
Initializing and Retrofitting Key-Value Adaptors for Traceable Model
Editing

Anonymous ACL submission

Abstract001

As the insight of knowledge storage in lan-002
guage models deepens, the ability to perform003
CRUD (Create, Read, Update, Delete) opera-004
tions on language models becomes increasingly005
indispensable for satisfying the demands of006
managing rapidly updating knowledge. Consid-007
ering the high cost of fine-tuning language mod-008
els, model editing methods with low cost are009
usually required to manipulate models’ knowl-010
edge. The evidence suggests that modules011
carrying knowledge in a Transformer module012
are primarily the MLP blocks, thus we pro-013
pose iReVa, a method that explicitly initial-014
izes and retrofits key-value pairs into MLP015
blocks to construct a new mapping of a piece016
of knowledge without damaging the irrelevant017
knowledge. In comparison to existing meth-018
ods, iReVa reveals better interpretability and a019
stronger capacity for carrying traceable edits.020
Experiment results on a series of GPT series021
models show our prominent performance on022
edit success and generalization without influ-023
encing specificity. We also made the first at-024
tempt to conduct a knowledge withdrawal test025
of iReVa. Our codes are available at this web-026
site.027

1 Introduction028

Language Models (LMs) (Brown et al., 2020) are029

becoming imperative tools for consulting in real-030

world scenarios. One significant reason for the031

prevalence of LMs is their ability to answer factoid032

questions. For example, when we ask an LM with033

the question “Who is president of America ?”, it034

may return the answer “Joe Biden”Even though a035

mass amount of knowledge is stored in the LMs,036

we still face the issue of out-of-date and missing037

knowledge (Petroni et al., 2019; Jiang et al., 2020).038

Alternatively, some knowledge may change over039

years and some domain-specific knowledge may040

be absent from the LMs.041

To bridge the gap, the task of model editing is042

introduced to edit the knowledge in LMs, which 043

targets at modifying the parameters of LMs and 044

injecting certain knowledge to them (Zhang et al., 045

2024). The difficulty of this task lies in the ma- 046

nipulation to the LMs, where the knowledge is 047

implicitly stored in dense vectors. A naive solu- 048

tion to model editing is fine-tuning an LM with 049

the new knowledge, whereas the cost is climbing 050

with the surging size of LMs. More recent stud- 051

ies propose to directly update the models’ weights 052

in mastery phase (Jayashri and Kalaiselvi, 2018; 053

Bruner, 1960) via either teaching a hyper-network 054

to learn the change of the weights or locating- 055

then-editing knowledge neurons (Cao et al., 2021; 056

Mitchell et al., 2022a; Meng et al., 2023a,b). While 057

the editing methods above are efficient in updating 058

knowledge in LMs, they encounter the difficulties 059

of differentiating the existing and new knowledge, 060

which makes the editing hard to control. Meth- 061

ods like life-long model editing (Hartvigsen et al., 062

2023), MELO (Yu et al., 2023), WilKE (Hu et al., 063

2024) and T-Patcher (Huang et al., 2023) propose 064

to learn the representation for new knowledge and 065

merge this information with the original models 066

However, these methods still conform to the 067

paradigm of learning the batch edit (Huang et al., 068

2023; Hase et al., 2021) as a whole without model- 069

ing edit parameters in a traceable way, which can 070

not conform the edit success to each edit and have 071

a lack interpretability to the editing. In contrast, we 072

propose a method of Initializing and Retrofitting 073

KEy-Value Adaptors (iReVa), an editing method 074

that inserts a key-value adaptor to indicate the map- 075

ping of an edit data pair and further retrofit the adap- 076

tor with multiple objectives. Moreover, to prevent 077

the unnecessary change to the irrelevant knowledge, 078

we elaborately design activation mechanism for the 079

knowledge neurons. Experimental results on se- 080

ries of GPT-like models show that iReVa is able 081

to outperform the SOTA results by around 9% and 082

6% average score improvement on zsRE-10K and 083

1

https://anonymous.4open.science/r/iReVa-6CFD
https://anonymous.4open.science/r/iReVa-6CFD
https://anonymous.4open.science/r/iReVa-6CFD

