval can be adjusted based on the dataset characteristics: if
the dataset has relatively few agents per scene, a smaller interval is preferable; whereas for datasets
with a high variance in agent count, a larger interval may be more suitable to better balance scene
density.
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Figure 7: Visualization of different agent density scenarios in Argoverse 2.

A.4 QUALITATIVE RESULTS

In Figure[6|and Figure[7} we present trajectory samples from three different scene densities in Argo-
verse 1 and Argoverse 2. In the top row, the scenes feature only a few agents, making them relatively
straightforward for the model to predict. Because low-density scenarios dominate the dataset, the
model tends to be biased toward these simpler cases, and the lower interaction complexity naturally
reduces motion-forecasting uncertainty. In the middle rows, moderate-density scenarios display an
increased number of agents. Here, interactions among vehicles become more frequent, creating
added complexity for trajectory prediction. In the bottom row, high-density scenes pose significant
challenges for trajectory prediction models. These crowded urban intersections and multi-agent in-
teractions are underrepresented in standard datasets. The large number of dynamic agents in these
scenarios compounds uncertainty, making it harder for the model to produce accurate predictions.
Yet, these are precisely the scenarios that are most critical for ensuring safe autonomous driving. Our
SSTP method addresses this imbalance head-on by emphasizing high-density samples. Through a
more balanced yet compact selection of training data, the model becomes well-prepared for both
common and complex scenarios. As a result, SSTP bolsters model robustness in high-density envi-
ronments, leading to more reliable trajectory predictions in real-world urban traffic conditions.

LLM USAGE

We used ChatGPT solely for grammar correction and LaTeX formatting. They were not involved
in research ideation, experiment design, or data analysis. All scientific contributions, methodology,
and results are entirely the work of the authors.
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