PARAREL-10K, respectively. Moreover, iReVa is084

able to perform knowledge withdrawal in almost085

perfect condition.086

Our contributions are summarized as follows: 1)087

We introduce a novel editing method that initial-088

izes and retrofits a key-value adaptor for traceable089

model editing, which is compatible with most LMs.090

2) Our method outperforms recent baselines on091

model editing tasks with noticeable margins based092

on various evaluation metrics. 3) We validate the093

interpretability and generalization capabilities of094

our method by conducting further analysis such as095

knowledge withdrawal test and generalization test.096

2 Related Work097

2.1 Insight of Knowledge Storage in098

Language Models099

Discussion about how LMs store knowledge has100

emerged. (Petroni et al., 2019) introduced the per-101

spective of treating LMs as knowledge bases and102

proved its plausibility, which attracted the subse-103

quent attention towards the exploration of the form104

of knowledge incorporated by LMs. The opinion105

pointed out by (Geva et al., 2021) indicates that106

factual knowledge is stored in the two-layer-FFN107

network of a Transformer due to the similar form108

as key-value memories. This opinion was followed109

by (Li et al., 2024), which further derives the co-110

efficient between final prediction and knowledge111

neurons in MLP blocks. In contrast, (Meng et al.,112

2023a), through a cosine similarity analysis on hid-113

den states experiment, posed viewpoints that the114

self-attention module can extract various types of115

knowledge. (Cao et al., 2021) further validates that116

the weight update is concentrated on parameters117

in the self-attention module when we train models118

with new knowledge. Our editing method is built119

upon the former hypothesis and we focus on the120

editing to the MLP blocks.121

2.2 Editing LMs by Manipulating Knowledge122

With the frequent updates of the knowledge, the123

demand for model editing increases. Diverse stud-124

ies have been proposed. By analogy with human125

knowledge acquisition, we can categorize the edit-126

ing into three distinct phases. In the recognition127

phase (Bruner, 1964), methods such as ERAC and128

IKE (Mitchell et al., 2022a; Zheng et al., 2023)129

solved the problem by importing additional mem-130

ories in the form of relevant contexts or prompts.131

In association phase (Bruner, 1960), parameter-132

efficient tuning (Hu et al., 2021; Li and Liang,133

2021; Yu et al., 2023; Hartvigsen et al., 2023) in- 134

serts low-rank adaptors or prefix token embeddings 135

to fine-tune new knowledge and combine them to 136

the original models. There are also some stud- 137

ies directly changing the weights of Transform- 138

ers in the mastery phase (Jayashri and Kalaiselvi, 139

2018). For example, (Cao et al., 2021) proposed 140

KE, (Mitchell et al., 2022a) proposed MEND and 141

(Tan et al., 2024) proposed MALMEN to predict 142

the updated parameters of a model with a trained 143

hyper-network. Furthermore, ROME (Meng et al., 144

2023a) and MEMIT (Meng et al., 2023b) compute 145

the weight update explicitly with proper representa- 146

tions of knowledge queries and values. WilKE (Hu 147

et al., 2024) selects the editing layer based on 148

the extent of pattern matching of different edited 149

knowledge across multiple layers. However, none 150

of them focuses on traceable model editing, which 151

allows more flexible manipulation of the knowl- 152

edge. 153

3 Problem Formulation 154

We follow the previous studies (Mitchell et al., 155

2022b; Yu et al., 2023; Hartvigsen et al., 2023) 156

to formulate the task. Suppose we are given a pre- 157

trained language model fΦ parameterized by Φ, 158

model editing aims at editing fΦ with a dataset 159

Din = {(x1, y1), ..., (xi, yi)..., (xn, yn)}, where 160

(xi, yi) denotes the edit input-output pairs. Initially, 161

for xi ∈ Din, the base model makes prediction 162

ŷi = fΦ(xi) but ŷi ̸= yi. In this case, we change 163

fΦ by editing its parameters to Φ∗. A good model 164

editing to fΦ∗ should satisfy: 1) for any xi ∈ Din, 165

the edited model fΦ∗ should output desired predic- 166

tions, that is fΦ∗(xi) = yi; 2) for any input out 167

of the scope of Din, which is denoted as Dout, the 168

edited model fΦ∗ should retain the original pre- 169

dictions, that is fΦ∗(xi) = fΦ(xi); 3) the edit of 170

(xi, yi) towards fΦ∗ should not influence any prior 171

edits x<i ∈ Din. 172

4 Our Proposed Method: iReVa 173

4.1 Basic Architecture 174

To develop an editing method that supports trace- 175

able edits to knowledge neurons, we introduce a 176

novel method “iReVa” that initializes and Retrofits 177

kEy-Value Adaptors for traceable model editing. 178

The pre-trained LM fΦ usually contains Trans- 179

former blocks, which consist of intertwined self- 180

attention and feed-forward layers. The prior stud- 181

ies (Geva et al., 2021) have shown that the inside 182

2

Key interpretability:
𝑥!:	The Divine Comedy
is written by ?
…
𝑥": Who is the
president of America ?

Value interpretability:
𝑦!: Dante
𝑦#: Donald Trump
…
𝑦": Joe Bidden
𝑦$: New York City

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑜i

𝑥"

𝑥%

𝑥&
𝑥%

𝑥!

𝑥%

𝑥&
0

𝑥%

𝑥!

(a) Training process

max-pool

key weights K&

value weights V&
𝑉&

𝑦#:	

𝑦!:	Joe Bidden

𝑦":	Donald Trump

Dante

𝑦(

𝑦’'
Donald
Trump

“Dante”

(b) Inference process for in-scope edit

(c) Inference process for out-of-scope edit

max-pool

𝐾*

[𝑉 ⊕ 𝑉&]⊺𝑔*+,([𝐾 ⊕𝐾*]⊺i)

original knowledge
neurons

new knowledge
neurons

Figure 1: Architecture of iReVa. The left block shows the training procedure with the newly inserted knowledge
neurons. The middle block shows the inference procedure with in-scope and out-of-scope edits. We interpret the
inference phase by giving some explicit examples (Please note we omit some neurons during inference due to the
space limit.). When the query falls in the in-scope edit, our key-value adaptor will be activated and retrieve the
corresponding knowledge. When the query falls in the out-of-scope edit, our key-value adaptor is inactive and the
model retrieves knowledge from the original memory.

MLP blocks are commonly deemed as the neurons183

for storing implicit knowledge. Our method is able184

to insert new knowledge without damaging the ir-185

relevant knowledge in the models by inserting and186

retrofitting the key-value adaptors to these blocks.187

Figure 1 depicts the architecture of our proposed188

method. For a two-layer-FFN MLP block in the189

l-th layer of the original model fΦ, we denote the190

weights of the first FFN layer as Kl ∈ Rd1×d2 and191

the second FFN as Vl ∈ Rd2×d1 . Assume a hidden192

state hl ∈ Rd1 is an input of the FFN of l-th layer,193

the above block processes the input as follows:194

il = LN(hl + SELF_ATTN(hl)) (1)195

ol = Vl⊺gact(K
l⊺il) (2)196

hl+1 = SELF_ATTN(il + ol) (3)197

where gact is the activation layer and hl+1 ∈ Rd1 is198

the input of the next Transformer block. Here, Kl199

and Vl emulate neural memories, where keys cap-200

ture input patterns and values are stored knowledge201

to be retrieved. When there comes an input vector,202

it first computes a distribution over the keys, then203

retrieves the expected knowledge. As the process204

is just the same for each layer, we can choose any205

of the layers to edit, we omit l for simplicity in the206

following description.207

Our method inserts a key-value adaptor into the208

existing MLP block. Specifically, we update Φ by209

inserting a new knowledge neuron to store the edit. 210

Two matrices K̂ ∈ Rd1×n and V̂ ∈ Rn×d1 perform 211

as the key-value pair to memorize n edited knowl- 212

edge, where the knowledge is well-indexed by n 213

dimensions. Therefore, Equation (2) becomes: 214

o = [V ⊕ V̂]⊺gact([K⊕ K̂]⊺i) (4) 215

= V⊺gact(K
⊺i) + V̂⊺gact(K̂

⊺i) (5) 216

where ⊕ denotes concatenation. As we can see, 217

the key-value adaptor appends more information to 218

o, which could overwrite the original output. And 219

original parameter set Φ is extended to Φ∗ with 220

the new included parameters K̂ and V̂. There- 221

fore, we aim to find a good key-value adaptor 222

for model editing that can collaborate with the 223

original knowledge neurons. Considering the in- 224

dependence of the above two function terms and 225

the potential more flexible combination to the out- 226

put, we relax the formulation of the adaptor to 227

Adaptor(i; K̂, V̂) = αV̂⊺gact(K̂
⊺i), which may 228

be a more expressive function with a scaling factor 229

α (Hu et al., 2021). Next, we will introduce how to 230

find such an optimal adaptor that not only satisfies 231

the edit success but preserves the original model 232

behavior. 233

3

4.2 Initial Key-Value Adaptors for In-Scope234

Editing235

Given an edit (xi, yi) ∈ Din, we first initialize236

its knowledge neuron k̂0 ∈ Rd1 and v̂0 ∈ Rd1 .237

For k̂0, we initialize each key to the xi using the238

cached input i predicted by fΦ(xi) at layer l, which239

results in a high probability of matching to the240

input pattern. For v̂0, we initialize it using the241

weights corresponding to yi from the last layer of242

fΦ. Specifically, fΦ(xi) takes charge of generat-243

ing the next token which can be deemed as the244

prediction to xi. Thus, we extract the correspond-245

ing column of the ground truth token yi from the246

weights W ∈ Rd1×|V | for generating the next to-247

ken distribution, where |V | and d1 are the sizes248

of the vocabulary and dimension of the last layer,249

respectively 1. After initialization, we build a map-250

ping from xi to yi in a Transformer.251

4.3 Retrofit Adaptors for Model Editing252

(Training Phase)253

To prevent the effect of the inconsistent scaling254

brought by built-in parameters in Equation 1, we255

first normalize i to ensure that its mean value is256

close to 0 before it is fed into the adaptor. Given257

(xi, yi), we can have the initialized key-value adap-258

tor as follows:259

Adaptor(i; K̂, V̂) = α(v̂0)⊺gact((k̂
0)⊺i) (6)260

To avoid the inserted adaptor from distracting261

the original knowledge stored in existing neurons,262

we propose to use activation functions that can263

activate the memory with a large matching value264

and ignore the memory with a small value. When265

we deploy the adaptor to models, the activation266

function usually remains consistent with the base267

model. Moreover, we apply a hyper-parameter268

margin θ > 0, which allows memory to be active269

if x > θ, otherwise inactivate. For example, we270

use GeLU (Shazeer, 2020) for GPT (Radford et al.,271

2018) series model and our activation function can272

be denoted as:273

gact(x) = GeLU(x− θ) (7)274

The motivations behind the above design in our ac-275

tivation function are two-fold: First, the activation276

function works as a neuronal inhibitor to inhibit277

the activation of new knowledge neurons, which278

retains the original output in most cases. Second,279

the involvement of the margin further raises the bar280

1See Appendix 9.1 for detailed description of initialization
of k̂0 and v̂0.

to activate the new knowledge neurons. If a certain 281

input is out of the editing scope, it fails to match 282

any memory, all inserted neurons will be inhibited 283

after the activation function as shown in Figure 1. 284

In practice, edit input xi is shown in the form of a 285

sequence of tokens such as “{the, capital, of, China, 286

is}” and yi is the single-token answer “Beijing”. 287

This indicates that we have a sequence of hidden 288

states {h1,h2, ...,hs} corresponding to input xi = 289

{w1, w2, ..., ws}. To avoid damaging the original 290

behavior of the edit model, the edit block merely 291

works on the final token, which is the last token 292

before generation: 293

Adaptor(ij ; K̂, V̂) =

{
0 j ̸= s

αV̂⊺gact(K̂
⊺ij) j = s

(8)

294

where ij is the input corresponding to the j-th 295

hidden state hj in the sequence. As a result, the 296

new knowledge is activated only when the entire 297

input sequence is fed into the model, which not 298

only prevents the dramatic change to the original 299

model but also benefits the gradient update to the 300

key-value pairs2. 301

Fine-tuning adaptors with multiple objectives. 302

While the above initialization effectively builds 303

the mapping from a certain edit input to the edit 304

output, its impact on irrelevant knowledge may 305

lead to catastrophic forgetting (McCloskey and Co- 306

hen, 1989) issue, which is caused by the extending 307

key-value pairs of the adaptor. In other words, we 308

expect ADAPTOR(i; K̂, V̂) could dominate the 309

output for each xi ∈ Din but maintain unchanged 310

prediction for xi ∈ Dout and x<i ∈ Din. Inspired 311

by the elastic weight consolidation for neural net- 312

works (Kirkpatrick et al., 2017), we set optimiza- 313

tion goals to retrofit Φ∗ with the consideration of 314

the following perspectives. 315

(1) To maximize the prediction of yi from the last 316

layer, we maximize the probability of the ground 317

truth edit output given the edit input: 318

Ledit = − log[Pf∗
Φ
(yi|xi)] (9) 319

(2) Even though Ledit enables models to fit the 320

mapping from xi to yi effectively, it may push our 321

adaptor far from the initialization, which may dam- 322

age the initialized key distribution and lead to over- 323

fitting. Hence, we propose an additional term to 324

2See the discussion of gradient back-propagation of k̂ and
v̂ in Appendix 9.2.

4

prevent the dramatic change of the update of k̂:325

Lrec = ||(k̂0 − k̂)⊺i||22 (10)326

(3) Importantly, to prevent the fine-tuning from327

changing the irrelevant knowledge, we sample328

some out-of-scope edit data to form Dout
3 and re-329

tain the original outputs from the model:330

Lirr =
1

|Dout|
∑

(x,y)∈Dout

max(k̂⊺x− θ, 0) (11)331

Hence, we comprehend each aspect to form the332

final objective to retrofit the key-value adaptor:333

L = Ledit + aLrec + bLirr (12)334

where a, b are hyper-parameters denoting the im-335

portance of the different objective aspects. Note336

that we edit one knowledge neuron once, but we337

still support sequential editing by iteratively insert-338

ing key-value pairs. During training, all param-339

eters except for k̂ and v̂ for the current edit are340

frozen. That is, we freeze the prior edit knowledge341

neurons and simply update the neuron inserted for342

current edit. This procedure repeats until we have343

conducted edit over the entire dataset. Compared344

with parameter high-efficient tuning methods (Hu345

et al., 2021; Liu et al., 2023), which injects the346

new knowledge into a pre-trained LM as a whole,347

iReVa focuses on editing parameters in a traceable348

manner. In other words, we can locate the edited349

knowledge neurons. At the end, we display the350

training procedure of iReVa in Algorithm 1.351

Algorithm 1 Training Procedure of iReVa

1: Input In-scope editing pairs Din; out-of-scope
editing pairs Dout; Original model fΦ; Itera-
tion number T

2: Initial Φ∗ ← Φ
3: for (xi, yi) ∈ Din do
4: Initial k̂← i; v̂←W[yi,:] ▷ Initialize

key-value adaptor as shown in Section 4.2
5: Φ∗ ← Φ∗⋃ k̂

⋃
v̂

6: for t = {1, 2, .., T} do
7: L ← Ledit+aLrecon+bLirr ▷ Retrofit

key-value adaptor as shown in Section 4.3
8: k̂← Adam(k̂,∇Lk̂)
9: v̂← Adam(v̂,∇Lv̂)

return fΦ∗

3Here, Dout is generated randomly. See Appendix 9.5 for
details.

4.4 Activate Max-Matching Key in Adaptor 352

(Inference Phase) 353

As we iteratively append k̂ and v̂ to the knowledge 354

neurons. The above procedure will sequentially 355

generate mappings from the edit input to the edit 356

output. Eventually, we obtain two concatenated 357

matrices K̂ ∈ Rd1×n and V̂ ∈ Vn×d1 . During 358

inference, we further control the amount of active 359

neurons and highlight the max-matching memory. 360

To this end, we introduce a max-pooling layer to 361

extract the memory with the maximum matching 362

score: 363

Adaptor(i; K̂, V̂) = αV̂⊺
j gact(K̂

⊺
j i) (13) 364

where j = argmaxt(K̂
⊺
t i) and K̂t denotes the j-th 365

column of K̂. As we can see, when there comes 366

a new input, this layer will highlight the inserted 367

knowledge neurons with the highest similarity to 368

the input as shown in Figure 1. It’s worth noting 369

that we exclude the max-pooling layer during the 370

training phase because this may impede the back- 371

propagation due to the inactivation of the neurons. 372

5 Experimental Setup 373

5.1 Datasets 374

We perform extensive experiments on two mod- 375

eling editing tasks: zsRE (Mitchell et al., 2022a) 376

is a commonly used model editing task derived 377

from a reading comprehension benchmark. To- 378

tally 19, 086 examples are included, each exam- 379

ple includes a source question, paraphrase ques- 380

tion, and corresponding answer. Different from 381

previous works, we choose the alternative an- 382

swer which is more reflective of real-world ap- 383

plication settings instead of the factual answer as 384

the training target to measure the knowledge up- 385

dating ability. Another benchmark that applies 386

counterfactual information as answers is COUN- 387

TERFACT (Meng et al., 2023a). We do not in- 388

clude it because we prefer testing the model’s direct 389

prediction, whereas COUNTERFACT uses noisy 390

questions to estimate whether the model can im- 391

plicitly increase the likelihood of new answers ap- 392

pearing. Meanwhile, to evaluate if a method can 393

insert factual knowledge into the model, we con- 394

struct a harder PARAREL (Elazar et al., 2021) 395

dataset. Each sentence in PARAREL is derived 396

from a triplet (s, r, o), and the object o was re- 397

placed with a “[MASK]” token, and a paraphrased 398

version is involved. To apply PARAREL in model 399

5

editing task, we selected those sentences that end400

with “[MASK]” token to conform to the format of401

next-token-prediction4 For both datasets, we sam-402

ple irrelevant examples from NQ to evaluate the403

preservation of out-of-scope editing. We test 10K404

edit in a batch and denote them as zsRE-10K and405

PARAREL-10K, respectively. More implementa-406

tion details are presented in 9.8.407

5.2 Baselines408

We compare our iReVa with 6 advanced baselines409

that support batch editing: NO EDITING denotes410

we do not modify the base model and utilize its411

original prediction; FT (Zhu et al., 2021) is the412

simple fine-tuning with a constraint on specific413

parameters. MEMIT (Meng et al., 2023b) and414

ROME (Meng et al., 2023a) are two methods em-415

ploying a causal analysis to detect the most sig-416

nificant hidden states. They view the editing as a417

minimum optimization and edit the weight directly,418

which is effective in batch edit; MEND (Mitchell419

et al., 2022a) applies rank-one decomposition to di-420

vide the model into two rank-one matrices, which is421

able to carry mass knowledge in the dense metrics;422

MELO (Yu et al., 2023) activates specific LoRA423

blocks corresponding to specific queries for multi-424

ple edits, which support large-scale editing in just425

one process. MALMEN (Tan et al., 2024) applies426

MEND in a batch edit scenario and performs edits427

through meta-learning. Note that T-Patcher (Huang428

et al., 2023) whose forward propagation resem-429

bles our method is not included, now that it can be430

merely applied on encoder-decoder LMs. Specifi-431

cally, the patcher is only embedded in the encoder432

which is inapplicable to the decoder.433

5.3 Evaluation Metrics434

We follow the commonly-used evaluation met-435

rics (Meng et al., 2023a,b) to measure the effect of436

our editing method.437

1. Edit Success (ES) measures the models’ predic-438

tion accuracy on edited data xi ∈ Din by cal-439

culating ES = 1
N

∑N
i=0 I(yi = fΦ(xi)), which440

represents whether the new knowledge is suc-441

cessfully injected into the base model.442

2. Generalization (Paraphrase Success, PS) mea-443

sures the models’ prediction accuracy on para-444

phrase questions provided by benchmarks. We445

compute paraphrase success with the same for-446

4Appendix 9.7 demonstrates the pre-processing step to
PARAREL in detail and also contains more information about
this benchmark.

mulation but for xi in the paraphrase questions 447

set. Paraphrase success indicates whether the 448

model can recognize similar expressions and 449

provide edited answers. 450

3. Specificity (Neighborhood Success, NS) mea- 451

sures the models’ prediction accuracy on irrel- 452

evant questions. Different from Dout, these 453

questions are only used for preventing data leak- 454

age. We compute neighborhood success with 455

the same formulation but for xi in the neigh- 456

borhood questions set. Neighborhood success 457

manifests the capability of solving catastrophic 458

forgetting and preserving irrelevant knowledge 459

stored in the model. It is worth mentioning that 460

we force the PS to be lower than the PS without 461

editing because meta-learning-based methods 462

may incorporate some in-distribution data from 463

Dout into the model during training. 464

4. Score is the harmonic mean of the three afore- 465

mentioned metrics. 466

6 Results and Analyses 467

6.1 Comparisons to Existing Methods 468

Table 1 exemplifies performances of iReVa and 469

baselines on zsRE and PARAREL with 10K edits 470

in batch. As we can see, iReVa outperforms all 471

baselines on average scores with noticeable mar- 472

gins. Even without retrofitting, our method is able 473

to outperform the SOTA results by around 9% and 474

6% average score improvement on zsRE-10K and 475

PARAREL-10K, respectively. Among all the base- 476

line methods, FT achieves good results on ES and 477

PS, this indicates that fine-tuning is simple but ef- 478

fective to inject knowledge but it could easily dis- 479

tract the irrelevant knowledge, resulting in a poor 480

NS. Whereas other baselines can not guarantee 481

editing success in a batch with counterfactual tar- 482

gets being answers, resulting in poor ES and PS. 483

In comparison, iReVa achieves impressive results 484

on all the evaluation metrics. It achieves close to 485

100% ES without detriment to the original NS. We 486

observe a slight improvement from the results of 487

iReVa to iReVa+L on zsRE-10K dataset, it verifies 488

our rationale deduce for the initialization of key- 489

value pairs. However, the improvement brought by 490

fine-tuning is not maintained on PARAREL-10K, 491

we suspect this is because the involvement of irrel- 492

evant knowledge brings in little unexpected noise 493

with possibility. 494

6

Table 1: Editing results on various model editing tasks with GPT2-XL as the base model. In our methods, +L
represents iReVa with fine-tuning as described in Section 4.3.

Method zsRE-10K PARAREL-10K
Score ES PS NS Score ES PS NS

NO EDITING 23.93 22.89 21.96 27.65 19.61 18.66 17.24 24.18

FT 43.94 82.80 64.51 24.57 38.83 83.32 53.06 21.55
MEND 14.54 12.43 12.04 23.35 0.00 0.00 0.00 0.50
ROME 4.39 17.26 14.24 1.80 0.49 9.65 6.23 0.17
MEMIT 39.30 52.62 47.29 27.63 38.44 62.60 52.71 23.20
MELO 31.10 42.75 28.12 26.65 24.78 34.19 20.83 22.83
MALMEN 38.42 53.60 49.35 25.53 22.95 22.83 21.96 24.18

iReVa 48.40 97.88 74.89 26.03 43.08 93.49 56.86 24.18
iReVa +L 49.08 97.47 76.38 26.47 42.72 89.85 56.37 24.18

6.2 Edit Withdrawal Test495

Compared with the existing editing methods, our496

method has the unique advantage of interpretabil-497

ity and traceability, that is we can clearly iden-498

tify the edit for each newly inserted key-value pair.499

This provides a chance to conduct an edit with-500

drawal test. Most existing methods can’t perform501

the withdrawal test for their batch training mech-502

anism, and stream-fashion methods like GRACE503

may encounter the expanding operation and forget-504

ting challenge (Hartvigsen et al., 2023) which will505

induce a withdrawal failure.506

Specifically, we test, after editing on 10K ex-507

amples, if iReVa is able to withdraw certain ed-508

its and recover the original output from the base509

model without much loss. To this end, we in-510

hibit corresponding knowledge neurons as with-511

drawing the edit, which is denoted as f−k̂
Φ∗ . For512

evaluation, we introduce two metrics, namely Re-513

trieve Success and Consistency. They are formu-514

lated as RS = 1
N

∑N
i=0 I(fΦ∗(xi) ̸= f−k̂i

Φ∗) and515

Con = 1
N

∑N
i=0 I(fΦ(xi) = f−k̂i

Φ∗), respectively.516

The evaluation result on zsRE-10K is shown in Ta-517

ble 2. The results which are close to 100% prove518

that iReVa can explicitly manipulate the activation519

of knowledge neurons and easily withdraw the up-520

dated knowledge. Notably, this test is not appli-521

cable to any other editing methods as their edited522

parameters are untraceable. This is the first attempt523

at conducting more flexible knowledge editing.524

Table 2: Results of edit withdrawal on zsRE-10K dataset
with GPT2-XL as the base model.

Method Retrieve success Consistency

iReVa 98.02% 93.03%

6.3 Efficiency Analysis 525

We discuss the spatial and time complexities of 526

iReVa. Regarding time complexity during infer- 527

ence, iReVa only inserts the adaptor in a single 528

l-th layer and the insertion only affects the final to- 529

ken prediction of the input. With i ∈ R1×d1 , K̂ ∈ 530

Rd1×n, V̂ ∈ Rn×d1 and averaged length l of tar- 531

get tokens (l = 2.69 for zsRE and l = 1.15 532

for PARAREL), the extra time consumption is 533

O(ld21n), which is unrelated to the input length and 534

number of layers. Regarding spacial complexity, as 535

we insert two vectors for each edit in a single layer, 536

the extra spacial consumption isO(2lnd1). In prac- 537

tice, for GPT2-XL with 1.5B parameters, the adaptor 538

merely possesses 0.08B parameters with 10K edits. 539

There is no additional spacial complexity involved 540

in the training phase, given that only 2d1 parame- 541

ters are learnable for each edit token. We empiri- 542

cally record that 10K edits with iReVa cost 7.2/1.5 543

hours (fine-tuning/without fine-tuning) with a sin- 544

gle NVIDIA A100 GPU, compared to 9.16 hours 545

for ROME and 5.4 hours for MEMIT. 546

6.4 Ablation Study 547

Table 3 shows iReVa’s performance on zsRE-10K 548

when we iteratively remove sub-modules: (1) w/o 549

activation function denotes that we remove the ac- 550

tivation function proposed in Equation 7. (2) w/o 551

max-pooling denotes that we involve all knowledge 552

neurons during inference instead of the design of 553

Equation 13. (3) w/o Lrec denotes that we train 554

iReVa without initialization and set a = 0 in Equa- 555

tion 12. (4) w/o Lirr means we do not apply Lirr 556

by setting b = 0 in Equation 12. As we can see, 557

all the modules contribute to the good results. In 558

comparison, the activation function is important to 559

preserve the out-of-scope edit. Without an activa- 560

tion function, we can attain better results on ES and 561

7

PS, but NS will decrease sharply. We also find that562

the influence of max-pooling is significant, which563

may be attributed to noisy data added by a large564

amount of active but irrelevant knowledge neurons.565

Besides, excluding Lrec will lead to an observable566

drop on the three metrics because we discord the567

effective initialization on K̂ and V̂. Finally, dis-568

abling Lirr may induce a marginal improvement in569

ES and PS, but at the cost of a reduction in NS.

Table 3: Results of ablation study on zsRE dataset with
GPT2-XL as the base model.

Act Max Loss Loss Metrics
func pool Lrec Lirr Score ES PS NS

✓ ✓ ✓ ✓ 49.08 97.47 76.38 26.47
✓ ✓ ✓ × 48.66 97.84 76.73 26.03
✓ ✓ × ✓ 45.50 92.28 73.25 24.13
✓ × ✓ ✓ 40.03 56.07 52.41 26.31
× ✓ ✓ ✓ 8.087 99.41 78.52 2.87

570
6.5 Generalization Capabilities of iReVa571

LMs generalization. We also test iReVa on differ-572

ent LLMs as base models, table 4 shows iReVa’s573

generality on different backbones. We apply a574

larger LM GPT-J-6B (Wang and Komatsuzaki,575

2021), LlaMA-3-8B (AI@Meta, 2024), and smaller576

LM GPT2-LARGE (Radford et al., 2019) to evaluate577

the effect of iReVa on LMs with different sizes.578

From the table, we observe that iReVa can achieve579

the best average score on all LMs, which shows its580

general effect. Additionally, the performance degra-581

dation of ROME and MEMIT on the LlaMA model582

may be ascribed to knowledge conflict issues. An583

intuitive explanation is that the model recalls the584

memory of a new answer for the input question in585

the edit layer, while simultaneously recalling the586

memory of the old answer in the layer where the587

QA pair was originally stored. This conflict leads588

to prediction errors, and stronger models are more589

likely to encounter such conflicts. In contrast, the590

overwrite-based mechanism of iReVa avoids this591

issue.592

Edit quantity generalization. We discuss the in-593

fluence on iReVa’s performance with the variation594

of edit quantity, we simply increase the number595

of edits in the batch and evaluate ES, PS, and596

NS. Figure 2 shows the tendency of three metrics597

along with the comparison to baselines ROME and598

MEMIT. As we can see, iReVa is robust to the num-599

ber of edit in the batch. It consistently surpasses the600

other baselines when dealing with the various num-601

ber of edits. MEMIT performs poorly even with a602

small number of edits. ROME drops dramatically603

Table 4: Results on zsRE dataset with GPT2-LARGE,
GPT-NEO-2.7B, GPT-J-6B, LlaMA-3-8B as the base
models.

Engine Method Score ES PS NS

ROME 22.24 38.59 36.41 12.27
GPT2-LARGE MEMIT 38.94 56.25 49.25 25.67

iReVa 44.73 91.22 72.36 23.65

ROME 32.74 53.81 49.89 18.87
GPT-J-6B MEMIT 54.53 94.04 72.48 32.70

iReVa 55.57 99.71 77.10 32.27

ROME 3.09 3.71 3.68 2.34
LlaMA-3-8B MEMIT 40.88 44.98 38.18 40.07

iReVa 68.68 99.98 79.62 47.35

as the edit number grows. 604

More generalization analysis could be found in 605

9.3 and 9.4. 606

Figure 2: Results of edits with various size on zsRE
dataset with GPT2-XL as the base model.

7 Limitation 607

We also conclude iReVa’s limitation as follows: a) 608

iReVa performs poorly when the target prompt is 609

a long sentence because it constructs a knowledge 610

neuron for each token in the target prompt, thereby 611

increasing the training time cost. Additionally, dur- 612

ing inference, the high number of neurons increases 613

the probability of errors; b) To maintain iReVa’s 614

interpretability, its application is limited, including 615

that iReVa can be only applied on GPT-like models 616

and generation task; c) The behavior of iReVa (ES 617

and PS) won’t enhance noticeably as the scale of 618

base model grows. 619

8 Conclusions 620

In this paper, we propose iReVa, a model editing 621

method with traceable knowledge storage, which 622

inserts edit key-value adaptor into the MLP module 623

of a transformer model explicitly. iReVa displays 624

prominent abilities of edit success, generalization, 625

and specificity and outperforms baselines with an 626

observable margin. Besides, iReVa first success- 627

fully demonstrates its capacity for the knowledge 628

withdrawal. For further research, we will focus on 629

generalizing iReVa to more LM architectures. 630

8

References631

AI@Meta. 2024. Llama 3 model card.632

Tom Brown, Benjamin Mann, Nick Ryder, Melanie633
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind634
Neelakantan, Pranav Shyam, Girish Sastry, Amanda635
Askell, et al. 2020. Language models are few-shot636
learners. Advances in neural information processing637
systems, 33:1877–1901.638

Jérôme Seymour Bruner. 1960. The process of educa-639
tion.640

Jérôme Seymour Bruner. 1964. The course of cognitive641
growth. American Psychologist, 19:1–15.642

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-643
ing factual knowledge in language models. Preprint,644
arXiv:2104.08164.645

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha646
Ravichander, Eduard Hovy, Hinrich Schütze, and647
Yoav Goldberg. 2021. Measuring and improving648
consistency in pretrained language models. Preprint,649
arXiv:2102.01017.650

Mor Geva, Roei Schuster, Jonathan Berant, and Omer651
Levy. 2021. Transformer feed-forward layers are652
key-value memories. Preprint, arXiv:2012.14913.653

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.654
Dimensionality reduction by learning an invariant655
mapping. In 2006 IEEE computer society confer-656
ence on computer vision and pattern recognition657
(CVPR’06), volume 2, pages 1735–1742. IEEE.658

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid659
Palangi, Yoon Kim, and Marzyeh Ghassemi.660
2023. Aging with grace: Lifelong model edit-661
ing with discrete key-value adaptors. Preprint,662
arXiv:2211.11031.663

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zor-664
nitsa Kozareva, Veselin Stoyanov, Mohit Bansal, and665
Srinivasan Iyer. 2021. Do language models have be-666
liefs? methods for detecting, updating, and visualiz-667
ing model beliefs. arXiv preprint arXiv:2111.13654.668

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and669
Jun Zhao. 2024. Wilke: Wise-layer knowledge ed-670
itor for lifelong knowledge editing. arXiv preprint671
arXiv:2402.10987.672

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan673
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,674
and Weizhu Chen. 2021. Lora: Low-rank adap-675
tation of large language models. arXiv preprint676
arXiv:2106.09685.677

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,678
Wenge Rong, and Zhang Xiong. 2023. Transformer-679
patcher: One mistake worth one neuron. In The680
Eleventh International Conference on Learning Rep-681
resentations.682

N Jayashri and K Kalaiselvi. 2018. Knowledge 683
acquisition–scholarly foundations with knowledge 684
management. International Journal of Advanced 685
Studies of Scientific Research, 3(12). 686

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham 687
Neubig. 2020. How can we know what language 688
models know? Transactions of the Association for 689
Computational Linguistics, 8:423–438. 690

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, 691
Joel Veness, Guillaume Desjardins, Andrei A Rusu, 692
Kieran Milan, John Quan, Tiago Ramalho, Ag- 693
nieszka Grabska-Barwinska, et al. 2017. Over- 694
coming catastrophic forgetting in neural networks. 695
Proceedings of the national academy of sciences, 696
114(13):3521–3526. 697

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 698
Optimizing continuous prompts for generation. arXiv 699
preprint arXiv:2101.00190. 700

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun 701
Ma, and Jie Yu. 2024. Pmet: Precise model editing in 702
a transformer. Proceedings of the AAAI Conference 703
on Artificial Intelligence, 38(17):18564–18572. 704

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 705
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt 706
understands, too. AI Open. 707

Michael McCloskey and Neal J. Cohen. 1989. Catas- 708
trophic interference in connectionist networks: The 709
sequential learning problem. volume 24 of Psychol- 710
ogy of Learning and Motivation, pages 109–165. Aca- 711
demic Press. 712

Kevin Meng, David Bau, Alex Andonian, and Yonatan 713
Belinkov. 2023a. Locating and editing factual associ- 714
ations in gpt. Preprint, arXiv:2202.05262. 715

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 716
Yonatan Belinkov, and David Bau. 2023b. Mass- 717
editing memory in a transformer. Preprint, 718
arXiv:2210.07229. 719

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 720
Finn, and Christopher D. Manning. 2022a. Fast 721
model editing at scale. Preprint, arXiv:2110.11309. 722

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 723
pher D. Manning, and Chelsea Finn. 2022b. 724
Memory-based model editing at scale. Preprint, 725
arXiv:2206.06520. 726

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An- 727
ton Bakhtin, Yuxiang Wu, Alexander H. Miller, and 728
Sebastian Riedel. 2019. Language models as knowl- 729
edge bases? Preprint, arXiv:1909.01066. 730

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 731
Sutskever, et al. 2018. Improving language under- 732
standing by generative pre-training. 733

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 734
Dario Amodei, Ilya Sutskever, et al. 2019. Language 735
models are unsupervised multitask learners. OpenAI 736
blog, 1(8):9. 737

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:177285798
https://api.semanticscholar.org/CorpusID:177285798
https://api.semanticscholar.org/CorpusID:177285798
https://api.semanticscholar.org/CorpusID:145196722
https://api.semanticscholar.org/CorpusID:145196722
https://api.semanticscholar.org/CorpusID:145196722
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2102.01017
https://arxiv.org/abs/2102.01017
https://arxiv.org/abs/2102.01017
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066

Noam Shazeer. 2020. Glu variants improve transformer.738
arXiv preprint arXiv:2002.05202.739

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive740
editing for large language models via meta learning.741
Preprint, arXiv:2311.04661.742

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-743
6B: A 6 Billion Parameter Autoregressive Lan-744
guage Model. https://github.com/kingoflolz/745
mesh-transformer-jax.746

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2023.747
Melo: Enhancing model editing with neuron-indexed748
dynamic lora. Preprint, arXiv:2312.11795.749

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng750
Wang, Shumin Deng, Mengru Wang, Zekun Xi,751
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan752
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,753
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,754
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A755
comprehensive study of knowledge editing for large756
language models. Preprint, arXiv:2401.01286.757

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong758
Wu, Jingjing Xu, and Baobao Chang. 2023. Can759
we edit factual knowledge by in-context learning?760
Preprint, arXiv:2305.12740.761

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh762
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.763
2021. Modifying memories in transformer models.764

9 Appendix 765

9.1 Detailed Description of Initialization of 766

Key-Value Adaptor 767

We describe how we initialize k and v in detail. 768

Given the input xi = {w1, w2, ..., ws}, we first ob- 769

tain the corresponding embeddings for each token, 770

such that xi = {w1,w2, ...,ws}. After encoded 771

via l Transformer layers, we obtain a sequence of 772

hidden representations as input {hl
1,h

l
2, ...,h

l
s}. In 773

the two-layer-FFN MLP block of l-th layer, after 774

self-attention and layer norm, we have the hidden 775

representation of the last token as: 776

ils = LN(hl
s + SELF_ATTN(hl

s)) 777

ols = Vl⊺gact(K
l⊺ils) 778

hl+1
s = SELF_ATTN(ils + ols) 779

We extract il+1
s as the initialization of k̂0. Sub- 780

sequently, {hl+1
1 ,hl+1

2 , ...,hl+1
s } are further pro- 781

cessed via the higher layers. In the last layer, we 782

make prediction based on the hidden representation 783

in L-th layer, which can be denoted as: 784

PfΦ(yi|xi) = SOFTMAX(W⊺hL
s), 785

where W ∈ Rd1×|V | and each column denotes the 786

representation of a token. We extract the column 787

corresponding to the ground truth edit out token yi, 788

that is v̂0 = W[:,yi]. 789

9.2 Discussion of Back Propagation of 790

Key-Value Adaptor 791

Recall the knowledge neurons of our key-value 792

adaptor are: 793

o = v⊺gact(k
⊺i) + v̂⊺gact(k̂

⊺i) 794

Given L, the gradients are computed as: 795

dL
dk̂

= g′act(k̂
⊺i) · v̂ · i⊺dL

do
796

dL
dv̂

= gact(k̂
⊺i)

dL
do

797

dL
di

= [g′act(k
⊺i)v⊺k+ g′act(k̂

⊺i)v̂⊺k̂]
dL
do

. 798

where g′act is the derivative of the activation func- 799

tion. We have multiple observations of the gradi- 800

ents: First, we would like the newly inserted neuron 801

to be activated initially, namely gact > 0. Other- 802

wise, the gradients are close to 0 and the neurons 803

are likely to be dead. This is the reason why we ini- 804

tialize the k̂ and v̂ with the consideration of having 805

10

https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2311.04661
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2312.11795
https://arxiv.org/abs/2312.11795
https://arxiv.org/abs/2312.11795
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2305.12740
https://arxiv.org/abs/2305.12740
https://arxiv.org/abs/2305.12740
https://openreview.net/forum?id=KubHAaKdSr7

a high matching value. Second, when we update k̂806

and v̂, they are unrelated to k and v, which makes807

it possible to isolate the irrelevant knowledge.808

For the knowledge neurons without our key-809

value adaptor, we have the propagation:810

o = v⊺gact(k
⊺i).811

The gradients of i are computed as:812

dL
di

= g′act(k
⊺i)v⊺k

dL
do

.813

As we can see, excluding the key-value adaptor814

in the neuron makes the gradients simply derived815

from k and v, which maintains the original knowl-816

edge in the neurons.817

9.3 Influence of edit layer818

To evaluate the effect of iReVa in various layers,819

we iteratively apply iReVa and the other two base-820

line editing methods to different layers of GPT2-XL,821

which consists of 48 layers in total. Figure 3 illus-822

trates the influence of three metrics on different lay-823

ers with intervals. The tendency shows that the edit824

in the higher layer results in better editing results.825

This indicates that LMs’ final prediction primarily826

depends on the information retrieved from higher827

layers and the knowledge stored in lower layers828

may be overshadowed. For ROME and MEMIT,829

apparently, they show distinct generalizations in830

edit layer. Their ES and PS peak at the middle831

layer like 17 or 22, which proves that the layer832

generalization is remarkably relevant to the charac-833

teristics of different methods. Even though MEMIT834

achieves good performance in NS when the edit835

happens in lower layers, overall iReVa outperforms836

the baselines regarding the comprehensive evalua-837

tion metrics.838

Figure 3: Results of edits in various layers on zsRE
dataset with GPT2-XL as the base model.

9.4 Influence of θ and a839

The influence of θ (margin in the activation func-840

tion) and a (coefficient of Lrec) is illustrated in 4.841

The figure shows the trade-off between the three842

metrics smoothly. The primary affected metric843

is NS, and ES and PS exhibit a slight downward 844

trend. For a, we find that merely PS peaks while 845

a = 1e− 2, meanwhile ES and NS do not continue 846

to improve with the increase of a. 847

Figure 4: Correlation between three metrics and θ(left)
or a(right) of iReVa, ROME, MEMIT

9.5 Sample out-of-scope examples for iReVa 848

To enhance iReVa’s Specificity, we generate 3 849

kinds of irrelevant questions q ∈ Dout for each 850

(x, y) ∈ Din to minimize K̂⊺
i · xout, where xout 851

is the dense representations of q. These questions 852

are listed as follows: a) Randomly generated ques- 853

tions produced by feeding base model with a bos 854

(begin of sentence) token. b) Questions generated 855

by base model with feeding the subject s of the 856

x provided by the benchmark. c) Questions sam- 857

pled from other examples in training dataset, whose 858

opinion is similar to contrastive learning (Hadsell 859

et al., 2006). During iReVa training, we generate 2 860

questions in a), 2 questions in b), and 6 questions 861

in c) for each training example. 862

9.6 Pre-processing procedure of zsRE 863

Shown in 2, we split each (x, y) pair into multiple 864

(x′, y′) to ensure y′ is a single-token edit out. This 865

procedure is also applied in the evaluation of zsRE 866

and PARAREL, which measures the (i + 1)-th 867

token of edit-out prediction accuracy given edit-in 868

and i prefixes of edit-out. 869

Algorithm 2 Pre-processing Procedure of zsRE

1: Input Raw dataset zsRE D, tokenization func-
tion encode;

2: Init D′ = [];
3: for (x, y) ∈ D do
4: Init tokens = encode(y);
5: for i ∈ {0, 1, 2...len(tokens)− 1} do
6: D′.append((x+ tokens[: i], y[i]));

return D′

11

Algorithm 3 Pre-processing Procedure of PARAREL

1: Input Raw dataset PARAREL D; Raw NQ dataset Dloc; Function lcs computes the longest common
sub-array of two strings, tokenization function encode, detokenization function decode;

2: Init D′ = [];
3: for (ri, vi) ∈ D do ▷ For each relation and in-relation questions in D
4: for (bij , aij) ∈ vi do ▷ For specific questions, rephrased versions and answers in vi
5: If len(bij) ≤ 1, then continue;
6: Init subject = bij [0];
7: Init compatible_questions = [];
8: for qijk ∈ bij [1 :] do
9: subject = lcs(encode(qijk), encode(subject));

10: If qijk.endswith(”[MASK]”), then compatible_questions.append(qijk);

11: src_question = compatible_questions[0];
12: subject = decode(subject)
13: If (subject = ””) ∨ (subject = src_question), then continue
14: rephrased_question = random.choice(compatible_questions[1 :]);
15: D′.append((src_question, aij , rephrased_question, subjcet,Dloc.next()))

return D′

9.7 Pre-processing Procedure of PARAREL870

This section details the pre-processing method on871

close text dataset PARAREL (Elazar et al., 2021).872

PARAREL contains 34 types of relations r, with an873

average of 900 question bags b per relation, totaling874

27,738 distinct questions q. For each question bag,875

around 9 rephrased versions are recorded with a876

sole answer a.877

The entire pre-process algorithm is shown in 3.878

To make PARAREL applicable for the next-token-879

prediction task, we reserve the sentences that end880

with a special token “[MASK]”. After a round of881

filtering, we removed question bags b with only 1882

valid sentence that ends with “[MASK]” for both883

Edit Success and Paraphrase Success need to884

be computed. During this filtering, we collect885

the subject of question s bag by calculating the886

longest common sub-array of all q ∈ b tokenized887

by GPT2Tokenizer (Radford et al., 2019) simulta-888

neously for specific methods require the subject of889

a question. The next screening occurs at b whose890

subject s is an empty string or identical to b[0].891

With residual question bags b′, we choose b′[0] as892

the source question and a randomly sampled ques-893

tion from b′[1 :] as the paraphrase question.894

Empirically, we believe PARAREL is harder895

than zsRE because the average token length of edit896

target is shorter, thus model can’t give more em-897

pirical predictions based on the given prefix of the898

target, which is mentioned in 9.6. In other words,899

the account for first-token prediction may influence900

the difficulty of datasets noticeably. 901

9.8 Implementation Details 902

Regarding editing datasets, we pre-process the edit 903

input-output pairs differently from previous studies. 904

If the multiple tokens form a single prediction, we 905

decompose the multiple tokens into multiple data 906

pairs by greedily appending the previous token in 907

the edit output at the end of the edit input5. For 908

model selection, we conduct the experiments on 909

GPT2-XL (1.5 Billion parameters) (Radford et al., 910

2019) due to its wide application in existing model 911

editing studies. We trained iReVa on a single 912

NVIDIA A100 80G GPU. On two evaluated bench- 913

marks, we set a = 1e− 3, b = 1e− 3, α = 2e− 1, 914

and iReVa is applied in 47-th (48 layers totally) 915

layer inspired by the assertion in (Geva et al., 916

2021). For the margin in activation function, we set 917

θ = 0.75 for zsRE, θ = 0.65 for PARAREL. Dur- 918

ing training, we conduct experiments on GPT2-XL 919

with setting learning rate as 5e − 2, batch size as 920

1, and epoch number as 5. We set the learning rate 921

as 5e − 3 for GPT-J-6B and apply gradient-free 922

method on LlaMA-3-8B. More implementation de- 923

tails of baselines are displayed in Appendix 9.9. 924

We re-implement the comparable baselines using 925

the same configuration reported in existing studies. 926

5The processing procedure is displayed in Appendix 9.6

12

9.9 Implementation Details of Comparable927

Baselines928

9.9.1 Fine Tuning(FT)929

We implement fine tuning on two feed-forward930

networks (mlp.c_fc, mlp.c_proj) at the layer of931

46 with GPT2-XL. The base model is trained for 20932

epochs with lr = 1e− 4,batch size = 32.933

9.9.2 MEND934

We do not load the pre-trained MEND (Mitchell935

et al., 2022a) weight, but apply MEND directly.936

Hyper-parameters of MEND are consistent with937

the configuration of MEND’s open-source code.938

9.9.3 ROME, MEMIT939

ROME (Meng et al., 2023a) and MEMIT (Meng940

et al., 2023b)’s setups on GPT2-XL also remain941

identical to the source code. On GPT-J-6B and942

LlaMA-3-8B, we alter the edit layer to 5 for ROME943

and {3,4,5,6,7,8} for MEMIT.944

9.9.4 MELO945

Due to larger edit amount and different backbone946

for zsRE, we modify several configurations to make947

MELO (Yu et al., 2023) comparable to our methods.948

For MELO’s code book, we enlarge the number949

of blocks (clusters) to 100. Besides, we rewrite950

MELO’s training loss to make it compatible with951

the causal decoder.952

9.9.5 MALMEN953

MALMEN (Tan et al., 2024) is first trained on954

the training split of edit benchmarks, thus we955

also trained MALMEN on zsRE’s training split956

(also with alternative answers). For PARAREL,957

we use the first 10,000 samples as the test set958

and the remaining data as the training set. We959

set n_edits = 10000, batch_size = 16 for both960

datasets, and edit layers to {42, 43, 44, 45, 46, 47}961

for GPT2-XL.962

13

	Introduction
	Related Work
	Insight of Knowledge Storage in Language Models
	Editing LMs by Manipulating Knowledge

	Problem Formulation
	Our Proposed Method: iReVa
	Basic Architecture
	Initial Key-Value Adaptors for In-Scope Editing
	Retrofit Adaptors for Model Editing (Training Phase)
	Activate Max-Matching Key in Adaptor (Inference Phase)

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics

	Results and Analyses
	Comparisons to Existing Methods
	Edit Withdrawal Test
	Efficiency Analysis
	Ablation Study
	Generalization Capabilities of iReVa

	Limitation
	Conclusions
	Appendix
	Detailed Description of Initialization of Key-Value Adaptor
	Discussion of Back Propagation of Key-Value Adaptor
	Influence of edit layer
	Influence of and a
	Sample out-of-scope examples for iReVa
	Pre-processing procedure of zsRE
	Pre-processing Procedure of PARAREL
	Implementation Details
	Implementation Details of Comparable Baselines
	Fine Tuning(FT)
	MEND
	ROME, MEMIT
	MELO
	MALMEN

